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Criteria for Listing Agents, Substances or Mixtures in the Report on Carcinogens

U.S. Department of Health and Human Services
National Toxicology Program

Known to be Human Carcinogens:

There is sufficient evidence of carcinogenicity from studies in humans, which
indicates a causal relationship between exposure to the agent, substance or
mixture and human cancer.

Reasonably Anticipated to be Human Carcinogens:

There is limited evidence of carcinogenicity from studies in humans which
indicates that causal interpretation is credible but that alternative explanations
such as chance, bias or confounding factors could not adequately be excluded; or

There is sufficient evidence of carcinogenicity from studies in experimental
animals which indicates there is an increased incidence of malignant and/or a
combination of malignant and benign tumors: (1) in multiple species, or at
multiple tissue sites, or (2) by multiple routes of exposure, or (3) to an unusual
degree with regard to incidence, site or type of tumor or age at onset; or

There is less than sufficient evidence of carcinogenicity in humans or laboratory
animals, however; the agent, substance or mixture belongs to a well defined,
structurally-related class of substances whose members are listed in a previous
Report on Carcinogens as either a known to be human carcinogen, or reasonably
anticipated to be human carcinogen or there is convincing relevant information
that the agent acts through mechanisms indicating it would likely cause cancer in
humans.

Conclusions regarding carcinogenicity in humans or experimental animals are based on
scientific judgment, with consideration given to all relevant information. Relevant
information includes, but is not limited to dose response, route of exposure, chemical
structure, metabolism, pharmacokinetics, sensitive sub populations, genetic effects, or
other data relating to mechanism of action or factors that may be unique to a given
substance. For example, there may be substances for which there is evidence of
carcinogenicity in laboratory animals but there are compelling data indicating that the
agent acts through mechanisms which do not operate in humans and would therefore not
reasonably be anticipated to cause cancer in humans.
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Summary Statement
Metallic Nickel and Certain Nickel Alloys
Carcinogenicity

Metallic nickel and certain nickel alloys are reasonably anticipated to be human
carcinogens based on evidence of malignant tumor formation at multiple tissue sites in
multiple species of experimental animals.

Carcinogenicity testing in rodents indicates that metallic nickel produces tumors in a
variety of studies when given by intratracheal instillation, or subcutaneous,
intramuscular, or intraperitoneal injection. Tumors produced by intratracheal instillation
of metallic nickel are primarily pulmonary adenocarcinomas while tumors produced by
injection are most frequently sarcomas, indicating metallic nickel can induce both
epithelial and connective tissue tumors. Tumors have been produced by metallic nickel
exposures in both rats and hamsters.

A large number of nickel alloys exist that contain variable amounts of nickel as well as
other metals like chromium, iron and cobalt. Although several studies indicate a
carcinogenic effect for nickel alloys in rodents, interpretation of these results is
complicated by the complex nature of the alloys involved. In general it appears that
alloys of higher nickel content are carcinogenic in rodents when given by intratracheal
instillation, or intraperitoneal or subcutaneous injection or when high content nickel
alloys are directly implanted in the muscle or pierce the cartilaginous part of the ear
pinna. The content of nickel in the alloy has been positively correlated with tumor
production (Pott et al. 1989, 1990). Tumors have been observed after exposure to nickel
alloys in rats, mice and hamsters. One of the nickel based alloys (which contained
approximately 66% to 67% nickel, 13% to 16% chromium, and 6% to 7% iron) was
tested independently by two laboratories, using different species (rats and hamsters), and
different routes of administration (intratracheal instillation, intraperitoneal injection), and
was carcinogenic in both studies.

The available studies of the carcinogenicity of metallic nickel and nickel alloys in
humans are inadequate to make an evaluation.

Other Information Relating to Carcinogenesis or Possible Mechanisms of
Carcinogenesis

Metallic nickel and nickel alloys probably are carcinogenic by dissolution and release of
ionic nickel which is an active genotoxic and carcinogenic species. Human data indicate
that elevated blood levels of nickel and chromosomal aberrations in bone marrow cells
can occur after implantation of prosthetic devices comprised of metallic alloys containing
nickel. Both soluble and insoluble nickel compounds are considered human carcinogens.
Nickel exposure induces chromosomal aberrations, malignant cellular transformation,



Dec. 2000 RoC Background Document for Metallic Nickel
and Certain Nickel Alloys

mutation, chromosomal damage, chromatin condensation, DNA damage such as strand
breaks, redox damage, and methylation changes and disrupted DNA repair.
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1 Introduction

Nickel and certain nickel compounds have been listed in the Report on Carcinogens
(RoC) since 1980 as reasonably anticipated to be human carcinogens. In February 1998,
the National Toxicology Program announced its intention to review nickel and nickel
compounds for possible upgrading and/or listing for the first time in the RoC. The
scientific review of nickel compounds for possible listing in the RoC was completed in
1998. The recommendation following that review was that nickel compounds be listed in
the RoC as known to be human carcinogens. However, the new listing of nickel
compounds in the RoC as known to be human carcinogens was deferred until the
completion of the review of metallic nickel and nickel alloys. Nickel and certain nickel
compounds remain listed in the Ninth RoC as reasonably anticipated to be human
carcinogens.

This background document was prepared for the review of metallic nickel and nickel
alloys for possible listing in the RoC. Nickel and nickel compounds, including metallic
nickel and nickel alloys, were nominated for listing in the RoC by the National Institute
of Environmental Health Sciences (NIEHS)/National Toxicology Program (NTP) RoC
Review Group (RG1) based on the International Agency for Research on Cancer (IARC
1990) listing of nickel and nickel compounds as carcinogenic to humans (Group 1).
Metallic nickel is currently listed as reasonably anticipated to be a human carcinogen in
the ninth RoC (NTP 2000).

1.1 Chemical identification

Elemental nickel (Ni, atomic wt 58.69, CASRN 7440-02-0) is also known as Ni 233, Ni
270, nickel 270, nickel element, N1, C.I. 77775, Ni 0901-s, Ni 4303-s, NP 2, and rch
55/5.

Nickel alloys discussed in this review include the following:

ferronickel

nickel-aluminum alloys
nickel-containing steels
high-nickel alloys

alloys containing nickel used in
prostheses

The U.S. Environmental Protection Agency (U.S. EPA) codes are K115 for nickel and
PO73 for nickel compounds. Shipping codes are UN1378 for nickel and UN2881 for
nickel catalyst, dry.

1.2 Physical-chemical properties

Nickel is a silvery white metal, insoluble in water, with a boiling point of 2,730YC and a
melting point of 1,455YC. Its appearance and odor depend upon the specific compound.
The physical structure of nickel is cubic close-packed, as illustrated in Figure 1-1. It is
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hard, malleable, ductile, somewhat ferromagnetic, and a fair conductor of heat and
electricity. The physical and chemical properties of nickel are listed in Table 1-1.

Alloys are substances composed of two or more metals, or sometimes a metal and a
nonmetal, which have been mixed intimately by fusion, electrolytic deposition, or other
means (Dresher and Poirier 1997). Nickel alloys reviewed in this document include
alloys that contain nickel and other alloying elements in varying proportions. The most
important alloying constituents are iron, chromium, copper, and molybdenum. There are
two classes of alloys: (1) alloys that depend primarily on the inherent corrosion
characteristics of nickel itself, along with some influence of the alloying elements, and
(2) alloys that contain chromium as the passivating alloying element. Corrosion takes
place in a liquid film on the surface of a metal. It is an oxidation-reduction reaction in
which the aggressive species is reduced as the metal is oxidized. Presence of chromium
in these alloys forms an unreactive (passive) layer on the metal’s surface, thereby
minimizing oxidation-reduction reactions with the environment. This passive layer is
composed of a tightly adhering film of oxides and hydroxides of chromium.

Source: WebElements2000 (1999)
Figure 1-1. Physical structure of nickel

Table 1-1. Physical and chemical properties of metallic nickel

Property Information Reference

Atomic weight 58.69 Budavari et al. 1996, ChemFinder 1999

Color lustrous white or gray metal Budavari et al. 1996, Lide 1999,
ChemFinder 1999

Odor odorless Lide 1999, HSDB 1988

Physical state solid (metal) Budavari et al. 1996, Lide 1999,
ChemFinder 1999

Melting point (YC) 1,455 Budavari et al. 1996, Lide 1999, HSDB
1988
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(mm Hg at 18101C)

Property Information Reference
Boiling point (YC) 2,730 Budavari et al. 1996, Lide 1999, HSDB
1988
Density g/cc (at 20YC) 8.90 HSDB 1988
Vapor pressure 1 HSDB 1988

Crystal system

cubic close-packed

WebElements 1999

Alkalies (dilute)

Young’s modulus (/GPa) 200 WebElements 1999
Solubility:
Water at 201C inslolbulble 1B$Jg§vari et al. 1996, Lide 1999, HSDB
Acids (dilute) sotuble
soluble

Nickel base alloys are characterized by having a face-centered-cubic crystal structure. In
general, these alloys have high ductility and toughness over a wide temperature range.
Other properties, such as corrosion resistance, oxidation resistance, and mechanical
strength, make them useful for a variety of industrial uses. The physical and chemical
properties of some nickel alloys are listed in Table 1-2.
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Table 1-2. Physical and chemical properties of nickel alloys

Compound CASRN RTECS # Synonyms Physical and chemical properties
Ferronickel 11133-76-9 | NO4570000 | iron alloy (base), nickel alloy gray solid
(nonbase) Combined properties of metallic iron, nickel, ammonia, and alkali hydroxide.
Fe, Ni
Nickel- 61431-86-5 | WI6800000 | Ranel alloy, Raney nickel gray black powder or cubic crystals
aluminum 37187-84-1 Insoluble in water and ethanol. Important hydrogenation catalyst prepared by
alloys treating Ni-Al alloy with 25% caustic soda solution; contains hydrogen and
residual aluminum; ignites spontaneously in air; remains active in storage
under a solvent for about 6 months
NiAl
Nickel- 12681-83-3 | NO4570200 | alloy 21-6-9, AMS 5656C, Fe 60-69, Cr 18-21, Mn 8-10, Ni 5-7, Si 0-1, N 0.2-0.4, C 0-0.1, P 0-0.1
containing Armco 21-6-9, 21-6-9
steels austenitic steel, iron alloy
(base), Nitronic 40, Nitronic 40
stainless steel, Pyromet 538,
Stainless steel 21-6-9, Steel 21-
6-9, 21-6-9 Stainless steel, 21-
6-9 Steel
High nickel 12605-70-8 QR6126310 Chromel C, 06Kh15N60, Ni 57-62, Fe 22-28, Cr 14-18, Si 0.8-1.6, Mn 0-1, C 0.0.2
alloys K15N60N, Nichrome, NiCr 60/15,
PNKh, Tophet C
11121-96-3 NO4570100 AFNOR ZFeNC45-36, AlSI 332, Fe 39-47, Ni 30-35, Cr 19-23, Mn 0-1.5, Si 0-1, Cu 0-0.8, Al 0-0.6, Ti 0-0.6, C 0-0.1
Alloy 800, Incoloy alloy 800, JIS
NCF 8000, NCF Steel, NCF 800
HTB, Pyromet 800, Sanicro 31,
Thermax 4876, TIG N800
12675-92-2 GF9100000 Haynes alloy No 188 Ni(Co)
11105-19-4 QR6126315 Alloy 400, H3261, Monel alloy Ni 63-70, Cu 25-37, Fe 0-2.5, Mn 0-2, Si 0-0.5, C 0-0.3
400, Monel (NiCu30Fe)
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Compound CASRN RTECS # Synonyms Physical and chemical properties

Titanium-6 na na Ti-6-Al-4-V < 0.2 % Ni by weight (used for prostheses)

percent

aluminum-4

percent

vanadium alloy

Cobalt na na Co-Cr-Mo < 0.1 % Ni by weight (used for prostheses)

chromium

molybdenum

alloy

Stainless-steel na na Fe-Cr-Ni na

alloy

Cobalt na na Co-Cr-Ni-W na

chromium

nickel tungsten

alloy

solid 316L na na na 13.77% nickel, 65.2% iron, 17.2% chromium, 2.46% molybdenum, 0.47%
manganese, 0.46% silicon, 0.24% copper, 0.11% cobalt, 0.10% phosphorus, 0.03%
sulfur, 0.02% carbon

Powdered na na na 13.4% nickel, 67.8% iron, 16.1% chromium, 2.42% molybdenum, 0.11% manganese,

316L 0.11% cobalt, 0.07% copper, 0.064% N, 0.024% carbon, 0.015% sulfur

CoCrWNi wire | na na na 12.44% nickel, 46.8% cobalt, 19.63% chromium, 13.76% tungsten, 3.78% iron,
2.21% magnesium, 1.39% silicon

CoCrWNi wire | na na na 10.36% nickel, 51% cobalt, 19.79% chromium, 14.47% tungsten, 2.35% iron, 1.67%
manganese, 0.27% silicon, 0.09% carbon, 0.02% sulfur, 0.013 phosphorus

solid MP3sN na na na 36.1% nickel, 32.5% cobalt, 20.0% chromium, 9.4% molybdenum, 1.5% iron, 0.74%
titanium, 0.12% carbon, 0.09% silicon, 0.03% manganese

powdered na na na 35.4% nickel, 33.0% cobalt, 21.8% chromium, 8.7% molybdenum, 0.7% titanium,

MP3sN 0.4% iron

Neptune na na na 63.36% nickel, 20.95% chromium, 8.40% molybdenum, 1.73% iron, 1% other
(niobium, aluminum, silicon, manganese, titanium)

Rexalloy na na na 67.21% nickel, 12.88% chromium, 6.76% molybdenum, 5.18% iron, 7.04% other

(gallium, silicon, manganese, cobalt)




RoC Background Document for Metallic Nickel

Dec. 2000
and Certain Nickel Alloys
Compound CASRN RTECS # Synonyms Physical and chemical properties
Regalloy na na na 71.20% nickel, 15.89% chromium, 4.50 molybdenum, 0.10% iron, 0.57% beryllium,
7.59% other (3.31% aluminum and silicon, 4.28% manganese)
Vera Bond na na na 77.36% nickel, 12.27% chromium, 4.84% molybdenum, 0.14% iron, 1.67%
beryllium, 2.76% other (aluminum, cobalt, titanium, silicon)

Source: IARC 1990, RTECS 2000, Urban et al. (2000)

na: not available.
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1.3 Identification of metabolites

Nickel, being an element, is indivisible and thus cannot be metabolized per se. However,
it is converted to Ni?* in the target cells, where the ions may enter the nucleus and bind to
nucleoproteins. lonic nickel may also loosely bind to DNA (see Section 6). The crystal
structure, particle size, surface area, and solubility of the nickel compound may be related
to the carcinogenicity mechanism.
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2 Human Exposure

2.1 Use

Nickel has many uses in industry because of its unique properties. The majority (~80%) of all
nickel is used in alloys, because it imparts such properties as corrosion resistance, heat
resistance, hardness, and strength (ATSDR 1997). Currently, the principal uses of nickel are in
the production of stainless steel, copper-nickel, and other corrosion-resistant alloys. Pure nickel
metal is used (see Table 2-1) in plating, as a chemical catalyst, and in the manufacture of alkaline
batteries, coins, welding products, magnets, electrical contacts and electrodes, spark plugs,
machinery parts, and surgical and dental prostheses (HSDB 1988, IARC 1990).

Table 2-1. Pattern of U.S. consumption of nickel in 1983

Use Consumption (%)

Transport

Aircraft 10.3

Motor vehicles and equipment 10.2

Ship and boat building and repairs 4.3
Chemicals 15.6
Petroleum 8.2
Fabricated metal products 8.8
Electrical 10.7
Household appliances 7.9
Machinery 7.2
Construction 9.7
Other 7.1

Source: Sibley 1985

There are several categories of nickel alloys, based on the primary metal mixed with nickel (see
Table 1-3). Monel alloys, composed of copper and nickel, are used mostly for industrial
plumbing, marine equipment, petrochemical equipment, heat exchangers, pumps, and electrodes
for welding. The alloy used to make coins contains 75% copper and 25% nickel. Nichrome
alloys (composed of nickel and chromium) are used for heating elements. Hastelloy alloys are
composed of nickel, chromium, iron, and molybdenum and are used with acids and salts, because
they provide oxidation and corrosion resistance. Nickel-based superalloys are used in gas-turbine
engines, owing to their high-temperature strength and creep and stress resistance. Nickel silvers,
alloys containing silver, nickel, zinc, and copper, are used in coatings on tableware and as
electrical contacts. Raney nickel (50% Ni and 50% Al) is used as a catalyst in hydrogenation
reactions. Stainless steel may contain up to 25% to 30% nickel, but it typically contains 8% to
10%. Alloy steels contain approximately 0.3% to 5% nickel. Most permanent magnets are made
of iron and nickel alloys (ATSDR 1997).
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2.2  Production

Nickel is refined from either sulfide or silicate-oxide ore. These ores generally contain < 3%
nickel. Magmatic sulfide ores are mined underground or by open-pit methods. Pentlandite (Ni,
Fe)oSs, is the principal sulfide ore; the known largest deposit is in Ontario, Canada, and
substantial deposits also are found in Minnesota, South Africa, Russia, Finland, and western
Australia. Silicate-oxide ores, or garnierites, originate in humid tropical regions (current or
former) and are surface mined by open-pit methods. Nickel deposits in Oregon (U.S.) are the
largest known source of nickel in the world, followed by Cuba which has 35% of all nickel
reserves (IARC 1990, ATSDR 1997).

Sulfide ores are processed by a number of pyrometallurigical processes: roasting, smelting, and
converting. Sulfur and iron are removed to produce a sulfur-deficient copper-nickel matte. The
nickel in the matte consists primarily of nickel subsulfide, especially after roasting and
converting. Nickel is refined electrochemically or by the carbonyl process after physical
separation of the nickel and copper sulfides. The sulfide also can be roasted to form a nickel
oxide sinter that is used directly in steel production. Lateritic ores are processed by
pyrometallurgical or hydrometallurgical processes. Sulfur usually is added to the oxide ore to
produce an iron-nickel matte in smelting during the pyrometallurgical process. Smelting without
the addition of sulfur produces a ferronickel alloy that can be used directly in steel production.
Hydrometallurgical processes involve leaching with ammonia or sulfuric acid followed by
selective precipitation of nickel (ATSDR 1997).

Alloys, such as stainless steel, are produced by melting primary metals and scrap in large arc
furnaces. Carbon content and concentration of alloying metals are adjusted to desired levels. The
melt is then cast into ingots or continuously into casting shapes. Steel production is similar to
nickel alloy production, except that the melting and decarbonizing units are generally larger.
Alloy production also makes greater use of vacuum melting and remelting (IARC 1990).

Production of nickel in the United States stopped in 1986 after the main facilities, a mine and
smelter in Oregon and a refinery in Louisiana, were shut down. In 1989, the Glenbrook Nickel
Company purchased the Hanna mine and smelter in Riddle, Oregon, and restarted mining and
smelting operations. Mining operations were phased out, and ore was imported from New
Caledonia (ATSDR 1997) until the nickel smelter and the associated port facilities in Coos Bay,
Oregon, were closed in early 1998. It was estimated that existing ore supplies were consumed by
March 1998 (Cominco 1998).

Secondary nickel production from scrap is now a major source of nickel for industrial use. In
1988, 59,609 short tons of nickel were produced from ferrous scrap, and 3,700 short tons of
nickel were produced from non-ferrous scrap. Secondary recovery of ferrous scrap was higher in
1988 than in the previous seven years, with the annual recovery ranging from 30,034 to 389,265
tons. Secondary recovery of non-ferrous scrap was lower than in the previous seven years, with
recovery ranging from 8,392 to 19,776 tons. In 1994, the estimated U.S. production of refined
nickel was 220,700 short tons. Table 2-2 provides data on U.S. mine and nickel plant production
from 1982 to 1986. Plant production includes refined nickel, ferronickel, and nickel recycled
from scrap.
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Table 2-2. Mine and plant production of nickel in the United States from 1982 to 1986
(thousands of tons)

1982 1983 1984 1985 1986
Mine production 2.9 -- 13.2 5.6 1.1
Plant production 40.8 30.3 40.8 33.0 15

Source: Chamberlain 1988

--: not provided

2.3 Analysis

The most common methods of determining nickel concentration in the environment and
biological media are atomic absorption spectrometry (AAS), either flame or graphite furnace,
and inductively coupled argon plasma emission spectrophotometry—electrothermal atomic
absorption spectrophotometry (ICP-EAS). The National Institute for Occupational Safety and
Health (NIOSH) has recommended standard procedures for measuring nickel content in personal
air samples. These routine procedures do not identify individual nickel compounds, however,
and X-ray diffraction, which could do so, is impractical for routine monitoring (IARC 1990).
Table 2-3 briefly describes methods for the analysis of nickel.
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Table 2-3. Methods for the analysis of nickel

Sample matrix

Sample preparation

Assay procedure

Sensitivity or
detection limit

Air

Collect on cellulose ester membrane and filter; digest
with nitric acid and perchloric acid.

AAS

Collect on cellulose ester membrane and filter; digest AAS 1 o absolute; 10 «g/m?> (sample
with nitric acid and hydrochloric acid. volume of 0.1 m%)
Collect on cellulose ester membrane and filter; digest ICP 1.5 og/sample
with nitric acid and perchloric acid.
Collect on cellulose ester membrane filter; digest with AAS 20 ng/m? (sample volume 1.5 m°®)
nitric acid.
Water Chelate; extract with ammonium pyrrolidine AAS 0.04 «g/L
dithiocarbamate:methyl isobutyl ketone.
Filter; irradiate with ultraviolet radiation. DPASV (dimethylglyoxime- 1 ng/L
sensitized)
Chelate; extract with ammonium pyrrolidine EAAS 0.2 og/L
dithiocarbamate:methyl isobutyl ketone
Food Digest with acid. AAS --
Wet digest with nitric acid, hydrogen peroxide, and DPASV (dimethylglyoxime- 1 ng/L digestion solution
sulfuric acid. sensitized)
Dry ash. DPASV (dimethylglyoxime- 5 ng/sample
sensitized)
Dry ash; chelate with Chelate-GC 100 ng/sample
sodium(ditrifluorethyl)dithiocarbamate.
Blood Wet digest with nitric acid, hydrogen peroxide, and DPASV (dimethylglyoxime- 1 ng/L digestion solution

sulfuric acid.

sensitized)

Serum or whole
blood

Digest with nitric acid; heat.

