


# QUALITY GUIDELINES FOR ENERGY SYSTEM STUDIES

# **Capital Cost Scaling Methodology**



# NATIONAL ENERGY TECHNOLOGY LABORATORY



# Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

# Quality Guidelines for Energy Systems Studies Capital Cost Scaling Methodology

**Final Report** 

January 31, 2013

**NETL Contact:** 

James Black General Engineer Office of Program Planning & Analysis, Performance Division

> National Energy Technology Laboratory www.netl.doe.gov

**Prepared by:** 

# **Energy Sector Planning and Analysis (ESPA)**

Marc J. Turner Booz Allen Hamilton, Inc.

**Reviewed by:** 

Lora L. Pinkerton WorleyParsons Group, Inc.

**DOE Contract Number DE-FE0004001** 

# **Table of Contents**

| 1 Introduction                                | 1  |
|-----------------------------------------------|----|
| 1.1 Limitations of Scaling Approach           | 3  |
| 1.2 Methodology                               | 5  |
| 1.3 Scaled Cost Estimate Development Examples |    |
| 2 Scaling Exponents and Equations             | 12 |
| 2.1 PC and CFBC                               | 12 |
| 2.2 IGCC                                      | 22 |
| 2.3 NGCC                                      | 34 |
|                                               |    |

# **Exhibits**

| Exhibit 1-1 Category matrix                                                                      |
|--------------------------------------------------------------------------------------------------|
| Exhibit 1-2 Reference cost estimates                                                             |
| Exhibit 1-3 Example Account 5: Parameter listing                                                 |
| Exhibit 1-4 Example Account 5: Parameter listing                                                 |
| Exhibit 2-1 Category matrix: PC and CFBC                                                         |
| Exhibit 2-2 Scaling parameters and exponents for categories 1-5: "Fuel and Sorbent Handling"14   |
| Exhibit 2-3 Scaling parameters and exponents for categories 1-5: "Fuel and Sorbent Prep and      |
| Feed"                                                                                            |
| Exhibit 2-4 Scaling parameters and exponents for categories 1-5: "Feedwater and Miscellaneous    |
| BOP Systems"                                                                                     |
| Exhibit 2-5 Scaling parameters and exponents for categories 1-5: "PC Boiler and Accessories" 16  |
| Exhibit 2-6 Scaling parameters and exponents for categories 1-5: "Flue Gas cleanup" 17           |
| Exhibit 2-7 Scaling parameters and exponents for categories 1-5: "CO <sub>2</sub> Removal and    |
| Compression"                                                                                     |
| Exhibit 2-8 Scaling parameters and exponents for categories 1-5: "HRSG, Ducting, and Stack"18    |
| Exhibit 2-9 Scaling parameters and exponents for categories 1-5: "Steam Turbine Generator". 18   |
| Exhibit 2-10 Scaling parameters and exponents for categories 1-5: "Cooling Water System" 19      |
| Exhibit 2-11 Scaling parameters and exponents for categories 1-5: "Ash and Spent Sorbent         |
| Handling System" 19                                                                              |
| Exhibit 2-12 Scaling parameters and exponents for categories 1-5: "Accessory Electric Plant". 20 |
| Exhibit 2-13 Scaling parameters and exponents for categories 1-5: "Instrumentation and Control"  |
|                                                                                                  |
| Exhibit 2-14 Scaling parameters and exponents for categories 1-5: "Improvements to Site" 21      |
| Exhibit 2-15 Scaling parameters and exponents for categories 1-5: "Buildings and Structures" 21  |
| Exhibit 2-16 Category matrix: IGCC                                                               |
| Exhibit 2-17 Scaling parameters and exponents for categories 6-9: "Fuel and Sorbent Handling"    |
|                                                                                                  |
| Exhibit 2-18 Scaling parameters and exponents for categories 6-9: "Fuel and Sorbent Prep and     |
| Feed"                                                                                            |
| Exhibit 2-19 Scaling parameters and exponents for categories 6-9: "Feedwater and                 |
| Miscellaneous BOP Systems"                                                                       |
| Exhibit 2-20 Scaling parameters and exponents for categories 6-9: "Gasifier and Accessories" 26  |
| Exhibit 2-21 Scaling parameters and exponents for categories 6-9: "Gas Cleanup and Piping". 27   |
| Exhibit 2-22 Scaling parameters and exponents for categories 6-9: "CO <sub>2</sub> Compression"  |
| Exhibit 2-23 Scaling parameters and exponents for categories 6-9: "Combustion Turbine and        |
| Accessories"                                                                                     |
| Exhibit 2-24 Scaling parameters and exponents for categories 6-9: "HRSG, Ducting, and Stack"     |
| 29<br>E 111: 2.2.5 G 11: C 1                                                                     |
| Exhibit 2-25 Scaling parameters and exponents for categories 6-9: "Steam Turbine Generator" 30   |
| Exhibit 2-26 Scaling parameters and exponents for categories 6-9: "Cooling Water System" 31      |
| Exhibit 2-27 Scaling parameters and exponents for categories 6-9: "Ash and Spent Sorbent         |
| Handling System"                                                                                 |
| Exhibit 2-28 Scaling parameters and exponents for categories 6-9: "Accessory Electric Plant". 32 |

| Exhibit 2-29 Scaling parameters and exponents for categories 6-9: "Instrumentation and Control"  |
|--------------------------------------------------------------------------------------------------|
|                                                                                                  |
| Exhibit 2-30 Scaling parameters and exponents for categories 6-9: "Improvements to Site" 33      |
| Exhibit 2-31 Scaling parameters and exponents for categories 6-9: "Buildings and Structures" 33  |
| Exhibit 2-32 Category matrix: NGCC                                                               |
| Exhibit 2-33 Scaling parameters and exponents for categories 6-9: "Feedwater and                 |
| Miscellaneous BOP Systems"                                                                       |
| Exhibit 2-34 Scaling parameters and exponents for categories 6-9: "Gas Cleanup and Piping". 35   |
| Exhibit 2-35 Scaling parameters and exponents for categories 6-9: "CO <sub>2</sub> Removal and   |
| Compression"                                                                                     |
| Exhibit 2-36 Scaling parameters and exponents for categories 6-9: "Combustion Turbine and        |
| Accessories"                                                                                     |
| Exhibit 2-37 Scaling parameters and exponents for categories 6-9: "HRSG, Ducting, and Stack"     |
|                                                                                                  |
| Exhibit 2-38 Scaling parameters and exponents for categories 6-9: "Steam Turbine Generator" 37   |
| Exhibit 2-39 Scaling parameters and exponents for categories 6-9: "Cooling Water System" 37      |
| Exhibit 2-40 Scaling parameters and exponents for categories 6-9: "Accessory Electric Plant". 38 |
| Exhibit 2-41 Scaling parameters and exponents for categories 6-9: "Instrumentation and Control"  |
|                                                                                                  |
| Exhibit 2-42 Scaling parameters and exponents for categories 6-9: "Improvements to Site" 39      |
| Exhibit 2-43 Scaling parameters and exponents for categories 6-9: "Buildings and Structures" 39  |

# **1** Introduction

Costs are frequently required as part of systems analysis work at the National Energy Technology Laboratory (NETL). Many of the cost results provided as part of systems analysis work were created with the use of scaling, since obtaining new vendor-supplied cost quotes for each category developed by NETL would be prohibitively time consuming and costly. Additionally, many of the technologies being investigated by NETL have not progressed far enough to have quotable costs.

The costs are scaled from a quote for a similar plant configuration by use of various equations that typically employ at least one process parameter (e.g., coal-feed rate, oxidant-feed rate, etc.) and often an exponent. The primary purpose of the exponent is to account for economies of scale (i.e. as equipment size gets larger, it gets progressively cheaper to add additional capacity).

The purpose of this section of the Quality Guidelines is to provide a standard basis for scaling costs, with specific emphasis on scaling exponents. The intention of having a standardized document is to provide guidelines for proper procedures to reduce the potential of errors and increase credibility through consistency.

This document contains a listing of frequently used pieces of equipment and their corresponding scaling exponent for various plant types, along with their ranges of applicability. This document also details the equations to be used with each exponent.

The scaling exponents used in systems analysis work are logarithmically derived from previously obtained vendor supplied cost quotes using Equation 1.

#### **Equation 1**

$$Exp = \frac{\ln \left(\frac{RC_1}{RC_2}\right)}{\ln \left(\frac{RP_1}{RP_2}\right)}$$

Where:

- Exp Exponent
- RC Reference Cost
- RP Reference Parameter

Exhibit 1-1 provides a listing of the categories used in this document and a description of the types of technologies to which the associated exponents are applicable. Exhibit 1-2 provides a listing of reference reports for the various categories.

The listings are divided into three major technologies frequently analyzed at NETL: combustion [pulverized coal (PC) and circulating fluidized bed combustion (CFBC)]; integrated gasification combined cycle (IGCC); and natural gas combined cycle (NGCC).

| Category | Technologies                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------|
|          | PC/CFBC                                                                                                                       |
|          | Supercritical PC, air-fired, with and without CO <sub>2</sub> capture, Illinois #6 coal with hybrid poplar                    |
| 1        | Supercritical PC, oxy-fired, with CO <sub>2</sub> capture, Illinois #6 coal with hybrid poplar                                |
|          | Supercritical and ultra-supercritical <sup>1</sup> PC, oxy-fired, with CO <sub>2</sub> capture, Illinois #6 coal              |
| 2        | CFBC, air-fired, with and without $CO_2$ capture, PRB and ND Lignite coals                                                    |
| Z        | CFBC, oxy-fired, with CO <sub>2</sub> capture, PRB and ND Lignite coals                                                       |
|          | Supercritical PC, air-fired, with and without CO <sub>2</sub> capture, ND lignite and PRB coals                               |
| 2        | Ultra-supercritical PC <sup>1</sup> , air-fired, with and without CO <sub>2</sub> capture, ND lignite and PRB coals           |
| 3        | Supercritical PC, oxy-fired, with CO <sub>2</sub> capture, ND lignite and PRB coals                                           |
|          | Ultra-supercritical PC <sup>1</sup> , oxy-fired, with CO <sub>2</sub> capture, ND lignite and PRB coals                       |
| 4        | Supercritical and ultra-supercritical PC <sup>1</sup> , air-fired, with and without CO <sub>2</sub> capture, Illinois #6 coal |
| 5        | Subcritical PC, air-fired, with and without CO <sub>2</sub> capture, Illinois #6 coal                                         |
|          | IGCC                                                                                                                          |
| 6        | Single-stage, dry-feed, oxygen-blown, down-flow gasifier with and without $CO_2$ capture, PRB and ND lignite coals            |
| 7        | Two-stage, slurry-feed, oxygen-blown gasifier with and without CO <sub>2</sub> capture, PRB coal                              |
| 1        | Single-stage, slurry-feed, oxygen-blown gasifier with and without CO <sub>2</sub> capture, Illinois #6 coal                   |
|          | Single-stage, dry-feed, oxygen-blown, up-flow gasifier, with CO <sub>2</sub> capture, PRB coal with and without switchgrass   |
| 8        | Single-stage, dry-feed, oxygen-blown, up-flow gasifier with CO <sub>2</sub> capture, Illinois #6 coal with switchgrass        |
|          | Single-stage, dry-feed, oxygen-blown, up-flow gasifier, with and without $CO_2$ capture, PRB and ND lignite coals             |
|          | Single-stage, dry-feed, oxygen-blown, up-flow gasifier without CO <sub>2</sub> capture, Illinois #6 coal                      |
| 9        | Transport gasifier, air- and oxygen-blown, with and without CO <sub>2</sub> capture, PRB and TX lignite coals                 |
|          | Transport gasifier, oxygen-blown with CO <sub>2</sub> capture, TX lignite coal, with hybrid poplar                            |
|          | NGCC                                                                                                                          |
| 10       | Natural gas, air-fired, with and without CO <sub>2</sub> capture                                                              |
| 10       | Natural das air-fired with CO- capture and das recycle                                                                        |

#### Exhibit 1-1 Category matrix

Natural gas, air-fired with CO<sub>2</sub> capture and gas recycle

<sup>&</sup>lt;sup>1</sup> Ultra-supercritical PC plants have a 10-percent process contingency applied to line item 4.1 (PC Boiler and Accessories) and a 15-percent process contingency applied to line item 8.1 (Steam Turbine Generator and Accessories).

