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High-energy laser beams, when focused appropriately, provide the potential for fusion reactions. However, 
when unfocused, they provide the potential for critical failure of the underlying systems and possible 
damage to expensive optical components. The fusion experiments at the Lawrence Livermore National 
Laboratory (LLNL), National Ignition Facility (NIF) have but one major purpose from the optical 
engineering viewpoint: to accurately focus 192 high energy laser beams on a nanoscale (mm) fusion target 
at the precise location and time. With this achieved, the fusion reaction will occur providing a major 
breakthrough in physics and the boundless applications. This paper is aimed at pre-processing alignment 
images to detect and classify any that cannot be precisely positioned in order to achieve ignition. We term 
these images “off-normal” because of their inherent ambiguities that could lead to misalignment and 
potential damage. 
 
OCIS codes: 070.6020, 140.3300, 120.1880, 040.1520 
 
 
I. INTRODUCTION 
 
 The alignment of large operative, short pulse, laser systems is a significant and 
costly endeavor dating back to the early seventies.1 Beam alignment is a complex and 
critical process requiring precise and accurate measurements. If beam alignment is not 
performed in an optimal manner, costly optics could be damaged disrupting an entire 
experiment. Early alignment systems proved inadequate due to inherent uncertainties and 
lack of reliability. Therefore, contemporary imaging systems evolved based on using 
video cameras to image and align the beam.1-10 This approach estimates the current beam 
position from the image, adjusts mirrors relative to an accurate reference measurement of 
physical beam center and attempts to minimize the deviation between them.2-10  Current 
systems employ the same basic principle, but utilize much improved high-resolution 
video cameras and more accurate position control systems.10 However, even with these 
improved systems, should an anomalous or equivalently “off-normal” image occur due to 
component malfunctions (sticky mirror, stepping motor failure, component failure, etc.), 
the current system will still attempt to perform its alignment function unless there is some 
method to detect, classify and reject the erroneous image prior to position imaging and 
eventual control loop adjustments. This paper is concerned not only with detecting and 
classifying off-normal images, prior to processing, but also rejecting any anomalous 
images during laser system operations---without causing a major time disruption of the 
operations during these costly experiments. In this paper, we present a suite of operations 
under the above-mentioned constraints to detect, classify and reject any off-normal 
images prior to processing, thereby, enabling a minimal distortion of pulsed laser 
operations. This idea of pre-processing raw “off-normal” image data for position and 
detection is novel for large, pulsed laser systems. 
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 High power, tightly focused laser beams are required to achieve successful 
ignition and therefore fusion at the Lawrence Livermore National Laboratory (LLNL) 
National Ignition Facility (NIF).11 The beams simultaneously focus precisely on a 
nanoscale target capsule to succeed. Therefore, there are a large number of alignment 
measurements that must be performed along the NIF beam lines to assure that the 
pointing and alignment control system centers the beam in order to provide the maximum 
energy on the fusion target located in the associated chamber.11-13 An automatic 
alignment (AA) system was designed and implemented to assure successful deployment 
of the high energy beam in each of the 192 beam lines. Initially, only four beam lines 
were constructed and aligned manually by well-trained operators and sophisticated 
diagnostic tools; however, a fully automated system is close to completion. Hence, the 
requirement of an “off-normal” detection implementation scheme is crucial. Each of the 
reference and measured beam images fall into different classes as will be observed and 
therefore a multitude of approaches must be undertaken to provide a timely detection, 
classification and rejection (if necessary) so another set of acceptable images can be 
generated, if the defect is not physical in nature. Therefore, there is a need for a pre-
processing technique, which accepts as input uncertain reference and measurement 
images and performs the ultimate screening for alignment. 
 
 Before we launch into the details of the approach and algorithms, let us briefly 
describe the operation of the alignment procedure to emphasize the importance of the 
screening. The alignment images are acquired from a charge-coupled device (CCD) 
imaging camera producing both noisy reference and measurement images. The precise 
reference image is used to provide the desired fiducial that is used by the alignment 
system. Corrections to align the measured image with the reference is accomplished by 
using the dedicated control loops that adjust pointing mirror stepping motors until the 
deviations between both reference and measured positions are within acceptable limits.13 
Ultimately, the goal is to make this deviation zero assuring proper beam alignment. Thus, 
the smaller the XY-deviations, the closer the beam is to the centerline reference assuring 
a tightly focused, high energy beam on target---the goal of the alignment system.  
 
 The ideal approach to perform the detection, classification and off-normal 
rejection system is based on a very simple concept: “reduce the dense pixel image to a 
simple or set of simple functions that capture the essential features of the alignment 
pattern or inherent structure. In this sense, we are essentially attempting to define a two-
dimensional to one-dimensional transformation (2D 1D), while preserving the critical 
properties or features of the image under investigation---quite a technical challenge. 
Along with such a transformation associated signal processing must also be performed to 
minimize the inherent artifacts that accompany such a data acquisition system and yet 
enable a reliable decision function.  
 
 We develop a variety of such transformations in Sec. 2 with the associated 
processing after we develop the basic classification background to understand one of the 
major approaches. In Sec. 3 a set of ideal ensemble averaged images are constructed, 
transformed and detected to demonstrate the various approaches and evaluate their 
performance. We apply the transformation and processing algorithms to actual off-
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normal images in the next section evaluating their overall performance and finally 
summarize the results and discuss future work. 
 