EAAS (Zeeman)

0.05 «g/L serum
0.1 «g/L whole blood

Body fluids or
tissues

Digest with nitric acid, perchloric acid, and sulfuric
acid; chelate; extract with ammonium pyrrolidine
dithiocarbamate:methyl isobutyl ketone.

EAAS

0.2 g/L body fluids
0.4 «<g/kg tissues
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Sensitivity or

Sample matrix Sample preparation Assay procedure detection limit
Tissues Homogenize; digest with nitric acid, perchloric acid, and | EAAS (Zeeman) 0.01 «g/g dry wt
sulfuric acid.
Digest with nitric acid and sulfuric acid. EAAS (Zeeman) 0.8 og/g wet wt
Serum or urine Digest with nitric acid, perchloric acid, and sulfuric EAAS --

acid; chelate; extract with ammonium pyrrolidine
dithiocarbamate:methyl isobutyl ketone.

Urine Chelate; extract with ammonium pyrrolidine EEAS 0.5 «<g/L
dithiocarbamate:methyl isobutyl ketone.
Digest with nitric acid, perchloric acid, and sulfuric DPASV 1 g/l
acid.
Chelate: extract with hexamethylene ammonium: AAS 0.2 «g/L
hexamethylene dithiocarbamate: diisopropylketone.
Dilute with nitric acid. EAAS (Zeeman) 0.5 /L
Dilute directly with nitric acid. EAAS 1.2 =g/

Source: IARC 1990

AAS: flameless atomic absorption spectrometry; ICP: inductively coupled argon plasma spectrometry; DPASV: differential pulse anodic stripping voltammetry;
EAAS: electrothermal atomic absorption spectrometry; GC: gas chromatography.

--: not provided
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2.4 Environmental occurrence

Nickel is the 24th most common element in the crust of the earth, with an average concentration
of 0.0086% (range: ” 0.0001% to > 0.3%). In the overall composition of earth, nickel is the fifth
most abundant element after iron, oxygen, silicon, and magnesium (ATSDR 1997). Meteorites
contain 5% to 50% nickel. Nickel also is found in deep-sea nodules, typically comprising about
1.5% of the nodule (IARC 1990).

24.1 Air

Nickel is introduced into the environment from various natural sources (Table 2-4), such as
volcanic emissions and windblown dusts from rocks and soils, from combustion of fossil fuels,
from nickel mining and emissions of refining operations, from the use of metals in industrial
processes, and from incineration of wastes (IARC 1990). The form of nickel released into the
atmosphere depends upon the source. Nickel emitted during oil combustion is primarily nickel
sulfate, with some complex metal oxides and nickel oxide. Most of the nickel in fly ash consists
of complex oxides, primarily iron oxides. Nickel silicate and iron-nickel oxides are produced
during the mining and smelting of lateritic nickel ore. Nickel subsulfide and metallic nickel are
produced during nickel matte refining. Steel and nickel alloy production and secondary nickel
smelting produce iron-nickel oxide (ATSDR 1997). In compliance with the Emergency Planning
and Community Right-to-Know Act (EPCRA), 2,002 facilities reported their total nickel air
release as 319,873 Ib (TRI1 1997).

Table 2-4. Emission rates of nickel into the atmosphere

Emission rate (10°
Source kglyear)
Natural
Wind-blown dust 4.8
Volcanoes 25
Vegetation 0.8
Forest fires 0.2
Meteoric dust 0.2
Sea spray 0.009
Total 8.5
Anthropogenic?
Residual and fuel oil combustion 27
Nickel mining and refining 7.2
Waste incineration 5.1
Steel production 1.2
Industrial applications 1.0
Gasoline and diesel fuel combustion 0.9
Coal combustion 0.7
Total 43.1

Source: IARC 1990
®Emissions during the mid-1970s.
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2.4.2 Water

Nickel will enter groundwater from runoff associated with the natural weathering of soil and
rocks, from disturbed soil, or from atmospheric fallout. Most nickel compounds are soluble in
water at a pH of 6.5 or lower. Nickel usually is found as nickel hydroxides at a pH of 6.7 or
higher. The U.S. EPA has determined that a nickel concentration of ” 20 «<g/L in groundwater is
similar to that in municipal water that has been processed for distribution. U.S. drinking water
nickel levels were reported to be mostly ” 20 og/L, with 90% of the samples containing ” 10
og/L. Mean effluent levels of nickel were higher around facilities that used nickel (IARC 1990).
In compliance with EPCRA, 2,002 facilities reported their total nickel water release as 14,326 Ib
(TRI1997).

2.4.3 Soil

Most of the nickel released into the environment is released into the soil. It has been estimated
that, excluding mining and smelting releases, 66% of all anthropogenic environmental releases
(median of 325 million kg/year) are to soil. Coal fly ash and bottom ash, waste from metal
manufacturing, commercial waste, atmospheric fallout, urban refuse, and sewage sludge are
significant sources of nickel release to soil (ATSDR 1997). In compliance with EPCRA, 2,002
facilities reported their total nickel land release as 232,469 Ib and total underground injection
releases as 25,642 Ib in 1996 (TRI 1997).

2.5 Environmental fate

Nickel is an element, and therefore is not destroyed in the environment. Dry and wet
precipitation processes remove nickel from the atmosphere and transfer it to soil and water.
Nickel in the soil may then enter water by surface runoff or by percolation into ground water.
Physical and chemical interactions occur once nickel is in the surface and ground water.
Interactions include complexation, precipitation/dissolution, adsorption/desorption, and
oxidation/reduction. Data regarding disposition of nickel compounds in the air, water, and soil
are inadequate (HSDB 1988).

2.6 Environmental exposure

Environmental exposure to nickel occurs through inhalation, ingestion, and percutaneous
exposure. The general population is exposed to low levels of nickel, because it is widely present
in the air, water, and food. Typical average levels of airborne nickel are 0.00001 to 0.003 «g/m®
in remote areas, 0.003 to 0.03 «g/m? in cities with no metallurgical industry, and 0.07 to 0.77
«g/m* in nickel processing areas (HSDB 1988). The average intake of nickel by inhalation was
calculated to be 0.1 to 1.0 «<g/day, assuming that a person inhales 20 m® of air per day and using
the range of average nickel concentrations in U.S. cities as 5 to 49 ng/m® (0.005 to 0.049 «g/m®).
The highest daily inhalation intake would be 18 g, using 917 ng/m® as the highest ambient
nickel level reported (ATSDR 1997).

The average intake of nickel from drinking water in the United States is around 2 «g/day. The
dietary intake of nickel has been estimated at 69 «g/day for infants aged 6 to 11 months,

162 «g/day for teenage boys, and 146.2 «g/day for 25- to 30-year old males (ATSDR 1997). The
U.S. EPA estimated that the average adult consumes 100 to 300 «g of nickel per day (U.S. EPA
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1998). The estimated 47 million smokers in the United States are potentially exposed to nickel
associated with tobacco (Spectrum 1999). Cigarette smoking increases daily intake of nickel by
0.12 to 0.15 «g/kg/day (ATSDR 1997).

Individuals are exposed to nickel in nickel alloys and nickel-plated materials via contact with
steel, coins, and jewelry. Nickel also can be found in soaps, fats, and oils hydrogenated with
nickel catalysts.

Individuals who have joint prostheses, sutures, clips, or screws containing nickel alloys for
fractured bones may have elevated levels of nickel in the surrounding tissue, which is then
released into the bloodstream. Elevated serum nickel concentrations were observed in some
patients with Ti-Al-V prostheses (< 0.2% Ni by weight). Mean serum nickel concentrations
ranged from 0.3-1.4 «g/L (n = 16, peak at 4-5 days, control mean = 0.2 «g/L). Serum nickel
concentrations were also elevated in patients with Co-Cr prostheses (< 0.1% Ni by weight).
Mean concentrations ranged from 0.4-3.3 «g/L (n = 28, peak at 1-2 days, control mean = 0.2
og/L). In their review, Sunderman et al. (1989a) commented on increased plasma, blood and
urine nickel concentrations in patients with stainless steel hip and knee prostheses. Patients
receiving dialysis or transfusions also may be exposed to elevated amounts of nickel (ATSDR
1997).

2.7 Occupational exposure

Occupational exposure to nickel occurs mainly by inhalation or skin contact. Nickel workers also
can ingest nickel-containing dusts. In 1977, NIOSH estimated that 1.5 million workers in the
United States were occupationally exposed to nickel (IARC 1990). Based on the National
Occupational Exposure Survey conducted from 1981 to 1983, NIOSH estimated that 727,240
U.S. workers were potentially exposed to nickel metal, alloys, dust fumes, salts, or inorganic
nickel compounds (ATSDR 1997). NIOSH (1977) identified the following occupations as having
potential for exposure to nickel:

battery makers, storage catalyst workers
cemented carbide makers ceramic makers
chemists disinfectant makers
dyers electroplaters
enamellers gas mask makers
ink makers metallizers

mond process workers nickel-alloy makers
mould makers nickel miners
nickel refiners nickel smelters
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nickel workers oil hydrogenators

organic chemical synthesizers paint makers

penpoint makers petroleum refinery workers
spark plug makers stainless-steel makers
textile dyers vacuum tube makers
varnish makers welders

Occupational exposure to nickel is measured by monitoring air and blood serum, plasma, or
urine. Elevated nickel levels in biological fluids and tissue samples are indications of nickel
uptake, and may not correlate directly to exposure levels (IARC 1990).

Many occupational processes lead to exposuretof nickel. Workers in different industries are
exposed to different nickel species. Initial processes involved in the handling and purification of
nickel, such as mining, milling, and smelting operations, typically involve higher levels of
occupational exposure to insoluble than soluble nickel. As the refining process continues,
occupational exposure to soluble nickel increases, while exposure to insoluble nickel decreases.
Three industries, electroplating, electrowinning, and nickel chemicals industry segment, report
occupational exposures almost exclusively to soluble nickel. Typical air sampling techniques,
however, do not differentiate nickel species or particle size distribution (TERA 1999).

Table 2-5 summarizes measurements of occupational exposure to nickel in the U.S. nickel-
producing industry. Table 2-6 summarizes measurements of occupational exposure in U.S.
industries using primary nickel products. Table 2-7 summarizes measurements of occupational
exposure in U.S. industries using nickel in special applications. Table 2-8 summarizes
measurements of current nickel exposures, giving means and medians of nickel exposure in
nickel-producing and nickel-using industries.
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Table 2-5. Measurements of occupational exposure to nickel in the U.S. nickel-producing industry

Industry and activity Number of Al (og/m’)
(year, when available) workers Mean + SD ‘ Range Reference

Measurements in air samples
Mines, Oregon (1981) - 30 | - Rigaut 1983
Laterite mining and smelting, Oregon

Ore handling 3 52 5-145 Warner 1984

Drying 4 17 9-21

Calcining 4 90 37-146

Skull drilling 8 16 4-43

Ferrosilicon manufacturing 15 32 4-241

Mixing 17 6 4-7

Refining 10 11 4-34

Handling of finished products 6 5 4-9

Maintenance 9 39 7-168

Miscellaneous 3 193 8-420
Electrolytic refinery 15 489 20-2200 Bernacki et al.

1978
Measurements in urine samples Urine (eg/L)
Electrolytic refinery 15 222 8.6-813 Bernacki et al.
144 g/g 6.1-287 oglg | 1978
creatinine creatinine

Source: IARC 1990
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Table 2-6. Measurements of occupational exposure in U.S. industries using primary nickel products

Number of Alr (og/m3)
Industry and activity workers Mean Range Reference
Stainless-steel production
Electric furnace shop 8 36 9-65 Warner 1984
Argon-oxygen decarburization 5 35 13-58
Continuous casting 2 14 11-15
Grinding/polishing (machine) 6 134 75-189
Grinding/chipping (hand tool) 2 39 23-48
Welding, cutting, and scarfing 5 111 13-188
Heat treating 1 54 <1-104
Rolling and forging 6 49 <11-72
Other operations (maintenance, pickling) 5 58 10-107
High-nickel alloy production
Weighing and melting 369 83 1-4,400 Warner 1984
Hot working 153 111 1-4,200
Cold working 504 64 1-2,300
Grinding 96 298 1-2,300
Pickling and cleaning 18 8 1-15
Maintenance 392 58 1-73
Production of wrought nickel and alloys via 226 1,500 1-60,000 Warner 1984
metal powder foundries
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Number of Alr (°g/m3)
Industry and activity workers Mean Range Reference
Six jobbing foundries processing alloys containing 0 to 60% nickel, averaging 10% to 15% nickel
Melting 15 21 < 5-62 Scholz and
Casting 7 14 <4-35 Holcomb 1980
Cleaning room:
Cutting and gouging 11 233 7-900
Welding 14 94 20-560
Hand grinding 24 94 < 5-440
Swing grinding 3 19 13-30
Jobbing foundry processing carbon, alloy, and
stainless steel containing 0-10% nickel
Melting and casting 16 13 ND-70 Warner 1984
Cleaning room:
Air arc gouging 7 310 40-710
Welding 34 67 10-170
Three low-alloy (0 to 2% nickel) iron and steel
foundries
Melting and casting 16 13 4-32 Warner 1984
Cleaning room (grinding, air arc gouging, 18 54 7-156
welding)

Source: IARC 1990
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Table 2-7 Measurements of occupational exposure in U.S. industries using nickel in special applications

No. of Air (eg/m®) Urine (=g/L) Serum (eg/L)

Industry and activity workers Mean + SD Range Mean + SD Range Mean + SD Range Reference
Ni/Cd battery production 36 378 20-1910 - - - - Warner 1984
with nickel and nickel
hydroxide; assembly and
welding of plates
Ni/Cd or Ni/Zn battery 6 - - 11.7+75 3.4-25 - - Bernacki et al.
production 102 7.2-23 oglg 1978

' creatinine
Ni/H, battery production 7 - - 32.2+40.4 2.8-103 - - Bernacki et al.
1978
Ni/Cd battery production - - 12-33 - 24-27 /g - - Adamsson et
creatinine al. 1980
Ni catalyst production from 150 10-600 - - - - Warner 1984
nickel sulfate 370 190-530
Ni catalyst use; coal 4.2 0.4-7.9 - - Bernacki et al.
gasification workers 3.2 0.1-5.8 «g/g 1978
creatinine
Electroplating Warner 1984
Sulfate bath, 451C - - - -
Area 1 samples 16 <6 <5<8
Area 2 samples <4 <2-<7
Personal samples <11 <7-<16
Sulfate bath, 701C
Area samples 6 <3 <2-<3
Sulfamate bath, 45-55YC
Area 1 samples 9 <4 <4
Area 2 samples 6 <4 <4
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No. of Air (sg/m®) Urine («g/L) Serum (sg/L)
Industry and activity workers Mean + SD Range Mean + SD Range Mean + SD Range Reference
Electroplating - 9.3 0.5-21.2 48 5-262 - - Bernacki et al.
1980
Electroplating 21 - - 30.4 3.6-85 - - Bernacki et al.
21.0 «g/g 2.4-62 /g 1978
creatinine creatinine
Flame spraying 5 2.4 <1-65 17.2 1.4-26 - - Bernacki et al.
16.0 «g/g 1.4-54 /g 1978
creatinine creatinine
Painting
Spray painting in a 13 - - 3.2 <0.5-9.2 4.4 <0.5-17.2 | Grandjean et
construction shipyard al. 1980
Painting in a repair 18 _ _ _ _ 5.9 <05-13
shipyard ' '
Py . 10 - - 15.3+11.1 6-39 _ _ Tandon et al.
Manufacturing plants 1977
Buffing, polishing, grinding
Buffer and polishers (air- 7| 26 <1-129 4.1 0.5-9.5 - - Bernacki et al.
craft engine factory) 2.4 «glg 0.5-4.7 «<glg 1978
creatinine creatinine
Grinders (abrasive wheel 9 1.6 <1-95 5.4 2.1-8.8 - -
grinding of aircraft parts) 3.5 g/g 1.7-6.1 «gl/g
creatinine creatinine
Miscellaneous exposure
Bench mechanics 8 52 < 1-252 12.2 1.4-41 - - Grandjean et
(assembling, fittings, and 7.2 «glg 0.7-20 /g al. 1980
finishing aircraft parts creatinine creatinine
made of Ni-alloys)
Riggers/carpenters 16 - - 3.7 1.1-135 3.3 1.1-135
(construction shipyard)
Riggers/carpenters 11 - - - - 3.6 <0.5-74
(repair shipyard)
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No. of Air (sg/m®) Urine («g/L) Serum (sg/L)
Industry and activity workers Mean + SD Range Mean + SD Range Mean + SD Range Reference
Shipfitters/pipefitters 6 - - 4.9 3.7-7.1 4.1 1.5-6.8
(construction shipyard)
Shipfitters/pipefitters 15 - - - - 9.1 0.5-3.8
(repair shipyard)

Source: IARC 1990
- not available
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Table 2-8. Summary of current nickel exposures in nickel producing- and using-industries

Range of exposure Range of mean
concentrations cgircO:ncilraet)i(Sr?:lérrr?g Predominant
Industry sector (mg Ni/m?’)a Ni/m?’)a speciesb
Mining 0-<1.0 0.003-10.15 Sy, O°
Milling 0.001-4.0 0.01-<0.70 SuU
Smelting 0.001 - 77.0° 0.01-<3.0 SuU, 0°
Refining 0.001 - 20.0° 0.003 - ~1.50" Su, O, M, S0*
Stainless and alloy steels 0-<1.0 0.001-0.10 o, M
Nickel alloy steels 0.001-9.0" 0.002 — ~0.50' o, M
Welding and hot cutting Trace —7.0" 0.001 - ~0.5' 0, MX
Nickel plating Trace — ~3.0' 0.0004 — ~0.10 so!
Production of chemicals 0.001--~3.0 0.02 -~1.50 SO, 0, M
Nickel catalysts 0-26.0" 0.004 —~1.0" SO, 0, M°
Nickel-cadmium batteries 0-~2.0 0.005 - ~0.50 0O, M, SO
Others Trace —14.0 Trace - 0.5° mixed

Source: NiPERA 1996

Total nickel, unless otherwise indicated.

M = metallic nickel, O = oxidic nickel, NC = nickel carbonyl, SU = sulphidic nickel, SO = soluble nickel salts.
“Dependent upon the type of ore.

dUpper limits of ranges for most data sources did not exceed 2.0 mg Ni/m®.

®Upper limits of ranges for most data sources did not exceed 5.0 mg Ni/m®.

fA few mean aerosol concentrations exceeded 1.5 mg Ni/m®. The highest mean value reported was 4.84 mg Ni/m®.
9Dependent upon the operation and job.

"Upper limits of ranges for most data sources did not exceed 1 mg Ni/m®.

'A few mean aerosol concentrations exceeded 0.5 mg Ni/m®. The highest mean value reported was 3.2 mg Ni/m®.
IA few mean aerosol concentrations exceeded 0.5 mg Ni/m®. The highest mean value reported was 3.58 mg Ni/m®.
KIn some instances, soluble nickel was noted to be present, although it was not the predominant form of nickel found.

'In instances where speciation was conducted, insoluble nickel compounds were noted to be present although they were not the
predominant forms of nickel found.

MUpper ranges for most data sources did not exceed 4.0 mg Ni/m®,
"A few mean aerosol concentrations exceeded 1.0 mg Ni/m?>. The highest mean value reported was 1.55 mg Ni/m®.

°In addition to potential exposures to oxidic and/or metallic nickel species, sulfidic nickel also is believed to be present in the
spent nickel catalyst.

PA few mean aerosol concentrations exceeded 0.5 mg Ni/m>. The highest mean value reported was 4.1 mg Ni/m®.
2.8 Biological indices

Nickel exposure can be assessed from plasma and urine samples if the exact nickel compound is
identified. The estimated average body burden of nickel in adults is 0.5 mg/70 kg (7.4 «g/kg

24



Dec. 2000 RoC Background Document for Metallic Nickel
and Certain Nickel Alloys

body weight) (IARC 1990). Urine and serum levels of nickel in workers who have inhaled
soluble nickel compounds reflect the amount of nickel absorbed in the previous one or two days.
The best correlations between exposure concentrations and urine levels were found with end-of-
shift urine sampling or next-morning urine sampling. Serum and urine are the most useful
biomarkers for biological monitoring (ATSDR 1997).

2.9 Regulations

The U.S. EPA regulates nickel compounds under the Clean Air Act (CAA), the Clean Water Act
(CWA), the Resource Conservation and Recovery Act (RCRA), the Comprehensive
Environmental Response, Compensation, and Liability Act (CERCLA), and the Superfund
Amendments and Reauthorization Act (SARA). The nickel salt of an organo compound
containing nitrogen is regulated under the Toxic Substances Control Act. Effective in 1990,
liquid hazardous wastes containing nickel compounds at concentrations > 134 mg/L are
prohibited from underground injection. Reportable quantities (RQs) have been established for the
release of certain nickel compounds. An RQ of 100 Ib has been designated for nickel ammonium
sulfate, nickel chloride, nickel nitrate, and nickel sulfate, and an RQ of 10 Ib has been set for
nickel carbonyl, nickel cyanide, and nickel hydroxide. Under the Federal Water Pollution
Control Act (FWPCA), nickel compounds are designated toxic pollutants. Effluent limitations
and pretreatment and performance standards have been created for point sources producing
nickel sulfate, nickel chloride, nickel nitrate, nickel fluoborate, and nickel carbonate.