| Category | Technologies                                                                                                              |  |  |  |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|          | PC/CFBC                                                                                                                   |  |  |  |  |  |
|          | Cost and Performance Baseline for Fossil Energy Power Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity    |  |  |  |  |  |
| 1        | Greenhouse Gas Reductions in the Power Industry Using Domestic Coal and Biomass NETL<br>– Volume 2: PC Plants             |  |  |  |  |  |
|          | Advanced Oxycombustion Technology for Bituminous Coal Power Plants: An R&D Guide                                          |  |  |  |  |  |
| 2        | Cost and Performance Baseline for Fossil Energy Plants – Volume 3: Low Rank Coal and Natural Gas to Electricity           |  |  |  |  |  |
|          | Advanced Oxycombustion Technology for Bituminous Coal Power Plants: An R&D Guide                                          |  |  |  |  |  |
| 3        | Cost and Performance Baseline for Fossil Energy Plants – Volume 3: Low Rank Coal and Natural Gas to Electricity           |  |  |  |  |  |
| 4        | Cost and Performance Baseline for Fossil Energy Power Plants, Volume 1: Bituminous Coal<br>and Natural Gas to Electricity |  |  |  |  |  |
| 5        | Cost and Performance Baseline for Fossil Energy Power Plants, Volume 1: Bituminous Coal<br>and Natural Gas to Electricity |  |  |  |  |  |
|          | IGCC                                                                                                                      |  |  |  |  |  |
| 6        | Cost and Performance Baseline for Fossil Energy Plants – Volume 3: Low Rank Coal and Natural Gas to Electricity           |  |  |  |  |  |
| 7        | Cost and Performance Baseline for Fossil Energy Plants – Volume 3: Low Rank Coal and Natural Gas to Electricity           |  |  |  |  |  |
| 0        | Cost and Performance Baseline for Fossil Energy Plants – Volume 3: Low Rank Coal and Natural Gas to Electricity           |  |  |  |  |  |
| 8        | Cost and Performance Baseline for Fossil Energy Power Plants, Volume 1: Bituminous Coal<br>and Natural Gas to Electricity |  |  |  |  |  |
| 9        | Cost and Performance Baseline for Fossil Energy Plants – Volume 3: Low Rank Coal and Natural Gas to Electricity           |  |  |  |  |  |
|          | NGCC                                                                                                                      |  |  |  |  |  |
| 10       | Cost and Performance Baseline for Fossil Energy Plants – Volume 3: Low Rank Coal and Natural Gas to Electricity           |  |  |  |  |  |
|          | Cost and Performance Baseline for Fossil Energy Power Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity    |  |  |  |  |  |

| Exhibit 1-2 | Reference | cost estimates |
|-------------|-----------|----------------|
|-------------|-----------|----------------|

# **1.1 Limitations of Scaling Approach**

It is important to note that when scaling costs, the technologies must be as similar as possible. For instance, if scaling a plant that fires Illinois #6, both the scaling exponents and the reference cost should be for a plant that fires Illinois #6. The same is true for the following specifications as well:

- Oxidant type (Air or Oxygen)
- Elevation/Location (International Standards Organization [ISO], North Dakota, Montana, etc.)
- Plant type (Sub-critical, supercritical, ultra-supercritical, etc.)
- Technology type (PC, IGCC, NGCC, etc.)
- Emissions control technologies (with/without CO<sub>2</sub> capture, with/without flue gas desulfurization [FGD], etc.)

For many of the items provided in this report, the approach presented scales on a single parameter for a given account. In reality, some accounts, particularly some of the major equipment items, may be impacted by more than one parameter. For example, a line item may be scaled on one or more flows/outputs but should, in reality, be scaled on multiple flows/outputs and both pressure and temperature, or thermal duty and delta temperature. While the single-parameter approach can be used for high-level scaling, it is recommended that individual items/systems be scaled from the most similar reference possible, particularly for the cost drivers.

There are limitations on the ranges that can accurately be addressed by the scaling approach. There can be step changes in pricing at certain equipment sizes that may not be captured by the scaling exponents. Care should be taken in applying the scaling factors when there is a large percentage difference between the scaling parameters. This is particularly true for the major equipment items. For example, it is known that the combustion turbine is an incremental cost and is specific to one level of performance.

The configuration also has a significant impact on costs. In addition to the base scaling, adjustments must be made for considerations such as number of trains for a particular system and equipment redundancy (i.e.  $2 \times 100\%$  versus  $3 \times 50\%$ ).

The plant location is another issue that must be kept in mind when scaling costs. Project location and labor basis can have a significant impact on overall project costs. An additional adjustment to the labor component may be required to reflect local wage rates, local labor productivity, and a union versus non-union environment.

It is imperative that the reader understand that even subtle differences in equipment specifications can result in significant cost impacts. Adjustments, often in the form of additions or deductions, must be incorporated to address these elements. These could include items such as unique site considerations (piles, access requirements, salt water environment), or specific equipment requirements (stack height, re-heat versus non re-heat, single pressure versus multiple pressure, turbine backpressure).

Finally, the cost basis date must be considered. Equipment, material, and labor costs may need to be escalated or de-escalated to adjust for the differences between the cost basis date for the scaled estimate and the reference estimate. Additionally, significant elapsed time between the

reference cost date and the desired date for the scaled estimate could potentially encompass technology or approach changes for a specific item and/or system.

In general, the approach presented in this report is valid for high-level evaluation only. The accuracy of the factored estimate will be less than or equal to that for a reference estimate.

# **1.2 Methodology**

When developing a cost estimate for a plant that requires scaled costing, determine the category type from the category matrix in Exhibit 1-1 that exhibits as much commonality as possible when compared to the plant of interest. Once the category type has been determined, an estimate for a plant of the same type must be obtained for use as a reference. A listing of reports containing example reference cost estimates for each category type is provided in Exhibit 1-2. Reference cost estimates may also be found on the <u>NETL Energy Analysis web site</u><sup>1</sup>.

If the plant of interest does not match any of the available reference cost estimates, select one that most suitably matches, taking care to minimize the impact from the limitations of the scaling approach detailed in Section 1.1.

For plants of interest that differ significantly from any available reference cost estimates, the plant of interest may still have many of the same subsystems as one or more of the reference cost estimates. If so, then the reference cost estimate used may be a combination of various individual reference cost estimates, matched based on subaccount.

Using the category type obtained from the category matrix, utilize Exhibit 2-2 through Exhibit 2-43 to obtain the scaling parameters, exponents, and coefficients. The scaling parameter values associated with the reference cost estimate will be taken from the report from which the reference cost estimate was obtained.

Determine the scaling parameter values for the plant of interest and compare them to the range of applicability provided in Exhibit 2-2 through Exhibit 2-43. If the value is outside the recommended range, significant deviation from realistic results could occur.

Once the scaling parameters, exponents, and coefficients as well as the reference cost and scaling parameter values are obtained, the scaled cost estimate can be developed by utilizing the equations provided in Section 2. Specific guidelines are available in subsections, as follows:

2.1 "PC and CFBC"

2.2 "IGCC"

2.3 "NGCC"

The following subsection provides an example for developing cost estimates.

National Energy Technology Laboratory

<sup>&</sup>lt;sup>1</sup> http://www.netl.doe.gov/energy-analyses/index.html

# **1.3 Scaled Cost Estimate Development Examples**

# The plant of interest:

The plant of interest is an oxygen-blown two-stage slurry feed gasifier, firing Powder River Basin (PRB) coal at ISO elevation. The plant is equipped with  $CO_2$  capture and compression systems and utilizes a wet cooling tower.

# Category type:

Category 7 from the category matrix (Exhibit 1-1) most suitably matches the plant of interest as it shares the following items in common:

- 1) Two-stage slurry feed gasifier
- 2) Oxygen-blown
- 3)  $CO_2$  capture
- 4) PRB coal

# **Reference plant:**

No exact match is available for a 'reference plant' as a comparison to the 'plant of interest'. Therefore, the 'reference plant' will have to be a combination of various 'reference plants' based on subaccount matches. The reference plants selected are Case S4B from the Category 7 report "<u>Cost and Performance Baseline for Fossil Energy Plants – Volume 3: Low Rank Coal and Natural Gas to Electricity</u>" (Exhibit 1-2) and Case 4 from the Category 8 report, "<u>Cost and Performance Baseline for Fossil Energy Plants Coal and Natural Gas to Electricity</u>" (Exhibit 1-2).

Case 4 matches:

- 1) Cooling type
- 2) Elevation
- 3) CO<sub>2</sub> capture
- 4) Gasifier type

Case S4B matches:

- 1) Coal type
- 2) CO<sub>2</sub> capture
- 3) Gasifier type

It was decided that all accounts that have direct influence from coal will be scaled using Case S4B. All other accounts will be scaled using Case 4.

Accounts scaled using Case S4B include:

- 1) Coal and Sorbent Handling
- 2) Coal and Sorbent Preparation and Feed
- 4) Gasifier and Accessories
- 5A) Gas Cleanup and Piping
- 6) Combustion Turbine and Accessories.

The section that will be utilized in the example will be Account 5 "Gas Cleanup and Piping"

# **Obtain Scaling Parameters**

Exhibit 2-21 contains the scaling parameters, exponents, coefficients, and ranges for Account 5 of the selected category 7 plant type.

Exhibit 1-3 provides the account number, item description, scaling parameter, exponent and coefficient, range of applicability, reference parameter value, reference cost, and scaling parameter value.

| Account<br>Number | Item<br>Description       | Parameter <sup>1</sup>               | Exponent<br>[Coefficient] <sup>1</sup> | Range <sup>1</sup>     | Reference<br>Parameter <sup>2</sup> | Reference Cost<br>(Equipment/<br>TPC) <sup>2</sup> | Scaling<br>Parameter <sup>3</sup> |
|-------------------|---------------------------|--------------------------------------|----------------------------------------|------------------------|-------------------------------------|----------------------------------------------------|-----------------------------------|
| 5A.1              | Selexol<br>(Double)       | Gas flow to AGR, acfm                | 0.79                                   | 5,000 - 30,000         | 11,389                              | \$73,047                                           | 12,068                            |
| 5A.2              | Elemental<br>Sulfur Plant | Sulfur<br>Production,<br>lb/hr       | 0.67                                   | 200 – 44,000           | 4,901                               | \$5,613                                            | 5,339                             |
| 5A.3              | Mercury<br>Removal        | Hg bed carbon fill, ft <sup>3</sup>  | See Note <sup>4</sup>                  | 2,000 - 35,000         | N/A                                 | \$1,328/\$3,218                                    | 3,916                             |
| 5A.4              | Shift Reactors            | WGS Catalyst volume, ft <sup>3</sup> | 0.80                                   | 1,000 - 11,000         | 6,257                               | \$8,762                                            | 6,692                             |
| 5A.5              | Blowback<br>Gas Systems   | Candle filter flow rate, acfm        | 0.30                                   | 2,000 - 96,000         | 24,282                              | \$2,030                                            | 26,838                            |
| 5A.6              | Fuel Gas<br>Piping        | Fuel gas flow,<br>lb/hr              | 0.72                                   | 185,000 –<br>2,490,000 | 202,347                             | \$0                                                | 221,487                           |
| 5A.9              | HGCU<br>Foundations       | Sulfur<br>Production,<br>lb/hr       | 0.79                                   | 200 - 44,000           | 4,901                               | \$0                                                | 5,339                             |

Exhibit 1-3 Example Account 5: Parameter listing

<sup>&</sup>lt;sup>1</sup> Information from exhibits in this document

 <sup>&</sup>lt;sup>2</sup> Information from the 'reference' plant report
 <sup>3</sup> Scaling parameter from the 'plant of interest'
 <sup>4</sup> The exponent 1.57 is used with PRB coal, the exponent 1.64 is used with Illinois #6 coal without CO<sub>2</sub> capture, and the exponent 1.59 is used with Illinois #6 coal with  $CO_2$  capture. The coefficient 0.0141 is used with all instances.

# Calculating scaled cost estimates

Unless otherwise specified, calculating the material cost, labor costs, and equipment cost differs only in the value used as the reference plants reference cost (RC). When calculating the scaled plant's equipment cost, one should use the reference plant's equipment cost as the RC, likewise, when calculating the scaled plant's material cost, one should use the reference plant's material cost as the RC, etc. The sum of these costs is the bare erected cost (BEC).

The process contingency, project contingency, and engineering construction management, home office, and fee are based on a percentage of the BEC. These percentages can be calculated by using the following equation:

# **Equation 2**

$$SCon = \frac{RCon}{RBEC}$$

Where:

- SCon Scaled plant's contingency, %
- RCon Reference plant's contingency, \$
- RP Reference plant's BEC, \$

The scaled plant's contingency percentage is multiplied by the scaled plant's BEC to get the scaled plant's contingency dollar value. The process is repeated for each of the individual contingencies.

The sum of the BEC and the contingencies is the total plant cost (TPC) for each sub-account.

The example calculations will focus on determining a scaled Equipment Cost for each subaccount. As such, subaccounts 5A.6 and 5A.9 will not be demonstrated, as their reference value is \$0.