II. IMAGE TRANSFORMATIONS FOR OFF-NORMAL DETECTION 
 

In this section we begin by examining some of the simpler alignment images to 
motivate our approach and then investigate the more technical. First, we consider the 
cases of black and white images, which actually are not as simple to diagnose as one 
might expect. Usually these images are created by faulty shutters, illumination, hardware 
failures etc.  The approach that we take to design the processor is based on 
classification/detection theory. We decided to construct the off-normal classifier/detector 
as a two-stage processor: the first is a Bayesian-type classifier to determine the class the 
image belongs based on its unique probability mass function (PMF) features, while the 
second stage can be considered a feature detector based on tolerance parameters that must 
be satisfied for successful operation of the alignment system.14 

 
The overall question that must be answered by the pre-processor is whether or not 

the incoming image is satisfactory (good) for further alignment processing or not 
satisfactory (bad). This is basically a decision problem, which can simply be restated as,  
 

“GIVEN a noisy measured image, DETERMINE whether it is good or bad. IF 
good, pass it to the imaging alignment algorithm or IF bad, reject it.” 

 
Once the decision is made, the image is processed accordingly. Unfortunately, there are a 
variety of images that fall into the bad class; therefore, we must define this class in more 
detail and develop a processor capable of performing the required decision. The basic 
idea is to find a set of unique characteristics of each “bad image” that can be used to 
make a reliable decision and reject it. This problem can then be handled as a 
classification problem. The main idea here is to determine the set of characteristics or 
features that uniquely capture the “badness” of an image enabling the classifier to 
“decide” that it is, in fact, bad and reject it.  
 
 A basic classifier structure is depicted in Fig. 1.  Classifier development proceeds 
directly from the measurement data obtained from the CCD camera or from a set of 
simulated images. Once the image is acquired from the camera, the salient features are 
generated (e.g. mean, variance, etc.), then a feature subset is extracted. In the purest 
sense, all of the image pixels could be considered potential features; however, it is far 
better to select a reduced set in order to optimize classifier performance. The feature 
extraction is performed and provides the input for classification. In order to perform the 
classification, we define the classes (good or bad) and then select a criterion, which is 
used to make the decision. The performance of the classifier can be evaluated by a 
number of metrics that are meaningful to the underlying application. Some common 
methods are receiver operating characteristic (ROC) curve or equivalently the probability 
of error. 
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Fig. 1. Classification Development Structure: Data, Feature, Classifier and Performance. 
 
  
 In this paper we will develop the concept of constructing a classifier/detector 
based on transforming the measured 2D image to generate meaningful 1D features. The 
basic structure is shown in Fig. 2 below. Once the raw NIF image data (reference or 
measured image) is captured by the CCD camera, it is transformed, 2D   1D to 
generate a set of features that can be used for classification/detection. Because of the 
likelihood of the occurrence of black, white or noisy images, these are processed first. 
Should the image be accepted as “good”, it is passed on to a second set of detectors 
which again perform a variety of 2D   1D transformations creating decision functions 
which can be tested against a prescribed threshold based on the characteristics of the 
expected image. Should the image be passed again, it is sent to the actual imaging 
algorithm for eventual position estimation (e.g. centroiding). 
 

First, we choose to use the probability mass function as a means of generating our 
desired feature sets for the black and white problem. Once they are generated then the 
next step is to extract a subset of the features to be used for overall classification of 
incoming image. 
 
A. Classification Approach 
 
 Classification is actually a special form of multiple hypothesis decision theory.14 
A classifier is essentially a rule to sort the features and assign them to a particular class. 
That is, it is an algorithm whose function is to separate the measurement or observation 
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space containing the features into regions that correspond to classes.  Classification has 
its own particular jargon that we began to introduce in the previous section. To be more 
precise, we define the components of the processor.  We start with the data, I(x,y), which 
represents our measured NIF image (reference or alignment). From the data we generate 
a set of features that uniquely characterize the particular image. We can represent a 
number of features by the vector, 1fNR ×∈f  for our problem. Recall that a feature is a 
subset of the measured data image that is used for classification. Feature selection is a 
methodology to select the salient features characterizing the particular data image. We 
choose to transform the image to a probability mass function using a histogram estimator 
in the first stage. From the histogram we then extract the features. Once extracted, they 
are processed by a classifier. For our processor we choose to use a Bayesian-type 
classifier.14 This processor is based on designing a classifier capable of minimizing the 
classification error (probability).  Next we discuss the development of an approximate 
Bayesian classifier and then apply it to our problem. 
 
 

Raw CCD Image
(Reference or Measured)

PMF Feature Extraction
(2D 1D Transform)

Classifier

Threshold Detector

Feature Extraction

Good? Reject
No

Yes

FWHM
(2D 1D Means)

FWHMP
(2D 1D Projected Means)

Skewness
(2D 1D Means)

Good? Reject
No

Yes

To Control Loop  
 

Fig. 2. NIF Off-Normal Image Classification/Detection: Classification and Detection  
 Stages. 
 
 
1. Bayesian Classification 
 
 Suppose we have Nc-classes of images and we would like to “decide” in which 
class, Ci, the current image, I(x,y) belongs. We define the posterior probability (after 
image is available) as . This is essentially the information we are seeking (Pr | ( , )iC I x y )
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since it is the probability of the class, Ci, given the data (image)---exactly what is 
necessary to make our decision (good or bad). Using Bayes’ rule14-17, we see that the 
posterior can be calculated using other more easily obtainable information, that is,  
 

 ( ) ( ) ( )
( )

Pr ( , ) | Pr
Pr | ( , )

Pr ( , )
i

i
iI x y C C

C I x y
I x y

=  (1) 

 
where we define the likelihood as ( )Pr | iI C , the prior probability as  and the 

evidence, 
( )Pr iC

( )Pr I . So we can think of Bayes’ rule as a transformation of the prior 
information through the likelihood to provide us with the desired estimate of the posterior 
probability, which will be used in the classifier.  
 