The U.S. Food and Drug Administration (FDA) regulates the amount of nickel oxide in the color
additive chromium-cobalt-aluminum oxide to less than 1%. NIOSH has recommended an
exposure limit of 0.007 mg/m?® as a time-weighted average (TWA; time not specified) for nickel
carbonyl and 0.015 mg/m® for inorganic nickel compounds (as Ni) in the workplace (NIOSH
1988). NIOSH considers nickel and its compounds to be potential occupational carcinogens and
recommends that occupational exposures to carcinogens be limited to the lowest feasible
concentration (Ludwig 1994). The Occupational Safety and Health Administration (OSHA) has
set a permissible exposure limit (PEL) for nickel carbonyl (as Ni) at 0.007 mg/m? as an 8-hour
TWA. For other nickel compounds, soluble and insoluble, the PEL is 1 mg/m®. OSHA also
regulates the compounds as hazardous chemicals in laboratories and under the Hazard
Communication Standard. Table 2-9 summarizes U.S. EPA regulations that affect nickel and
nickel compounds. Table 2-10 summarizes FDA regulations that affect nickel and nickel
compounds. Table 2-11 summarizes OSHA regulations that affect nickel and nickel compounds.
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Table 2-9. U.S. EPA Regulations

Regulatory action

Effect of regulation and other comments

40 CFR 63—PART 63—NATIONAL EMISSION
STANDARDS FOR HAZARDOUS AIR POLLUTANT
FOR SOURCE CATEGORIES. Promulgated: 57 FR
61992, 12/29/92. U.S. Code: 42 U.S.C. 7401 et seq.

This part contains national emission standards for
hazardous air pollutants established pursuant to section
112 of the CAA, which regulates specific categories of
stationary sources that emit (or have the potential to
emit) one or more hazardous air pollutants listed in this
part pursuant to section 112(b) of the CAA.

40 CFR 63—Subpart D—Regulations Governing
Compliance Extensions for Early Reductions of
Hazardous Air Pollutants.

The provisions of this subpart apply to an owner or
operator of an existing source who wishes to obtain a
compliance extension from a standard issued under
section 112(d) of the CAA. Nickel compounds are listed
as high-risk pollutants; the weighting factor is 10.

40 CFR 63—Subpart JJ—National Emission Standards
for Wood Furniture Manufacturing Operations.
Promulgated: 60 FR 62936, 12/07/95.

The affected source to which this subpart applies is each
facility that is engaged, either in part or in whole, in the
manufacture of wood furniture or wood furniture
components and that is located at a plant site that is a
major source as defined in section 63.2. Nickel
subsulfide is listed as a pollutant excluded from use in
cleaning and wash-off solvents. Nickel carbonyl is listed
as a volatile hazardous air pollutant of potential concern.

40 CFR 68—PART 68—CHEMICAL ACCIDENT
PREVENTION PROVISIONS. Promulgated: 59 FR
4493, 01/31/94. U.S. Code: 42 U.S.C. 7412(r),
7601(a)(1), 7661-7661f.

This part sets forth the list of regulated substances and
thresholds, the petition process for adding or deleting
substances to the list of regulated substances, the
requirements for owners or operators of stationary
sources concerning the prevention of accidental releases,
and the State accidental release prevention programs
approved under section 112(r). Nickel carbonyl is a
regulated toxic substance; the threshold quantity for
accidental release prevention is 1,000 Ib. Its toxic
endpoint is 0.00067 mg/L.

40 CFR 116—PART 116—DESIGNATION OF
HAZARDOUS SUBSTANCES. Promulgated: 43 FR
10474, 03/13/78. U.S. Code: 33 U.S.C. 1251 et seq.

This regulation designates hazardous substances under
section 311(b)(2)(A) of the FWPCA and applies to
discharges of substances designated in Table 116.4.

40 CFR 116.4—Sec. 116.4 Designation of hazardous
substances. Promulgated: 43 FR 10474, 03/13/78
through 54 FR 33482, 08/14/89.

Nickel ammonium sulfate, nickel chloride, nickel
hydroxide, nickel nitrate, and nickel sulfate are listed as
hazardous substances.

40 CFR 117—PART 117—DETERMINATION OF
REPORTABLE QUANTITIES FOR HAZARDOUS
SUBSTANCES. Promulgated: 44 FR 50776, 08/29/79.
U.S. Code: 33 U.S.C. 1251 et seq.

40 CFR 117.3—Sec. 117.3 Determination of reportable
quantities. Promulgated: 50 FR 13513, 04/04/85 through
60 FR 30937, 06/12/95.

A reportable quantity of 100 Ib (45.4 kg) has been
established for nickel ammonium sulfate, nickel
chloride, nickel nitrate, and nickel sulfate, and of 10 Ib
for nickel hydroxide, pursuant to section 311 of the
CWA.

40 CFR 148—PART 148—HAZARDOUS WASTE
INJECTION RESTRICTIONS. Promulgated: 53 FR
28154, 07/26/88. U.S. Code: 42 U.S.C. 6901 et seq.
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40 CFR 148.1—Sec. 148.1 Purpose, scope, and
applicability. Promulgated: 61 FR 15596, 04/08/96.
Effective 04/08/98.

This part identifies wastes that are restricted from
disposal into Class | wells and defines those
circumstances under which a waste otherwise prohibited
from injection may be injected.

40 CFR 148.12—Sec. 148.12 Waste specific
prohibitions—California list wastes. Promulgated: 53
FR 30918, 08/16/88, as amended at 53 FR 41602,
10/24/88.

Liquid hazardous wastes, including free liquids
associated with any solid or sludge, containing the nickel
and/or nickel compounds at concentrations > 134 mg/L
are prohibited from underground injection, effective
August 8, 1990.

40 CFR 192—PART 192—HEALTH AND
ENVIRONMENTAL PROTECTION STANDARDS
FOR URANIUM AND THORIUM MILL TAILINGS.
Promulgated: 48 FR 602, 01/05/83. U.S. Code: 42
U.S.C. 2022, as added by the Uranium Mill Tailings
Radiation Control Act of 1978.

The provisions of this part control the residual
radioactive material at designated processing or
depository sites under section 108 of the Uranium Mill
Tailings Radiation Control Act of 1978, and applies to
the restoration of such sites following any use of the
subsurface minerals under section 104(h) of the Uranium
Mill Tailings Radiation Control Act of 1978.

40 CFR 192—Subpart E—Standards for Management of
Thorium Byproduct Materials Pursuant to Section 84 of
the Atomic Energy Act of 1954, as Amended.
Promulgated: 48 FR 45947, 10/07/83.

Nickel and nickel compounds (not otherwise specified),
nickel carbonyl, and nickel cyanide are listed as
constituents (Appendix I).

40 CFR 261—PART 261—IDENTIFICATION AND
LISTING OF HAZARDOUS WASTE. Promulgated: 45
FR 33119, 05/19/80. U.S. Code: 42 U.S.C. 6905,
6912(a), 6921, 6922, 6924(y), and 6938.

40 CFR 261—Subpart D—L.ists of Hazardous Wastes,
Appendix VIlIl—Hazardous Constituents. Promulgated:
53 FR 13388, 04/22/88 through 62 FR 32977, 06/17/97.
Nickel compounds (not otherwise specified), nickel
carbonyl, and nickel cyanide are listed as hazardous
constituents.

Appendix VIII is a consolidated list of hazardous
constituents identified in this part. Solid wastes
containing these constituents are subject to notification
requirements of RCRA section 3010 and must be
disposed of in RCRA-permitted facilities.

40 CFR 261.33—Sec. 261.33 Discarded commercial
chemical products, off-specification species, container
residues, and spill residues thereof. Promulgated: 45 FR
78529 and 78541, 11/25/80.

Nickel carbonyl and nickel cyanide are listed as
hazardous waste.

40 CFR 266—Subpart M—Military Munitions.
Promulgated: 62 FR 6654, 02/12/97.

The regulations in this subpart identify when military
munitions become a solid waste and, if these wastes also
are hazardous under this subpart or 40 CFR part 261, the
management standards that apply to these wastes.

The reference air concentration for nickel cyanide is 0
pg/m. The risk-specific dose for nickel subsulfide is 2.1
x 10% pg/m®. The residue concentration limit for nickel
cyanide is 0.7 mg/kg.

40 CFR 268—PART 268—LAND DISPOSAL
RESTRICTIONS. Promulgated: 51 FR 40638, 11/07/86.
U.S. Code: 42 U.S.C. 6905, 6912(a), 6921, and 6924.

40 CFR 268—Subpart E—Prohibitions on Storage.

Nickel cyanide is a metal-bearing waste prohibited from
dilution in a combustion unit according to 40 CFR 268.3
(Appendix XI).
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40 CFR 302—PART 302—DESIGNATION,
REPORTABLE QUANTITIES, AND NOTIFICATION.
Promulgated: 50 FR 13474, 04/04/85. U.S. Code: 42
U.S.C. 9602, 9603, and 9604; 33 U.S.C. 1321 and 1361.

This regulation designates under section 102(a) of the
CERCLA those substances in the statutes referred to in
section 101(14) of the CERCLA, identifies reportable
quantities for these substances, and sets forth the
notification requirements for releases of these
substances. This regulation also sets forth reportable
quantities for hazardous substances designated under
section 311(b)(2)(A) of the CWA.

40 CFR 302.4—Sec. 302.4 Designation of hazardous
constituents.

Compound RQ (Ib)
Nickel ammonium sulfate 100
Nickel carbonyl 10
Nickel chloride 100
Nickel cyanide 10
Nickel hydroxide 10
Nickel nitrate 100
Nickel sulfate 100

40 CFR 355—PART 355—EMERGENCY PLANNING
AND NOTIFICATION. Promulgated: 52 FR 13395,
04/22/87. U.S. Code: 42 U.S.C. 11002, 11004, and
11048.

This regulation establishes the list of extremely
hazardous substances, threshold planning quantities, and
facility notification responsibilities necessary for the
development and implementation of State and local
emergency response plans. Nickel carbonyl is listed as
an extremely hazardous substance; its threshold planning
quantity is 1 Ib.

40 CFR 372—PART 372—TOXIC CHEMICAL
RELEASE REPORTING: COMMUNITY RIGHT-TO-
KNOW. Promulgated: 53 FR 4525, 02/16/88. U.S.
Code: 42 U.S.C. 11023 and 11048.

This part sets forth requirements for the submission of
information relating to the release of toxic chemicals
under section 313 of Title I11 of the SARA of 1986. The
information collected under this part is intended to
inform the general public and the communities
surrounding covered facilities about releases of toxic
chemicals, to assist research, to aid in the development
of regulations, guidelines, and standards, and for other
purposes.

40 CFR 372.65—Sec. 372.65 Chemicals and chemical
categories to which this part applies. Promulgated: 53
FR 4525, 02/16/88; 53 FR 12748, 04/18/88.

The requirements of this subpart apply to nickel
compounds—any unique chemical substance that
contains nickel as part of that chemical's infrastructure—
and became effective on January 1, 1987.

40 CFR 401—PART 401—GENERAL PROVISIONS.
Promulgated: 39 FR 4532, 02/01/74. U.S. Code: 33
U.S.C. 1251, 1311, 1314 (b) and (c), 1316 (b) and (c),
1317 (b) and (c) and 1326(c).

This part sets forth the legal authority and general
definitions which will apply to all regulations issued
concerning specific classes and categories of point
sources under parts 402 through 699 of this subchapter.

40 CFR 401.15—Sec. 401.15 Toxic pollutants.
Promulgated: 44 FR 44502, 07/30/79, as amended at 46
FR 2266, 01/08/81; 46 FR 10724, 02/04/81.

Nickel compounds are toxic pollutants designated
pursuant to section 307(a)(1) of the FWPCA.
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40 CFR 415—PART 415—INORGANIC CHEMICALS
MANUFACTURING POINT SOURCE CATEGORY.
Promulgated: 47 FR 28278, 06/29/82. U.S. Code: 33
U.S.C. 1311, 1314 (b), (c), (e), and (g), 1316 (b) and (c),
1317 (b) and (c), and 1361.

40 CFR 415—Subpart A—Aluminum Chloride
Production Subcategory.

40 CFR 415.1—Sec. 415.1 Compliance dates for
pretreatment standards for existing sources.
Promulgated: 49 FR 33420, 08/22/84; 49 FR 37594,
09/25/84.

The compliance date for discharges from nickel sulfate
manufacturing operations and for all subparts in part 415
not listed in paragraphs (a) and (b) of this section is June
29, 1985.

40 CFR 415—Subpart AU—Nickel Salts Production
Subcategory. Promulgated: 49 FR 33423, 08/22/84.

40 CFR 415.470—Sec. 415.470 Applicability;
description of the nickel salts production subcategory.

This subpart is applicable to discharges and to the
introduction of pollutants into treatment works which are
publicly owned resulting from the production of nickel
salts, including nickel sulfate, nickel chloride, nickel
nitrate, nickel fluoborate, and nickel carbonate.

40 CFR 415.472—Sec. 415.472 Effluent limitations
guidelines representing the degree of effluent reduction
attainable by the application of the best practicable
control technology currently available (BPT).

Except as provided in 40 CFR 125.30 through 125.32,
for any existing point source producing nickel sulfate,
nickel chloride, nickel nitrate, or nickel fluorobate, the
limits for total nickel are 0.0060 kg per 1,000 kg
(kg/kkg) (1-day maximum) and 0.0020 kg/kkg (30-day
avg.). For a source producing nickel carbonate, the limits
for total nickel are 1.1 kg/kkg (1-day maximum) and
0.35 kg/kkg (30-day avg.).

40 CFR 415.473—Sec. 415.473 Effluent limitations
guidelines representing the degree of effluent reduction
attainable by the application of the best available
technology economically achievable (BAT).

Except as provided in 40 CFR 125.30 through 125.32,
for any existing point source producing nickel sulfate,
nickel chloride, nickel nitrate, or nickel fluorobrate, the
limits for total nickel are 0.00074 kg/kkg (1-day
maximum) and 0.00024 kg/kkg (30-day avg.). For a
source producing nickel carbonate, the limits for total
nickel are 0.13 kg/kkg (1-day maximum) and 0.042
kg/kkg (30-day avg.).

40 CFR 415.474—Sec. 415.474 Pretreatment standards
for existing sources (PSES).

Except as provided in 40 CFR 403.7 and 403.13, for any
existing source producing nickel sulfate, nickel chloride,
nickel nitrate, nickel fluoborate, or nickel carbonate
which introduces pollutants into a POTW, the limits for
total nickel are 1.1 kg/kkg (1-day maximum) and 0.36
kag/kkg (30-day avg.). In cases where POTWs find it
necessary to impose mass limitations, the limits for total
nickel are the same as specified in 415.473.

40 CFR 415.475—Sec. 415.475 New source
performance standards (NSPS).

For any new source subject to this subpart and producing
nickel sulfate, nickel chloride, nickel nitrate, or nickel
fluorobate, the limits for total nickel are 0.00074 kg/kkg
(1-day maximum) and 0.00024 kg/kkg (30-day avg.).
For any new source producing nickel carbonate, the
limits for total nickel are 0.13 kg/kkg (1-day maximum)
and 0.042 kg/kkg (30-day avg.).
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40 CFR 415.476—Sec. 415.476 Pretreatment standards
for new sources (PSNS).

Except as provided in 40 CFR 403.7, for any new source
subject to this subpart and producing nickel sulfate,
nickel chloride, nickel nitrate, nickel fluoborate, or
nickel carbonate which introduces pollutants into a
publicly owned treatment works (POTW), the limits for
total nickel are the same as specified in 415. 474.

40 CFR 455—PART 455—PESTICIDE CHEMICALS.
Promulgated: 43 FR 17776, 04/25/78. U.S. Code: 33
U.S.C. 1311, 1314, 1316, 1317, and 1361.

The appropriate pollution control technology for nickel
sulfate hexahydrate is given in Table 10.

40 CFR 721—PART 721—SIGNIFICANT NEW USES
OF CHEMICAL SUBSTANCES. Promulgated: 53 FR
28359, 07/21/88. U.S. Code: 15 U.S.C. 2604, 2607, and
2625(c).

40 CFR 721—Subpart E—Significant New Uses for
Specific Chemical Substances.

40 CFR 721.5330—Sec. 721.5330 Nickel salt of an
organo compound containing nitrogen. Promulgated: 58
FR 51685, 11/04/93.

The chemical substance generically identified as nickel
salt of an organo compound containing nitrogen is
subject to reporting under this section for the following
significant new uses: protection in the workplace; hazard
communication program; industrial, commercial, and
consumer activities; disposal; and release to water.

Source: The regulations in this table have been updated through the 1999 Code of Federal Regulations 40 CFR, 1 July 1999.

Table 2-10. FDA Regulations

Regulatory action

Effect of regulation and other comments

21 CFR 73—PART 73—LISTING OF COLOR
ADDITIVES EXEMPT FROM CERTIFICATION.
Promulgated: 42 FR 15643, 03/22/77. U.S. Code: 21
U.S.C. 321, 341, 342, 343, 348, 351, 352, 355, 361, 362,
371, and 379%.

21 CFR 73—Subpart B—Drugs.

21 CFR 73.1015—Sec. 73.1015 Chromium-cobalt-
aluminum oxide. Promulgated: 42 FR 15643, 03/22/77,
as amended at 49 FR 10089, 03/19/84.

The color additive chromium-cobalt-aluminum oxide
may contain small amounts (less than 1%) of nickel
oxide.

Source: The regulations in this table have been updated through the 1999 Code of Federal Regulations 21 CFR, 1 April 1 1999.

Table 2-11. OSHA Regulations

Regulatory action

Effect of regulation and other comments

29 CFR 1910—PART 1910—OCCUPATIONAL
SAFETY AND HEALTH STANDARDS. Promulgated:
39 FR 23502, 06/27/74.

29 CFR 1910—Subpart H—Hazardous Materials. U.S.
Code: 29 U.S.C. 653, 655, 657.
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29 CFR 1910.119—Sec. 1910.119 Process safety
management of highly hazardous chemicals.

Nickel carbonyl is listed as a toxic and highly reactive
hazardous chemical which presents a potential for a
catastrophic event at or above the threshold quantity.

29 CFR 1910—Subpart Z—Toxic and Hazardous
Substances. Promulgated: 39 FR 23502, 07/27/74.
Redesignated: 40 FR 23072, 05/28/75. U.S. Code: 29
U.S.C. 653, 655, and 657.

Regulation provides for protective clothing and hygiene
requirements for workers, restricted open vessel
operations, engineering requirements, respirators,
medical surveillance requirements for workers, exhaust
fan requirements, sign requirements for regulated areas,
and labeling requirements for containers.

29 CFR 1910.1000—Sec. 1910.1000 Air contaminants.
Promulgated: 58 FR 35340, 06/30/93 through 62 FR
1600, 01/10/97.

The PEL for nickel carbonyl (as Ni) is < 0.007 mg/m®,
as an 8-h TWA. The PEL for nickel insoluble and
soluble compounds (as Ni) is < 1 mg/m®, as an 8-h
TWA.

29 CFR 1910.1200—Sec. 1910.1200. Hazard
Communication. Promulgated: 61 FR 9245, 03/07/96.
U.S. Code: also includes 5 U.S.C. 553.

Chemical manufacturers and importers and all
employers are required to assess chemical hazards and to
provide information to employees. The Hazard
Communication Program is to include labels, materials
safety data sheets, and worker training.

29 CFR 1910.1450—Sec 1910.1450. Occupational
exposure to hazardous chemicals in laboratories.
Promulgated: 55 FR 3327, 01/31/90 through 55 FR
12111, 03/30/90.

As select carcinogens (IARC Group 1 and NTP known
carcinogens), nickel compounds are included as a
chemical hazard in laboratories. Employers are required
to provide employee information and training and a
Chemical Hygiene Plan.

29 CFR 1915—PART 1915—OCCUPATIONAL
SAFETY AND HEALTH STANDARDS FOR
SHIPYARD EMPLOYMENT. Promulgated: 47 FR
16986, 04/20/82. U.S. Code: 29 U.S.C. 653, 655, and
657.

29 CFR 1915—Subpart Z—Toxic and Hazardous
Substances. Promulgated: 58 FR 35514, 07/01/93.

29 CFR 1915.1000—Sec. 1915.1000 Air contaminants.
Promulgated: 61 FR 31430, 06/20/96.

29 CFR 1926—PART 1926—SAFETY AND HEALTH
REGULATIONS FOR CONSTRUCTION.
Promulgated: 44 FR 8577, 02/09/79; 44 FR 20940,
04/06/79.

The requirements applicable to shipyard employment
under this section are identical to those set forth in
section 1910.1000.

29 CFR 1926—Subpart D—Occupational Health and
Environmental Controls.

29 CFR 1926.55—Sec. 1926.55 Gases, vapors, fumes,
dusts, and mists. Promulgated: 39 FR 22801, 06/24/74
through 62 FR 1619, 01/10/97.

The requirements applicable to construction employment
under this section are identical to those set forth in
section 1910.1000.

Source: The regulations in this table have been updated through the 1999 Code of Federal Regulations 29 CFR, 1 July 1999.
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3 Human Cancer Studies

Relatively little epidemiologic evidence pertains specifically to metallic nickel or nickel alloys.
Therefore, in addition to describing this evidence, related evidence for carcinogenicity of nickel
compounds and metal prostheses will be summarized briefly.

3.1 Metallic nickel and nickel alloys

IARC (1990) found inadequate evidence of carcinogenicity in humans for metallic nickel and
nickel alloys, and concluded that metallic nickel is possibly carcinogenic to humans (Group 2B),
on the basis of evidence in experimental animals. Overall, the epidemiologic studies evaluated
by IARC (1990) involved either low levels of exposure to metallic nickel or nickel alloys or
relatively few exposed workers. Moreover, exposure to metallic nickel was considered to be
accompanied by exposure to other forms of nickel, including oxidic, sulfidic, and soluble nickel,
or to other potential carcinogens, such as cadmium in the case of welders (see also the report of
the International Committee on Nickel Carcinogenesis in Man [ICNCM 1990]). No study of
nickel workers published since the IARC (1990) monograph includes workers exposed
exclusively or even predominantly to metallic nickel or nickel alloys (see Section 3.2 for a
review of these studies). Therefore, there are no epidemiological studies of exposed workers
adequate for an evaluation of the carcinogenicity of metallic nickel or nickel alloys.