By comparing the scaling parameter to the range of applicability, it is confirmed that it is suitable to develop a scaled cost estimate for the plant of interest using the scaling parameters, exponents, and coefficients obtained from within this document.

Based on the general guidelines provided in Section 2 along with the specific guidelines provided in section 2.2 for IGCC plants, the following equations will be utilized:

For all categories, unless otherwise specified, Equation 3 is used to scale costs.

# **Equation 3**

$$SC = RC * \left(\frac{SP}{RP}\right)^{Exp}$$

For IGCC categories, use Equation 9 for items that utilize a coefficient in addition to an exponent.

## **Equation 9**

$$SC = \frac{RC}{RTPC} * C * SP^{Exp}$$

Where:

- SC Scaled cost
- RC– Reference cost
- SP Scaling parameter
- RP Reference parameter
- Exp Exponent
- RTPC Reference total plant cost for subaccount
- STPC Scaled total plant cost for subaccount
- C Coefficient

Account 5A.1 will use Equation 3 with the parameter "Gas flow to AGR" in actual  $ft^3/min$ . The equation is as follows:

#### Example 1

$$SC = \$76,466 = \$73,047 * \left(\frac{12,068\frac{ft^3}{min}}{11,389\frac{ft^3}{min}}\right)^{0.79}$$

Based on the Note for Account 5A.3, it contains a coefficient. Therefore, this account will use Equation 9 with the parameter "Hg bed carbon fill" in  $ft^3$ . The equation is as follows:

#### Example 2

$$SC = \$2,544 = \frac{\$1,328}{\$3,218} * 0.0141 * 3,916 ft^{3}$$

All other subaccounts will use Equation 3 as was demonstrated in Example 1. Exhibit 1-4 provides the results of the calculations and compares them to the reference value.

| Account<br>Number | Item<br>Description       | Parameter                            | Reference<br>Parameter | Reference Cost<br>(Equipment/) | Scaling<br>Parameter | Scaled Cost<br>(Equipment) |
|-------------------|---------------------------|--------------------------------------|------------------------|--------------------------------|----------------------|----------------------------|
| 5A.1              | Selexol<br>(Double)       | Gas flow to<br>AGR, acfm             | 11,389                 | \$73,047                       | 12,068               | \$76,466                   |
| 5A.2              | Elemental<br>Sulfur Plant | Sulfur<br>Production, lb/hr          | 4,901                  | \$5,613                        | 5,339                | \$5,944                    |
| 5A.3              | Mercury<br>Removal        | Hg bed carbon fill, ft <sup>3</sup>  | N/A                    | \$1,328                        | 3,916                | \$2,544                    |
| 5A.4              | Shift Reactors            | WGS Catalyst volume, ft <sup>3</sup> | 6,257                  | \$8,762                        | 6,692                | \$9,246                    |
| 5A.5              | Blowback<br>Gas Systems   | Candle filter flow rate, acfm        | 24,282                 | \$2,030                        | 26,838               | \$2,092                    |

# Exhibit 1-4 Example Account 5: Parameter listing

# **2** Scaling Exponents and Equations

In all instances, the range is intended to present the reader with the ranges at which the exponents have already been utilized. It is expected that the ranges, in reality, would be capable of being applied to the median range  $\pm 25$  percent.

For all categories, unless otherwise specified, Equation 3 is used to scale costs.

## **Equation 3**

$$SC = RC * \left(\frac{SP}{RP}\right)^{Exp}$$

Where:

- SC Scaled cost
- SP Scaling parameter

# 2.1 PC and CFBC

For PC and CFBC categories, use Equation 4 for items that utilize a coefficient in addition to an exponent. In the "Scaling parameters and exponents" tables below, the values presented within brackets [] are coefficients.

#### **Equation 4**

$$SC = \frac{RC}{RTPC} * (C * SP)^{Exp}$$

Where:

- RTPC Reference Total Plant Cost of subaccount
- C Coefficient

Exhibit 2-1 provides the category matrix for the PC and CFBC categories.

| Category | Technologies                                                                                                                 |
|----------|------------------------------------------------------------------------------------------------------------------------------|
|          | Supercritical PC, air-fired, with and without CO <sub>2</sub> capture, Illinois #6 coal with hybrid poplar                   |
| 1        | Supercritical PC, oxy-fired, with CO <sub>2</sub> capture, Illinois #6 coal with hybrid poplar                               |
|          | Supercritical and ultra-supercritical <sup>1</sup> PC, oxy-fired, with CO <sub>2</sub> capture, Illinois #6 coal             |
| 2        | CFBC, air-fired, with and without CO <sub>2</sub> capture, PRB and ND Lignite coals                                          |
| 2        | CFBC, oxy-fired, with CO <sub>2</sub> capture, PRB and ND Lignite coals                                                      |
|          | Supercritical PC, air-fired, with and without CO <sub>2</sub> capture, ND lignite and PRB coals                              |
| 0        | Ultra-supercritical PC <sup>1</sup> , air-fired, with and without CO <sub>2</sub> capture, ND lignite and PRB coals          |
| 3        | Supercritical PC, oxy-fired, with CO <sub>2</sub> capture, ND lignite and PRB coals                                          |
|          | Ultra-supercritical PC <sup>1</sup> , oxy-fired, with CO <sub>2</sub> capture, ND lignite and PRB coals                      |
| 4        | Supercritical and ultra-supercritical <sup>1</sup> PC, air-fired, with and without CO <sub>2</sub> capture, Illinois #6 coal |
| 5        | Subcritical PC, air-fired, with and without CO <sub>2</sub> capture, Illinois #6 coal                                        |

#### Exhibit 2-1 Category matrix: PC and CFBC

Exhibit 2-2 through Exhibit 2-15 contains the scaling parameters and exponents that are suitable for PC and CFBC plants at the given ranges.

<sup>&</sup>lt;sup>1</sup> Ultra-supercritical PC plants have a 10 percent process contingency applied to line item 4.1 (PC Boiler and Accessories) and a 15 percent process contingency applied to line item 8.1 (Steam Turbine Generator and Accessories).

# January 2013

| Account<br>Number | Item Description                       | Parameter Exponent                  |                       | Range |      |   |                   |                     |
|-------------------|----------------------------------------|-------------------------------------|-----------------------|-------|------|---|-------------------|---------------------|
|                   | Category                               | 1-5                                 | 1 2 3 4 5             |       |      | 5 | 1-5               |                     |
| 1                 | 1 FUEL & SORBENT HANDLING              |                                     |                       |       |      |   |                   |                     |
| 1.1               | Coal Receive & Unload                  | Coal Feed Rate, lb/hr               |                       |       | 0.62 |   |                   | 275,000 - 1,110,000 |
| 1.2               | Coal Stackout & Reclaim                | Coal Feed Rate, lb/hr               |                       |       | 0.62 |   |                   | 275,000 - 1,110,000 |
| 1.3               | Coal Conveyors & Yard Crushing         | Coal Feed Rate, lb/hr               | 0.62                  |       |      |   |                   | 275,000 - 1,110,000 |
| 1.4               | Other Coal Handling                    | Coal Feed Rate, lb/hr               | 0.62                  |       |      |   |                   | 275,000 - 1,110,000 |
| 1.5               | Biomass Receiving & Processing         | Biomass Feed Rate, lb/hr            | See Note <sup>1</sup> |       |      |   | 412,000 - 616,000 |                     |
| 1.6               | Sorbent Receive & Unload               | Limestone Feed Rate, lb/hr          | 0.64                  |       |      |   | 9,000 - 63,000    |                     |
| 1.7               | Sorbent Stackout & Reclaim             | Limestone Feed Rate, lb/hr          | 0.64                  |       |      |   |                   | 9,000 - 63,000      |
| 1.8               | Sorbent Conveyors                      | Limestone Feed Rate, lb/hr          | 0.64                  |       |      |   | 9,000 - 63,000    |                     |
| 1.9               | Other Sorbent Handling                 | Limestone Feed Rate, lb/hr          | 0.64                  |       |      |   |                   | 9,000 - 63,000      |
| 1.10              | Coal & Sorbent Handling<br>Foundations | Coal and Limestone Feed Rate, lb/hr |                       |       | 0.62 |   |                   | 302,000 - 1,150,000 |

#### Exhibit 2-2 Scaling parameters and exponents for categories 1-5: "Fuel and Sorbent Handling"

Equation 5  
$$SC = 215,062 * \left(\frac{SP}{2000} * 24\right)^{Exp}$$

**Equation 6** 

$$SC = 132,454 * \left(\frac{SP}{2000} * 24\right)^{Exp}$$



<sup>&</sup>lt;sup>1</sup> Only applicable to plants co-firing hybrid poplar. Use Equation 5 with exponent 0.37 for equipment and Equation 6 with exponent 0.45 for direct labor. Values provided in \$1,000 (2007\$).

| Account<br>Number | Item Description                | Parameter                           | Exponent          |      |   | Range             |                     |                     |                     |
|-------------------|---------------------------------|-------------------------------------|-------------------|------|---|-------------------|---------------------|---------------------|---------------------|
|                   | Category                        | 1-5                                 | 1                 | 2    | 3 | 4                 | 5                   | 1-5                 |                     |
| 2                 | 2 FUEL & SORBENT PREP & FEED    |                                     |                   |      |   |                   |                     |                     |                     |
| 2.1               | Coal Crushing & Drying          | Coal Feed Rate, lb/hr               |                   | 0.66 |   |                   |                     | 275,000 - 1,110,000 |                     |
| 2.2               | Prepared Coal Storage & Feed    | Coal Feed Rate, lb/hr               | 0.66              |      |   | 0.66 275,000 – 1, |                     |                     | 275,000 - 1,110,000 |
| 2.5               | Biomass Drying                  | Biomass Feed Rate, lb/hr            | 0.66 <sup>1</sup> |      |   | 412,000 - 616,000 |                     |                     |                     |
| 2.6               | Biomass Pelletization           | Biomass Feed Rate, lb/hr            | 0.66 <sup>2</sup> |      |   | 412,000 - 616,000 |                     |                     |                     |
| 2.7               | Prepared Biomass Storage & Feed | Biomass Feed Rate, lb/hr            | 0.66              |      |   | 412,000 - 616,000 |                     |                     |                     |
| 2.8               | Sorbent Prep Equipment          | Limestone Feed Rate, lb/hr          | 0.65              |      |   | 10,000 - 57,000   |                     |                     |                     |
| 2.9               | Sorbent Storage & Feed          | Limestone Feed Rate, lb/hr          | 0.65              |      |   | 10,000 – 57,000   |                     |                     |                     |
| 2.12              | Coal & Sorbent Feed Foundation  | Coal and Limestone Feed Rate, lb/hr | 0.64              |      |   |                   | 303,000 - 1,150,000 |                     |                     |

Equation 7  

$$SC = C * \left(\frac{SP}{2000} * 24\right)^{Exp}$$

# Equation 8

$$SC = RC * \left(\frac{SP}{10 * 1.1 * 2000}\right)^{Exp}$$

National Energy Technology Laboratory

<sup>&</sup>lt;sup>1</sup>Only applicable to plants co-firing hybrid poplar. Use Equation 7 with a coefficient of 7.0428 for equipment and 1.3724 for direct labor. Values provided in \$1,000 (2007\$).

