

Workflow 1: Working Alignment Definition

1. Select Define button from the Project Manager Workflow Dialog as shown below. The Working Alignment Definition Dialog Box for the Chain MAIN will appear.

8 Road Project: FHWA.prj					
<u>Fi</u> le <u>R</u> emember <u>O</u> ptions					
Working Directory: c:\Your_Project\Roadway\Design		Liser John	Joh #1	101	
Vorking Alignment Influence Runs	Calaat	Define Port View			_
Working Alignment MAIN	Select	Derine Port View	er		

Figure 8-3: Define Working Alignment

2. For the Plan View, select the proposed design file and select the Geopak alignment chain.

8 Working Alignment Definition:	MAIN	
Plan View Pattern Shapes Profile View Location Cross Section View Existing Ground Proposed Finish Grade DTM	Design File: C:\Your_Project\Rc Chain: MAIN Begin Station: 10+00.00 End Station: 115+66.87	File Select
OK Cancel		

Figure 8-4: Plan View Definition

3. For the Pattern, populate the dialog By Station or By Design File. Use named levels P_GPK_Pattern_01 to P_GPK_Pattern_10 to place pattern lines in a design file. Horizontal Scale and Vertical Scale should be set to 1.

8 Working Alignment Definition:	MAI	
		By Station
Plan View		By Design File
Pattern		Hor. Scale 1 Ver. Scale 1
Shapes		
Profile View		Design File: C:\Your_Project\Rc File
Location		
Cross Section View		Lv Names: P_GPK_Pattern_01 🛅
Existing Ground	Е	Ly Numbers:
Proposed Finish Grade		
DTM	₹	Colors: ByLevel 🛅 Match
	₽	Styles: ByLevel 🛅 Display
	☑	Weights: ByLevel 🔟 Reset
OK Cancel	☑	
		Placement:

Figure 8-5: Pattern Definition

4. For the Shapes, populate the dialog By Search Criteria as shown below. Using the Search Criteria mode instead of the All in DGN mode will process the proposed cross sections faster. When drawing superelevation shapes, make sure to define your level symbology, use named level P_RDW_Super_Shapes to draw superelevation shapes in the Shapes dgn file.

For CFL projects, Superelevation Files (preference files, e files and length files) are accessible from the

V8_RESOURCE\X_30\Standards\Bin\English or Metric Directory.

8 Working Alignment Definition:	MAIN	
Plan View Pattern Shapes Profile View Location Cross Section View Existing Ground Proposed Finish Grade DTM	By Search Criteria All In DGN Project\Rc File Lv Names: P_RDW_Super_Sh Lv Numbers: Colors: 1,6 Styles: 0	Match
OK Cancel	✓ Weights: 1 ✓ Types: 14	Reset

Figure 8-6: Shapes Definition

5. For the Profile View and Location, populate the dialogs defining your design profile file, existing profile and proposed profiles. Profile Location can be populated by selecting the Identify Cell button and selecting the profile cell. Profile View and Location are not required to be populated to run proposed cross sections.

6. For the Cross Section View, populate the dialogs defining your XS DGN file.

Plan View Pattern	XS DGN File:	c:\Your_Project\Ro	File
Shapes Profile View Location	Chain:	MAIN	
Cross Section View	Begin Station:	10+00.00 R 1	
Existing Ground Proposed Finish Grade DTM	End Station:	115+50.00 R 1	
OK Cancel			

Figure 8-7: Cross Section Definition

7. For the Existing Ground, populate the dialogs defining the parameters of your existing ground as shown below. Double click on the Placement field and Set the Feature Symbology as shown.

Plan View Pattern	Lv Names: X_E_	_Ground_XS 2
Shapes Profile View Location Cross Section View	Colors: ByLev	
Cross Section View Existing Ground Proposed Finish Grade DTM	Weights: ByLev Wights: Sylev Types: 3-4	
OK Cancel	Placement:	Symbology Levet X_E_Ground_XS Color: ByLevel

Figure 8-8: Existing Ground Definition

8. The Proposed Finished Grade and DTM should be completed, but they are not required to be populated to run Proposed Cross Sections. After completing all the categories in the dialog box, Select OK to save and close the Working Alignment Definition dialog box. In this example the working alignment definition for MAIN has been saved.