3.2 Nickel compounds

IARC (1990) found sufficient evidence of carcinogenicity in humans for nickel sulfate and the
combinations of nickel sulfides and oxides encountered in the nickel refining industry, and listed
nickel compounds as carcinogenic to humans (Group 1). This evaluation was based on results of
nine cohort studies and one case-control study of nickel workers, which were updated in the
report of the ICNCM (1990). Elevated risks of lung and nasal cancer were associated with
exposure to oxidic, sulfidic, and soluble nickel, particularly among workers with greater
exposure or longer latency.

Subsequently, 12 additional cohort studies of nickel workers were published. Three studies of
welders and one of battery workers are not considered, because these workers are exposed to
other known or suspected carcinogens (e.g., chromate and cadmium). Two of the remaining eight
studies are uninformative because of their small size (< 300 workers), and one was superceded
by a subsequent study. Lung and nasal cancer results of the other five studies are briefly
described below; two of these (Shannon et al. 1991 and Andersen et al. 1996) are updates of
cohorts previously considered by IARC (1990). Risks are given as standardized mortality or
incidence ratios (SMRs or SIRs, respectively) with 95% confidence intervals and number of
exposed cases.

Moulin et al. (1990) studied 2,269 workers in a French plant producing ferrochromium and
stainless steel. SMRs were based on national rates. A nonsignificant elevation in lung cancer risk
was seen in the cohort as a whole (1.40, 0.72 - 2.45, n = 12). Greater risk was observed in
exposed workers (2.04, 1.02 - 3.64, n = 11) than in unexposed workers (0.32, 0.01 - 1.77, n = 1),
but this may have been due to confounding by exposure to polyaromatic hydrocarbons.
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Shannon et al. (1991) studied 11,567 Canadian workers employed in mining, milling, and
smelting. SMRs were calculated in comparison with Ontario rates. Risk of lung cancer was
elevated in the cohort as a whole (1.28, 1.04 - 1.56, n = 98) and particularly among miners (1.53,
1.18 - 1.96, n = 63). No trends were observed for duration of mining or cumulative exposure to
nickel. Risk of nasal cancer, based on one case, also was elevated (1.66).

Andersen et al. (1996) studied 4,764 workers employed for at least one year in a Norwegian
nickel refinery. SIRs were calculated in comparison with the Norwegian population. Risk of lung
cancer was elevated in the cohort as a whole (3.0, 2.6 - 3.4, n = 203), as was risk of nasal cancer
(18.0, 12.3 - 25.4, n = 203). The risk of lung cancer increased with increasing cumulative
exposure to soluble nickel after adjustment for smoking and other confounders. There was a
multiplicative interaction between smoking and nickel exposure in their effects on risk of lung
cancer.

Anttila et al. (1998) studied 1,388 workers employed for at least three months at a copper/nickel
smelter and nickel refinery in Finland, 1,155 of whom were presumed to have exposure to nickel.
SIRs were calculated in comparison with region-specific rates. Risk of lung cancer was elevated
in the cohort as a whole (1.39, 0.86 - 2.13, n = 21) and further elevated among those with > 20
years latency (2.12, 1.29 - 3.27, n = 20). Risk of nasal cancer was elevated in the cohort as a
whole (41.1, 4.97 - 148, n = 2), among those with > 20 years latency (67.1, 8.12 - 242, n = 2),
and among those with > 5 years exposure (75.2, 9.10 - 271, n = 2).

Arena et al. (1999) studied 2,877 female production and fabrication high-nickel alloy workers in
the United States. SMRs were calculated in comparison with the U.S. female population. Risk of
lung cancer was elevated (1.34, 0.98 - 1.03, n = 200). Because female workers were assigned to
different jobs than males, they may have had less exposure.

Three case-control studies have also been published since the IARC (1990) monograph. Risks
for these studies are expressed as odds ratios, with 95% confidence intervals and number of
exposed cases, when available.

Wortley et al. (1992) compared 235 cases of laryngeal cancer with 547 population controls in
Washington state. Self-reported occupational histories and a job-exposure matrix were used to
evaluate exposure. Risk was elevated among those with high exposure scores (1.6, 0.4 - 6.7, n =
7) and increased with increasing duration of exposure, but the study was limited by the small
number of exposed cases.

Goldberg et al. (1994) studied 80 lung cancer cases nested within a cohort of nickel workers
engaged in mining and refining in New Caledonia. Controls were selected from both the general
population and the nickel cohort. Plant records and a job-exposure matrix were used to evaluate
exposure. No excess risk was observed for exposure to total nickel (0.7, 0.4 - 1.3, n = 80) or to
any type of nickel.

Horn-Ross et al. (1997) compared 141 cases of salivary gland cancer to 191 population controls

in San Francisco, California. Self-reported occupational histories and a job-exposure matrix were
used to evaluate exposure. Risk was elevated among those ever exposed to nickel compounds or
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alloys (6.0, 1.6 - 22.0, n = 12), but risk was greater among those with < 3,000 hours exposure
(9.0) than among those with > 3,000 hours exposure (3.7).

In summary, these results reinforce the finding of IARC (1990) that exposure to nickel
compounds is associated with increased risks for lung and nasal cancer. On the basis of this
evidence, NTP has concluded that nickel compounds are known to be human carcinogens (NTP
2000).

3.3 Prostheses and implants

The potential for carcinogenicity of prostheses and implants is of interest because these implants
may be made of metal alloys containing up to 35% nickel (see Section 2.6), and numerous
studies have demonstrated release of metal debris into the body from such implants (see Section
6). IARC (1999) found that there was inadequate evidence of carcinogenicity in humans for
metallic implants and metallic foreign bodies and also for orthopedic implants of complex
composition (metal with bone cement with or without polyethylene), and concluded that
orthopedic implants of complex composition are not classifiable as to their carcinogenicity to
humans (Group 3) (IARC 1999). This evaluation was based on both case reports and analytic
studies; results are summarized below.

Case reports have described neoplasms originating from bone or soft connective tissue in the
region of metal implants (16 cases) or orthopedic implants of complex composition (35 cases). In
addition, 23 cases of sarcomas, 23 cases of carcinomas, and seven cases of brain tumors have
been reported at the site of metallic foreign bodies, mainly bullets and shrapnel fragments. In
some of these case reports, there is evidence of corrosion of the implant, due to contact between
alloys of dissimilar composition. This would result in high local concentrations of metal and
could account for the local tumors (IARC 1999).

Nine studies have evaluated cancer incidence in 14 cohorts of individuals with orthopedic
implants (Gillespie et al. 1988, Mathiesen et al. 1995, Nyren et al. 1995, Lewold et al. 1996,
Visuri et al. 1996, Gillespie et al. 1996, Paavolainen et al. 1999, Fryzek et al. 1999, Olsen et al.
1999). Two pairs of studies were partially overlapping. All but one cohort showed evidence of
lower total cancer incidence, often accompanied by lower rates at specific sites, notably lung,
stomach, colon, and breast. These results are most likely due to a “healthy patient” effect:
patients selected for knee or hip replacement generally are healthier than members of the general
population of similar age and also are often advised to stop smoking. An early study (Gillespie et
al. 1988) of hip replacements found excess risk of all lymphohematopoietic cancers combined.
In subsequent studies, some corroborating evidence was found for excess risk for total
lymphohematopoietic cancers (one cohort) or for specific sites (lymphoma, one cohort;
Hodgkin’s disease, one cohort; leukemia, two cohorts), but most results were negative. No other
site was remarkable in more than one or two cohorts.

Several issues need to be considered in interpreting these studies. First, all but one study
(Gillespie et al. 1996) compared cohort members with the general population. Because of the
“healthy patient” effect, this could underestimate risk of cancer within the cohort. However, no
excess risk of lymphoma or leukemia was seen by Gillespie et al. (1996) comparing cases to
controls drawn from the same database. Second, some cohorts had few cases for some sites of
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interest, such as lymphohematopoietic cancers, and so had little power to evaluate risk at these
sites. Third, follow-up in most studies may have been too short to evaluate cancers with long
latencies; even in studies with longer overall follow-up, the numbers of long-term survivors were
low. Fourth, only one study (Visuri et al. 1996) evaluated metal-on-metal implants separately
from metal-on-polyethylene implants. Excess risk of leukemia was confined to the former; thus,
a greater risk of leukemia was found in recipients of metal-on-metal implants than in recipients
of metal-on-polyethylene implants (3.77, 95% CI = 0.96 to 17.6). Most other studies had
relatively few or even no patients with metal-on-metal implants, which have not been used since
the 1970s in most countries. Although some metal debris is released from metal-on-polyethylene
implants, more is released from metal-on-metal implants (see Section 6). Combining the two
may therefore lead to misclassification of exposure, which would in general bias results. All the
foregoing problems would tend to make it more difficult to observe an effect, particularly for
rare cancers. In contrast, most studies included patients with rheumatoid arthritis, which is itself
a risk factor for lymphohematopoietic cancers. In one study (Lewold et al. 1996), which
evaluated cohorts with osteoarthritis and rheumatoid arthritis separately, excess risk of
lymphoma was confined to the latter cohort. Thus, inclusion of these patients in other cohorts
could create the appearance of an association of implants with lymphohematopoietic cancers in
the absence of a true effect.

In summary, these studies are difficult to interpret, but generally suggest that there is little excess
risk associated with orthopedic implants. However, it is worth noting a recent study that
compared bone marrow samples from patients undergoing replacement of a worn prosthesis with
samples from patients receiving a primary implant; a higher rate of chromosomal aberrations was
found in the former group (Case et al. 1996) (see Section 5.2.2.3). Moreover, since exposure was
not well quantified in these studies, they cannot be considered to rule out the possibility that
metallic nickel or nickel alloys are carcinogenic to humans.
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4 Studies of Cancer in Experimental Animals

4.1 Metallic nickel

IARC reviewed carcinogenicity studies of metallic nickel in experimental animals (IARC 1990,
1999; Appendix A and C, respectively). In these studies, metallic nickel was administered by
inhalation (mice, rats, and guinea pigs), by intratracheal instillation (rats and hamsters), by
intravenous (i.v.) injection (mice, rats, and hamsters), and by intramuscular (i.m.) injection (rats
and hamsters). Additional studies in rats with metallic nickel used intrapleural, subcutaneous
(s.c.), intraperitoneal (i.p.), intrarenal, subperiosteal, and intramedullary injections. No new
studies with metallic nickel were located.

4.1.1 Inhalation studies in rats, mice, and guinea pigs

Groups of Wistar rats (50 per sex) and Bethesda black rats (60 females), two to three months old,
were exposed to metallic nickel powder (> 99% pure nickel; particle diameter, ” 4 «im) at a
concentration of 15 mg/m? for six hours per day on four or five days per week for 21 months.
Histological examinations of the lungs of the nickel-exposed rats revealed benign neoplasms
(multicentric adenomatoid alveolar lesions and bronchial proliferations). Controls were not used
in the study (Hueper 1958).

In another study, groups of Bethesda black rats (120) of unspecified sex were exposed to an
unspecified concentration of metallic nickel powder (> 99.95% pure nickel; particle diameter, ”
1 to 3 «m) combined with 20 to 35 ppm (50 to 90 mg/m?) sulfur dioxide (as a mucosal irritant)
and powdered chalk (to prevent clumping). The rats were exposed for five to six hours per day
for an unspecified number of days per week over an unspecified period. Although several rats
developed squamous metaplasia and peribronchial adenomatoses, no lung tumors were observed
in the nickel-exposed rats (Hueper and Payne 1962).

No lung tumors were observed in a group of C57B1 mice (20 females, two months old) exposed
by inhalation to metallic nickel powder (> 99% pure nickel; particle diameter, ” 4 «im) at a
concentration of 15 mg/m? for six hours per day on four or five days per week for 21 months.
None of the mice survived the study (Hueper 1958).

Almost all strain 13 guinea pigs (32 male and 10 female, about three months old), developed
adenomatoid alveolar lesions and terminal bronchial proliferations after exposure to metallic
nickel powder (> 99% pure nickel; particle diameter not stated) at a concentration of 15 mg/m?
for six hours per day on four or five days per week for 21 months. Mortality was high. One
nickel-exposed guinea pig had an anaplastic intra-alveolar carcinoma, and another had an
apparent adenocarcinoma metastasis in an adrenal node, although no primary tumor was
identified. None of the nine controls had any of these neoplasms (Hueper 1958).

4.1.2 Intratracheal instillation studies in rats and hamsters

Female Wistar rats (11 weeks old) were given either 10 weekly intratracheal instillations of
0.9 mg of metallic nickel powder (32 rats) (total dose, 9 mg) or 20 weekly instillations of 0.3 mg
of metallic nickel powder in 0.3 mL saline (39 rats) (total dose, 6 mg) and observed for almost
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two and a half years. Exposed rats developed lung tumors, including carcinomas (incidence,
7/32) and a mixed tumor (incidence, 1/32) in the 0.9-mg dose group and carcinomas (incidence,
9/39) and adenomas (incidence, 1/39) in the 0.3-mg dose group. Pathologic classification of the
tumors, in the two groups combined, revealed one adenoma, four carcinomas, 12 squamous cell
carcinomas, and onr mixed tumor. Tumors were not found in the lungs of 40 control rats (Pott et
al. 1987).

Groups of 100 Syrian golden hamsters were given single intratracheal instillations of 10, 20, or
40 mg of metallic nickel powder (particle diameter, 3 to 8 «an). The incidence of malignant
neoplasms (fibrosarcomas, mesotheliomas, and rhabdomyosarcomas) in the hamsters was about
10%. Tumors were not observed in controls. This study was reported as an abstract (Ivankovic et
al. 1987).

Syrian golden hamsters (strain Cpb-ShGa 51, about 60 per sex, 10 to 12 weeks old) were given
12 intratracheal instillations of 0.8 mg of metallic nickel powder (99.9% nickel; mass median
diameter, 3.1 «am) in 0.15 mL of saline at two-week intervals (total dose, 9.6 mg). An
adenocarcinoma of the lung was found in one of the exposed hamsters, but no tumors were found
in the control animals or in the positive control group (Muhle et al. 1990).

4.1.3 Intrapleural administration studies in rats

A 12.5% suspension of 6.25 mg of metallic nickel powder in 0.05 mL of lanolin was injected
into the right pleural cavity of 25 six-month-old female Osborne-Mendel rats, once a month for
five months. Round-cell and spindle-cell sarcomas were found in the injection sites of four of the
25 rats, 12 of which were examined histopathologically. None of 70 vehicle-only control rats
developed these neoplasms (Hueper 1952). In another study, two rats developed mesotheliomas
following metallic nickel exposure. Fisher 344 rats (five per sex, 14 weeks of age) received five
monthly intrapleural injections of metallic nickel powder (5 mg) suspended in 0.2 mL of saline.
No tumors were found in controls (Furst et al. 1973).

4.1.4 Subcutaneous administration studies in rats

Local sarcomas (fibrosarcoma and rhabdosarcoma) were found in five of 10 Wistar rats (five per
sex, four to five weeks old) exposed to metallic nickel in the form of four s.c. pellet implants
(approximately 2 x 2 mm). The rats were observed for 27 months. No tumors were found in
control rats that received similar implants of other dental materials (Mitchell et al. 1960).

4.1.5 Intramuscular administration studies in rats and hamsters

In an early study, 10 female hooded rats (two to three months old) were injected in the thigh
muscle with 28.3 mg of metallic nickel powder in 0.4 mL of fowl serum. All rats injected with
metallic nickel developed rhabdomyosarcomas at the injection site within 41 weeks. No local
tumors had been observed in historical control rats dosed with fowl serum only (Heath and
Daniel 1964).

In a study with F344 rats (25 per sex, of unspecified age) five monthly i.m. injections of 5 mg of
metallic nickel powder in 0.2 mL of trioctanoin resulted in the development of fibrosarcomas in
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38 of the 50 animals. No fibrosarcomas were detected in male or female vehicle-only control rats
(25 per sex) (Furst and Schlauder 1971).

Two groups of 10 F344 male rats (three months old) were administered single i.m. doses (3.6 or
14.4 mg per rat) of metallic nickel powder in 0.5 mL of penicillin G procaine. Injection-site
sarcomas were found in 0/10 rats in the 3.6-mg group and in 2/9 rats in the 14.4-mg group. No
sarcomas were found in vehicle control rats (Sunderman and Maenza 1976).

Injection-site sarcomas were found in 17 of 20 WAG rats of unspecified age and sex given a
single i.m. injection of 20 mg of metallic nickel powder in an oil vehicle of unspecified type.
Vehicle-only controls (56 rats) did not develop sarcomas (Berry et al. 1984).

A group of 20 male F344 rats (two to three months old) were given a single i.m. injection of 14
mg of metallic nickel powder (99.5% pure) in 0.3 to 0.5 mL of penicillin G vehicle in the thigh.
Injection-site tumors were found in 13 rats. The tumors were mainly rhabdomyosarcomas, with
an average latency period of 34 weeks. None of the control rats (44 given penicillin G or 40
given glycerol) developed tumors (Sunderman 1984).

Rhabdomyosarcomas also occurred in 14 of 30 rats examined from a group of 40 male inbred
WAG rats (10 to 15 weeks of age) given single i.m. injections of 20 mg of metallic nickel in
paraffin oil. Metallic nickel also depressed natural killer cell activity, a response that correlated
with rhabdomyosarcoma development in the rats. In another group given i.m. injections of
interferon at 5 x 10* U per rat twice a week beginning in the tenth week after nickel treatment,
five of 10 rats also developed rhabdomyosarcomas (Judde et al. 1987).

In male Syrian hamsters, two fibrosarcomas occurred in a group (25 per sex, three to four weeks
old) given five monthly i.m. injections of 5 mg of metallic nickel powder in 0.2 mL of
trioctanoin. No tumors occurred in vehicle controls (25 per sex) (Furst and Schlauder 1971).

4.1.6 Intraperitoneal administration studies in rats

An unspecified number of F344 rats (weighing 80 to 100 g) were administered 5 mg of metallic
nickel powder in 0.3 mL of corn oil by i.p. injection twice a month for eight months. Following
exposure, 30% to 50% of the rats developed intraperitoneal tumors. No tumor incidences were
reported for control rats given only corn oil (Furst and Cassetta 1973).

A group of 50 female Wistar rats (12 weeks of age) received 10 weekly i.p. injections of 7.5 mg
of metallic nickel powder of unspecified purity. Abdominal tumors (sarcomas, mesotheliomas,
and carcinomas) were found in 46 of 48 rats. The average tumor latency was approximately eight
months. The incidence of abdominal tumors in non-concurrent saline control Wistar rats ranged
from 0% to 6% (Pott et al. 1987).

Other groups of female Wistar rats (18 weeks of age) developed tumors after being given single
or repeated i.p. injections of metallic nickel powder (100% pure in 1 mL saline) once or twice a
week, for a total dose of 6 to 25 mg of nickel (Pott et al. 1989, 1990, 1992). The dosages,
incidences of mesotheliomas and sarcomas observed in 24 months, and total incidences of
tumors at 30 months are shown in Table 4-1.
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Table 4-1. Incidence of mesotheliomas and sarcomas in rats 24 months and 30 months after

intraperitoneal injection of metallic nickel powder

Toall dise | _No._of Incidence in 24 months Incidence at 30
injections months (no. with
Compound (mg, as Ni) | and dose Sarcomas Mesotheliomas | tumor/no. examined)
Metallic nickel 6 1x6mg 1 7 8/35*
12 2 X6 mg 3 11 13/35*
25 25x 1 mg 1 1 2/33
Saline control 0 3x1mL 0 1 1/33
0 50x 1 mL 0 0 0/34

Source: Pott et al. 1989, 1990, 1992
*P < 0.05; significant different from vehicle control

4.1.7

A group of 25 Wistar rats of unspecified sex (24 weeks of age) received i.v. injections of
metallic nickel powder as a 0.5% suspension in saline at a dose of 0.5 mL/kg body weight (b.w.)
once a week for six weeks. Seven rats developed sarcomas in the groin region along the
saphenous vein path of injection. No controls were used (Hueper 1955).

Intravenous administration studies in rats, mice, and hamsters

No tumors were observed in a group of 25 male C57B1 mice (six weeks old) given two i.v.
injections in the tail vein of 0.05 mL of a 0.005% suspension of metallic nickel powder in 2.5%
gelatin. The mice were observed up to 60 weeks after dosing; 19 survived more than 52 weeks,
but only six were alive at the end of 60 weeks. No controls were used in the study (Hueper
1955).

4.1.8

During a 12-month observation period, tumors were not observed in a group of 20 female
Sprague-Dawley rats of unspecified age given a single injection of 5 mg of metallic nickel in
0.05 mL of glycerin in each pole of the right kidney (Jasmin and Riopelle 1976).

Intrarenal administration studies in rats

In 18 F344 rats (two months old), intrarenal injection of 7 mg of metallic nickel powder in 0.1 or
0.2 mL of saline solution into each pole of the right kidney did not result in kidney tumors.
Median survival was 100 weeks, compared with 91 weeks for controls. No tumors were observed
in vehicle controls (Sunderman et al. 1984).

4.1.9 Subperiosteal injection studies in rats

Injection-site tumors were found in 11 of 20 WAG rats of unspecified age and sex each given a
single subperiosteal injection of 20 mg of metallic nickel powder. No control information was
reported (Berry et al. 1984). In its review of this study, the IARC Working Group noted the
inadequate reporting of the study (IARC 1990).
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4.1.10 Intramedullary injection studies in rats

Injection-site tumors were found in 9 of 20 WAG rats of unspecified age and sex each given a
single intramedullary injection of 20 mg of metallic nickel powder. No control information was
reported (Berry et al. 1984). In its review of this study, the IARC Working Group noted the
inadequate reporting of the study (IARC 1990).