<sup>&</sup>lt;sup>2</sup> Only applicable to plants co-firing hybrid poplar. Use Equation 8 for equipment.

| Account<br>Number | Item Description            | Parameter                 | rameter Exponent |        | Range |                     |                       |                       |  |  |
|-------------------|-----------------------------|---------------------------|------------------|--------|-------|---------------------|-----------------------|-----------------------|--|--|
| Category          |                             | 1-5                       | 1 2 3 4 5        |        |       |                     | 5                     | 1-5                   |  |  |
| 3                 |                             | FEEDWATER & M             | AISC. B          | OP SYS | TEMS  |                     |                       |                       |  |  |
| 3.1               | Feedwater System            | HP BFW Flow Rate, lb/hr   | 0.68             |        |       |                     | 1,960,000 - 5,600,000 |                       |  |  |
| 3.2               | Water Makeup & Pretreating  | Raw Water Makeup, gpm     | 0.71             |        |       |                     | 2,000 - 11,000        |                       |  |  |
| 3.3               | Other Feedwater Subsystems  | HP BFW Flow Rate, lb/hr   | 0.68             |        |       |                     | 1,960,000 - 5,600,000 |                       |  |  |
| 3.4               | Service Water Systems       | Raw Water Makeup, gpm     |                  |        | 0.71  |                     |                       | 2,000 - 11,000        |  |  |
| 3.5               | Other Boiler Plant Systems  | HP BFW Flow Rate, lb/hr   |                  |        | 0.75  |                     |                       | 1,960,000 - 5,600,000 |  |  |
| 3.6               | FO Supply Sys & Nat Gas     | Total Fuel Feed, lb/hr    | 0.25             |        |       | 410,000 - 1,110,000 |                       |                       |  |  |
| 3.7               | Waste Treatment Equipment   | Water to Treatment, lb/hr | 0.71             |        |       | 100 - 1,210,000     |                       |                       |  |  |
| 3.8               | Misc. Power Plant Equipment | Total Fuel Feed, lb/hr    | 0.25             |        |       |                     |                       | 410,000 - 1,110,000   |  |  |

#### Exhibit 2-4 Scaling parameters and exponents for categories 1-5: "Feedwater and Miscellaneous BOP Systems"

#### Exhibit 2-5 Scaling parameters and exponents for categories 1-5: "PC Boiler and Accessories"

| Account<br>Number | Item Description        | Parameter                     | Exponent |   |   |   |   | Range                 |  |
|-------------------|-------------------------|-------------------------------|----------|---|---|---|---|-----------------------|--|
| Category          |                         | 1-5                           | 1        | 2 | 3 | 4 | 5 | 1-5                   |  |
| 4                 | PC BOILER & ACCESSORIES |                               |          |   |   |   |   |                       |  |
| 4.1               | PC Boiler & Accessories | See Note <sup>1</sup>         | 0.69     |   |   |   |   | See Note <sup>1</sup> |  |
| 4.2               | ASU/Oxidant Compression | O <sub>2</sub> Flow Rate, TPD | 0.60     |   |   |   |   | 13,200 – 15,100       |  |

National Energy Technology Laboratory

<sup>&</sup>lt;sup>1</sup> CFBC plants use the sum of limestone and coal feed rates (lb/hr) with the total ranging from 303,000 - 1,150,000; Oxy-fired PC with no biomass use coal-feed rates (lb/hr) ranging from 275,000 - 1,112,000; PC air-fired and PC with biomass use high pressure (HP) boiler feed water (BFW) flow rates (lb/hr) ranging from 1,958,000 - 5,603,000.

#### Exhibit 2-6 Scaling parameters and exponents for categories 1-5: "Flue Gas cleanup"

| Account<br>Number | Item Description                    | Parameter                                           | Exponent [Coefficient] |     |                               |        |      | Range                                   |  |
|-------------------|-------------------------------------|-----------------------------------------------------|------------------------|-----|-------------------------------|--------|------|-----------------------------------------|--|
|                   | Category                            | 1-5                                                 | 1                      | 2   | 3                             | 4      | 5    | 1-5                                     |  |
| 5                 |                                     |                                                     |                        |     |                               |        |      |                                         |  |
| 5.1               | Absorber Vessels & Accessories      | FGD Exit Flow, acfm<br>{Limestone Feed Rate, lb/hr} | 0.73<br>[3.08]         | N/A | 0.59<br>[23.75] <sup>1</sup>  | {0.73} | 0.73 | 1,020,000 - 2,560,000<br>9,000 - 63,400 |  |
| 5.2               | Other FGD                           | FGD Exit Flow, acfm<br>{Limestone Feed Rate, lb/hr} | 0.73<br>[0.28]         | N/A | 0.49 <sup>2</sup>             | {0.73} | 0.73 | 1,020,000 – 2,560,000<br>9,000 – 63,400 |  |
| 5.3               | Bag House & Accessories             | Baghouse Flow, acfm                                 | 0.78<br>[0.47]         | N/A | N/A                           | 0.79   | 0.79 | 1,390,000 - 2,560,000                   |  |
| 5.4               | Other Particulate Removal Materials | Baghouse Flow, acfm                                 | 0.77                   | N/A | 0.40<br>[112.22] <sup>3</sup> | 0.79   | 0.79 | 1,390,000 - 2,560,000                   |  |
| 5.5               | Gypsum Dewatering System            | Gypsum Flow, lb/hr                                  | 0.62                   | N/A | N/A                           | 0.58   | 0.60 | 42,900 - 96,600                         |  |

## Exhibit 2-7 Scaling parameters and exponents for categories 1-5: "CO<sub>2</sub> Removal and Compression"

| Account<br>Number | Item Description                          | Parameter                                                    | Exponent [Coefficient] |      |      |                   |                   | Range                                  |  |
|-------------------|-------------------------------------------|--------------------------------------------------------------|------------------------|------|------|-------------------|-------------------|----------------------------------------|--|
| Category          |                                           | 1-5                                                          | 1                      | 2    | 3    | 4                 | 5                 | 1-5                                    |  |
| 5B                | CO <sub>2</sub> REMOVAL & COMPRESSION     |                                                              |                        |      |      |                   |                   |                                        |  |
|                   | CO <sub>2</sub> Condensing Heat Exchanger | Heat Duty, MMBtu/hr                                          | 0.80                   | 0.80 | 0.80 |                   |                   | 200 - 600                              |  |
| 5B.1              | CO <sub>2</sub> Removal System            | CO <sub>2</sub> Flowrate (lb/hr)/<br>Inlet to Absorber, acfm | 0.60 <sup>4</sup>      | N/A  |      | 0.60 <sup>4</sup> | 0.60 <sup>4</sup> | 445,000 - 689,000/<br>N/A <sup>5</sup> |  |
| 5B.2              | CO <sub>2</sub> Compression & Drying      | CO <sub>2</sub> Captured, lb/hr                              | 0.61 850,000 - 2,290,0 |      |      |                   |                   | 850,000 - 2,290,000                    |  |

National Energy Technology Laboratory

<sup>&</sup>lt;sup>1</sup> Ultra-supercritical plants use a coefficient of 25.9090 and an exponent of 0.5810. <sup>2</sup> Ultra-supercritical plants use an exponent of 0.46. <sup>3</sup> Ultra-supercritical plants use a coefficient of 92.44 and an exponent of 0.4152.

<sup>&</sup>lt;sup>4</sup> 40% of cost is applied to gas flow and the remainder applied to  $CO_2$  capture.

<sup>&</sup>lt;sup>5</sup> Range has not yet been developed as parameter has not been implemented to date.

| Account<br>Number | Item Description                | Parameter              |                  | Exponen          |                  | Range |      |                     |
|-------------------|---------------------------------|------------------------|------------------|------------------|------------------|-------|------|---------------------|
|                   | Category                        | 1-5                    | 1                | 2                | 3                | 4     | 5    | 1-5                 |
| 7                 |                                 | HRSG, D                | UCTING 8         | STACK            |                  |       |      |                     |
| 7.1               | Flue Gas Recycle Heat Exchanger | Heat Duty, MMBtu/hr    |                  |                  | 20 – 1,000       |       |      |                     |
| 7.3               | Ductwork                        | Total Fuel Feed, lb/hr | 0.38<br>[126.25] | 0.38<br>[126.25] | 0.38<br>[126.25] | 0.29  | 0.29 | 410,000 - 1,110,000 |
| 7.4               | Stack                           | Stack Flow, acfm       | 0.48<br>[19.52]  | 0.48<br>[19.52]  | 0.48<br>[19.52]  | 0.06  | 0.06 | 378,000 - 1,840,000 |
| 7.9               | HRSG, Duct & Stack Foundations  | Total Fuel Feed, lb/hr | 0.14<br>[471.71] | 0.14<br>[471.71] | 0.14<br>[471.71] | 0.06  | 0.06 | 410,000 - 1,110,000 |

# Exhibit 2-9 Scaling parameters and exponents for categories 1-5: "Steam Turbine Generator"

| Account<br>Number | Item Description          | Parameter                | Exponent |      |                  |                       | Range     |               |  |
|-------------------|---------------------------|--------------------------|----------|------|------------------|-----------------------|-----------|---------------|--|
| Category          |                           | 1-5                      | 1 2 3 4  |      |                  | 4                     | 5         | 1-5           |  |
| 8                 | 8 STEAM TURBINE GENERATOR |                          |          |      |                  |                       |           |               |  |
| 8.1               | Steam TG & Accessories    | Turbine Capacity, MW     | 0.70     |      |                  |                       | 600 - 800 |               |  |
| 8.2               | Turbine Plant Auxiliaries | Turbine Capacity, MW     |          | 0.70 |                  |                       |           | 600 - 800     |  |
| 8.3a              | Condenser & Auxiliaries   | Condenser Duty, MMBtu/hr | 0.67     | 0.67 | 0.67             | 0.67                  | 0.40      | 1,000 - 3,000 |  |
| 8.3b              | Air Cooled Condenser      | Condenser Duty, MMBtu/hr | N/A      | N/A  | N/A N/A 0.70 N/A |                       | N/A       | 1,000 - 3,000 |  |
| 8.4               | Steam Piping              | HP BFW Flow Rate, lb/hr  | 0.70     |      |                  | 1,960,000 - 5,600,000 |           |               |  |
| 8.9               | TG Foundations            | Turbine Capacity, MW     |          |      | 0.71             |                       |           | 600 - 800     |  |

National Energy Technology Laboratory

| Account<br>Number | Item Description               | Parameter                        | Exponent |                | Range |                   |      |                   |  |  |  |
|-------------------|--------------------------------|----------------------------------|----------|----------------|-------|-------------------|------|-------------------|--|--|--|
| Category          |                                | 1-5                              | 1 2      |                | 3     | 4                 | 5    | 1-5               |  |  |  |
| 9                 | 9 COOLING WATER SYSTEM         |                                  |          |                |       |                   |      |                   |  |  |  |
| 9.1               | Cooling Towers                 | Cooling Tower Duty, MMBtu/hr     | 0.74 10  |                |       |                   |      | 1000 - 6,000      |  |  |  |
| 9.2               | Circulating Water Pumps        | Circulating Water Flow Rate, gpm | 0.86     | 0.73           | 0.73  | 0.86              | 0.73 | 115,000 – 550,000 |  |  |  |
| 9.3               | Circ. Water System Auxiliaries | Circulating Water Flow Rate, gpm |          |                | 0.63  |                   |      | 115,000 – 550,000 |  |  |  |
| 9.4               | Circ. Water Piping             | Circulating Water Flow Rate, gpm |          |                | 0.63  |                   |      | 115,000 - 550,000 |  |  |  |
| 9.5               | Make-up Water System           | Raw Water Makeup, gpm            | 0.64     | 0.64 0.64 0.64 |       | 0.64              | 0.64 | 2,000 - 11,200    |  |  |  |
| 9.6               | Component Cooling Water System | Circulating Water Flow Rate, gpm | 0.63     |                |       | 115,000 - 550,000 |      |                   |  |  |  |
| 9.9               | Circ. Water System Foundations | Circulating Water Flow Rate, gpm |          |                | 0.58  |                   |      | 115,000 – 550,000 |  |  |  |

Exhibit 2-11 Scaling parameters and exponents for categories 1-5: "Ash and Spent Sorbent Handling System"

| Account<br>Number | Item Description                     | Parameter             | er Exponent |      |   |          |          |          |  |  |
|-------------------|--------------------------------------|-----------------------|-------------|------|---|----------|----------|----------|--|--|
|                   | Category                             | 1-5                   | 1           | 2    | 3 | 4        | 5        | 1-5      |  |  |
| 10                | 10 ASH/SPENT SORBENT HANDLING SYSTEM |                       |             |      |   |          |          |          |  |  |
| 10.6              | Ash Storage Silos                    | Total Ash Flow, lb/hr |             | 0.56 |   |          |          | 10 – 100 |  |  |
| 10.7              | Ash Transport & Feed Equipment       | Total Ash Flow, lb/hr | 0.56        |      |   |          | 10 – 100 |          |  |  |
| 10.9              | Ash/Spent Sorbent Foundation         | Total Ash Flow, lb/hr | 0.56        |      |   | 10 – 100 |          |          |  |  |

<sup>&</sup>lt;sup>1</sup> The exponent 0.82 should be used with ultra-supercritical plants.