 In this formulation, we are obtaining the solution to the question that:  Given the 
measured data (image), what is the probability that it belongs to class Ci?  Similarly, the 
question of: how likely is this class is measured by the likelihood in Bayes’ rule?  The 
prior is information (probability) we have available that can be used to distinguish one 
class from another before we have any measured data available. Here the question 
becomes: what prior information do we have about the class Ci?   Finally, the evidence is 
essentially a “scale” factor that is used to assure that the posterior is a true probability. In 
this formulation the data can be replaced by the features, since they are simply a 
transformation of the measured data into unique characteristics to describe the image and 
eventually classify it. Therefore we can rewrite Bayes’ rule of Eq. (1) in terms of the 
feature vector as 
 

 ( ) ( ) ( )
( )

Pr | Pr
Pr |

Pr
i

i

C C
C =

f
f

f
i

i j

 (2) 

 
for f defined as the Nf-dimensional feature vector. This equation forms the basis of our 
classifier.  
 
 The Bayesian classifier (general) for the multi-class (Nc classes), multi-feature (Nf 
features) problem is simply given by the relations 
 
 Pr( | )  >  Pr( | )    i jC C ∀ ≠f f  (3) 
 
that is, the decision is made based on which class has the maximum posterior probability. 
Expanding this expression over the Nc-classes gives 
  

 

1

2

Pr( | ) Pr( | )
Pr( | ) Pr( | )

           CHOOSE 

Pr( | ) Pr( | )
c

i

i
i

i N

C C
C C

IF C

C C

>⎧
⎪ >⎪→ ⎨
⎪
⎪ >⎩

f f
f f

f f
M

 (4) 
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which states that if the posterior probability of class Ci is greater than the other class 
probabilities then “decide” that it is the true class of the image captured by its feature 
vector.   
 
2. Bayesian Classifier Performance 
 

Associated with this decision is the probability of error (making the wrong 
decision) given by 
 

   (5) 
1

Pr( )= Pr( | ) Pr( | )
cN

j
j

Cε
=

+∑ f f iC

C

 
which means that we penalize the decision when we choose class Cj when the true class 
is Ci or visa-versa. Another method of estimating the performance is to use the 
probability of correct decision, . This is preferred because there are fewer ways 
to make the right decision than wrong. This probability is defined by 

corPr( )C

 

  (6) cor
1

Pr( ):= Pr( | )
cN

j
j

C
=
∑ f

 
The error probability is a key issue in classification, since it tells us how well the 

classifier is performing, that is, it provides a performance metric. Consider the two-class 
problem (good or bad). In this case the Bayesian classifier is given simply by 
 
 

 

( ) ( )

( ) ( )

1 2

2

1 2

Pr | Pr |                           CHOOSE 
IF      

Otherwise                                              CHOOSE   

with 

              Pr( )=min Pr | , Pr |

C C C

C

C Cε

>⎧
⎪
⎨
⎪
⎩

⎡ ⎤⎣ ⎦

f f

f f

1

 (7) 

 
 
Thus, the Bayes’ classifier minimizes the probability of error or equivalently maximizes 
the probability of correct decision.  
 

Suppose we divide the decision space into two regions: one corresponding to R1 
and one to R2 here each region corresponds to classes C1 and C2, respectively. Here there 
are two ways of making errors: choosing C1 when C2 is correct or visa-versa. Thus, the 
error probability is given by 
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 2 1 1 2 2 1 1 1 2 2Pr( ) Pr( , ) Pr( , ) Pr( | ) Pr( ) Pr( | ) Pr( )R C R C R C C R C Cε = ∈ + ∈ = ∈ + ∈f f f f  (8) 
 
using Bayes’ rule.  
 

With this in mind we are now able to sketch the underlying foundation of the 
classification problem shown in Fig. 3. Here a source (laser beam) generates the class 
output from the beam line and through a probabilistic transition mechanism generating 
the data to be measured. The CCD camera images the beam. The resulting image is a 
point in the observation or measurement space where a decision rule (preprocessor) 
assigns each image to a class and a decision is made (good or bad). Finally the 
performance of the classifier is evaluated using the probability of error (or correct 
decision). This can be accomplished by Monte Carlo simulation methods or from a large 
database where we “know” the true class by generating and ensemble of realizations 
(images) and accumulating the error statistics to evaluate performance. This completes 
the sub-section on background, next we construct a classifier for our problem. 

Source

Probability
Transition
Mechanism

Observation
Space 

Decision
Rule

DecisionClass Data Statistic  

Errors 

Performance
Metric 

 
Fig. 3.  Classification/Detection Problem: Source, Probability, Observation,  

Decision and Performance. 
 
 

3.  NIF Classifier Design 
  
 In this section we develop the classifier used as the part of the preprocessor for 
NIF alignment images. The approach follows the paradigm that the image is transformed 
to an estimate of a 1D PMF (2D 1D). It is based on identifying and extracting a unique 
set of features for the most prevalent set of undesirable images (e.g. all black pixels). 
Thus, a unique features, { } ,  1, ,k ff k = L N , from selected off-normal images are 
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identified, extracted and classified. The features provide the direct input in a Bayesian-
type classification scheme. 
 
a. Feature Generation 
 

Next we describe a transformation of the acquired image to another space for 
eventual feature extraction. One of the primary motivations for this approach is the need 
for real-time processing in this automatic alignment application. For our problem, we use 
the probabilistic features available in the estimated image intensity probability mass 
function, p(a). For the estimator we use the histogram defined in terms of the 
intensity, , such that na
 

 ( )ˆ( ) ( ) :     for   0, , 1n
n n a

T

N ap a a H a n N
N

= ≈ = = −L  (9) 

 
where N(an) is the number of occurrences of intensity a in the nth bin (e.g. a255 is the 
counts in the 255-intensity bin) and NT is the total number of intensities available in the 
image or the number of pixels, Na is determined by the number of bits available, that is, 
for our 8-bit images, intensity values ranging from 0 to 255. For a given 
interval, say [

bits2 256N
aN = =

]1,n na a− , we have that 
 

  (10) 
1

0

( )
aN

T
n

N N
−

=

= ∑ na

a

 
with the number of zero-intensity counts. An example histogram is shown in Fig. 4 
defining these terms. The histogram is an estimate of the PMF, which can be used to 
estimate the probability of intensity values  

oa

 
  (11) ( ) ˆPr ( ) ( )   for all  such that  n n n

n n

a p a a H a n a= = = ≤∑ ∑
 
Clearly, if we desire the probability of the intensity taking on values in a given range, 
then using the histogram estimate, we have  
 