The carcinogenicity studies conducted with metallic nickel evaluated by IARC (1990) are
summarized in Table 4-2.
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Table 4-2. Summary of metallic nickel carcinogenicity studies in experimental animals

Tumor type and

: incidence Controls
Species Exposure (no. with tumors/no. (no. with tumors/
Route (number) (mg) examined) no. examined) Reference
Inhalation rat (160) not given not given, benign lung | no specific controls | Hueper 1958
neoplasms
Inhalation rat (120) 15 (mg/m®) 0/46 no lung tumors no control data Hueper and Payne
(plus sulfur provided 1962
dioxide)
Inhalation mouse (20) 15 (mg/m?) 0/20 no controls used Hueper 1958
Inhalation guinea pig 15 (mg/m®) 1/23 intraalveolar 0/9 Hueper 1958
(42) carcinoma
1/23 metastasis of
adenocarcinoma
Intratracheal rat (80) 0.9 (10 doses) 8/32* lung tumors 0/40 Pott et al. 1987
(mostly carcinomas)
0.3 (20 doses) 10/39* lung tumors 0/40
(mostly carcinomas)
Intratracheal hamster 10 1/100 local malignant no tumors Ivankovic et al.
(100) tumors 1987
20 8/100 local malignant no tumors?
tumors
40 12/100 local malignant no tumors?
tumors
20 (4 doses) 10/100 local tumors no tumors?
Intratracheal hamster 0.8 (12 doses) 1/56 lung tumors no tumors? Muhle et al. 1990
(60)
Intratracheal rat (85) 20 mgb 2/85; lung adenomas | number tumors not | Stettler et al.
given® 1988°
Intrapleural rat (25) 6.25 4/12* local sarcomas 0/70 Hueper 1952
Intrapleural rat (10) 5 2/10 mesotheliomas 0/20 Furst et al. 1973
Subcutaneous | rat (10) not given 5/10 local sarcomas 0/10 Mitchell et al.
1960
Intramuscular | rat (10) 28.3 10/10 local sarcomas no tumors Heath and Daniel
1964
Intramuscular | rat (50) 5 38/50 local sarcomas 0/50 Furst and
Schlauder 1971
Intramuscular | rat (20) 3.6 0/10 local tumors 0/20 Sunderman and
14.4 2/9 local tumors 0/20 Maenza 1976
Intramuscular | rat (20) 20 17/20 local tumors 0/56 Berry et al. 1984
Intramuscular | rat (20) 14 13/20 local tumors 0/44 (penicillin G) | Sunderman 1984
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Tumor type and
: incidence Controls
Species Exposure (no. with tumors/no. (no. with tumors/
Route (number) (mg) examined) no. examined) Reference
Intramuscular | rat (40) 20 14/30 local tumors no control data Judde et al. 1987
provided
Intramuscular | hamster 5 (5 doses) 2/50 local 0/50 Furst and
(50) fibrosarcomas Schlauder 1971
Intraperitoneal | rat 5 (16 doses) 30%-50% local no control Furst and Cassetta
tumors incidence reported | 1973
Intraperitoneal | rat (50) 7.5 (10 doses) 46/48 abdominal 0-6%° Pott et al. 1987
tumors
Intraperitoneal | rat 6 4/34 local tumors 1/67 (sarcoma) Pott et al. 1989,
(sarcomas or 1990
mesotheliomas)
6 (2 doses) 5/34 local tumors
(sarcomas or
mesotheliomas)
1 (25 doses) 25/35 local tumors
(sarcomas or
mesotheliomas)
Intravenous rat (25) 0.5 mL/kg of 7/25, local tumors no controls used Hueper 1955
0.5% in
saline
Intravenous mice 0.5 mL of no tumors no controls used Hueper 1955
0.005% in
2.5% gelatin
Intrarenal rat (20) 5 no tumors no control data Jasmin and
provided Riopelle 1976
Intrarenal rat (18) 7 no tumors no tumors Sunderman et al.
1984
Subperiosteal rat (20) 20 11/20 local tumors no controls used Berry et al. 1984
Intramedullary | rat (20) 20 9/20 local tumors no controls used Berry et al. 1984

Source: IARC 1990, 1999
*P < 0.05; significantly different from controls.

®Number of control animals not provided.

®Nickel slag containing approximately 20% nickel and 53% chromium.

“Author stated that the tumor incidence in treated animals was not significantly different from the control incidence.
INot cited in IARC 1990.

¢Abdominal tumors, in non-concurrent saline controls.

4.2 Nickel alloys

IARC also reviewed studies of the carcinogenic action of nickel alloys in experimental animals
(IARC 1990, 1999; Appendix A and C, respectively). In these studies, nickel alloy powders were
administered to hamsters by intratracheal instillation and to rats by s.c., i.m., i.p., and intrarenal
injection and by piercing of the ear pinna with metallic identification tags containing nickel.
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4.2.1 Intratracheal instillation studies in hamsters and rats

Groups of 100 Syrian golden hamsters were given single doses of 10, 20, or 40 mg of one of two
nickel alloys in powdered form (particle diameter, 0.5 to 2.5 «am; alloy I: 26.8% nickel, 16.2%
chromium, 39.2% iron, 0.04% cobalt; alloy I1I: 66.5% nickel, 12.8% chromium, 6.5% iron, 0.2%
cobalt) or four-20 mg intratracheal instillations of one of the alloys every six months (total dose,
80 mg). In the hamsters given a single instillation of alloy Il, malignant intrathoracic tumors
were reported at frequencies of 1%, 8%, and 12% for the 10-, 20-, and 40-mg groups,
respectively. In the hamsters given multiple instillations of alloy II, the incidence of malignant
neoplasms (fibrosarcomas, mesotheliomas, and rhabdomyosarcomas) was 10%. Tumors were not
observed in animals given alloy I or in controls (Ivankovic et al. 1987).

Syrian golden hamsters (strain Cpb-ShGa 51, 10 to 12 weeks old, approximately 60 per sex)
were given 12 intratracheal instillations of 3 mg of pentlandite (containing 34.3% nickel; total
dose, 36 mg), 3 or 9 mg of chromium/nickel stainless steel dust (containing 6.79% nickel; total
doses, 36 or 108 mg), or 9 mg of chromium stainless steel dust (containing 0.5% nickel; total
dose, 108 mg). Median survival was 90 to 130 weeks in the different groups. An adenoma of the
lung was found in the pentlandite-treated group. No tumors were found in the stainless steel—
treated animals, in the control animals (Muhle et al. 1990), or in the positive control group
(IARC 1990).

The carcinogenic potential of nickel slag (containing approximately 20% nickel and 53%
chromium) was tested in rats. In the study, 85 male F344 rats of unspecified age were given
single 20-mg intratracheal instillations of nickel slag in deionized water and observed for 22
months. A separate group of 85 rats were given intratracheal instillations of deionized water and
served as controls. Only two nickel slag-treated rats developed primary lung tumors (adenoma).
The lung of one rat sacrificed at 18 months had multiple adenomas, and a rat that died between
12 and 18 months had a single adenoma. The tumor incidence was not significantly greater in
nickel-treated rats than in the control group (Stettler et al. 1988).

4.2.2 Subcutaneous administration studies in rats

Local sarcomas (fibrosarcoma and rhabdosarcoma) were found in nine of 10 Wistar rats (five per
sex, four to six weeks old) exposed to a nickel-gallium alloy (60% nickel) used for dental
prostheses, as four s.c. pellet implants (approximately 2 x 2 mm). The rats were observed for 27
months. No tumors were found in control rats that received similar implants of other dental
materials (Mitchell et al. 1960).

4.2.3 Intramuscular injection studies in rats

A group of 16 male F344 rats (two to three months old) were given single i.m. injections into the
thigh of 14 mg (of the nickel component) of a ferronickel alloy (NiFess, FE62Ni38) in 0.3 to 0.5
mL of penicillin G vehicle. The average latency period was 34 weeks. No tumors were observed
in the exposed rats, in the 44 vehicle control rats given only penicillin G, or in 40 control rats
given only glycerol (Sunderman 1984).
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4.2.4 Intraperitoneal administration studies in rats

Groups of female Wistar rats (18 weeks of age) were given single or repeated i.p. injections of
one of three nickel alloys (50% nickel, 29% nickel, 66% nickel) in 1 mL of saline once or twice
a week and observed for 24 months. The dosing schedule and number of sarcomas and
mesotheliomas observed in the rats are shown in Table 4-3 (Pott et al. 1989, 1990).

Table 4-3. Incidence of peritoneal mesotheliomas and sarcomas in rats 24 and 30 months
after i.p. injection of nickel alloys

“terl Al - Tumor incidence at 24 months InCi(iir."\j\?itir? ti?nrgfsr}ths
Compound (mg, as Ni) | schedule Sarcomas Mesotheliomas no. examined)

Alloy (29% Ni)? 50 1 x50 mg 1 1 2/33
100 2 x50 mg 0 1 1/36

Alloy (52% Ni) 50 1x50mg 1 7 8/35*

150 3 x50 mg 3 11 13/35*

Alloy (66% Ni)° 50 1 x50 mg 0 12 12/35*

150 3 x50 mg 5 19 22/33*¢
Saline control 0 3x1mL 0 1/33
0 50x1mL 0 0/34

Source: Pott et al. 1989, 1990, 1992

*P < 0.05; significantly different from controls.
Before milling: 32% Ni, 21% Cr, 0.8% Mn, 55% Fe.
bBefore milling: 74% Ni, 16% Cr, 7% Fe.

“Two animals had both mesothelioma and sarcoma.

4.2.5 Intrarenal administration studies in rats

Two-month-old male F344 rats received an intrarenal injection of 7 mg of a ferronickel alloy
(NiFeq; 7 mg of Ni per rat) in 0.1 or 0.2 mL of saline solution into each pole of the right kidney
A renal tumor (nephroblastoma) was observed in one of 14 rats examined. The rats were
observed for two years. No tumors were observed in vehicle controls (Sunderman et al. 1984).

4.2.6 Tissue implantation/insertion studies in rats

In an assessment of the carcinogenicity of cadmium chloride, tumors were found in male Wistar
rats (six weeks of age) at the sites of insertion of nickel-copper alloy ear tags (65% nickel, 32%
copper, 1% iron, 1% manganese) (Waalkes et al. 1987). The tags were inserted through the
cartilaginous portion of the ear pinna. In this study, 16 tumors developed in the 361 rats within
104 weeks of placement of the ear tags. The tumors were mostly osteosarcomas at the site of
attachment. Many other rats showed preneoplastic connective tissue lesions. No tumors
developed in the contralateral, non-tagged ear pinna. A concomitant early infection at the
implant site appeared to have played a role in the development of tumors, as tumors developed at
a much lower rate at ear-tag sites without early infection. The authors suggested that the early
infection may have helped mobilize nickel from the tag.
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In a study of tumors induced by the tumor initiator 1,2-dimethylhydrazine (1,2-DMH) in the
cecum of rats, it was concluded that tumor development may have been promoted by stapling
with a ferronickel alloy (Buhr et al. 1990). In 25 BD?9 rats (three months old, of unspecified sex),
the cecum had been sutured with ferronickel alloy staples (iron 70%, chromium 15%, nickel
12%, other materials 3%). After a recovery period of three weeks, the rats were given weekly s.c.
injections (21 mg/kg) of the known carcinogen 1,2-DMH for one year. Nickel control animals
(18 rats) had the cecum sutured with the ferronickel alloy but were not given 1,2-DMH. Positive
control animals (25 rats) were laparotomized without sutures and given 1,2-DMH. Negative
control animals were laparotomized without sutures and were not given 1,2-DMH. Suture
controls (25 rats) had the cecum sutured with absorbable vicryl sutures (3-0, Ethicon) and were
given 1,2-DMH. The results of the study suggest that the ferronickel staples significantly (P <
0.05) increased the incidence of 1,2-DMH-induced gastrointestinal tumors, compared with 1,2-
DMH treatment alone. Gastrointestinal tumor incidences related to these treatments are shown in
Table 4-4 .
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Table 4-4. Promotional effect of ferronickel staples on the incidence of 1,2-DMH-induced
gastrointestinal tumors

Number of tumors
Staples Vicryl
+ Staples only + 1,2-DMH
1,2 DMH control 1,2-DMH control
Observation (n = 25) (n =18) (n = 25) (n = 25)
Tumor site
Stomach 1 0 1
Small bowel 4 0 2
Cecum 9 0 11 6
Cecum ascendens 6 0 6
Cecum transcendens 3 0 2
Cecum descendens 26 0 20 19
Rectum 4 0 1 0
Total no. of gastrointestinal tumors 53 0 41 36
Number of tumor-bearing animals 23 0 19 20

Source: Buhr et al. 1990

The carcinogenic potential of nickel orthopedic prosthetic bone implants (composition ranging
from 0.1% to 35.4% nickel by weight) was studied in groups of 10 to 17 male and 13 to 15
female Sprague-Dawley rats (total number, 409; 30 to 43 days old) and evaluated by complete
autopsy examination performed at the time of death or at the end of the 30-month experimental
period (Memoli et al. 1986). A total of 77 rats (groups of 12 or 13 males) were used as 24- and
30-month untreated or sham-operated controls. The following nickel alloys used:

solid 316L: 13.77% nickel, 65.2% iron, 17.2% chromium, 2.46% molybdenum, 0.47%
manganese, 0.46% silicon, 0.24% copper, 0.11% cobalt, 0.10% phosphorus, 0.03%
sulfur, 0.02% carbon

powdered 316L: 13.4% nickel, 67.8% iron, 16.1% chromium, 2.42% molybdenum,
0.11% manganese, 0.11% cobalt, 0.07% copper, 0.064% N, 0.024% carbon, 0.015%
sulfur

solid CoCrWNi: 12.44% nickel, 46.8% cobalt, 19.63% chromium, 13.76% tungsten,
3.78% iron, 2.21% magnesium, 1.39% silicon

CoCrWNi wire: 10.36% nickel, 51% cobalt, 19.79% chromium, 14.47% tungsten, 2.35%
iron, 1.67% manganese, 0.27% silicon, 0.09% carbon, 0.02% sulfur, 0.013 phosphorus

solid MP3sN: 36.1% nickel, 32.5% cobalt, 20.0% chromium, 9.4% molybdenum, 1.5%
iron, 0.74% titanium, 0.12% carbon, 0.09% silicon, 0.03% manganese
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powdered MP3sN: 35.4% nickel, 33.0% cobalt, 21.8% chromium, 8.7% molybdenum,
0.7% titanium, 0.4% iron

Implant site—associated malignancies found in the rats administered the CoCrWNi alloy included
malignant fibrous histiocytoma (two rats) and undifferentiated sarcoma (one rat). Rats
administered the MP3sN alloy bore rhabdomyosarcoma (three rats). Spontaneous, non-implant
site malignancies were found in most of the aging rats (66 rats); these included medullary and
papillary carcinomas of the thyroid and squamous cell carcinoma of the skin and lungs, soft
tissue fibrosarcoma, leiomyosarcoma of the uterus, mammary carcinomas, and basal cell
carcinomas of the skin. The incidence of sarcoma was significantly higher in animals bearing
nickel alloy implants than in control and sham-operated animals.

The carcinogenicity of a nickel alloy (96.3% nickel, 2.52% tungsten, 0.66% aluminum, 0.34%
manganese, 0.11% silicon, 0.11% iron, 0.01% carbon, 0.01% copper, 0.001% sulfur) was
evaluated by implantation of solid rods of the alloy in the thigh muscle of C57BL/6N mice (23
per sex) for 24 months (Takamura et al. 1994). The incidence of tumor-caused mortality among
the mice at the end of 24 months was 87% for both sexes combined. Tumor incidence was 91.3%
for both sexes combined. Days to tumor appearance were 424.3 £ 82.7 in male mice and 343.2 +
57.6 in female mice. Tumors found at the implantation site included malignant fibrous
histiocytoma or fibrosarcoma (21 each in males and females). Although the incidences of non-
implantation site spontaneous tumors were high in all groups of mice in the study, no evidence of
substance-induced carcinogenicity was seen in sham-operated controls or in animals receiving
non-nickel implants (stainless steel alloy, titanium alloy, alumina, or zirconia).

The carcinogenicity studies of nickel alloys evaluated by IARC (1990) are summarized in Table
4-5,
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Table 4-5. Studies of the carcinogenicity of nickel alloys in experimental animals evaluated

by IARC
Tumor type and
_ incidence Controls (no.
Species Exposure (no. with tumors/ | with tumors/

Alloy Route (number) (mg) no. examined) no. examined) Reference
Nickel alloy: 10 no local tumors no tumors? Ivankovic et al. 1987
26.8% Ni, 20 no local tumors
16.2% Cr, intratracheal h?fg)%t;a r
39.2% Fe, 40 no local tumors
0.04% Co 20 (4 doses) no local tumors
Nickel alloy: intratracheal hamster 10 1/100, local tumors
66.5% Ni, (100)

12.8% Cr. 20 8/100, local tumors
6.5% Fe, 40 12/100, local tumors
0.2% Co 20 (4 doses) | 10/100, local tumors
Nickel- s.C. rat (10) not given 9/10, local tumors 0/10 Mitchell et al. 1960
gallium alloy
(60% Ni)
Nickel alloy intramuscular rat (32) not given 3/32, local malignant no local tumors | Memoli et al. 1986
(12.44% Ni) implantation fibrous histiocytoma

and undifferentiated

sarcoma

Nickel alloy intramuscular rat (26) not given 3/26, local no local tumors | Memoli et al. 1986
(35.4% Ni) implantation rhabdosarcoma
Nickel alloy intramuscular mouse not given male: 21/23, local no local tumors | Takamura et al. 1994
(96.3% Ni) implantation tumors

female: 21/23, local

tumors
Nickel-iron intramuscular rat (16) 14 0/16, local tumors 0/44 Sunderman 1984
alloy (NiFe¢) implantation
Nickel-iron intrarenal rat 7 1/14, renal cancers 0/46 Sunderman et al. 1984
alloy (NiFeq¢)
Nickel alloy i.p. rat 50 2/33, local tumors 1/67 Pott et al. 1989, 1990
(29% Ni) 50 (2 doses) 1/36, local tumors
Nickel alloy i.p. rat 50 8/35, local tumors
o N

(50% Ni) 50 (3 dose) 13/35, local tumors
Nickel alloy i.p. rat 50 12/35, local tumors

% Ni) 50 (3 doses 22/33, local tumors

(66
i i a
Pentlandite intratracheal ha(rg(s);er 3 (12 doses) 1/60, local tumors no tumors Muhle et al. 1990
Nickel alloy unilateral ear rat not given 16/361; mainly no local tumors in | Waalkes et al. 1987
(65% Ni) pinna osteosarcomas” contralateral
implantation pinna

Source: IARC 1990, 1999

®Number of control animals not provided.

POsteosarcoma, fibrosarcoma, histiocytoma, papilloma, giant cell tumor.
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4.3  Other nickel compounds

IARC (1990) found sufficient evidence of carcinogenicity at various sites in rodents for nickel
monoxides, nickel hydroxides, and crystalline nickel sulfides. IARC found limited evidence of
carcinogenicity in rodents for nickel carbonyl, nickel arsenides, nickel antimonides, nickel
selenides, and nickel telluride. There was inadequate evidence of carcinogenicity in experimental
animals for nickel trioxide, amorphous nickel sulfide, and nickel titanate.

The NTP (1996a,b,c) conducted 104- or 105-week inhalation cancer bioassays studies with
nickel oxide, nickel subsulfide, and sulfate hexahydrate in F344/N rats and B6C3F; mice of both
sexes. The researchers concluded that for nickel oxide there was some evidence of carcinogenic
activity in male and female rats and no evidence of carcinogenic activity in male mice, and
equivocal evidence of carcinogenicity in female mice (NTP 1996a). There was clear evidence of
carcinogenic activity in male and female rats, but not in male or female mice exposed to nickel
subsulfide (NTP 1996b). Nickel sulfate hexahydrate was not carcinogenic in rats or mice (NTP
1996¢). Tumor types observed in these studies included alveolar or bronchiolar adenomas and
carcinomas.

Soluble nickel(Il) acetate tetrahydrate, administered by a single i.p. injection to male F344/NCr
rats (five weeks of age), was an effective initiator of renal cortical epithelial tumors at a dose of
90 =anol/kg b.w. (Diwan et al. 1992, Kasprzak et al. 1990). In a similar study, nickel(ll) acetate
administered by a single i.p. injection to pregnant female F344/NCr rats caused tumors in the
offspring at a dose of 90 «mol/kg b.w. Nickel(ll) acetate was found to be a transplacental
initiator of epithelial tumors of the kidney and a complete transplacental carcinogen for rat
pituitary, primarily inducing rare pituitary carcinomas (Diwan et al. 1992).

4.4  Summary

Metallic nickel and a variety of nickel alloys were carcinogenic to rodents in instillation,
injection, and implantation studies, causing significantly increased tumor incidences in soft
tissue and bone.

In studies with metallic nickel, no malignant tumors were observed when rats and guinea pigs
were exposed by inhalation. One study, however, found intra-alveolar carcinoma and metastasis
of adenocarcinoma in one of 23 male and female hamsters following inhalation of metallic
nickel. Via other routes of exposure, significantly elevated incidences of local adenocarcinomas
and squamous cell carcinomas were observed in lungs of rats. Adenocarcinomas, fibrosarcomas,
mesotheliomas, and rhabdomyosarcomas were observed in hamsters following intratracheal
instillation of metallic nickel powder. Round-cell and spindle-cell sarcomas of the lungs were
found in the injection sites of rats exposed by the intrapleural route, whereas no tumors were
found in control rats. Local tumors of an unspecified nature and injection-site
rhabdomyosarcomas, fibrosarcomas, and sarcomas were found in rats subcutaneously exposed to
metallic nickel, but not in unexposed control rats. Fibrosarcomas were found in hamsters
following i.m. exposure. Significantly elevated incidences of injection-site tumors also were
observed in rats following i.p., i.v., subperiosteal, and intrafemoral exposures to metallic nickel.
Tumors were not found in rats given intrarenal doses of metallic nickel or in mice following i.v.
exposure to metallic nickel powder.
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In studies with nickel alloys, malignant local neoplasms (adenoma, fibrosarcomas,
mesotheliomas, and rhabdomyosarcomas) were seen in rats and hamsters given intratracheal
instillations. Rats exposed to nickel alloys via i.p. injections, intrarenal injections, or s.c., ear,
muscle, or bone implants developed local sarcomas or osteosarcomas. No tumors were observed,
however, in rats injected i.m. with a nickel alloy or in hamsters injected intratracheally with a
nickel alloy containing only 26.8% nickel. Nickel alloy staples were observed to promote 1,2-
DMH-induced gastrointestinal adenocarcinomas in rats. In general, alloys containing > 50%
nickel were carcinogenic in implantation studies, and carcinogenicity showed a dose-response
pattern, increasing with increasing nickel content.