National Energy Technology Laboratory

| Account<br>Number | Item Description           | Parameter            |                  | Exponen          | nt [Coefficie    | ent]             |      | Range            |
|-------------------|----------------------------|----------------------|------------------|------------------|------------------|------------------|------|------------------|
|                   | Category                   | 1-5                  | 1                | 2                | 3                | 4                | 5    | 1-5              |
| 11                |                            | ACCESS               | ORY ELEC         | TRIC PLA         | ΝΤ               |                  |      |                  |
| 11.1              | Generator Equipment        | Turbine Capacity, MW |                  |                  |                  | 600 - 800        |      |                  |
| 11.2              | Station Service Equipment  | Auxiliary Load, kW   |                  |                  |                  | 28,300 - 272,000 |      |                  |
| 11.3              | Switchgear & Motor Control | Auxiliary Load, kW   |                  |                  |                  | 28,300 - 272,000 |      |                  |
| 11.4              | Conduit & Cable Tray       | Auxiliary Load, kW   |                  |                  | 0.43             |                  |      | 28,300 - 272,000 |
| 11.5              | Wire & Cable               | Auxiliary Load, kW   |                  |                  | 0.43             |                  |      | 28,300 - 272,000 |
| 11.6              | Protective Equipment       | Auxiliary Load, kW   |                  |                  | 0.00             |                  |      | 28,300 - 272,000 |
| 11.7              | Standby Equipment          | Turbine Capacity, MW |                  |                  | 0.46             |                  |      | 588 - 835        |
| 11.8              | Main Power Transformers    | STG Rating, MVA      | 0.46<br>[418.03] | 0.46<br>[418.03] | 0.46<br>[418.03] | 0.48             | 2.11 | 10 – 1000        |
| 11.9              | Electrical Foundations     | Turbine Capacity, MW |                  |                  |                  | 600 - 800        |      |                  |

Exhibit 2-12 Scaling parameters and exponents for categories 1-5: "Accessory Electric Plant"

## Exhibit 2-13 Scaling parameters and exponents for categories 1-5: "Instrumentation and Control"

| Account<br>Number | Item Description               | Parameter          | Exponent [Coefficient] |  |      |  |   | Range            |  |  |
|-------------------|--------------------------------|--------------------|------------------------|--|------|--|---|------------------|--|--|
|                   | Category                       | 1-5                | 1 2 3 4                |  |      |  | 5 | 1-5              |  |  |
| 12                | INSTRUMENTATION & CONTROL      |                    |                        |  |      |  |   |                  |  |  |
| 12.6              | Control Boards, Panels & Racks | Auxiliary Load, kW |                        |  | 0.13 |  |   | 28,300 - 272,000 |  |  |
| 12.7              | Computer Accessories           | Auxiliary Load, kW |                        |  | 0.13 |  |   | 28,300 - 272,000 |  |  |
| 12.8              | Instrument Wiring & Tubing     | Auxiliary Load, kW | 0.13                   |  |      |  |   | 28,300 - 272,000 |  |  |
| 12.9              | Other I & C Equipment          | Auxiliary Load, kW |                        |  | 0.13 |  |   | 28,300 - 272,000 |  |  |

National Energy Technology Laboratory

| Account<br>Number Item Description |                      | Parameter                   | Exponent |           |                     |                     |     | Range               |  |  |
|------------------------------------|----------------------|-----------------------------|----------|-----------|---------------------|---------------------|-----|---------------------|--|--|
|                                    | Category             | 1-5                         | 1        | 1 2 3 4 5 |                     |                     | 1-5 |                     |  |  |
| 13                                 | IMPROVEMENTS TO SITE |                             |          |           |                     |                     |     |                     |  |  |
| 13.1                               | Site Preparation     | BEC (Minus Acts. 13 and 14) |          |           | 0.20                |                     |     | 735,000 - 1,630,000 |  |  |
| 13.2                               | Site Improvements    | BEC (Minus Acts. 13 and 14) |          | 0.20      |                     | 735,000 - 1,630,000 |     |                     |  |  |
| 13.3                               | Site Facilities      | BEC (Minus Acts. 13 and 14) | 0.20     |           | 735,000 - 1,630,000 |                     |     |                     |  |  |

Exhibit 2-14 Scaling parameters and exponents for categories 1-5: "Improvements to Site"

Exhibit 2-15 Scaling parameters and exponents for categories 1-5: "Buildings and Structures"

| Account<br>Number | Item Description                     | Parameter                                        | Exponent |      |      | Range               |   |                |                     |  |  |
|-------------------|--------------------------------------|--------------------------------------------------|----------|------|------|---------------------|---|----------------|---------------------|--|--|
|                   | Category                             | 1-5                                              | 1        | 2    | 3    | 4                   | 4 | 5              | 1-5                 |  |  |
| 14                |                                      | <b>BUILDINGS &amp; STRUCTURI</b>                 | ES       |      |      |                     |   |                |                     |  |  |
| 14.1              | Boiler Building                      | Boiler Building BEC (Minus Acts. 13 and 14) 0.09 |          |      |      | 735,000 - 1,630,000 |   |                |                     |  |  |
| 14.2              | Turbine Building                     | BEC (Minus Acts. 13 and 14)                      |          | 0.12 |      |                     |   |                | 735,000 - 1,630,000 |  |  |
| 14.3              | Administration Building              | BEC (Minus Acts. 13 and 14)                      |          | 0.10 |      |                     |   |                | 735,000 - 1,630,000 |  |  |
| 14.4              | Circulation Water Pumphouse          | Circulating Water Flow Rate, gpm                 |          |      | 0.60 | C                   |   |                | 115,000 – 550,000   |  |  |
| 14.5              | Water Treatment Buildings            | Raw Water Makeup, gpm                            |          |      | 0.65 | 5                   |   |                | 2,000 - 11,200      |  |  |
| 14.6              | Machine Shop                         | BEC (Minus Acts. 13 and 14)                      |          |      | 0.10 | C                   |   |                | 735,000 - 1,630,000 |  |  |
| 14.7              | Warehouse                            | BEC (Minus Acts. 13 and 14)                      |          | 0.10 |      |                     |   |                | 735,000 - 1,630,000 |  |  |
| 14.8              | Other Buildings & Structures         | BEC (Minus Acts. 13 and 14)                      |          | 0.10 |      |                     |   |                | 735,000 - 1,630,000 |  |  |
| 14.9              | Waste Treating Building & Structures | Raw Water Makeup, gpm                            | 0.07     |      |      |                     |   | 2,000 - 11,200 |                     |  |  |

National Energy Technology Laboratory

# **2.2 IGCC**

Exhibit 2-16 provides the category matrix for IGCC categories.

| Category | Technologies                                                                                                              |
|----------|---------------------------------------------------------------------------------------------------------------------------|
| 6        | Single-stage, dry-feed, oxygen-blown, down-flow gasifier with and without $\text{CO}_2$ capture, PRB and ND lignite coals |
| 7        | Two-stage, slurry-feed, oxygen-blown gasifier with and without $CO_2$ capture, PRB coal                                   |
| 1        | Single-stage, slurry-feed, oxygen-blown gasifier with and without CO2 capture, Illinois #6 coal                           |
|          | Single-stage, dry-feed, oxygen-blown, up-flow gasifier, with $CO_2$ capture, PRB coal with and without switchgrass        |
| 8        | Single-stage, dry-feed, oxygen-blown, up-flow gasifier with CO <sub>2</sub> capture, Illinois #6 coal with switchgrass    |
|          | Single-stage, dry-feed, oxygen-blown, up-flow gasifier, with and without $CO_2$ capture, PRB and ND lignite coals         |
|          | Single-stage, dry-feed, oxygen-blown, up-flow gasifier without CO <sub>2</sub> capture, Illinois #6 coal                  |
| 0        | Transport gasifier, air- and oxygen-blown, with and without CO <sub>2</sub> capture, PRB and TX lignite coals             |
| 9        | Transport gasifier, oxygen-blown with CO <sub>2</sub> capture, TX lignite coal, with hybrid poplar                        |

For IGCC categories, use Equation 9 for items that utilize a coefficient in addition to an exponent. In the "scaling parameters and exponents" tables below, the values presented within brackets [] are coefficients.

# **Equation 9**

$$SC = \frac{RC}{RTPC} * C * SP^{Exp}$$

Exhibit 2-17 through Exhibit 2-31 contain the scaling parameters and exponents that are suitable for IGCC plants at the given ranges.

| Account<br>Number | Item Description                    | Parameter             | Exponent |                 |     | Range                    |                    |  |  |
|-------------------|-------------------------------------|-----------------------|----------|-----------------|-----|--------------------------|--------------------|--|--|
|                   | Category                            | 6-9                   | 6 7 8 9  |                 |     |                          | 6-9                |  |  |
| 1                 | 1 FUEL & SORBENT HANDLING           |                       |          |                 |     |                          |                    |  |  |
| 1.1               | Coal Receive & Unload               | Coal feed rate, lb/hr |          | 0               | .62 |                          | 18,400 - 1,750,000 |  |  |
| 1.2               | Coal Stackout & Reclaim             | Coal feed rate, lb/hr |          | 0               | .62 | 18,400 - 1,750,000       |                    |  |  |
| 1.3               | Coal Conveyors & Yd Crush           | Coal feed rate, lb/hr |          | 0               | .62 | 18,400 - 1,750,000       |                    |  |  |
| 1.4               | Other Coal Handling                 | Coal feed rate, lb/hr |          | 0               | .62 |                          | 18,400 - 1,750,000 |  |  |
| 1.5               | Biomass Receive & Unload            | Biomass Feed, lb/hr   | 0.62     | 062 062 062     |     | See<br>Note <sup>1</sup> | 6,000 - 934,000    |  |  |
| 1.6               | Biomass Handling                    | Biomass Feed, lb/hr   |          | 0               | .62 |                          | 6,000 - 934,000    |  |  |
| 1.7               | Biomass Conveyors                   | Biomass Feed, lb/hr   |          | 0               | .62 |                          | 6,000 - 934,000    |  |  |
| 1.8               | Biomass Handling Foundations        | Biomass Feed, lb/hr   |          | 6,000 - 934,000 |     |                          |                    |  |  |
| 1.9               | Coal & Sorbent Handling Foundations | Coal feed rate, lb/hr |          | 0               | .62 |                          | 18,400 - 1,750,000 |  |  |

<sup>&</sup>lt;sup>1</sup> Use Equation 5 with exponent 0.37 for equipment and Equation 6 with exponent 0.45 for direct labor. Values provided in \$1,000 (2007\$). National Energy Technology Laboratory Office of Program Planning and Analysis

| Account<br>Number | Item Description                                       | Parameter                   | Exponent [Coefficient] |                 |                 |                     | Range              |  |  |  |
|-------------------|--------------------------------------------------------|-----------------------------|------------------------|-----------------|-----------------|---------------------|--------------------|--|--|--|
|                   | Category                                               | 6-9                         | 6 7 8 9                |                 |                 |                     | 6-9                |  |  |  |
| 2                 | FUEL & SORBENT PREP & FEED                             |                             |                        |                 |                 |                     |                    |  |  |  |
| 2.1               | Coal Crushing & Drying                                 | Coal feed rate, lb/hr       |                        | 0               | .66             |                     | 18,400 - 1,750,000 |  |  |  |
| 2.2               | Prepared Coal Storage & Feed                           | Coal feed rate, lb/hr       |                        | 0               | .66             | 18,400 - 1,750,000  |                    |  |  |  |
| 2.3               | Dry Coal Injection System/<br>Slurry Prep and Feed     | Coal feed rate, lb/hr       |                        | 0               | .66             | 18,400 – 1,750,000  |                    |  |  |  |
| 2.4               | Misc. Coal Prep & Feed                                 | Coal feed rate, lb/hr       | 0.66                   | 0.66            | 0.66            | 0.90                | 18,400 - 1,750,000 |  |  |  |
| 2.5               | Biomass Shredding & Drying                             | Biomass Feed, lb/hr         |                        | 0.              | 66 <sup>1</sup> |                     | 6,000 - 934,000    |  |  |  |
| 2.6               | Biomass Pelletization/<br>Dry Biomass Injection System | Biomass Feed, lb/hr         | 0.66                   |                 |                 |                     | 6,000 - 934,000    |  |  |  |
| 2.7               | Prepared Biomass Storage & Feed                        | Biomass Feed, lb/hr         |                        | 6,000 - 934,000 |                 |                     |                    |  |  |  |
| 2.9               | Coal & Sorbent Feed Foundation                         | Total Feed Flow Rate, lb/hr |                        | 0               | .66             | 467,100 - 1,750,000 |                    |  |  |  |

Exhibit 2-18 Scaling parameters and exponents for categories 6-9: "Fuel and Sorbent Prep and Feed"

**Equation 7** 

$$SC = C * \left(\frac{SP}{2000} * 24\right)^{Exp}$$

National Energy Technology Laboratory



<sup>&</sup>lt;sup>1</sup> For oxygen-blown transportation gasification with  $CO_2$  capture firing TX lignite coal with hybrid poplar co-fire, use Equation 7 with a coefficient of 7.0428 to calculate equipment costs and a coefficient of 1.3724 to calculate direct labor costs. Values are provided in \$1,000 (2007\$).