  (12) ( ) ˆPr ( ) ( )   
j j

i j i j n
n i n i

a a a p a a a H a
= =

≤ ≤ = ≤ ≤ =∑ ∑
 

In essence, our data, the measured images has been transformed to a 1D-estimate 
of the PMF using the histogram. Next we must extract a set of features from the PMF that 
uniquely characterize common (bad) images we expect to encounter in our data sets.  
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b. Feature Extraction 
 

 We define the components of the feature vector, f, by a set of probabilities that 
will uniquely characterize an image by a class. Currently, we are considering four major 
classes: white, black or noise♦, that is, 
 
 

{ }1 2 3 4 1 2 3 4: ,  , ,   for White; for Black; for Noise; for Valid ImageC C C C C C C C C= → → → →
  (13) 
 
Our images are modeled in terms of the features of their corresponding intensities, that is,  
 
 ( ) { }, ;     ,     1, ,n i n j aI x y a a a a n N= < < = L  (14) 
 
where the pixilated image is ( , ) for 1, , ; 1, ,x yI x y x N y N= =L L with set of intensities, 

{ }na bound by the prescribed interval ,i ja a⎡ ⎤⎣ ⎦ . Corresponding to this definition, we can 

define the probability that the intensity of the -feature will occur in this interval as thk
 
 ( )Pr i ja a a pk< < =  (15) 

 

( )p a ( )np a a=

ana0

( )Pr i ja a a≤ ≤

ia ja

 
Fig. 4.  Probability Mass Function for Image Intensities.  

                                                 
♦ We use seven (7) classes in the actual classifier, since there are four types of black images we must 
consider in the NIF problem. 
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We define this probability as a component of our feature vector, estimated by the 
histogram for each particular image that will be used in the classifier, that is,  
 

 ˆˆ ( )
j

k k n
n i

f p H a
=

= =∑  (16) 

where kf is the -component of the feature vector estimated by summing the histogram 

over the interval, . The classifier is then constructed as discussed in the previous 

section based on the conditional probability of the feature vector, 

thk

,i ja a⎡⎣ ⎤⎦
( )Pr | Cf l .  

 
 For our problem using an 8-bit image, we must define the various types of images 
that can occur in our NIF beam line and characterize or model them by their features in 
terms of the probability intervals. We start with the various classes of black images, since 
these represent the most prevalent type and are of high concern. 
 
 Black images are more difficult to characterize, since there are varieties of the 
image that must be accounted for in the feature vector. For instance, an “all black” or 
pure black image is simple in that all of its pixel intensities are zero, that is, 
 
 ( )1 1

ˆˆ( , ) 0   ;   with  0                                             [PURE BLACK]nI x y a f p H= ∀ = = (17) 
 

Another type of black image we frequently encounter is called a “good black” 
image that is the most typical of the black class and is defined by 
 

 (18) ( )
19

2 2 prob
17

ˆˆ( , )       17 19   with         [GOOD BLACK] n n n
n

I x y a a f p H a τ
=

= ∋ < < = = ≥∑
where probτ is a probability bound of expected performance (e.g. 0.98) for good 
classification. 
 

On the other hand, a “bad black” image is one that should not occur imply a 
potential physical problem with the CCD camera. It is defined by 
 

 (19) ( )
9

3 3 prob
0

ˆˆ( , )       1 9   with              [BAD BLACK] n n n
n

I x y a a f p H a τ
=

= ∋ < < = = ≥∑
 

A “normal black” image is characterized by  
 

( )
26

4 4 prob
10

ˆˆ( , )   10 26   with       [NORMAL BLACK] n n n
n

I x y a a f p H a τ
=

= ∋ < < = = ≥∑  

           (20) 
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A white image is defined by the property that its intensity is given by  
 

 (21) ( )
255

5 5
225

ˆˆ( , )       225< <255   with                               [WHITE] n n n
n

I x y a a f p H a
=

= ∋ = = ∑
 
which means that the white image intensities range from [225,255] and its feature 
(probability) is estimated by summing the estimated image intensity histogram over the 
defined range. 

 
The next image that we define is a “noise image” characterized by its low 

probability over the entire intensity band. Since the noise is essentially equally likely in 
each pixel, one approach to model it is to assume its probability is low relative to the 
other images. In this case we have found from our data base that  
 
 ( )6 6

ˆˆ( , )       0 255   with    <                    [NOISE] n n nI x y a a f p H a= ∋ < < = = 0.2 (22) 
 

Typical images that have fiducials created by alignment masks must also be 
classified and passed on to the pre-processor for off-normal condition detection. We call 
these images “valid” or “good” for further processing. This feature is defined by 

 

 (23) 
6

  7 7 prob
1

ˆ ˆ( , ) 0 255  with  1                           [GOOD]n n k
k

I x y a a f p p τ
=

= < < = = − ≥∑
 

 
Thus, with these models for each of the image types, we create a feature vector, 
and construct the Bayesian-type classifier of the previous section, that is, we 

estimate each of the individual class probabilities from the given features, , and 
then select the largest over all classes (blacks, white, noise, good) to determine the true 
class 

7 1R ×∈f
(Pr |C fl )

 
 ( ) max  Pr |  for 1, ,7C =fl l L  (24) 
 
 
 
 

CLASSIFIER ALGORITHM 
 

1. Transform the image to the 1D histogram function; 
 

2. Estimate the feature vector component for each expected type of “off-normal” 
image specified above from Eqs. (21)-(23); 

 
3. Choose the class (blacks, white, noise, good) based on the max . ( )Pr |C fl
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This completes the classifier-based, off-normal detector, next we investigate other 
features of more typical images assuming they have not been rejected by this detector 
using the above algorithm. 
 