The carcinogenicity of many soluble and insoluble nickel compounds is well established in
experimental animals. Nickel monoxide, nickel hydroxide, crystalline nickel sulfide, nickel
acetate, and nickel sulfate were carcinogenic in studies with experimental animals. Studies of
nickel arsenides, nickel antimonides, nickel selenides, and nickel telluride, as well as nickel
carbonyl and nickel salts, provided limited evidence of carcinogenicity in experimental animals.
Studies of experimental animals exposed to nickel trioxide, amorphous nickel sulfide, and nickel
titanate did not provide evidence of carcinogenicity.
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5 Genotoxicity

IARC conducted an expansive review of the literature through 1990 on the genotoxicity of nickel
and nickel compounds (IARC 1990). This section contains genotoxicity information from the
IARC review and recent publications, with emphasis on nickel metal and nickel alloys.

Appendix B (adapted from IARC 1990 and updated) presents a concise comparative summary of
genetic and related effects in terms of phylogenetic origin, type of nickel, test system applied,
result (positive, negative, or conditional), and study references.

5.1 Prokaryotic systems
5.1.1 Gene mutation in Salmonella typhimurium

Wever et al. (1997) tested extracts of the nearly equiatomic nickel-titanium alloy (NiTi) with an
interest in its safety for use in surgical procedures, including osteosynthesis staples, blood vessel
filters, other blood vascular applications, and various permanent implants. The studies were
carried out in compliance with International Organization of Standardization (ISO) standards for
biological evaluation of medical devices, using validated procedures. AlS1 316 LVM, a widely
used stainless steel implant material (13% to 15% nickel) was employed in these studies as a
negative control. Both alloys were extracted in physiological aqueous solution at 37°C, with
gentle shaking over a period of 72 hours.

S. typhimurium strains TA1535, TA100, TA1537, and TA98 were exposed to five concentrations
of the extraction samples (from 20% to 100%) with and without metabolic activation provided
by addition of rat liver S9 microsomal fraction to the reaction mix. Plates were scored for
revertant colonies after a standard 48-hour, 37°C incubation. The NiTi extract did not induce
reverse mutations in any tester strain at any tested concentration, with or without S9.

5.2 Plants
5.2.1 Micronucleus formation in Tradescantia and Vicia

Intact Tradescantia plants (hybrid clone #4430) and germinated Vicia beans were directly
planted in soils containing various amounts of nickel chloride and analyzed for induction of
micronuclei according a standardized method (German leaching test DIN 38414-S4)
(Knasmuller et al. 1998). Tradescantia specimens were exposed to doubling concentrations of
nickel chloride from 1.25 to 10 mM. After a six-hour exposure period and a 24-hour tap-water
recovery period, cuttings were histologically fixed, five slides were prepared for each exposure
level, and 300 tetrads were scored per slide. Vicia bean roots were exposed to nickel chloride
solutions in doubling concentrations from 1.25 mM to 40.0 mM for six hours, followed by a 24-
hour recovery period. They were then fixed and acid hydrolyzed, and slides were prepared by
squashing and staining of the cells. Three slides were prepared per exposure concentration, and
100 cells were scored per slide.

No acute toxic effects were observed in Tradescantia or Vicia at the exposure levels used. Dose-
related increases in micronuclei were observed in the Tradescantia experiments and were said to
be significant (P value not provided) at the two highest exposure concentrations. The Vicia
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experiments did not result in micronucleus induction. The authors suggested their modification
of the Tradescantia micronucleus assay may be useful for in situ soil monitoring for genotoxic
metals.

5.3 Mammalian systems
5.3.1 Invitro assays

5.3.1.1 Lacl mutation in transgenic rat embryonic fibroblasts

The Stratagene Big Blue Rat 2 transgenic embryonic fibroblast cell line, carrying the
bacteriophage olacl shuttle vector, was tested (Mayer et al. 1998). Log-phase cells were
exposed to nickel subsulfide for two hours at concentrations from 2.4 to 40.8 mg/L. They were
then washed, passaged at 48 hours, and seeded for plating efficiency, and aliquots were grown to
confluence, harvested, and frozen for DNA processing. Genomic DNA was extracted for
packaging of the target genes into «phages, and single mutant lacl plaques were subjected to
sequence analysis.

Nickel subsulfide exposure increased the frequency of the lacl mutation more than fourfold over
the background level of 4.0 x 10 in a concentration-dependent manner (no P values provided).
Plating efficiency decreased with higher nickel concentrations, and induction of mutations
appeared to correlate strongly with toxicity. Sequencing showed that the majority of mutants
from both exposed and control cells had simple base substitutions (78% and 89%, respectively).
Transitions at G:C basepairs occurred at CpG sites in 83% of nickel-exposed cells but in only
33% of control cells. However, in 33% of the phenotypic mutants from the exposed group, no
sequence change was detected, and the proportion of mutants with no sequence change increased
when the background contribution was deducted.

5.3.1.2 Chromosomal aberrations in Chinese hamster fibroblasts

Induction of chromosomal aberrations was tested in Chinese hamster fibroblasts (cell line VV79).
The cells were exposed to extracts of nickel-titanium alloy prepared as described in section
5.1.1, with and without rat liver S9 metabolic activation (Wever et al. 1997). The exposure levels
were 6%, 8%, and 10% NiTi extracts diluted with aqua bidest. Positive controls were
ethylmethanesulfonate without metabolic activation and cyclophosphamide with metabolic
activation. After a 20-hour incubation, cells were fixed and stained, and 200 metaphases per dose
level were scored for breaks, fragments, deletions, exchanges, disintegrations, and gaps. No
significant difference in the number of cells with chromosomal aberrations was observed under
any of the exposure conditions.

5.3.1.3 DNA single-strand breaks in mouse lung and nasal mucosa cells (comet assay)

Lung and nasal mucosa cells from male CD2F1 mice were exposed to nickel subsulfide at 9.6
mg/L or 40.8 mg/L for 2 hours and assayed with the alkaline comet assay (single-cell gel
electrophoresis) (Mayer et al. 1998). The treatment did not affect the viability of the cells. At the
higher concentration, about 90% of both cell types sustained DNA damage. At the lower
concentration, 60% of lung cells and 40% of nasal mucosa cells were observed to contain
fragmented DNA. The authors stated that the damage was likely due to reactive oxygen species,
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because it was completely inhibited by the addition of the peroxide scavenger catalase at
500 og/mL.

5.3.1.4 Morphological transformation of hamster cells in culture

Costa et al. (1981) reported induction of dose-dependent morphological transformation in
cultured SHE cells by nickel powder ground to a mean particle size of 4 to 5 «am and applied at
concentrations of 5, 10, and 20 «g/mL. At the highest exposure level, the incidence of
transformation was 3%.

Hansen and Stern (1984) reported that nickel powder transformed baby hamster kidney (BHK-
21) cells in a soft agar proliferation system. The IARC Working Group did not consider the
results of this study in its final evaluation, owing to associated technical and interpretative
difficulties.

5.3.1.5 Inhibition of DNA synthesis in Chinese hamster ovary (CHO) cells

Powdered nickel blocked progression through S phase of the cell cycle (DNA replication) in
cultured CHO cells in a flow cytometric assay (Costa et al. 1982).

5.3.1.6 Chromosomal aberrations in human peripheral blood lymphocytes

Human peripheral blood lymphocytes exposed to nickel powder under short-term culture
conditions did not have chromosomal aberration frequencies above the background levels (Paton
and Allison 1972).

5.3.1.7 DNA single-strand breaks in human peripheral blood lymphocytes

Assad et al. (1999) adapted an assay that combines in situ end-labeling, colloidal gold tagging,
and electron microscopy to measure genotoxicity induced in vitro by biomaterials. This new
method localizes and quantitates DNA breakage and repair. For these studies, nickel-titanium
alloy and 316L stainless steel (each powdered to 250 «an < @ < 500 «m), commercially pure
nickel (particles ” 250 «4n ), and commercially pure titanium (particles < 150 «4m) were
extracted under simulated dynamic physiological conditions according to ISO standards. The
extraction method was similar to that described in Section 5.1.1, except that incubation was for
24 hours, rather than 72 hours. For negative controls, culture tubes with media were processed
under the same conditions, but without metal specimens added.

Human lymphocytes, in whole blood obtained from volunteers, were exposed to the metal
extracts in complete medium under conditions typical for culturing and collecting cells for
analyses of metaphases, and slides were prepared for scoring chromosome spreads. For
visualization of the location of strand breaks, the chromosomes were digested with exonuclease
I11, which amplified lesions by releasing nucleotides at free 3=hydroxyl ends from nicked
double-stranded DNA. The single-stranded DNA was hybridized with short oligonucleotides of
random sequences including biotinylated 2o<deoxyuridine-5e4riphosphate (dUTP). After random
priming with Escherichia coli DNA polymerase I, incorporation of biotin-dUTP was detected by
immunogold binding to the chromatin. Labeling was quantified through computerized image
analysis of electron microscopic images and enumerated as mean number of immunogold
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particles per square micrometer of chromatin. An electron microscopy in situ end-labeling assay
was used in conjunction with AAS to quantitate metal ion diffusion and to measure presumed
genotoxic effects. The results are summarized in Table 5-1.

Table 5-1. Induction of DNA single-strand breaks in human lymphocytes by powdered
pure nickel, stainless steel, nickel-titanium alloy, and pure titanium

Mean solubility Mean immgnogold E)inding
(released ions, (particles/um®)
Hg/L) Interphase Metaphase

Pure nickel 2,600 430.7° 459.0%
Stainless steel 86.7 429.3° 570.0°
Nickel-titanium alloy 23.7 166.1 198.1
Pure titanium 20.5 159.1 163.4
Negative control <0.6 145.5 155.2

Source: Assad et al. 1999
®P < 0.001; significantly different from NiTi, titanium, and negative control (one-way analysis of variance).

PP < 0.001; significantly different from nickel, NiTi, titanium, and negative control (one-way analysis of variance).

The authors noted that the high concentrations of nickel ions in the pure nickel extracts were
strongly cytotoxic to lymphocytes, causing cell-cycle arrest at interphase, with signs of apoptosis
or necrosis. The authors stated that only a few mitoses could be harvested from cultures
containing pure nickel extracts owing to toxicity (no data provided).

Significant differences were found in the potency of the various metal extracts to induce single-
strand DNA breaks. As shown in Table 5-1, the effects were greatest in pure nickel and stainless
steel, in both interphase and metaphase. Two-way analysis of variance indicated that single-
strand breaks were more frequent in metaphase than interphase. The authors suggested that the
observed differences between metaphase and interphase DNA vulnerability to attack by nickel
(and other ions) resulted from different relative levels of chromatin compaction. They also
speculated that the potency of the stainless steel might be due to interaction of chromium and
other elements not measured, in addition to free nickel ion (Assad et al. 1999).

5.3.2 Invivo assays
5.3.2.1 LacZ and lacl mutations in transgenic rodents

Muta Mouse transgenic male mice carrying the bacterial gene lacZ and Big Blue transgenic male
rats (Fischer 344) carrying the bacterial gene lacl were exposed to nickel subsulfide by
inhalation for two hours at concentrations calculated to yield doses of 4, 7, and 13 mg/kg b.w.
(Mayer et al. 1998). The distribution of inhaled particles deposited in the lungs and nasal mucosa
was determined by AAS. The mean nickel content in rat lung was about 540 /g (compared
with a background level of about 1.0 «g/g), and the mean nickel content in rat nasal mucosa was
70 «g/g (compared with a background level of 2.0 «g/g). After a two-week expression period,
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nasal mucosa and lung tissues were removed and stored in liquid nitrogen before further
processing. Histological examination at the time of harvest revealed marked hyperemia of the
lung. Nevertheless, the mutation assays, performed as described in Section 5.3.1.1 for lacl
transgenic rats and in Dean and Myhr (1994, cited in Mayer et al. 1998) for lacZ transgenic
mice, showed no significant increases in mutation frequencies.

5.3.2.2 DNA single-strand breaks in rodent lung and nasal mucosa

Transgenic and non-transgenic CD2F1 mice and F344 rats were exposed to nickel subsulfide by
nose-only inhalation for two hour at concentrations calculated to yield doses of 4, 7, and 13
mg/kg b.w. (Mayer et al. 1998). The distribution of inhaled particles was determined by AAS.
The comet assay was applied to cells freshly isolated from nasal mucosa and lung tissue. Nickel
uptake totals in transgenic animals (lacZ mice and lacl rats) used in mutation analyses were
similar to those determined in the non-transgenic animals used in the in vivo comet assay studies.
DNA strand breaks in non-transgenic mice was observed as about 25% in the lung and 60% in
nasal mucosa at 4 mg/kg. DNA damage in non-transgenic rats was about 10% in the lung (7
mg/kg) and 40% in nasal mucosa (13 mg/kg). Transgenic rats and mice did not show a
significant increase in mutation frequencies compared to negative controls.

5.3.2.3 Chromosomal aberrations in human bone marrow cells

Bone marrow samples from 71 patients undergoing revision arthroplasty of a loose or worn
prosthesis and 30 patients undergoing primary arthroplasty (controls) were examined for
chromosomal damage (Case et al. 1996). Bone marrow cells adjacent to the prosthesis at revision
surgery had more chromosomal aberrations than either iliac crest marrow cells from the same
patients or femoral bone marrow cells from the control patients. Chromosomal aberrations
included gaps, chromatid breaks and exchanges, and chromosome breaks and exchanges.
However, tissue metal concentrations were not compared with the aberration rates, nor were the
affected cell types recorded.

5.3.2.4 Sister chromatid exchange (SCE) in human peripheral blood lymphocytes

Urinary excretion of metals and frequency of SCEs in circulating lymphocytes were compared
between 26 male workers occupationally exposed to dusts of cobalt, chromium, and nickel and
25 male controls matched by age and smoking habits (Gennart et al. 1993). Excretion of metals
and SCE frequencies both were significantly greater in exposed workers than in controls.
Tobacco smoking increased SCE frequency in both groups, independently of increases
associated with metal dust exposure. The authors concluded (perhaps erroneously) that since
cobalt is thought to be only weakly mutagenic, their results suggested that the small amounts of
chromium and nickel absorbed into the blood may have been sufficient to induce SCEs.
Evidence was not presented to allow determination of the relative genotoxic influences of
chromium and nickel.

Werfel et al. (1998) conducted a study on 39 metal-arc welders in Essen, Germany,
occupationally exposed fumes containing nickel and chromium. The control group consisted of
39 non-welders matched according to age and smoking and alcohol consumption habits and
known not to be substantially exposed to occupational or environmental carcinogens. Blood
samples were assayed for sister chromatid exchanges, chromium levels in the erythrocyte
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fraction and nickel levels in whole blood (by AAS), and concentrations of serum glutamate-
oxalacetatetranspeptidase (SGOT), glutamate-pyruvatetranspeptidase (SGPT), and gamma-
glutamyltranspeptidase (SGGT).

Chromium and nickel concentrations for the welders were 4.3 and 4.6 «g/L, respectively (values
for controls were not reported). Workplace atmospheric measurements were not taken, but the
authors estimated that these values may correspond to air concentrations of approximately 100
o CrOs/m*and 300 g Ni/m®.

The SCE assay was conducted according to the procedure of Perry and Wolff (1974, cited in
Werfel et al. 1998). SCE were enumerated by scoring 25 complete second division metaphases
per subject. The individual SCE frequencies were calculated as the average SCE frequency per
metaphase spread. The mean SCE frequency for the welders (6.22) was significantly higher than
that of the controls (5.87) (P = 0.04). Age and observed SCE frequency for all subjects were
significantly correlated, but age was not seen as a factor when comparing the worker and control
groups. The SCE frequency was significantly higher among welders who drank alcohol (n = 33)
than among welders who were non-drinkers (n = 6) (6.38 versus 5.34, P = 0.016). In the control
group, the SCE frequency also was significantly higher among alcohol drinkers (n = 28) than
among non-drinkers (n = 11) (6.37 versus 5.69, P = 0.034). Welders with an SGGT activity
above the threshold level of 25 U/L (n = 7) also had higher SCE frequencies than did welders
with normal GGT activity (6.94 versus 6.04, P = 0.023).

5.3.2.5 DNA single-strand breaks in human peripheral bolld lymphocytes

The study of welders by Werfel et al. (1998) (described above) also included an evaluation of
alkaline filter elution rates, to measure DNA single-strand breakage in peripheral blood
lymphocytes, employing a slight modification of the method of Doerjer et al. (1988, cited in
Werfel et al. 1998). The elutions were performed with both polycarbonate and polyvinylidene
fluoride (HVLP) filters, with and without proteinase K.

When polycarbonate filters were used with proteinase K, the mean relative DNA elution rate was
significantly higher for the welders (n = 39) and than for the controls (n = 39) (1.40 vs. 0.82; P =
0.0001). No significant differences in relative DNA elution rates were observed with
polycarbonate filters without proteinase K or with HVLP filters.

The authors interpreted the results to indicate significantly elevated DNA single-strand breakage
frequency along with DNA-protein crosslinks in welders. Further, welders who spent more than
50% of their shifts metal-arc welding had higher DNA elution rates with both filter types. Age
was not significantly correlated with relative DNA elution rates for either filter type. The
biomonitoring results did not differ between smokers and non-smokers. However, elution rates
were significantly lower for welders who were alcohol drinkers, both with PC filters with
proteinase K (1.23 versus 2.30, P = 0.002) and with HVLP filters (2.60 versus 4.22, P = 0.031).
SGGT activity did not seem to influence DNA elution rates in any case.

Werfel et al. (1998) stated that their results were not specific for exposure to either chromium or
nickel, and that there were no significant correlations between biomonitoring data, SCE
frequencies, and DNA elution rates. However, they believed their methods were sufficiently
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sensitive to demonstrate DNA damage in welders, as a group, receiving exposures within the
occupational limits (threshold limit values, maximum workplace concentrations, and technically
achievable workplace concentrations).

54 Summary

In assays with plants, nickel chloride induced micronucleus formation in Tradescantia at
concentrations of 20.0 and 40.0 mM, but not in Vicia.

Equiatomic nickel-titanium alloy, a surgical implant material, did not induce reverse mutations
in the S. typhimurium or chromosomal aberrations in Chinese hamster fibroblasts.

Nickel powder induced dose-dependent morphological transformations in cultured SHE cells,
with a 3% incidence at the highest exposure level. Finely ground nickel also transformed BHK-
21 cells in a soft agar proliferation system. Nickel powder interfered with DNA synthesis,
blocking proliferation of CHO cells at S phase, in a flow cytometric assay.

Nickel subsulfide induced a 4.5-fold increase in mutation frequency in a rat lacl transgenic
embryonic fibroblast line. The DNA-damaging effects of nickel subsulfide also were examined
in the comet assay and transgenic rodent mutation assays to measure effects in cells thought to be
targets of nickel-induced carcinogenesis. Freshly isolated primary cells from lung and nasal
mucosal tissues were affected in a concentration-dependent fashion after in vitro exposures.
Analogous results were not observed in the same cell types following inhalation exposures of
mice and rats, although a high degree of DNA damage was observed in mouse nasal mucosa.
Nickel subsulfide exposures by inhalation failed to induce mutations in transgenic lacZ mice and
lacl rats. The authors suggested that the results might support a proposed nongenotoxic model of
nickel carcinogenesis based on gene silencing after methylation of DNA and condensation of the
affected chromatin. This model may also explain the in vitro findings that phenotypic lacl
mutation frequencies can be increased without any alteration of DNA sequence in the coding
region of lacl.

A proposed genotoxicity test that combines in situ end-labeling, colloidal gold tagging, and
electron microscopy was used to assess effects of nickel-titanium alloy, stainless steel, pure
nickel, and pure titanium extracts on human lymphocytes in culture. After exposures to pure
nickel and stainless steel, both interphase and metaphase chromatins contained significant
increases in single-strand DNA breaks.

Nickel powder did not cause chromosome aberrations in human peripheral blood lymphocytes
exposed and tested in vitro under short-term culture conditions.

In the welding fume studies described here, nickel quality and quantity are not well
characterized. The amount of elemental nickel in the cells following in vivo exposures was
measurable by AAS, but the exact form of nickel upon entry into the body was not known. The
results were further confounded by the presence of chromium and probable interactions between
biological effects of the metals. The welder-exposure study revealed no significant correlations
between biomonitoring results, SCE frequencies, and DNA elution rates. Slight significant
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increases in SCE frequencies and incidences of single-strand DNA breakage were observed in
lymphocytes from steel welders occupationally exposed to nickel-containing fumes.
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6 Other Relevant Data

6.1 Absorption, distribution, and excretion

The ability of divalent nickel ions, Ni(Il) or Ni?*, to interact with nucleoproteins appears to be
the major determinant of the carcinogenic effect of nickel (Sunderman 1989a). The release of
Ni?* from inhaled metallic nickel or nickel alloy particles depends on oxidization of the
elemental nickel by endogenous oxidants rather than on the solubility of the elemental nickel.
The smaller the particle size, the faster the clearance from the lungs and the higher the release of
nickel ions from inhaled metallic nickel or nickel alloys (NiPERA 1998).

