Search
Browse by Subject
Contact Information

Northern Research Station
11 Campus Blvd., Suite 200
Newtown Square, PA 19073
(610) 557-4017
(610) 557-4132 TTY/TDD

You are here: NRS Home / Scientists & Staff / Ken Clark
Scientists & Staff

Ken Clark

Title: Research Forester
Unit: Climate, Fire, and Carbon Cycle Sciences
Address: Northern Research Station

New Lisbon, NJ 
Phone: 609-894-0325
E-mail: Contact Ken Clark

Jump to Publications

Education

  • Ph.D., Forest Ecology, December 1994. School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611
  • M.A., Biology, August 1985. Department of Botany, Humboldt State University, Arcata, CA 95521
  • B.A., Botany, June 1981. Department of Botany, Humboldt State University, Arcata, CA 95521

Civic & Professional Affiliations

  • Ecological Society of America
  • American Association for the Advancement of Science
  • Association of Tropical Biology and Conservation
  • Wilderness Society
  • Pinelands Preservation Alliance

Current Research

My current research at the Silas Little Experimental Forest in the New Jersey Pine Barrens focuses on quantifying and modeling factors driving fire danger and fire behavior. Severe wildfires in the Pine Barrens are strongly driven by weather, especially episodes of low relative humidity and high windspeeds associated with the passage of strong cold fronts, such as before and during the 18,000 acre Warren Grove fire of May 2007. Delivery of high quality weather data measured from our network of fire weather towers, and accurate, validated fire weather predictions by the EAMC for the region provide wildland fire managers with tools to detect and plan for these events. EAMC model predictions are evaluated using extensive field measurements in the Pine Barrens, including three eddy flux towers to measure turbulence and energy exchange, and a SODAR to measure windspeed and direction up to 700 meter height.

Fire weather interacts with complex fuel beds, and much of my collaborative research is focused on fuel mapping, quantification of complex fuel bed structure, and measuring the effects of prescribed fires on fuels and forest structure. The interactions of weather and fuel beds drive fuel moisture dynamics, and these are key elements of wildfire risk and fire behavior. Thus, fuel moisture dynamics and ecosystem scale characterization of energy and hydrologic fluxes are important parts of my research. I am also interested in tech-transfer, or how to best provide this information to wildland fire and other land managers.

My other research interests are the physical and biological processes that drive the carbon and nutrient dynamics of terrestrial ecosystems. This research addresses two major questions: 1) How do environmental factors, substrate quality and disturbances interact to control short-term carbon and nutrient dynamics, and 2) How do processes linked to global environmental change, such as forest and fire management, land use change, and climate change affect the long-term dynamics of these systems? Understanding the effects of forest management, fire, invasive insects, and land use change on carbon dynamics at landscape and regional scales is essential, because these human-induced changes are impacting the composition of the atmosphere, further driving climate change. My research approach involves the complementary use of measurements and models of land-atmosphere exchanges of energy, water, and CO2. For example, I use eddy covariance to quantify net CO2 exchange, and evaluate flux measurements against models and carbon budgets constructed from field measurements of biomass accumulation, litterfall and decomposition.

The integration of these disciplines, from operational fire danger rating and complex fuel bed characterization to landscape level measurements of forest productivity result in a synthetic framework to solve many of the complex questions assigned to the Silas Little Experimental Forest. My research also has included investigations of landscape-scale carbon dynamics in a mosaic of intensively-managed and naturally-regenerated forests in Florida, regional linkages in the nitrogen cycle between lowland and montane forests in Costa Rica, and the role of native herbivores in carbon and nitrogen dynamics of semiarid scrub in Argentina and Longleaf Pine forests in Florida.

Why is This Important

Wildfire risk is real in the Pine Barrens. This landscape is dominated by highly flammable forests consisting of Pitch Pine and dense understory shrubs and oaks, and it continues to be flammable despite repeated wildfires and/or fuel reduction treatments. These forests are adjacent to extensive wildland urban interface (WUI) and key transportation corridors, making suppression activities complicated. The need for accurate fire weather, fuel loading, and fuel moisture information is obvious.

My current research in the Pine Barrens also has important policy implications, because it focuses on the carbon dynamics of fire management, and how prescribed fire, wildfire, and other disturbances control rates of carbon sequestration by forests. By placing forest harvesting, prescribed fire treatments, and other disturbances in the context of forest productivity measurements and models, we have advanced an understanding of how these activities and processes affect long-term C dynamics. We are incorporating this information in a synthetic, predictive framework to assist State and Federal fire and forest managers optimize the reduction of wildfire risk and emissions while maintaining rates of C sequestration by forests.

Future Research

  • A validated fuel moisture model for complex fuel beds driven by MM5 fire weather predictions
  • Development and delivery of a drought stress index based on eddy covariance measurements
  • Impacts of disturbances on hydrologic and nutrient cycles in the Pine Barrens

Featured Publications

Additional Online Publications

Last Modified: 02/15/2012