4. Feature Detection Techniques 
 
 In this section we develop procedures that are performed after the Bayesian-type 
classification has been performed to screen out the typical off-normal images. Here we 
actually have and image with the potential alignment mask (e.g. 2D gaussian pulse), but 
it could be distorted for a number of reasons discussed in the introduction. Thus, we have 
a valid image but it may possess “undesirable” features that would cause the alignment 
algorithm to give poor position estimate to the control loop. Our approach is the same, 
2D  1D image transformation, but now we exploit properties of the beam quality that 
have been specified during the beam line design. From experience, we can allow a more 
liberal tolerance than the actual design specifications to perform the detection enabling a 
more robust performance of the detector.  
 
 
a.    Full Width Half Maximum (FWHM) Detector 
 
 In this sub-section we discuss the development of the FWHM off-normal 
detection technique, which proves to be very robust over our main laser beam beam lines. 
Again the major idea follows by transforming the image to two 1D functions, the row 
mean, xI , and the column mean, yI , defined by 
 

 

1

1

1

1

( ) : ( , ); 1, ,  for 

( ) : ( , ); 1, ,  for 

x
y

y
x

N
N

x j k y x
j

N
N

y j k x y
j

I y I x y k N I R

I x I x y j N I R

×

=

×

=

= = ∈

= = ∈

∑

∑

L

L

 (25) 

  
Typically, these averages take the form of a pulse, either wide or narrow, 

depending on the 2D structure (e.g. 2D gaussian image  1D gaussian pulses); therefore, 
we define FWHM in the usual manner, that is, 
 

 

;

;

1( ) : ( )  for  
2

1( ) : ( )  for  x
2

y y y yn m

x x x xn m

FWHM x n m

FWHM y n m

I y I y y y

I x I x x

= =

= =

= >

= >

 (26) 
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From specifications for a given image, we know, a-priori, what the allowable 

interval or pulse width is for a given alignment loop. So we can define the respective 
allowable interval tolerances that are calculated from these values as 
 

 
( ) : ( ) ( )

( ) : ( ) ( )

x FWHM n FWHM m

y FWHM n FWHM m

I y I y I y

I x I x I x

x

y

τ

τ

∆ = − ≤

∆ = − ≤
 (27) 

 
where xτ and yτ  are specified by the specific alignment loop (e.g. FOA loop is 10 
pixels). We also use a generalized form of the FWHM detector by performing multiple 
projections through the images at other angles as discussed next. 
 
b.   Full Width Half Maximum (FWHMP) Projection Detector 
 
 In this sub-section we discuss the development of the FWHMP off-normal 
detection technique, which can robustly handle the case where the 2D pulse shape is 
clipped at an angle. Again the major idea follows by transforming the image to two 1D 
functions, the angular row mean, xI θ , and the angular column mean, yI θ  where θ  is the 

projection angle. In our case we limit the angle to the set, { }0 ,45 ,90 ,135o o o o  where the 

and cases are precisely, 0o 90o
0( ) ( )y yI x I x= and 90 ( ) ( )x xI y I y≡ . In essence, we are 

only calculating two additional angular means, which are equivalent to calculating line 
integrals at particular projection angle similar to straight-line projection tomography.18 
 
c.   Skewness Detector 
 
 In this sub-section we discuss the development of a skewness detector based on 
processing the projection data. Even though skewness is a statistical measure of central 
tendency, it can be used to provide us with useful pulse shape information. In statistics 
the skewness is based on the locations of the mean, median and mode of the test 
distribution. For our problem, if we consider our pulse to be that of a gaussian-like 
distribution, then it is a simple calculation to indicate any abnormalities in its projected 
shape. Skewness of a perfectly symmetrical (distribution) pulse is “0” with its (mean, 
median, mode centrally located). If the pulse shape is non-symmetrical and lopsided to 
the left, then it is positively skewed, “+”, while if lopsided to the left it is negatively 
skewed or “-“. If the 2D (gaussian-like) pulse is clipped at an angle its projection will be 
weighted to the right or left; therefore, it can be detected by the skewness statistic is 
calculated by15  
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The actual process is to locate the actual maximum of the average (e.g. gaussian 

pulse) and cut a window of  samples on either side of the maximum minimizing the 
noise in the skewness window. The skewness statistic is then calculated on the windowed 
pulse. 

50±

 
d. Pre-Processing 
 
 Many of the images have a varying intensity (bright-to-dim or dim-to-bright) 
depending on its illumination. This variation creates a trend in the projection data means; 
therefore, we remove it with a linear trend fit that is performed quite simply by locating 
the two endpoints of the 1D projection, creating the trend from the standard linear 
equation (slope is , intercept is b). Typically, we actually define the endpoint 25 
pixels in from the true endpoint to avoid any end effects created by the projection 
operation. Trend removal need not be perfect for the detection, since we only require the 
maximum location of the projection result. 

/y x∆ ∆

 
This completes the discussion of the pre-processor used for off-normal detection, 

next we apply it to synthesized and actual measured images. 
 

 
III. OFF-NORMAL DETECTION PERFORMANCE ON ENSEMBLE 

IMAGES 
 

In this section, we discuss the application of the off-normal suite of 1D detection 
algorithms and demonstrate their performance on ensemble averaged off-normal images, 
that is, the test images are generated by a result of averaging an ensemble (> 30 
members) of an alignment loop CCD camera output.  
 