6.1.1 Metallic nickel

When finely powdered metallic nickel was injected into rat muscle, it slowly dissolved and
diffused from the injection site into the surrounding cells. Upon further examination, nickel was
found in the nuclear fraction (bound to nucleoli) and mitochondria of the local
rhabdomyosarcoma that developed in the rats. The microsomes contained little or no nickel
(Heath and Webb 1967, Webb et al. 1972). In another study, metallic nickel powder slowly
dissolved when incubated at 37YC in Tyrode’s solution with horse serum or sterile homogenates
of rat muscle, liver, heart, or kidney. In tissue homogenates, nickel was bound to the diffusible
components identified, in descending order of magnitude, as histidine, nucleotides, nucleosides,
and free bases (Weinzierl and Webb 1972).

In a study using human gingival fibroblast cell cultures to evaluate the cellular response to
nickel-chromium dental alloys, metallic nickel (the positive control) released more nickel ion
than did the nickel alloys being tested. At the end of a 24- to 72-hour monitoring period, metallic
nickel released nickel ions into the culture medium at a concentration greater than 324.1 ppm,
1,000 times the concentrations of ions released from the nickel alloys (Bumgardner and Lucas
1995).

Endocytosis and oxidation of metallic nickel and transport of Ni?* via calcium channels are
possible mechanisms for the cellular uptake of nickel. Although endocytosis accounts for most of
the intracellular Ni?*, several studies have demonstrated that Ni?* crosses cell membranes via
calcium channels, thus competing with calcium ions for specific receptors in the process
(NIPERA 1998, Sunderman 1989a).

6.1.2 Nickel alloys

In a study using human gingival fibroblast cell cultures to evaluate the cellular response to
nickel-chromium dental alloys, significant amounts of nickel ions were released from the nickel-
chromium alloys (Bumgardner and Lucas 1995). The following alloys were used:

Neptune: 63.36% nickel, 20.95% chromium, 8.40% molybdenum, 1.73% iron, 1% other
(niobium, aluminum, silicon, manganese, titanium)

Rexalloy: 67.21% nickel, 12.88% chromium, 6.76% molybdenum, 5.18% iron, 7.04%
other (gallium, silicon, manganese, cobalt)
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Regalloy: 71.20% nickel, 15.89% chromium, 4.50 molybdenum, 0.10% iron, 0.57%
beryllium, 7.59% other (3.31% aluminum and silicon, 4.28% manganese)

Vera Bond: 77.36% nickel, 12.27% chromium, 4.84% molybdenum, 0.14% iron, 1.67%
beryllium, 2.76% other (aluminum, cobalt, titanium, silicon)

The alloys were induction-cast into discs measuring approximately 15 mm in diameter and 3 mm
thick. At the 24-, 48-, and 72-hour test intervals, all nickel-chromium alloys had released
significantly more nickel ions than ions of other metals. Metal ion release was not proportional to
composition, but was correlated with corrosivity. Hence, the low-chromium and corrosion-
susceptible Rexalloy specimen released more ions than the high-chromium, corrosion-resistant
Neptune alloy over the same period. In experiments with the corrosion-susceptible beryllium-
containing alloys, Regalloy T and Vera Bond, nickel and beryllium ions were released
preferentially to ions of other metals in the alloy. The results are summarized in Table 6-1.

Table 6-1. Concentrations of ionic nickel from nickel-chromium dental casting alloys in
culture medium after incubation for 24 to 72 hours

. Nickel ion concentration (ppb)
Nickel content of
Alloy alloy (%) 24 hours 48 hours 72 hours
Neptune 63.36 101 146 193
Rexalloy 67.21 253 294 343
Regalloy 71.20 202 228 294
Vera Bond 77.36 227 270 314

Source: Bumgardner and Lucas 1995

Nickel alloys implanted in tissues (e.g., prostheses) slowly corrode or dissolve in body fluids,
liberating nickel particles and ions that gradually accumulate in the surrounding tissue. A review
of this process (Sunderman 1989b) is summarized in Table 6-2. Concern has been expressed that
the release of metal debris from prosthetic devices could lead to systemic toxicity, allergic
reactions, and cancer (Sunderman et al. 1989b, Case et al. 1996, Paavolainen et al. 1999). Metal
particles may accumulate in tissues surrounding the implant site and cause chronic inflammatory
reactions (Case et al. 1994). Consequently, many studies have investigated the release and
distribution of metal particles and ions from knee and hip prostheses (Sunderman et al. 1989a,
Betts et al. 1992, Langkamer et al. 1992, Case et al. 1994, Urban et al. 2000). Increased
concentrations of nickel, cobalt, chromium, and manganese in serum and urine from patients
with various types of implants have been reported. Several factors (e.g., type of alloy, porosity of
surfaces, and instability of the prosthetic head) may affect the amount of metal debris released
from the prosthesis (Sunderman et al. 1989a, Urban et al. 2000). Some of these studies also
indicate greater metal release from metal-to-metal articular surfaces than from metal-to-
polyethylene surfaces (Dobbs and Minski 1980, Black et al. 1983, both cited in Sunderman
1989b, Paavolainen et al. 1999).
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Table 6-2. Detection of nickel in body fluids of hip arthroplasty patients

Alloy and type of No. of Period of
implant® patients observation Observation Reference
Hip, stainless steel | 20 10 to 13 years elevated nickel concentration in Pazzaglia et al.
(c, np, pe) plasma, blood, and urine 1983
Hip, CoCrMo (c, 15 1dayto6 elevated nickel concentration in Black et al. 1983
np, pe) months serum (peak at 6 months)
Hip, stainless steel | 13 9 to 15 years elevated serum nickel Linden et al.
(c, np, pe) concentration in only 1 patient® 1985
Hip, CoCrMo (nc, | not 1 week to 1 elevated urinary nickel Jones and
pc, pe) reported | year concentration in 2 patients at 6 Hungerford 1987
months, elevated nickel
concentration in urine in 3 of 4
patients at 1 year

Source: Sunderman 1989b
% = cemented; nc = non-cemented; pc = porous-coated; np = nonporous-coated; pe = polyethylene articular component.

bRenal insufficiency may also have been a contributing factor.

Metal debris associated with prosthetic devices is not found just in tissues surrounding the
implant. Particles have been found in regional and distant lymph nodes, the spleen, and the liver
(Langkamer et al. 1992, Case et al. 1994, Urban et al. 2000). These studies indicate that metal
debris is not biologically inert and can be disseminated in relatively large quantities following
prosthetic joint replacement, particularly in patients who have had a failed hip arthroplasty. Betts
et al. (1992) reported that tissue metal content did not correlate with the histologic findings or
the duration of implantation in 22 patients who had total hip revision arthroplasties. Their data
suggested that the metal debris was composed primarily of wear particles, rather than ionic
corrosion products, and that the cement or polyethylene particles may have been more important
than the metals in producing inflammatory reactions and loosening.

Circulating nickel from dissolved nickel alloys in the body can be further degraded by
endogenous oxidizing agents and taken into the cells by transport of Ni** via calcium channels.
Another likely mechanism for the cellular uptake of particulate nickel is endocytosis. Particle
size, surface properties, and chemical composition affect the endocytosis of nickel-containing
particulates. A portion of the absorbed nickel enters the nucleus, in either ionic or particulate
form, and a portion of the nickel (assumed to be Ni**) becomes bound to nucleoproteins
(NIPERA 1998, Sunderman 1989a).

6.1.3 Other nickel compounds

The absorption, distribution, and elimination of nickel compounds depend upon solubility,
concentration, and, in inhalation exposures, the particle sizes of various nickel compounds (NiDI
1997).

In humans, almost 35% of inhaled nickel is absorbed into the blood from the respiratory tract

(Bennett 1984, Grandjean 1984, Sunderman and Oskarsson 1991, all cited in NTP 1996a,b,c).
Human volunteers absorbed 25% of an oral dose of nickel sulfate administered in water, but only
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1% of the dose ingested as a food additive (NiDI 1997). In mice, rats, and dogs orally
administered nickel sulfate, nickel subsulfide, and nickel oxide, 1% to 10% of the dose was
absorbed. An absorption rate of 1% (in 24 hours) through guinea pig skin was reported (Nielson
et al. 1993; cited in NTP 1996a,b,c, ATSDR 1997).

In humans, absorbed nickel is widely distributed in the body. Post-mortem studies of nickel
workers showed the highest levels of nickel disposition in the lungs, thyroid, and adrenal glands,
with lesser concentrations in the kidney, liver, heart, spleen, and other tissues (NiDI 1997).

Systemically absorbed nickel is mainly excreted in urine. In human volunteers exposed orally to
soluble nickel sulfate hexahydrate, the half-life of nickel averaged 11 hours. In this study, 100%
of the nickel was recovered either in urine or as unabsorbed nickel in the stool within four days
of exposure (Christensen and Lagesson 1981). Nickel also may be eliminated via sweat, the hair,
or human breast milk (NiDI 1997). In experimental animals, ingested nickel compounds were
excreted in the urine and feces (English et al. 1981, Carvalho and Zeimer 1982). The pulmonary
half-life of nickel compounds depends upon solubility and particle size (NiDI 1997). In a study
of workers exposed to insoluble nickel particles of small diameter, nickel had a half-life in urine
ranging from 30 to 53 hours (Raithel et al. 1982). Studies have suggested that nickel has a longer
half-life, ranging from months to years, in workers exposed to insoluble particles of increasing
size (Torjussen and Andersen 1979, Boysen et al. 1984, Morgan and Rouge 1984). In chronic
exposure studies with rats and mice, nickel sulfate had the shortest half-life (1 to 3 days),
followed by nickel subsulfide (five days), and nickel oxide (100 days) (Benson et al. 1987,
Dunnick et al. 1989, both cited in NTP 1996a,b,c). A biphasic pulmonary clearance (one to two
hours for the first, and 120 to 300 hours for the second) was reported after intratracheal
instillation of nickel subsulfide in mice (Valentine and Fisher 1984, Finch et al. 1987).

6.2 Formation of protein and DNA adducts

Although covalent nickel:DNA adducts (nickel:DNA base binding) have not been found
(Savolainen 1996), Ni** binds to DNA at its high- and low-affinity phosphate sites in vitro. Such
binding produces conformational changes in DNA molecules studied in aqueous solution. Other
studies have demonstrated that nickel forms a stable mixed-ligand complex with the amino acids
glycine, glutamine, histidine, arginine, cysteine, alanine, and lysine (Jones et al. 1980, cited in
Kasprzak et al. 1986). Thus, DNA adduct formation is not a likely factor in nickel
carcinogenicity.

6.3 Lipid peroxidation and oxidative DNA damage

The carcinogenic effect of nickel may be related to its lipid peroxidation properties which induce
DNA-strand gaps and breaks and DNA-protein crosslinks (Savolainen 1996, Sunderman 1989a).
Although the mechanism of nickel lipid peroxidation in vivo has not been established, proposed
mechanisms suggest that this reaction may be indirectly mediated by Ni** displacement of iron
or copper ions (Fe?* or Cu®*) from their intracellular binding sites producing the lipid
peroxidating redox couples Fe?*/Fe®* or Cu*/Cu?*. Several other hypotheses have been proposed
for direct and indirect nickel lipid peroxidation. Proposed direct mechanisms suggest that free
oxygen radicals (reactive oxygen species) are generated by Ni**/Ni**. This is thought to occur in
single-electron transfer reactions that accelerate the degradation of lipid hydroperoxides to form
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lipid-O' radicals by Ni?* propagation (rather than initiation) of autocatalytic peroxidative
reactions. Proposed indirect mechanisms include impairment of cellular defenses against
peroxidation by depletion of free radical scavengers such as glutathione, or by inhibition of
catalase, superoxide dismutase, glutathione peroxidase, glutathione-S-transferase, or other
enzymes that protect against free-radical injury (Sunderman 1989a).

In an assay to evaluate the lipid peroxidating potential of nickel, the level of lipid peroxidation
was measured in nickel-treated CHO cells by means of barbituric acid reactions to quantify lipid
peroxidation. Nickel sulfide, nickel subsulfide, nickel oxide (black and green), and nickel
chloride were shown to increase oxidation of 2e¢7-dichlorofluorescein-diacetate to the fluorescent
2-¢/-dichlorofluorescein, suggesting that nickel compounds increased the concentration of
oxidants in CHO cells. The results of the study indicated that Ni** causes an increase in reactive
oxygen species that may have the ability to convert Ni** to Ni** or damage DNA bases and
induce DNA-protein crosslinks (Huang et al. 1994).

DNA base damage was significantly increased in the tissues of five-week-old male F344/NCr
rats receiving a single i.p. injection of 90 «amol/kg of nickel(Il)acetate. DNA damage was
assayed via GC/mass spectroscopy with selected ion monitoring in renal and hepatic chromatin
of the male rats, up to 14 days after nickel administration (Kasprzak et al. 1997). The ten
damaged bases found are shown in Figure 6-1.

6.4 Summary

Metallic nickel and nickel alloys are converted to Ni** in target cells, and the ions may then enter
the nucleus and bind to nucleoproteins. This process is a major determinant of the carcinogenic
effect of nickel. Although no covalent nickel adducts (binding to bases) have been found in
DNA, in vitro studies show that Ni?* from metallic nickel and nickel alloys loosely binds to DNA
at its high- and low-affinity phosphate sites.

Nickel lipid peroxidation, an effect related to DNA base damage and the carcinogenic effect of
nickel, has been demonstrated, but the mechanism(s) of this effect has not been established.
Proposed mechanisms include indirect production of active peroxidating redox couples by Ni?*,
depletion of the free radical scavengers by Ni?*, and the direct generation of reactive oxygen
species by Ni?*. The reactive oxygen species are known to accelerate the degradation of lipid
hydroperoxides, forming lipid-O' radicals.

Absorption, distribution, and excretion of nickel compounds depend upon solubility,
concentration, and surface area. Once absorbed, the ionic form of nickel acts as the ultimate
carcinogenic species, with a variety of biokinetic factors dictating the carcinogenic potential of
the soluble or insoluble nickel compounds.
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Figure 6-1. Nickel(l1)-damaged oxidative DNA products
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Nickel and nickel compounds were considered by previous IARC Working Groups, in
1972, 1975, 1979, 1982 and 1987 (IARC, 1973, 1976, 1979, 1982, 1987). Since that time,
new data have become available, and these are included in the present monograph and have
been taken into consideration in the evaluation.

1. Chemical and Physical Data

The list of nickel alloys and compounds given in Table 1 is not exhaustive, nor does it
necessarily reflect the commercial importance of the various nickel-containing substances,
but it is indicative of the range of nickel alloys and compounds available, including some
compounds that are important commercially and those that have been tested in biological
systems. A number of intermediary compounds occur in refineries which cannot be
characterized and are not listed.

1.1 Synonyms, trade names and molecular formulae of nickel and selected nickel-
containing compounds

Table 1. Synonyms (Chemical Abstracts Service names are given in bold), trade names
and atomic or molecular formulae or compositions of nickel, nickel alloys and selected
nickel compounds

Chemical Chem. Abstr. Synonyms and trade names Formula Oxida-
name Serv. Reg. tion
Number” state”

Metallic nickel and nickel alloys

Nickel 7440-02-0 C.I. 77775; N1; Ni 233; Ni 270; Nickel 270; Ni 0
(8049-31-8; Nickel element; NP 2
17375-04-1;
39303-46-3;
53527-81-4;

112084-17-0)

-257-
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Table 1 (contd)

Chemical Chem. Abstr. Synonyms and trade names Formula Oxida-
name Serv. Reg. tion
Number” state”
Ferronickel 11133-76-9 Iron alloy (base), Fe, Ni; nickel alloy (non- Fe, Ni 0
(11148-37-1; base) Fe, Ni
12604-55-6)
Nickel alumi- 61431-86-5 Raney nickel; Raney alloy NiAl 0
nium alloys 37187-84-1
Nickel- 12681-83-3 Iron alloy (base); 21-6-9; 21-6-9 alloy; Fe 60-69, Cr 0
containing Alloy 21-6-9; AMS 5656C; Armco 21-6-9; 18-21, Mn 8-10,
steels’ ASTM XM10; 21-6-9 austenitic steel; Ni- Ni 5-7,S10-1, N
tronic 40; Nitronic 40 stainless steel; Pyro- 0.2-04,C0-0.1, P
met 538; 21-6-9 Stainless steel; Stainless 0-0.1
steel 21-6-9; 21-6-9 steel; Steel 21-6-9
High nickel 12605-70-8 ASTM B344-60Ni, 16 Cr; Chromel C; Ni 57-62, Fe 0
alloys® 06Kh15N60; Kh15N60N; Nichrome; NiCr 22-28, Cr 14-18,
60/15; PNKh; Tophet C Si 0.8-1.6, Mn 0-1,
C0-0.2
11121-96-3 AFNOR ZFeNC45-36; AISI 332; Alloy Fe 39-47, Ni 0
800; ASTM B163-800; DIN 1.4876; IN 30-35; Cr 19-23,
800; Incoloy alloy 800; JIS NCF 800; NCF Mn 0-1.5, Si 0-1;
Steel; NCF 800 HTB; Pyromet 800; Sani- Cu 0-0.8; Al 0-0.6;
cro 31; Thermax 4876; TIG N800 Ti 0-0.6; C 0-0.1
12675-92-2 Haynes alloy No. 188 Ni(Co) 0
11105-19-4 Alloy 400; ASTM B127; ASTM B164-A; Ni 63-70; Cu 0
H3261; Monel alloy 400; Monel 25-37, Fe 0-2.5,
(NiCu30Fe) Mn 0-2, Si 0-0.5,
C0-0.3
Nickel oxides and hydroxides
Nickel 12054-48-7 Nickel dihydroxide; nickel (II) hydroxide; Ni(OH), +2
hydroxide nickel (2+) hydroxide; nickel hydroxide
(amorphous 11113-74-9) (Ni(OH),); nickelous hydroxide
Nickel 1313-99-1 Black nickel oxided; green nickel oxide; NiO +2
monoxide 11099-02-8 mononickel oxide; nickel monooxide; nick-
elous oxide; nickel oxide (NiO); nickel (II)
oxide; nickel (2+) oxide
34492-97-2 Bunsenite (NiO)
Nickel 1314-06-3 Black nickel oxide”; dinickel trioxide; nick- Ni,O3 +3
trioxide (34875-54-2) elic oxide; nickel oxide; nickel (IIT) oxide;
nickel oxide (Ni,03); nickel peroxide; nickel
sesquioxide
Nickel sulfides
Nickel 12035-51-7 Nickel sulfide (NiS,) NiS, +4
disulfide
12035-50-6 Vaesite (NiS,) NiS, +4
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Table 1 (contd)
Chemical Chem. Abstr. ~ Synonyms and trade names Formula Oxi-
name Serv. Reg. dation
Number’ state”
Nickel sulfide 16812-54-7 Mononickel monosulfide; nickel monosul- NiS +2
(1344-49-6) fide; nickel monosulfide (NiS); nickelous
(amorphous 11113-75-0) sulfide; nickel (II) sulfide; nickel (2+) sul-
fide; nickel sulfide (NiS)
1314-04-1 Millerite (NiS) NiS +2
(61026-96-8)
Nickel sub- 12035-72-2 Nickel sesquisulfide; nickel subsulfide Ni;S, NS
sulfide (Ni3S,); nickel sulfide (Ni;S,); trinickel
disulfide
12035-71-1 Heazlewoodite (Ni;S,); Khizlevudite
Pentlandite 53809-86-2 Pentlandite (FegNigsl()) FegNigsl() NS
12174-14-0 Pentlandite (Feo‘4_0‘6Ni0‘4_0'6)9S§; NS
Nickel salts
Nickel 3333-67-3 Carbonic acid, nickel (2+) salt (1:1); nick- NiCO; +2
carbonate el carbonate (1:1); nickel (IT) carbonate;
nickel (2+) carbonate; nickel carbonate
(NiCOs); nickel (2+) carbonate (NiCOs);
nickel monocarbonate; nickelous carbon-
ate
Basic nickel 12607-70-4 Carbonic acid, nickel salt, basic; nickel NiCO;.2Ni(OH), +2
carbonates (63091-15-6) carbonate hydroxide (Ni;(COs)(OH),);
nickel, (carbonato(2-)) tetrahydroxytri-
12122-15-5 Nickel bis(carbonato(2-))hexahydroxypen-  2NiCO;.3Ni(OH), 2
ta-; nickel hydroxycarbonate
Nickel acetate 373-02-4 Acetic acid, nickel (2-+) salt; nickel (II) Ni(OCOCH;), +2
(17593-69-0) acetate; nickel (2+) acetate; nickel di-
acetate; nickelous acetate
Nickel acetate 6018-89-9 Acetic acid, nickel (+2) salt, Ni(OCOCH;),.4H,0 +2
tetrahydrate tetrahydrate
Nickel ammo- 15699-18-0 Ammonium nickel sulfate Ni(NH4),»(SOy), +2
nium sulfates ((NH,4),Ni(SO,),); nickel ammonium sul-
fate (Ni(NHy),(SOy),); sulfuric acid, am-
monium nickel (2+) salt (2:2:1)
Nickel ammo- 25749-08-0 Ammonium nickel sulfate Niy(NH,),(S04)3 +2

nium sulfate
hexahydrate

((NH4),:Ni,(S0O,)3); sulfuric acid, ammo-
nium nickel (2+) salt (3:2:2)
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Table 1 (contd)