| Account<br>Number | Item Description                | Parameter                   | Exponent [Coefficient] |      |      |             | Range               |  |  |
|-------------------|---------------------------------|-----------------------------|------------------------|------|------|-------------|---------------------|--|--|
|                   | Category 6-9 6 7 8 9            |                             |                        |      | 6-9  |             |                     |  |  |
| 3                 | 3 FEEDWATER & MISC. BOP SYSTEMS |                             |                        |      |      |             |                     |  |  |
| 3.1               | Feedwater System                | BFW (HP only), lb/hr        |                        | 0    | .71  |             | 1,000 - 4,000       |  |  |
| 3.2               | Water Makeup & Pretreating      | Raw water makeup, gpm       |                        | 0    | .71  | 300 - 9,000 |                     |  |  |
| 3.3               | Other Feedwater Subsystems      | BFW (HP only), lb/hr        |                        | 0    | .71  |             | 1,000 - 4,000       |  |  |
| 3.4               | Service Water Systems           | Raw water makeup, gpm       |                        | 0    | .71  |             | 300 - 9,000         |  |  |
| 3.5               | Other Boiler Plant Systems      | Raw water makeup, gpm       | 0.73                   | 0.73 | 0.73 | 0.25        | 300 - 9,000         |  |  |
| 3.6               | FO Supply Sys & Nat Gas         | Total Feed Flow Rate, lb/hr | 0.00                   | 0.24 | 0.24 | 0.00        | 467,000 - 1,750,000 |  |  |
| 3.7               | Waste Treatment Equipment       | Raw water makeup, gpm       | 0.71                   |      |      |             | 300 - 9,000         |  |  |
| 3.8               | Misc. Power Plant Equipment     | Total Feed Flow Rate, lb/hr | 0.66                   | 0.24 | 0.24 | 0.06        | 467,000 - 1,750,000 |  |  |

Exhibit 2-19 Scaling parameters and exponents for categories 6-9: "Feedwater and Miscellaneous BOP Systems"

Exhibit 2-20 Scaling parameters and exponents for categories 6-9: "Gasifier and Accessories"

| Account<br>Number | Item Description                                                             | Parameter                                         |                                       | Exponent [                            | Range                                 |                                                    |                                        |  |  |  |  |  |
|-------------------|------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------------------|----------------------------------------|--|--|--|--|--|
|                   | Category                                                                     | 6-9                                               | 6                                     | 7                                     | 8                                     | 9                                                  | 6-9                                    |  |  |  |  |  |
| 4                 |                                                                              | GASIFIER & ACCESSORIES                            |                                       |                                       |                                       |                                                    |                                        |  |  |  |  |  |
| 4.1               | Gasifier, Syngas Cooler & Auxiliaries                                        | SGC Duty/Total Feed Flow<br>Rate, lb/hr           | 0.00                                  | 0.77/1.19<br>[0.29/0.71] <sup>1</sup> | 0.53<br>[214.0] <sup>2</sup>          | 0.31/0.64<br>[0.51/0.49] <sup>1</sup>              | 200 - 1,000<br>467,000 - 1,750,000     |  |  |  |  |  |
| 4.3               | ASU/Oxidant Compression                                                      | O <sub>2</sub> Production, lb/hr/MAC<br>Power, kW | 2.39/0.89<br>[0.09/0.91] <sup>1</sup> | 0.70/0.70<br>[0.50/0.50] <sup>1</sup> | 0.70/0.54<br>[0.80/0.20] <sup>3</sup> | 0.36/0.36 <sup>4</sup><br>[0.50/0.50] <sup>1</sup> | 285,000 - 1,750,000<br>5,000 - 316,000 |  |  |  |  |  |
| 4.4               | LT Heat Recovery & FG Saturation/<br>Scrubber & Low Temperature Cooling      | Total Feed Flow Rate, lb/hr                       | See Note <sup>5</sup>                 | See Note <sup>6</sup>                 | See Note <sup>6</sup>                 | 0.40                                               | 467,000 - 1,750,000                    |  |  |  |  |  |
| 4.6               | Flare Stack System/<br>Soot Recovery & SARU/<br>Other Gasification Equipment | Total Feed Flow Rate, lb/hr                       | See Note <sup>7</sup>                 | 0.50                                  | 0.50                                  | 0.40                                               | 467,000 – 1,750,000                    |  |  |  |  |  |
| 4.9               | Gasification Foundations                                                     | Total Feed Flow Rate, lb/hr                       | 0.50                                  | 0.50                                  | 0.50                                  | 0.40                                               | 467,000 - 1,750,000                    |  |  |  |  |  |

# Equation 10

# $SC = C_1 * RC * \left(\frac{SP_1}{RP_1}\right)^{Exp_1} + C_2 * RC * \left(\frac{SP_2}{RP_2}\right)^{Exp_2} \qquad SC = \frac{RC}{RTPC} * (40,689 * DCF^{0.136} + 289,128 * DCF)$

# Equation 11

Where:

Equation 12  $STPC = 10^{\left[ (52.825736*\log_{10} SP^3) - (924.074743*\log_{10} SP^2) + \right]}$ 

| Equation 13       |                                         |  |  |  |  |  |  |  |  |  |
|-------------------|-----------------------------------------|--|--|--|--|--|--|--|--|--|
| $SC = C_1 * RC_1$ | $*SP_1^{Exp} + C_2 * RC_2 * SP_2^{Exp}$ |  |  |  |  |  |  |  |  |  |

- STPC Scaled total plant cost
- DCF Dry coal feed, lb/hr

National Energy Technology Laboratory

<sup>&</sup>lt;sup>1</sup> Use Equation 10.

<sup>&</sup>lt;sup>2</sup> Non-biomass plants with PRB or ND Lignite coal use Equation 11. Non-biomass plants with Illinois #6 coal use exponent 0.66 with Equation 3.

<sup>&</sup>lt;sup>3</sup>Biomass plants use Equation 13, values provided in \$1,000 (2007\$). Non-biomass plants use Equation 10 with Exponents of 0.70/0.70 and Coefficients of 0.50/0.50.

<sup>&</sup>lt;sup>4</sup> TRIG air-fired plants scale on combustion turbine extraction air flow rate, lb/hr, rather than O<sub>2</sub> production rate.

<sup>&</sup>lt;sup>5</sup> For capture plants, the TPC is 22.0 percent of the TPC of the "Gasifier, Syngas Cooler & Auxiliaries." For non-capture plants, the TPC is 23.0 percent.

<sup>&</sup>lt;sup>6</sup> For capture plants, the TPC is 20.6 percent of the TPC of the "Gasifier, Syngas Cooler & Auxiliaries." For non-capture plants with PRB or ND Lignite coals,

the TPC is 10.7 percent. For non-capture plants with Illinois #6 coal, use exponent of 0.23 with Equation 3.

<sup>&</sup>lt;sup>7</sup> Use Equation 12.

# January 2013

Exhibit 2-21 Scaling parameters and exponents for categories 6-9: "Gas Cleanup and Piping"

| Account<br>Number | Item Description                             | Parameter                                                                      |                   | Exponent [C           | Range                         |      |                                  |  |  |  |  |
|-------------------|----------------------------------------------|--------------------------------------------------------------------------------|-------------------|-----------------------|-------------------------------|------|----------------------------------|--|--|--|--|
|                   | Category                                     | 6-9                                                                            | 6                 | 7                     | 8                             | 9    | 6-9                              |  |  |  |  |
| 5                 | GAS CLEANUP & PIPING                         |                                                                                |                   |                       |                               |      |                                  |  |  |  |  |
| 5A.1              | Sulfinol/Selexol (Single and Double)/MDEA-LT | Gas flow to AGR, acfm                                                          | 1.44              | 0.79                  | 0.79                          | 0.95 | 6,000 - 30,500                   |  |  |  |  |
| 5A.2              | Elemental Sulfur Plant                       | Sulfur Production, lb/hr                                                       | 0.67              | 0.67                  | 0.58<br>[131.42] <sup>1</sup> | 0.67 | 300 - 43,900                     |  |  |  |  |
| 5A.3              | Mercury Removal                              | Hg bed carbon fill, ft <sup>3</sup>                                            | 0.69<br>[11.05]   | See Note <sup>2</sup> | 0.034<br>[1.461] <sup>3</sup> | 0.70 | 2,000 - 35,100                   |  |  |  |  |
| 5A.4              | Shift Reactors/ COS Hydrolysis               | WGS Catalyst volume, ft <sup>3</sup> /<br>COS Catalyst volume, ft <sup>3</sup> | 0.12              | 0.80                  | 0.59/0.78                     | 0.75 | 2,000 - 10,600<br>9,000 - 25,500 |  |  |  |  |
| 5A.5              | Blowback Gas Systems                         | Candle filter flow rate, acfm                                                  | N/A               | 0.30                  | 0.75 <sup>4</sup>             | 0.41 | 2,000 - 96,000                   |  |  |  |  |
| 5A.6              | Fuel Gas Piping                              | Fuel gas flow, lb/hr                                                           | 0.7224<br>[2.282] | 0.72                  | 0.78<br>[1.87]⁵               | 0.58 | 185,000 - 2,490,000              |  |  |  |  |
| 5A.9              | HGCU Foundations                             | Sulfur Production, lb/hr                                                       | 0.79              | 0.79                  | 0.52 <sup>6</sup>             | 0.79 | 300 - 43,900                     |  |  |  |  |

National Energy Technology Laboratory

<sup>&</sup>lt;sup>1</sup> Non-biomass plants use the exponent 0.67 and coefficient 61.981.

<sup>&</sup>lt;sup>2</sup> Use exponent 1.57 with PRB coal, use exponent 1.64 with Illinois #6 coal without  $CO_2$  capture, and use exponent 1.59 with Illinois #6 coal with  $CO_2$  capture. The coefficient 0.0141 is used with all plants.

<sup>&</sup>lt;sup>3</sup> Non-biomass plants with Illinois #6 coal, use Equation 3 with an exponent of 0.60. All other non-biomass plants use the coefficient of 0.0141 and exponent of 1.5742.

<sup>&</sup>lt;sup>4</sup> Non-biomass plants use the exponent of 0.30. <sup>5</sup> Non-biomass plants use the coefficient 2.282 and exponent 0.7224.

<sup>&</sup>lt;sup>6</sup> Non-biomass plants use the exponent of 0.79.

Exhibit 2-22 Scaling parameters and exponents for categories 6-9: "CO<sub>2</sub> Compression"

| Account<br>Number | Item Description                     | Parameter Exponent Rai |      | Exponent |                     |      | Range                                    |  |  |  |
|-------------------|--------------------------------------|------------------------|------|----------|---------------------|------|------------------------------------------|--|--|--|
|                   | Category 6-9 6 7 8                   |                        | 8    | 9        | 6-9                 |      |                                          |  |  |  |
| 5B                |                                      |                        |      |          |                     |      |                                          |  |  |  |
| 5B.2              | CO <sub>2</sub> Compression & Drying | Compressor Power, kW   | 0.63 | 0.88     | {0.88} <sup>1</sup> | 0.67 | 28,300 – 43,500<br>1,000,000 – 2,200,000 |  |  |  |

Exhibit 2-23 Scaling parameters and exponents for categories 6-9: "Combustion Turbine and Accessories"

| Account<br>Number | Item Description                                                     | Parameter            |   | Exponent |                     | Range |                     |
|-------------------|----------------------------------------------------------------------|----------------------|---|----------|---------------------|-------|---------------------|
| Category          |                                                                      | 6-9                  | 6 | 7        | 8                   | 9     | 6-9                 |
| 6                 | COMBUSTION TURBINE/ACCESSORIES                                       |                      |   |          |                     |       |                     |
| 6.1               | Combustion Turbine Generator     Fuel gas flow, lb/hr     0.00     1 |                      |   |          | 185,000 - 2,490,000 |       |                     |
| 6.9               | Combustion Turbine Foundations                                       | Fuel gas flow, lb/hr |   | 0.00     | )                   |       | 185,000 - 2,490,000 |

Exhibit 2-24 Scaling parameters and exponents for categories 6-9: "HRSG, Ducting, and Stack"

| Account<br>Number | Item Description               | Parameter                      | rameter Exponent |      | Range                 |             |                       |
|-------------------|--------------------------------|--------------------------------|------------------|------|-----------------------|-------------|-----------------------|
| Category          |                                | 6-9                            | 6                | 7    | 8                     | 9           | 6-9                   |
| 7                 | HRSG, DUCTING & STACK          |                                |                  |      |                       |             |                       |
| 7.1               | Heat Recovery Steam Generator  | HRSG duty, MMBtu/hr            |                  | 0.70 |                       | 600 - 5,000 |                       |
| 7.3               | Ductwork                       | volumetric flow to stack, acfm | 0.70             | 0.70 | 0.70                  | 0.57        | 1,010,000 - 2,810,000 |
| 7.4               | Stack                          | volumetric flow to stack, acfm | 0.70             |      | 1,010,000 - 2,810,000 |             |                       |
| 7.9               | HRSG, Duct & Stack Foundations | volumetric flow to stack, acfm | 0.70             | 0.70 | 0.70                  | 0.67        | 1,010,000 - 2,810,000 |