A.  Classifier Performance 
 
 In this sub-section we investigate the performance of the classifier on a set of 
images to characterize its performance. A typical set of classifier outputs are shown in 
Fig. 5. We see in 5a and 5b that both the raw pure black and white images are easily 
detected and classified by their unique features. Note from the histogram estimates and 
feature probabilities, (Pr |nf Cl , validate the classifications. In Fig. 5c and 5d we 
observe the linear mirror output, LM3, image as well as a small pinhole (gaussian-like 
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pulse) in beam center and the large pinhole alignment image. These figures demonstrate 
strong normal black ( 4f ) and good ( 7f ) values, but in both cases the “good” feature is 
maximum and selected by the classifier.  
 
 After a number of runs, it was found that quite a number of valid or “good” 
images that could be processed were not selected by the classifier because of the large 
number of black pixels populating the image (e.g. small pinhole image) as illustrated in 
Fig 6a (MPAI) and 6b (Final Optics) images. We modified the feature selection by 
incorporating another constraint that sets its probability to zero if the probability 
threshold constraint is not satisfied. Compare the classifier outputs in Figs. 5 and 6. The 
effect of this approach demonstrated that it was possible to even correctly classify the 
black (or white) dominant images robustly as well. The results are clearly demonstrated 
in Fig. 6a-d. Note the black dominated KDP and Pinhole images are correctly classified 
by including this additional feature constraint. The classifier was also executed over an 
ensemble of 1000 all black images and was able to perform with less than 5% 
classification error (detection probability of >0.95) that is acceptable for this application 
because the subsequent off-normal tests are able to detect and reject the “bad” images. 
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Fig. 5. Classifier outputs for: (a) Pure black image. (b) Pure white image. (c) LM3 image.  

(d) Pinhole image. 
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Fig. 6. Classifier outputs for: (a) MPAI image. (b) Final optics image. (c) KDP image.  

(d) Pinhole image. 
 
 
 
 
 
B. Back-Lit Corner-Cube Reflection Images 
 

The back-lit corner-cube reflection image is used in many beam lines to perform 
the alignment and eventual beam position estimation. A typical raw image (center box) is 
shown in Fig. 7 with the corresponding raw and processed row and column means. The 
image was acquired from the actual NIF beam line during “diagnostic” firing of the 
alignment laser. It consists of the ensemble average of 30-60 “shots” or firings. In this 
case, the beam was aligned with the reference successfully. The column mean has a 
distinguishable trend that is removed as part of the processing, while the row mean has a 
DC-offset that is also removed. The FWHM test was performed on these 1D functions 
indicating that the image was satisfactory for further processing. 
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Raw Column Mean 

Raw Row Mean 

Processed Row Mean 

Processed Column Mean Raw CORNER-CUBE Image

Trend

 
 
Fig. 7.  Raw Corner-Cube Back Reflection Image and FWHM (2D  1D) Detection  

after pre-processing (trend removal). 
 
 
 
Next we investigate the case of off-normal, corner-cube algorithms that are 

processed in much the same manner using the FWHM and skewness tests to detect any 
anomalies.19-21  The results for the “good” and “bad” images are shown in Fig. 8 where 
we see the raw images in the upper row followed by the column and row means after 
preprocessing. The first image was satisfactory and passed the FWHM and skewness 
tests while the other “clipped” images were rejected. Here the combined test was 
sufficient to reject these bad images. However, it was discovered that even if these tests 
were passed it was possible to still have bad images pass. This led to the development of 
the FWHMP that incorporates these tests including the additional 45o and 135o 
projections capable of robustly detecting this class of off-normal imaging. 
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Good Corner-Cube Image Clipped 
Corner-Cube Image

Clipped 
Corner-Cube Image

Row Mean Row Mean Row Mean 

Column Mean Column Mean Column Mean 

 
Fig. 8.  Corner-Cube FWHM/Skewness Testing: Good and Clipped Images (pass,  

reject, reject). 
 
 

 
C.  Pinhole Images 
 

Perhaps the simplest and most frequently used alignment algorithm is termed 
normal pointing and it is used in over 20 of the 34 control loops for either the reference or 
measured image position estimates. This algorithm is applied to the pinhole images 
shown in Fig. 9 for position estimation. However, we first perform the FWHM diagnostic 
and specifications for a “good” image for off-normal detection. The pre-processing 
consisted of trend removal and averaging to perform the 2D  1D  transformation using 
the row and column means and the FWHM test as depicted in the figure. In Fig. 9a we 
observe an almost perfect gaussian-like pulse and the resulting row and column mean 
signal extracted from the image---this image was accepted and passed on to the algorithm 
for position estimation. The same type of result is shown in Fig. 9b. Although this image 
is off-set to the lower right, it can still be easily aligned by the position estimation 
algorithm; therefore, it is also passed, since it satisfies the FWHM specification test 
shown by the vertical lines. An off-normal image is shown in Fig. 9c and the 
performance of the FWHM clearly detects its condition and rejects the image. Thus, we 
see the robust performance of this processor on ideal (ensemble averaged) pinhole 
images. 
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Fig. 9.  Pinhole Images from NIF Beam line: (a) Ideal pinhole image ensemble average. 
 (b) Ideal pinhole image ensemble average with off-set. (c) Oversized pinhole  

image ensemble average (off-normal) rejected. 
 
 
 

This completes the section on the performance of the off-normal 
classification/detection algorithm suites with application to ensemble averaged images 
(reduced noise), next we apply the approach to actual noisy images and evaluate their 
overall performance. 
 
 
IV. OFF-NORMAL CLASSIFICATION/DETECTON RESULTS 
 
 

In this section we discuss the application of the off-normal classifier/detector to a  
set of test images. The results are depicted in the subsequent tables that demonstrate its 
performance.  
 

We discuss two typical alignment loops. The first loop alignment using back lit 
corner cube pinhole images. Table I describes the summarized results from a set of 
backlit-corner-cube-pinhole images that could be obtained during the operation of this 
loop caused by some opto-mechanical malfunction. Nominal images are shown in image 
numbers 1 and 8. They are circular with six diametrically placed lines at equi-angular 
positions. The last column of Tables I and II show whether an image passes as normal 
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image by the off-normal preprocessor (termed PP). It also shows whether the algorithm is 
able to process the image as a normal image.  
 

The criterion is based on a tolerance threshold, T, 
 
 ( ) LL θ µ− ≤ Τ  (29) 
 
for ( )L θ  the width (in pixels) of a line at angle, θ ,  which could be  0o, 45o, 90o or 135o 
and Lµ  is the expected line width.  Note that all four measurements along 0o, 45o, 90o, 
135o must be within T=20 pixels of the expected width, otherwise it will be rejected by 
the preprocessor (PP). 
 

Image number 1 is obtained by averaging 30 nominal images. The typical 
diameter of the image should be 78 pixels. However, since all the pinholes are situated on 
a single wheel, it is possible to have a different pinhole in the path, The second and third 
images are examples of such off-normal condition. These cases are rejected by the above 
criterion. 
 

Another type of off-normal could result when the image of the pinhole is 
obstructed by the presence of a circular aperture in the path limiting its field of view. 
Image numbers, 4 and 5 shows such examples. The X-FWHM and Y-FWHM widths 
together is not able to detect these cases. There are cases of image 4, where X-FWHM 
and Y-FWHM widths are calculated as 62 pixels, which are within 20 pixels of the 
expected size and accepted as a normal image. This prompted us to add the additional 
testing at 45 and 135 angles. Note that 135 angle was able to generate a condition 
favorable for rejection of both images 4 and 5. 
 

It should also be pointed out that the back-lit corner-cube image is produced by 
two light sources superimposing the corner cube image to a common point. Ideally, the 
pointing direction is such that both sources produce images that appear to be a single 
image. When their pointing direction is not properly aligned, it is possible to have the two 
views of the corner cube image completely separate from each other as shown in images 
6 and 7 of Table I. Note that both of these cases produce a high Y-FWHM width value 
and are rejected. 
 

The nominal image in number 8 should be accepted, although it exhibits 
prominent diffraction effects resulting in fringes overlapped with the corner cube image. 
Note however, it affects the Y-FWHM width and hence shows a lower value. It passes 
through the off-normal detector and is processed by the algorithm. Note that images 3-6 
are all processed by the algorithms, since they all have one valid image and produces a 
center value. However, the off-normal detector flags an uncertainty value of 640, which 
automatically shuts down the alignment loop. It forces the control operators to examine 
the image before letting the automatic alignment process continue. Thus with this 
arrangement of producing of high uncertainty given by the off-normal detector, the risk 
of mechanical failure is highly minimized. 
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Table II lists a normal pinhole image from another alignment loop in the NIF laser 
system. Note that the first two cases are pinholes of larger radii. The expected diameter is 
same as the last case, 78 pixels. The first two images fail based on the FWHM criterion. 
The third image results from superposition of light from a secondary light source known 
as the ISP source. This case is rejected based on the X-FWHM and Y-FWHM width. The 
images 4 and 5 both pass the preprocessor. Note that the lowest dimension of 60 pixels is 
within 20 pixels of the expected dimension. Changing the threshold to less than 18 will 
declare a failure for this image. If from NIF beam operation, it becomes a necessity to 
reject this condition, then it can be excluded by modifying the rejection threshold 
criterion. The double image is rejected due to high Y-FWHM width. Next four cases are 
some typical background images that are rejected by the off-normal detector as zero or 
black image. The other two cases show that they are also rejected by the FWHM width 
criterion. 

 
This completes the illustration of the performance of the off-normal 

classifier/detector. Its performance over out alignment image suites has been outstanding 
as demonstrated by these runs. 
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TABLE I.  NIF CONTROL LOOP No. 1 OFF-NORMAL DETECTOR PERFORMANCE. 

 
Number             Image Loop Name  Detection Statistics    Result 

1. 

 
Nominal (averaged) image 

Xskew,  Yskew    
 -(1.00818, -0.736816) 
 
Skew_45 =    -0.974718 
Skew_135 =  -0.982363 
 
X-FWHM WIDTH      75 
Y-FWHM WIDTH      79 
 
Crosswidth_1      73.5391 
Crosswidth_2      73.5391 
 
Expected_Size      78 

PASS 
(PP,ALG) 

2. 

 
A 150 micro-radian pinhole 

Xskew,  Yskew    
 -(0.964835, -0.906968) 
 
Skew_45 =     -2.04531 
Skew_135 =   -1.67676 
 
X-FWHM width =     217 
Y-FWHM width =     214 
 
Crosswidth_1 =  183.848 
Crosswidth_2 =  188.090 
 
Expected_Size =      78 

FAIL (PP) 

3. 

 
A 200 micro-radian pinhole 

Xskew,  Yskew    - 
(0.996913, -0.911543) 
 
Skew_45 =     -2.00253 
Skew_135 =   -1.23729 
 
X-FWHM width =     290 
Y-FWHM width =     285 
 
Crosswidth_45 =    210.72 
Crosswidth_135 =  210.7 
 
Expected_Size =      78 

FAIL 
(PP,ALG) 

4. 

 
An image partially obstructed  

by the aperture 

X_cut_skew    -0.878841 
Y_cut_skew     0.716805 
 
X-FWHM WIDTH    62 
Y-FWHM WIDTH    62 
 
Crosswidth_45 =    70.7 
Crosswidth_135 =  55.15 
 
Expected_Size      78 

FAIL 
(PP,ALG) 
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5. 

 
A pinhole image obstructed 

 by two mirrors 

Skewness in X:  -1.7207 
Skewness in Y:  -.1989  
 
X-FWHM WIDTH     63 
Y-FWHM WIDTH     53 
 
Crosswidth_45 =    67.88 
Crosswidth_135 =  48.08 
 
Expected_Size      78 

FAIL (PP) 
Process(ALG) 

6. 