National Energy Technology Laboratory

<sup>&</sup>lt;sup>1</sup> Biomass plants use the exponent 0.79 with the scaling parameter "CO<sub>2</sub> Captured, lb/hr."

| Account<br>Number | Item Description          | Parameter                                          | E                         | xponen | t [Coefficie                  | nt]               | Range                        |
|-------------------|---------------------------|----------------------------------------------------|---------------------------|--------|-------------------------------|-------------------|------------------------------|
|                   | Category                  | 6-9                                                | 6                         | 7      | 8                             | 9                 | 6-9                          |
| 8                 | STEAM TURBINE GENERATOR   |                                                    |                           |        |                               |                   |                              |
| 8.1               | Steam TG & Accessories    | Turbine capacity, kW                               | Turbine capacity, kW 0.70 |        | 195,000 – 371,000             |                   |                              |
| 8.2               | Turbine Plant Auxiliaries | Turbine capacity, kW                               | 0.72                      |        |                               | 195,000 – 371,000 |                              |
| 8.3a              | Condenser & Auxiliaries   | Condenser duty, MMBtu/hr                           | 0.71                      | 0.71   | 0.70<br>[52.90] <sup>1</sup>  | 0.71              | 500 – 2,000                  |
| 8.3b              | Air Cooled Condenser      | BFW (HP only), lb/hr<br>{Condenser Duty, MMBtu/hr} | 0.36                      | 0.73   | {0.70}                        | 1.14              | 1,000 – 4,000<br>500 – 2,000 |
| 8.4               | Steam Piping              | BFW (HP only), lb/hr                               | 0.72                      | 0.72   | 0.63<br>[122.80] <sup>2</sup> | 0.72              | 1,000 - 4,000                |
| 8.9               | TG Foundations            | Turbine capacity, kW                               |                           |        | 0.72                          |                   | 195,000 - 371,000            |

Exhibit 2-25 Scaling parameters and exponents for categories 6-9: "Steam Turbine Generator"



<sup>&</sup>lt;sup>1</sup> Non-biomass plants use a coefficient of 45.921 and exponent of 0.7. <sup>2</sup> Non-biomass plants with PRB or ND Lignite coal use the exponent 0.7018 and coefficient 71.1. Non-biomass plants with Illinois #6 coal use the exponent 0.70 with Equation 3.

| Account<br>Number | Item Description               | Parameter                    |      | Exponent [Coefficient] |                          |             | Range            |
|-------------------|--------------------------------|------------------------------|------|------------------------|--------------------------|-------------|------------------|
|                   | Category                       | 6-9                          | 6    | 7                      | 8                        | 9           | 6-9              |
| 9                 | COOLING WATER SYSTEM           |                              |      |                        |                          |             |                  |
| 9.1               | Cooling Towers                 | Cooling tower duty, MMBtu/hr | 0.90 | 0.72                   | 0.72                     | 0.72        | 1,000 - 4,000    |
| 9.2               | Circulating Water Pumps        | Circ water flow rate, gpm    | 0.72 | 0.72                   | 0.69 [0.54] <sup>1</sup> | 0.72        | 92,600 - 330,000 |
| 9.3               | Circ.Water System Auxiliaries  | Circ water flow rate, gpm    |      |                        | 0.64                     |             | 92,600 - 330,000 |
| 9.4               | Circ.Water Piping              | Circ water flow rate, gpm    |      | 0.6                    | 606 [6.185] <sup>2</sup> |             | 92,600 - 330,000 |
| 9.5               | Make-up Water System           | Raw water makeup, gpm        |      | 0.60                   |                          | 300 - 9,000 |                  |
| 9.6               | Component Cooling Water System | Circ water flow rate, gpm    | 0.64 |                        | 92,600 - 330,000         |             |                  |
| 9.9               | Circ.Water System Foundations  | Circ water flow rate, gpm    |      |                        | 0.59                     |             | 92,600 - 330,000 |

Exhibit 2-26 Scaling parameters and exponents for categories 6-9: "Cooling Water System"

Exhibit 2-27 Scaling parameters and exponents for categories 6-9: "Ash and Spent Sorbent Handling System"

| Account<br>Number | Item Description                     | Parameter              | Exponent<br>[Coefficient] | Range           |  |  |
|-------------------|--------------------------------------|------------------------|---------------------------|-----------------|--|--|
|                   | Category                             | 6-9                    | 6 7 8 9                   | 6-9             |  |  |
| 10                | 10 ASH/SPENT SORBENT HANDLING SYSTEM |                        |                           |                 |  |  |
| 10.1              | Slag Dewatering & Cooling            | Slag production, lb/hr | 0.64                      | 7,000 - 351,000 |  |  |
| 10.6              | Ash Storage Silos                    | Slag production, lb/hr | 0.55                      | 7,000 - 351,000 |  |  |
| 10.7              | Ash Transport & Feed Equipment       | Slag production, lb/hr | 0.55                      | 7,000 - 351,000 |  |  |
| 10.8              | Misc. Ash Handling Equipment         | Slag production, lb/hr | 0.55                      | 7,000 - 351,000 |  |  |
| 10.9              | Ash/Spent Sorbent Foundation         | Slag production, lb/hr | 0.55                      | 7,000 – 351,000 |  |  |



<sup>&</sup>lt;sup>1</sup> Non-biomass plants use the coefficient 0.6273 and exponent 0.6714. <sup>2</sup> Non-biomass plants use the exponent 0.6085 and coefficient 6.0862.

| Account<br>Number | Item Description           | Parameter              |      | Exp  | onent             |                   | Range             |
|-------------------|----------------------------|------------------------|------|------|-------------------|-------------------|-------------------|
|                   | Category                   | 6-9                    | 6    | 7    | 8                 | 9                 | 6-9               |
| 11                | ACCESSORY ELECTRIC PLANT   |                        |      |      |                   |                   |                   |
| 11.1              | Generator Equipment        | Turbine capacity, kW   |      | 0    | .54               |                   | 195,000 – 371,000 |
| 11.2              | Station Service Equipment  | Auxiliary load, kW     |      | 0.45 |                   | 107,000 - 423,000 |                   |
| 11.3              | Switchgear & Motor Control | Auxiliary load, kW     | 0.45 |      | 107,000 - 423,000 |                   |                   |
| 11.4              | Conduit & Cable Tray       | Auxiliary load, kW     |      | 0    | .45               |                   | 107,000 - 423,000 |
| 11.5              | Wire & Cable               | Auxiliary load, kW     |      | 0    | .45               |                   | 107,000 - 423,000 |
| 11.6              | Protective Equipment       | Auxiliary load, kW     | 0.00 | 0.00 | 0.00              | 0.65              | 107,000 - 423,000 |
| 11.7              | Standby Equipment          | Total Gross Output, kW | 0.48 | 0.48 | 0.48              | 0.00              | 621,000 - 835,000 |
| 11.8              | Main Power Transformers    | Total Gross Output, kW | 0.71 | 0.71 | 0.71              | 0.00              | 621,000 - 835,000 |
| 11.9              | Electrical Foundations     | Total Gross Output, kW | 0.70 | 0.70 | 0.70              | 0.00              | 621,000 - 835,000 |

Exhibit 2-28 Scaling parameters and exponents for categories 6-9: "Accessory Electric Plant"

## Exhibit 2-29 Scaling parameters and exponents for categories 6-9: "Instrumentation and Control"

| Account<br>Number | Item Description               | Parameter          | Exponent |      |      | Range |                   |
|-------------------|--------------------------------|--------------------|----------|------|------|-------|-------------------|
|                   | Category                       | 6-9                | 6        | 7    | 8    | 9     | 6-9               |
| 12                | INSTRUMENTATION & CONTROL      |                    |          |      |      |       |                   |
| 12.4              | Other Major Component Control  | Auxiliary load, kW | 0.24     | 0.13 | 0.13 | 0.24  | 107,000 - 423,000 |
| 12.6              | Control Boards, Panels & Racks | Auxiliary load, kW | 0.24     | 0.13 | 0.13 | 0.24  | 107,000 - 423,000 |
| 12.7              | Computer & Accessories         | Auxiliary load, kW | 0.24     | 0.13 | 0.13 | 0.24  | 107,000 - 423,000 |
| 12.8              | Instrument Wiring & Tubing     | Auxiliary load, kW | 0.24     | 0.13 | 0.13 | 0.24  | 107,000 - 423,000 |
| 12.9              | Other I & C Equipment          | Auxiliary load, kW | 0.24     | 0.13 | 0.13 | 0.24  | 107,000 - 423,000 |

National Energy Technology Laboratory

| Account<br>Number | Item Description Parameter Exponent |                | Range |      |      |      |                       |
|-------------------|-------------------------------------|----------------|-------|------|------|------|-----------------------|
| Category          |                                     | 6-9            | 6     | 7    | 8    | 9    | 6-9                   |
| 13                | IMPROVEMENTS TO SITE                |                |       |      |      |      |                       |
| 13.1              | Site Preparation                    | BEC Accts 1-12 | 0.34  | 0.08 | 0.08 | 0.34 | 1,040,000 - 1,680,000 |
| 13.2              | Site Improvements                   | BEC Accts 1-12 | 0.33  | 0.08 | 0.08 | 0.33 | 1,040,000 - 1,680,000 |
| 13.3              | Site Facilities                     | BEC Accts 1-12 | 0.34  | 0.08 | 0.08 | 0.34 | 1,040,000 - 1,680,000 |

Exhibit 2-30 Scaling parameters and exponents for categories 6-9: "Improvements to Site"

#### Exhibit 2-31 Scaling parameters and exponents for categories 6-9: "Buildings and Structures"

| Account<br>Number | Item Description               | Parameter                 |      | Expo | onent |      | Range                 |
|-------------------|--------------------------------|---------------------------|------|------|-------|------|-----------------------|
|                   | Category                       | 6-9                       | 6    | 7    | 8     | 9    | 6-9                   |
| 14                | BUILDINGS & STRUCTURES         |                           |      |      |       |      |                       |
| 14.1              | Combustion Turbine Area        | Gas Turbine Power, kWe    |      | 0.   | 00    |      | 51,200 – 471,000      |
| 14.2              | Steam Turbine Building         | BEC Accts 1-12            | 0.17 | 0.17 | 0.17  | 0.45 | 1,040,000 - 1,680,000 |
| 14.3              | Administration Building        | BEC Accts 1-12            | 0.00 | 0.10 | 0.10  | 0.00 | 1,040,000 - 1,680,000 |
| 14.4              | Circulation Water Pumphouse    | Circ water flow rate, gpm | 0.01 | 0.46 | 0.46  | 0.46 | 92,600 - 330,000      |
| 14.5              | Water Treatment Buildings      | Raw water makeup, gpm     |      | 0.   | 71    |      | 300 – 9,000           |
| 14.6              | Machine Shop                   | BEC Accts 1-12            | 0.32 | 0.10 | 0.02  | 0.00 | 1,040,000 - 1,680,000 |
| 14.7              | Warehouse                      | BEC Accts 1-12            | 0.32 | 0.10 | 0.02  | 0.00 | 1,040,000 - 1,680,000 |
| 14.8              | Other Buildings & Structures   | BEC Accts 1-12            | 0.35 | 0.10 | 0.02  | 0.21 | 1,040,000 - 1,680,000 |
| 14.9              | Waste Treating Building & Str. | Raw water makeup, gpm     | 0.08 | 0.08 | 0.08  | 0.08 | 300 – 9,000           |

National Energy Technology Laboratory

# **2.3 NGCC**

Exhibit 2-32 provides the category matrix for NGCC categories.