 
A double image produced by  

change in pointing direction of 
 the two incident   beams 

Skewness in X:   0.1924 
Skewness in Y:  0.83627 
 
X-FWHM WIDTH      69 
Y-FWHM WIDTH    115 
Crosswidth_45 =  89.1 
Crosswidth_135 =  101.8 
Expected_Size      78 

FAIL (PP) 
Process(ALG) 

7. 

 
A double image produced by 

 change in pointing direction of  
the two incident   beams 

Skewness in X: 0.260571 
Skewness in Y: 0.358135 
 
X-FWHM WIDTH      67 
Y-FWHM WIDTH      211 
 
Crosswidth_45 =    115.97 
Crosswidth_135 =  158.4 
 
Expected_Size      78 

FAIL (PP) 
Process(ALG) 

8. 

 
A nominal image 

Xskew,Yskew    - (0.594575, 
0.0195767) 
 
X-FWHM WIDTH      71 
Y-FWHM WIDTH      61 
 
Crosswidth_45        67.88 
Crosswidth_135      69.3 
 
Expected_Size      78 
 

PASS (PP,ALG) 
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TABLE II.  NIF CONTROL No. 2 LOOP OFF-NORMAL DETECTOR PERFORMANCE. 
 

Number  Image Loop Name   Detection Statistics     Result 
1.    

 
150 micron pinhole image 

Xskew,  Yskew    -(0.636380,  -1.60995) 
 
Skew_45 =       -0.828526 
Skew_135 =     -1.87832 
 
X-FWHM WIDTH    195 
Y-FWHM WIDTH    209 
 
Crosswidth_1      197.990 
Crosswidth_2      192.333 
 
Expected_Size      78 

FAIL (PP,ALG) 

2. 

 
200 micron pinhole image 

Xskew,  Yskew    -(0.581036,  -1.21950) 
 

Skew_45 =       -1.35347 
Skew_135 =     -1.72134  
 
X-FWHM WIDTH   270 
Y-FWHM WIDTH   271 
 
Crosswidth_1      168.291 
Crosswidth_2      152.735 
 
Expected_Size      78 

FAIL (PP,ALG) 

3. 

 
CSF image with a ISP far field light 

sources accidentally turned on 

Xskew,  Yskew    -(0.250812,  -0.234559) 
 

Skew_45 =       -1.15389 
Skew_135 =     -1.05802 
 
X-FWHM WIDTH      60 
Y-FWHM WIDTH      53  
 
Crosswidth_1      60.8112 
Crosswidth_2      67.8822 
 
Expected_Size      78 

FAIL (PP) 
Process(ALG) 

4. 

 
A nominal pinhole image 

corresponding to a 50 micron pinhole 
produced two properly aligned light 
sources called LM1 LM3 passing 

through a single pinhole 

Xskew,  Yskew    -(0.815371,  -0.828966) 
 
Skew_45 =      -0.858294 
Skew_135 =    -0.832382 
 
X-FWHM WIDTH      70 
Y-FWHM WIDTH      67 
 
Crosswidth_1      66.4680 
Crosswidth_2      69.2965 
 
Expected_Size      78 

PASS (PP,ALG) 
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5. 

 
A nominal distorted pinhole by 

misaligned light sources 

Xskew,  Yskew    -(0.930212, -0.992664) 
 
Skew_45 =      -0.91140 
Skew_135 =    -1.48225 
 
X-FWHM WIDTH      70 
Y-FWHM WIDTH      60 
 
Crosswidth_1      62.2254 
Crosswidth_2      66.4680 
 
Expected_Size      78 

PASS (PP) 
Process(ALG) 

6. 

 
Double pinhole caused by pointing 

mismatch of the two LM1_LM3 light 
sources 

Xskew,  Yskew     -(1.11357,  -0.0796157) 
 
Skew_45 =       0.318868 
Skew_135 =     0.721725 
 
X-FWHM WIDTH   69 
Y-FWHM WIDTH   108 
 
Crosswidth_1      80.6102 
Crosswidth_2      90.5097 
 
Expected_Size      78 

FAIL (PP) 
Process(ALG) 

7.  

 
A background image with all zeros 

IMAGE STANDARD DEVIATION       
0.0000000 
 
*** PURE BLACK Image Detected *** 

FAIL (PP,ALG) 

8. 

 
A background with higher camera gain 

X-FWHM WIDTH     0 
Y-FWHM WIDTH   475 
 
*** NOISE Black Image Detected *** 

FAIL (PP,ALG) 

9. 

 
Background from the csf pinhole loop 

with few bad pixels 

X-FWHM WIDTH    389 
Y-FWHM WIDTH    475 
 
*** NOISE Black Image Detected *** 

FAIL (PP,ALG) 
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10. 

 
Background from ISP camera 

IMAGE STANDARD DEVIATION            
1.4958835 
     0.899170            
 
*** NORMAL Black Image Detected *** 

FAIL (PP,ALG) 

 
 
 

 
 

 
V. SUMMARY 
 

We have developed an off-normal (image) classifier/detector based on the concept  
of transforming the original two-dimensional image to a one-dimensional function and 
extracting a variety of features that uniquely characterize each of the off-normal 
conditions. We developed a two-stage classifier/detector based on Bayesian classification 
principles. The design does not strictly adhere to the Bayesian formalism, since the 
appropriate conditional probabilities have not been estimated. However, the concept of 
features and their underlying probabilities have been exploited to develop an ad-hoc 
classification scheme coupled with a set of detection algorithms to determine off-normal 
images and inhibit their eventual processing. The performance of the classifier/detector 
has been investigated with great success on various ensembles of test images from the 
NIF data base. A 95% detection probability was achieved on the class of black images. 
We conclude from our processing that the classifier/detector is capable of correctly 
detecting off-normal images with high probability in this hostile environment. 
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