## Exhibit 2-32 Category matrix: NGCC

| Category | Technologies                                                     |  |  |  |  |
|----------|------------------------------------------------------------------|--|--|--|--|
| 10       | Natural gas, air-fired, with and without CO <sub>2</sub> capture |  |  |  |  |
|          | Natural gas, air-fired with $CO_2$ capture and gas recycle       |  |  |  |  |

Exhibit 2-33 through Exhibit 2-43 contain the scaling parameters and exponents that are suitable for NGCC plants at the given ranges.

| Account<br>Number               | Item Description                       | Parameter                       | Exponent          | Range               |  |
|---------------------------------|----------------------------------------|---------------------------------|-------------------|---------------------|--|
| Category                        |                                        | 10                              | 10                | 10                  |  |
| 3 FEEDWATER & MISC. BOP SYSTEMS |                                        |                                 |                   |                     |  |
| 3.1                             | Feedwater System                       | Feedwater flow (HP only), lb/hr | 0.72              | 886,000 - 1,350,000 |  |
| 3.2                             | Water Makeup & Pretreating             | Raw Water Withdrawal (gpm)      | 0.71              | 3,000 - 5,000       |  |
| 3.3                             | Other Feedwater Subsystems             | Feedwater flow (HP only), lb/hr | 0.72              | 886,000 - 1,350,000 |  |
| 3.4                             | Service Water Systems                  | Raw Water Withdrawal (gpm)      | 0.71              | 3,000 - 5,000       |  |
| 3.5                             | Other Boiler Plant Systems             | Raw Water Withdrawal (gpm)      | 0.71              | 3,000 - 5,000       |  |
| 3.6                             | Natural Gas, incl. pipeline            | Fuel gas flow, acfm avg         | 0.07 <sup>1</sup> | 2,000 - 4,000       |  |
| 3.7                             | Waste Treatment Equipment              | Raw Water Withdrawal (gpm)      | 0.71              | 3,000 - 5,000       |  |
| 3.8                             | Misc. Equip. (cranes, AirComp., Comm.) | Fuel gas flow, acfm avg         | 0.76              | 2,000 - 4,000       |  |

Exhibit 2-33 Scaling parameters and exponents for categories 6-9: "Feedwater and Miscellaneous BOP Systems"

#### Exhibit 2-34 Scaling parameters and exponents for categories 6-9: "Gas Cleanup and Piping"

| Account<br>Number | Item Description           | Parameter            | Exponent | Range                 |  |  |  |
|-------------------|----------------------------|----------------------|----------|-----------------------|--|--|--|
|                   | Category                   | 10                   | 10       | 10                    |  |  |  |
| 5A                | A GAS CLEANUP & PIPING     |                      |          |                       |  |  |  |
| 5A.6              | Exhaust Gas Recycle System | EGR Flowrate (lb/hr) | 1.47     | 3,150,000 - 3,280,000 |  |  |  |



 $<sup>^{1}</sup>$  As noted in the item description, this line item also includes the natural gas pipeline. The natural gas pipeline is an additive cost and would not be scaled. The pipeline cost is specific to the plant location and needs. Scaling over larger ranges will result in unrealistic costs since this has the effect of essentially increasing and decreasing the pipe length.

Exhibit 2-35 Scaling parameters and exponents for categories 6-9: "CO<sub>2</sub> Removal and Compression"

| Account<br>Number | Item Description                      | Parameter                                                    | Exponent          | Range                               |
|-------------------|---------------------------------------|--------------------------------------------------------------|-------------------|-------------------------------------|
| Category          |                                       | 10                                                           | 10                | 10                                  |
| 5B                | CO <sub>2</sub> REMOVAL & COMPRESSION |                                                              |                   |                                     |
| 5B.1              | CO <sub>2</sub> Removal System        | CO <sub>2</sub> Flowrate (lb/hr)/<br>Inlet to Absorber, acfm | 0.61 <sup>1</sup> | 445,000 - 689,000/ N/A <sup>2</sup> |
| 5B.2              | CO <sub>2</sub> Compression & Drying  | CO <sub>2</sub> Flowrate (lb/hr)                             | 0.77              | 445,000 - 689,000                   |

Exhibit 2-36 Scaling parameters and exponents for categories 6-9: "Combustion Turbine and Accessories"

| Account<br>Number | Item Description               | Parameter               | Exponent | Range             |
|-------------------|--------------------------------|-------------------------|----------|-------------------|
| Category          |                                | 10                      | 10       | 10                |
| 6                 | COMBUSTION TURBINE/ACCESSORIES |                         |          |                   |
| 6.1               | Combustion Turbine Generator   | Fuel Gas Flow, acfm     | 0.00     | N/A               |
| 6.9               | Combustion Turbine Foundations | Gas Turbine Power (kWe) | 0.00     | 421,000 - 811,000 |

Exhibit 2-37 Scaling parameters and exponents for categories 6-9: "HRSG, Ducting, and Stack"

| Account<br>Number | Item Description               | Parameter             | Exponent          | Range                 |
|-------------------|--------------------------------|-----------------------|-------------------|-----------------------|
| Category          |                                | 10                    | 10                | 10                    |
| 7                 | HRSG, DUCTING & STACK          |                       |                   |                       |
| 7.1               | Heat Recovery Steam Generator  | HRSG Duty (MMBtu/hr)  | 0.70              | 2,000 - 3,000         |
| 7.2               | HRSG Accessories               | HRSG Duty (MMBtu/hr)  | 1.40              | 2,000 - 3,000         |
| 7.9               | HRSG, Duct & Stack Foundations | Stack flow rate, acfm | 0.70 <sup>3</sup> | 2,390,000 - 2,860,000 |

National Energy Technology Laboratory

<sup>&</sup>lt;sup>1</sup> 40% of cost is applied to gas flow and the remainder is applied to  $CO_2$  capture. <sup>2</sup> Range has not yet been developed as parameter has not been implemented to date.

<sup>&</sup>lt;sup>3</sup> Natural gas, air-fired with  $CO_2$  capture and gas recycle uses an exponent of 0.47.

| Account<br>Number | Item Description          | Parameter                  | Exponent              | Range                 |
|-------------------|---------------------------|----------------------------|-----------------------|-----------------------|
| Category          |                           | 10                         | 10                    | 10                    |
| 8                 | STEAM TURBINE GENERATOR   |                            |                       |                       |
| 8.1               | Steam TG & Accessories    | Steam Turbine Power (kWe)  | 0.80                  | 230,000 - 321,000     |
| 8.2               | Turbine Plant Auxiliaries | Steam Turbine Power (kWe)  | 0.73                  | 230,000 - 321,000     |
| 8.3               | Condenser & Auxiliaries   | Thermal Input (LHV) (kWth) | See Note <sup>1</sup> | 1,100,000 - 1,710,000 |
| 8.4               | Steam Piping              | HRSG Duty (MMBtu/hr)       | 0.83                  | 2,000 - 3,000         |
| 8.9               | TG Foundations            | Steam Turbine Power (kWe)  | 0.73                  | 230,000 - 321,000     |

Exhibit 2-38 Scaling parameters and exponents for categories 6-9: "Steam Turbine Generator"

Exhibit 2-39 Scaling parameters and exponents for categories 6-9: "Cooling Water System"

| Account<br>Number | Item Description              | Parameter                        | Exponent | Range             |
|-------------------|-------------------------------|----------------------------------|----------|-------------------|
| Category          |                               | 10                               | 10       | 10                |
| 9                 |                               | COOLING WATER SYSTEM             |          |                   |
| 9.1               | Cooling Towers                | Cooling Tower Duty (MMBtu/hr)    | 0.71     | 1,000 - 3,000     |
| 9.2               | Circulating Water Pumps       | Circulating water flow rate, gpm | 0.72     | 125,000 - 294,000 |
| 9.3               | Circ.Water System Auxiliaries | Circulating water flow rate, gpm | 0.60     | 125,000 - 294,000 |
| 9.4               | Circ.Water Piping             | Circulating water flow rate, gpm | 0.60     | 125,000 - 294,000 |
| 9.5               | Make – up Water System        | Raw water makeup, gpm            | 0.60     | 2,000 - 4,000     |
| 9.6               | Component Cooling Water Sys   | Circulating water flow rate, gpm | 0.60     | 125,000 - 294,000 |
| 9.9               | Circ.Water System Foundations | Circulating water flow rate, gpm | 0.60     | 125,000 - 294,000 |

National Energy Technology Laboratory

<sup>&</sup>lt;sup>1</sup> Natural gas, air-fired without  $CO_2$  capture uses the exponent 0.43. Natural gas, air-fired with  $CO_2$  capture uses the exponent 0.12. Natural gas, air-fired with  $CO_2$  capture and gas recycle uses the exponent 0.29.

| Account<br>Number | Item Description           | Parameter                            | Exponent | Range               |
|-------------------|----------------------------|--------------------------------------|----------|---------------------|
| Category          |                            | 10                                   | 10       | 10                  |
| 11                |                            | ACCESSORY ELECTRIC PLANT             |          |                     |
| 11.1              | Generator Equipment        | Gross Total (kWe)                    | 0.59     | 650,000 - 1,130,000 |
| 11.2              | Station Service Equipment  | Net Auxiliary Load (kWe)             | 0.64     | 50,700 - 73,500     |
| 11.3              | Switchgear & Motor Control | Net Auxiliary Load (kWe)             | 0.64     | 50,700 - 73,500     |
| 11.4              | Conduit & Cable Tray       | Net Auxiliary Load (kWe)             | 0.64     | 50,700 - 73,500     |
| 11.5              | Wire & Cable               | Net Auxiliary Load (kWe)             | 0.64     | 50,700 - 73,500     |
| 11.6              | Protective Equipment       | Net Auxiliary Load (kWe)             | 1.10     | 50,700 - 73,500     |
| 11.7              | Standby Equipment          | Gross Total (kWe)                    | 0.48     | 650,000 - 1,130,000 |
| 11.8              | Main Power Transformers    | STG output, MVA PLUS CTG output, MVA | 0.70     | 750 – 820           |
| 11.9              | Electrical Foundations     | Gross Total (kWe)                    | 0.70     | 650,000 - 1,130,000 |

Exhibit 2-40 Scaling parameters and exponents for categories 6-9: "Accessory Electric Plant"

# Exhibit 2-41 Scaling parameters and exponents for categories 6-9: "Instrumentation and Control"

| Account<br>Number | Item Description               | Parameter                | Exponent | Range           |
|-------------------|--------------------------------|--------------------------|----------|-----------------|
| Category          |                                | 10                       | 10       | 10              |
| 12                | INS                            | TRUMENTATION & CONTRO    | DL       |                 |
| 12.4              | Other Major Component Control  | Net Auxiliary Load (kWe) | 0.60     | 50,700 - 73,500 |
| 12.6              | Control Boards, Panels & Racks | Net Auxiliary Load (kWe) | 0.60     | 50,700 - 73,500 |
| 12.7              | Computer & Accessories         | Net Auxiliary Load (kWe) | 0.60     | 50,700 - 73,500 |
| 12.8              | Instrument Wiring & Tubing     | Net Auxiliary Load (kWe) | 0.60     | 50,700 - 73,500 |
| 12.9              | Other I & C Equipment          | Net Auxiliary Load (kWe) | 0.60     | 50,700 - 73,500 |

National Energy Technology Laboratory

| Account<br>Number | Item Description     | Parameter         | Exponent | Range               |
|-------------------|----------------------|-------------------|----------|---------------------|
| Category          |                      | 10                | 10       | 10                  |
| 13                | IMPROVEMENTS TO SITE |                   |          |                     |
| 13.1              | Site Preparation     | Gross Total (kWe) | 0.47     | 650,000 - 1,130,000 |
| 13.2              | Site Improvements    | Gross Total (kWe) | 0.47     | 650,000 - 1,130,000 |
| 13.3              | Site Facilities      | Gross Total (kWe) | 0.47     | 650,000 - 1,130,000 |

Exhibit 2-42 Scaling parameters and exponents for categories 6-9: "Improvements to Site"

Exhibit 2-43 Scaling parameters and exponents for categories 6-9: "Buildings and Structures"

| Account<br>Number | Item Description               | Parameter                         | Exponent          | Range               |
|-------------------|--------------------------------|-----------------------------------|-------------------|---------------------|
|                   | Category                       | 10                                | 10                | 10                  |
| 14                |                                | <b>BUILDINGS &amp; STRUCTURES</b> |                   |                     |
| 14.1              | Combustion Turbine Area        | Gas Turbine Power, kWe            | 0.53              | 421,000 - 811,000   |
| 14.2              | Steam Turbine Building         | Steam Turbine Power, kWe          | 0.60              | 230,000 - 321,000   |
| 14.3              | Administration Building        | Gross Total (kWe)                 | 0.34              | 650,000 - 1,130,000 |
| 14.4              | Circulation Water Pumphouse    | Circulating water flow rate, gpm  | 0.60 <sup>1</sup> | 125,000 - 294,000   |
| 14.5              | Water Treatment Buildings      | Circulating water flow rate, gpm  | 0.66              | 125,000 - 294,000   |
| 14.6              | Machine Shop                   | Gross Total (kWe)                 | 0.34              | 650,000 - 1,130,000 |
| 14.7              | Warehouse                      | Gross Total (kWe)                 | 0.34              | 650,000 - 1,130,000 |
| 14.8              | Other Buildings & Structures   | Gross Total (kWe)                 | 0.34              | 650,000 - 1,130,000 |
| 14.9              | Waste Treating Building & Str. | Gross Total (kWe)                 | 0.34              | 650,000 - 1,130,000 |

National Energy Technology Laboratory



<sup>&</sup>lt;sup>1</sup> Natural gas, air-fired without CO<sub>2</sub> capture uses an exponent of 0.82.