Chemical Chem. Abstr. Synonyms and trade names Formula Oxi-
name Serv. Reg. dation
Number? state”
7785-20-8 Ammonium nickel (2+) sulfate hexahy- Ni(NH,),(SO4),. +2
(51287-85-5, drate; ammonium nickel sulfate 6H,0
55526-16-4) ((NH,),Ni(SO,),); diammonium nickel
disulfate hexahydrate; diammonium nickel
(2+) disulfate hexahydrate; nickel
ammonium sulfate (Ni(NH,),(SO,),)
hexahydrate; nickel diammonium disulfate
hexahydrate; sulfuric acid, ammonium
nickel (2+) salt (2:2:1), hexahydrate
Nickel 14721-18-7 Chromium nickel oxide (NiCrO,); nickel NiCrO, +2
chromate chromate (NiCrQy,); nickel chromium
oxide (NiCrOy,)
Nickel 7718-54-9 Nickel (IT) chloride; nickel (2+) chloride; NiCl, +2
chloride (37211-05-5) nickel chloride (NiCl,); nickel dichloride;
nickel dichloride (NiCl,); nickelous chol-
ride
Nickel 7791-20-0 Nickel chloride (NiCl,) hexahydrate NiCl,.6H,0 +2
chloride
hexahydrate
Nickel nitrate 13478-00-7 Nickel (2+) bis(nitrate)hexahydrate; nick- Ni(NOs),.6H,0 +2
hexahydrate el dinitrate hexahydrate; nickel (II) nitrate
hexahydrate; nickel nitrate (Ni(NOs),)
hexahydrate; nickelous nitrate hexahy-
drate; nitric acid, nickel (2+) salt, hexa-
hydrate
Nickel sulfate 7786-81-4 Nickel monosulfate; nickelous sulfate; NiSO, +2
nickel sulfate (1:1); nickel (II) sulfate;
nickel (2+) sulfate; nickel (2+) sulfate
(1:1); nickel sulfate (NiSO,); sulfuric
acid, nickel (2+) salt (1:1)
Nickel sulfate 10101-97-0 Sulfuric acid, nickel (2+) salt (1:1), hexa- NiSO,.6H,0O +2
hexahydrate hydrate
Nickel sulfate 10101-98-1 Sulfuric acid, nickel (2+) salt (1:1), hep- NiSO,.7H,0 +2
heptahydrate tahydrate
Other nickel compounds
Nickel 13463-39-3 Nickel carbonyl (Ni(CO),), (T-4)-; nickel Ni(CO), 0
carbonyl (13005-31-7, tetracarbonyl; tetracarbonylnickel; tetra-
14875-95-7, carbonylnickel (0)
36252-60-5,
42126-46-5,

71327-12-3)
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Table 1 (contd)
Chemical name  Chem. Abstr. Synonyms and trade names Formula Oxida-
Serv. Reg. tion
Number? state”
Nickel 12035-52-8 Antimony compound with nickel (1:1); NiSb NS
antimonide (73482-18-5) nickel antimonide (NiSb); nickel com-
pound with antimony (1:1); nickel mono-
antimonide
12125-61-0 Breithauptite (SbNi) NiSb NS
Nickel 27016-75-7 Nickel arsenide (NiAs) NiAs NS
arsenides (12068-59-6,
24440-79-7)
1303-13-5 Nickeline; nickeline (NiAs); niccolite NiAs NS
(23292-74-2)
12256-33-6 Nickel arsenide (Ni;;Asg); nickel arsenide Ni; Asg NS
tetragonal
12044-65-4 Maucherite (Ni;;Asg); Placodine; Temis- NisAs, NS
kamite
12255-80-0 Nickel arsenide (NisAs,); nickel arsenide NisAs, NS
hexagonal
Nickel 1314-05-2 Nickel monoselenide; nickel selenide NiSe NS
selenide (NiSe)
12201-85-3 Mackinenite; Makinenite (NiSe) NiSe NS
Nickel 12137-13-2 Nickel selenide (Ni;Se,) Ni;Se, NS
subselenide
Nickel 12255-10-6 Nickel arsenide sulfide (NiAsS) NiAsS NS
sulfarsenide
12255-11-7 Gersdorffite (NiAsS) NiAsS NS
Nickel 12142-88-0 Nickel monotelluride; nickel telluride NiTe NS
telluride (NiTe)
24270-51-7 Imgreite (NiTe) NiTe NS
Nickel titanite 12035-39-1 Nickel titanate(IV); nickel titanate (Ni- NiTiO, +2
Ti0s); nickel titanium oxide (NiTiOs);
nickel titanium trioxide
Chrome iron 71631-15-7 CI77504; CI Pigment Black 30; (Ni,Fe)(CrFe),04 NS

nickel black
spinel

DCMA-13-50-9; nickel iron chromite
black spinel
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Table 1 (Contd)

Chemical name  Chem. Abstr. Synonyms and trade names Formula Oxida-
Serv. Reg. tion
Number? state”

Nickel ferrite 68187-10-0 CI Pigment Brown 34; DCMA-13-35-7 NiFe,0, NS

brown spinel

Nickelocene 1271-28-9 Bis(n5-2,4-cyclopentadien-1-yl)nickel, n-(CsHs),Ni +2
(51269-44-4) di-n-cyclopentadienylnickel; dicyclopen-

tadienylnickel; nickel, bis(n5-2,4-cyclo-
pentadien-1-yl)-; nickel, di-n-cyclopenta-
dienyl-

“Replaced CAS Registry numbers are given in parentheses.
bNS, not specified; mixed formal oxidation states of nickel and/or complex coordination in the solid form
“Chemical Abstracts Service Registry lists hundreds of these compounds; some typical examples are given.

“In commercial usage, ‘black nickel oxide’ usually refers to the low-temperature crystalline form of nickel
monoxide, but nickel trioxide (Ni,O3), an unstable oxide of nickel, may also be called ‘black nickel oxide’.

1.2 Chemical and physical properties of the pure substance

Known physical properties of some of the nickel compounds considered in this
monograph are given in Table 2. Data on solubility refer to saturated solutions of the
compound in water or other specified solvents. Nickel compounds are sometimes classed as
soluble or insoluble in water; such a classification can be useful in technical applications of
the various compounds but may not be relevant to determining their biological activity.
Water-soluble nickel compounds include nickel chloride (642 g/L at 20°C) and nickel
sulfate (293 g/L at 20°C), while nickel monosulfide (3.6 mg/L at 18°C) and nickel carbonate
(93 mg/L at 25°C) are classed as insoluble (Weast, 1986). Compounds with solubilities
towards the middle of this range are not easily classified in this way. Different forms of
nominally the same nickel compound can have very different solubilities in a given solvent,
and particle size, hydration and crystallinity can markedly affect the rate of dissolution. For
example, anhydrous nickel sulfate and the hexahydrate are similarly soluble in unbuffered
water (Grandjean, 1986), but the hexahydrate dissolves several orders of magnitude faster
than the anhydrate.



Table 2. Physical properties of nickel and nickel compounds®

Chemical name Atomic/ Melting- Boiling-  Typical physical Solubility
molecular  point point description
weight  (°C)  (°0)
Metallic nickel and nickel alloys
Nickel 58.69 1455 2730 Lustrous white, hard fer-  Soluble in dilute nitric acid; slightly sol-
romagnetic metal’or grey uble in hydrochloric and sulfuric acids;
powder insoluble in cold or hot water
Ferronickel alloy - - - Grey solid® Combined properties of metallic iron
and nickel, ammonia and alkali hydrox-
ides
Nickel oxides and hydroxides
Nickel hydroxide 9270 230 - Green crystals or amor-  Nearly insoluble (0.13 g/l)in cold water;
phous solid soluble in acid, ammonium hydroxide
Nickel monoxide 74.69 1984 - Grey, black or green® Insoluble in water (0.0011 g/1 at 20°C);
powder soluble in acid, ammonium hydroxide"
Nickel sulfides
Nickel disulfide 122.81 Decom- - Black crystals® or powder Insoluble in water?
poses at
4007
Nickel sulfide
Amorphous 90.75 797 - Black crystals or powder  Nearly insoluble (0.0036 g/1, B-form)? in
a-form 90.75 - - - water at 18°C; soluble in aqua regia, ni-
B-form 90.75 - - Dark-green crystals® tric acid, potassium hydrosulfide; slight-
ly soluble in acids
Nickel subsulfide 240.19 790 - Lustrous pale-yellowish  Insoluble in cold water; soluble in nitric
(x-form) or bronze metallic crys-  acid

tals



Table 2 (contd)

Chemical name Atomic/ Melting-  Boiling-  Typical physical Solubility
molecular  point point description
weight — (°C)  (°0)
Nickel salts
Nickel acetate 176.78 Decom-  16.6 Dull-green crystals Soluble in water (166 g/1 at 20°C)* in-
poses soluble in ethanol
Nickel acetate tetra- 248.84 Decom- 16 Dull-green crystals Soluble in water (160 g/l at 20°C)¥ solu-
hydrate poses ble in dilute ethanol
Nickel ammonium sulfates
Hexahydrate 394.94 - - - Soluble in water (104 g/l at 20°C)*
Anhydrous 286.88 Decom- - Green crystals*® Soluble in water (300 g/l at 20°C)% less
poses® soluble in ammonium sulfate solution;
insoluble in ethanol®
Nickel carbonate 118.70 Decom- - Light-green crystals Nearly insoluble (0.093 g/1) in water at
poses 25°C; insoluble in hot water, soluble in
acids
Nickel hydroxycarbonate 587.67 Decom- - Light-green crystals or Insoluble in cold water; decomposes in
poses brown powder® or wet hot water; soluble in acids
green paste
Nickel chlorides
Anhydrous 129.60 1001 Sublimes  Yellow deliquescent Soluble in water at 20°C (642 g/1) and at
at 973 scales 100°C (876 g/1); soluble in ethanol, am-
monium hydroxide; insoluble in nitric
acid
Hexahydrate 237.70 - - Green deliquescent crys-  Soluble in water (2540 g/1 at 20°C)%,
tals very soluble in ethanol
Nickel chromate 174.71 - - Black crystals Insoluble in water



Table 2 (contd)

Chemical name Atomic/ Melting- Boiling-  Typical physical Solubility
molecular  point point description
weight  (°C)  (°C)
Nickel nitrate hexa- 290.79 56.7 Decom- Green deliquescent Soluble in water (2385 g/l at 0°C), am-
hydrate poses at  crystals monium hydroxide and ethanol
136.7
Nickel sulfates
Anhydrous 154.75 Decom- - Pale-green to yellow Soluble in water (293 g/l at 20°C); insol-
poses at crystals uble in ethanol and diethyl ether®
848
Hexahydrate 262.84 53.3 - Blue or emerald-green Soluble in water (625 g/ at 0°C); solu-
crystals® ble in ethanol?
Heptahydrate 280.85 99 - Green crystals Soluble in water (756 g/1 at 20°C); solu-
ble in ethanol?
Other nickel compounds
Nickel antimonide 180.44 1158 Decom-  Light-copper to mauve  Insoluble in water
poses at  crystals®
1400
Nickel arsenides 133.61 968 - Grey crystals® Insoluble in hot or cold water, soluble
NiAs in aqua regia
Ni;,Asq 1244.96 1000 - Platinum-grey crystals Insoluble in water?
NigAs, 443.39 993 - Grey crystals® Insoluble in water?
Nickel carbonyl 170.73 -25 43 Colourless to yellow Nearly insoluble (0.18 g/1) in water at

liquid

9.8°C; soluble in aqua regia, ethanol,
diethyl ether, benzene, nitric acid; insol-
uble in dilute acids or dilute alkali



Table 2 (contd)

Chemical name Atomic/ Melting-  Boiling-  Typical physical Solubility

molecular  point point description
weight  (°C)  (°0)

Nickelocene 188.88 171-173¢ - Dark-green crystals® Soluble in most organic solvents; insolu-
ble in water; decomposes in acetone,
ethanol, diethyl ether

Nickel selenide 137.65 Red heat - White or grey crystals Insoluble in water and hydrochloric

(NiSe) acid; soluble in aqua regia, nitric acid

Nickel subselenide 333.99 - - Green crystals® Insoluble in water?

(NisSez)
Nickel telluride 186.29 Decom- - Grey crystals® Insoluble in water; soluble in nitric acid,
poses at aqua regia, bromine water?
600-900¢
Nickel titanate 154.57 Decom- - Yellow crystals® Insoluble in water?
poses at
1000

“From Weast (1986), unless otherwise specified; -, depending on composition

’From Windholz (1983)
‘From Sunderman (1984)
“From Grandjean (1986)
From Sax & Lewis (1987)
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1.3 Technical products and impurities

This section does not include nickel-containing intermediates and by-products specific to
nickel production and use, which are considered in section 2.

(a) Metallic nickel and nickel alloys

Ferronickel contains 20-50% nickel (Sibley, 1985). Other components include carbon
(1.5-1.8%), sulfur (<0.3%), cobalt (<2%), silicon (1.8-4%), chromium (1.2-1.8%) and iron
(balance of alloy). It is delivered as ingots or granules (ERAMET-SLN, 1986).

Pure unwrought nickel is available commercially in the form of cathodes, powder,
briquets, pellets, rondelles, ingots and shot. Its chemical composition is > 99% nickel, with
carbon, copper, iron, sulfur and oxygen as impurities (Sibley, 1985). Metallic nickel
undergoes surface oxidation in air; oxidation of finely divided nickel powder can result in
the conversion of a large fraction of the metal to oxide upon prolonged storage (Cotton &
Wilkinson, 1988).

Nickel-aluminium alloy (for the production of Raney nickel) is available as European
Pharmacopoeia grade with the following typical analysis: nickel, 48-52%; aluminium, 48-
52%; and chloride, 0.001% (Riedel-de Haén, 1986).

Nickel alloys can be categorized as nickel-chromium, nickel-chromium-cobalt, iron-
nickel-chromium and copper-nickel alloys. Typical analyses are given in Table 3. Austenitic
steels are the major group of nickel-containing steels. Typical compositions are given in
Table 4.

(b) Nickel oxides and hydroxides

The temperature of formation of nickel oxide (up to 1045°C) determines the colour of the
crystal (jet-black to apple green), the crystalline surface area and the nickel [III] content
(<0.03-0.81% by weight). The temperature of formation may also affect the crystalline
structure and the incidence of defects within it (Sunderman et al., 1987; Benson et al.,
1988a).

Nickel monoxides are available commercially in different forms as laboratory reagents
and as industrial products. Laboratory reagents are either green powder (Aldrich Chemical
Co., Inc., 1988) or black powders; industrial products are either black powders, coarse
particles (Sinter 75) or grey sintered rondelles (INCO, 1988; Queensland Nickel Sales Pty
Ltd, 1989). Sinter 75 (76% Ni) contains about 22% oxygen and small amounts of copper
(0.75%), iron (0.3%), sulfur (0.006%) and cobalt (1.0%) (Sibley, 1985). Sintered rondels
(>85% Ni) are formed by partially reducing a cylindrical pressing of granular nickel oxide
to nickel metal. The degree of reduction achieved determines the nickel content of the
finished rondel (Queensland Nickel Sales Pty Ltd, 1989).



Table 3. Elemental analyses of representative nickel alloys (weight %)“

Alloy Ni Cu Cr Co Fe Mo w Ta Nb Al Ti Mn Si C
Nickel-chromium
Cast alloy 625 630 - 216 - 20 87 - - 39 0.2 0.2 006 020 020
Hastelloy alloy X 470 - 220 1.5 185 9.0 06 - - - - 050 050 0.10
Inconel alloy 617 540 - 220 125 - 9.0 - - - L0 - - - 0.07
Nickel-chromium-cobalt
Haynes Alloy 1002 160 - 220 Bal s - 70 38 - 0.3 0.2 070 040 0.60
Haynes Alloy No. 188 220 - 20 390 0 - 140 - - - - 125 040 010
max max
Nickel-iron-chromium
Haynes Alloy 556 200 - 220 200 290 3.0 25 09 0.1 0.3 - 150 040 010
Incoloy Alloy 800° 325 - 210 - 460 - - - - 0.4 0.4 080 050 005
Nickel-copper
Monel alloy 400° 665 315 - - L3 - - - - - - 1.0 025 0.15
Monel alloy K-500° 650 295 - - 1.0 - - - - 28 0.5 0.6 0.15 015

“From Nickel Development Institute (1987a); Bal, balance
*From Tien & Howson (1981)
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Table 4. Typical composition of nickel-containing steels (weight %)*

Grade Cr Ni Mn Mo C Si S P Fe

AISI-201 16-18 3.5-3.5 5575 - 0.15 1.0 0.03 0.06 Balance
AISI-302 17-19 8.0-10.0 2.0 - 0.15 1.0 0.03 0.045 Balance
AISI-304 18-20 8.0-10.5 2.0 - 0.08 1.0 0.03 0.045 Balance
AISI-316 16-18 10-14 2.0 2-3 0.08 1.0 0.03 0.045 Balance

*From Nickel Development Institute (1987b); AISI, American Iron and Steel Institute

Nickel hydroxide is commercially available at 97% purity (Aldrich Chemical Co., Inc.,
1988).

(c¢) Nickel sulfides

Nickel sulfide exists in three forms: the high-temperature, hexagonal crystal form, in
which each nickel atom is octahedrally coordinated to six sulfur atoms; the low-temperature,
rhombohedral form (which occurs naturally as millerite), in which each nickel atom is
coordinated to two other nickel atoms and five sulfur atoms (Grice & Ferguson, 1974); and
amorphous nickel sulfide. Amorphous nickel sulfide is gradually converted to nickel
hydroxy sulfide on contact with air (Cotton & Wilkinson, 1988). Grice and Ferguson (1974)
referred to the rhombohedral (millerite) form as B-nickel sulfide and the high-temperature
hexagonal form as a-nickel sulfide. Different nomenclatures have been used by other
authors (Abbracchio et al., 1981; Grandjean, 1986). The term B-nickel sulfide is used to
denote the rhombohedral millerite form throughout this monograph.

Nickel subsulfide exists in two forms: a-nickel subsulfide, the low-temperature,
rhombohedral form (heazlewoodite), in which nickel atoms exist in distorted tetrahedral
coordination and the sulfur atoms form an almost cubic body-centred sublattice, with six
equidistant nickel neighbours; and [-nickel subsulfide, the high-temperature form
(Sunderman & Maenza, 1976).

An examination of the surface of crystalline and amorphous nickel sulfide particles
revealed that crystalline particles have a net negative surface charge, while the surface
charge of amorphous nickel sulfide appears to be positive. X-Ray photoelectron
spectroscopy analysis of amorphous and crystalline nickel sulfide showed that the outermost
surface of the two compounds differed with respect to the Ni/S ratio and the sulfur oxidation
state (Abbracchio et al., 1981).

Nickel sulfides are intermediates in nickel smelting and refining which can be isolated as
crude mattes for further processing but are not significant materials of commerce. Most
nickel subsulfide is produced as an intermediate in many nickel refining processes (Boldt &
Queneau, 1967).
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(d) Nickel salts

Nickel acetate is available as the tetrahydrate at a purity of > 97% (Mallinckrodt, Inc.,
1987).

Nickel ammonium sulfate hexahydrate is available as analytical reagent-grade crystals at
a purity of 99.0% min or at a grade for nickel plating (purity, 99-100%; Riedel-de-Haén,
1986).

Nickel carbonate 1s available mainly as hydroxycarbonates, such as basic nickel
carbonate. Laboratory reagent grades may contain 47.5% or 45% nickel; industrial grades,
as green powders or wet pastes, contain approximately 45% nickel (INCO, 1981-82;
Pharmacie Centrale, 1988).

Nickel chloride is available as the hexahydrate as a laboratory reagent of > 99% purity
and as industrial products with about 24.7% nickel. It is also available in industrial
quantities as an aqueous solution (ERAMET-SLN, 1985).

Nickel nitrate 1s available as the hexahydrate at > 99% purity and as crystals and flakes
(J.T. Baker, 1988).

Nickel sulfate is available as the heptahydrate at > 99% purity and as the hexahydrate at
99% purity (Aldrich Chemical Co., Inc., 1988).

(e) Other nickel compounds

Nickelocene is available in solid form at > 90% purity or as an 8-10% solution in toluene
(American Tokyo Kasei, 1988).

2. Production, Use, Occurrence and Analysis

2.1 Production

Nickel was first isolated in 1751 by a Swedish chemist, Cronstedt, from an arse-
nosulfide ore (Considine, 1974).

(a) Metallic nickel and nickel alloys

Table 5 gives world mine production of nickel by region. Table 6 shows world nickel
plant production, including refined nickel, ferronickel and nickel recycled from scrap
(Chamberlain, 1988).

Various combinations of pyrometallurgical, hydrometallurgical and vapometallurgical
operations are used in the nickel producing industry (Boldt & Queneau, 1967; Evans et al.,
1979; Tien & Howsen, 1981; Tyroler & Landolt, 1988). The description that follows is a
generalized discussion of some of the more common smelting and refining processes.
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Table 5. World mine production of nickel, by region (thousand tonnes)*

Region 1982 1983 1984 1985 1986
Albania 6.0 7.2 9.2 9.6 9.7
Australia 87.7 76.6 77.1 85.8 69.9
Botswana 17.8 18.2 18.6 19.6 20.0
Brazil 14.5 15.6 23.6 20.3 23.1
Burma 0.02 0.02 0.02 0.02 0.02
Canada 88.7 128.1 174.2 170.0 181.0
China 12.0 13.0 14.0 25.1 25.5
Colombia 1.8 17.5 21.9 15.5 22.1
Cuba 36.2 37.7 31.8 324 32.7
Dominican Republic 54 19.6 24.0 254 22.1
Finland 6.3 53 6.9 7.9 6.5
France (New Caledonia) 60.2 46.2 58.3 73.0 65.1
German Democratic Republic 2.5 2.2 2.0 1.6 1.5
Greece 5.0 16.8 16.7 18.7 17.5
Indonesia 46.0 49.4 47.6 40.6 43.9
Morocco 0.13 -- -- - -
Norway 0.39 0.36 0.33 0.44 0.40
Philippines 19.7 13.9 13.6 28.2 13.6
Poland 2.1 2.1 2.1 2.0 2.0
South Africa 22.0 20.5 25.1 25.1 25.1
USA 2.9 - 13.2 5.6 1.1
USSR 165.1 170.0 174.2 180.0 186.0
Yugoslavia 4.0 3.0 4.0 5.0 5.0
Zimbabwe 15.8 12.0 12.2 11.1 11.0
Total 622.24 675.28 770.65 802.96 784.82

*From Chamberlain (1988)

Table 6. World production of processed nickel by region (thousands of tonnes)®

Region 1982 1983 1984 1985 1986
Albania 45.9 41.8 38.7 40.9 41.9
Brazil 3.5 8.3 9.2 13.3 13.5
Canada 58.6 87.2 104.0 100.0 115.0
China 12.0 13.0 14.0 22.5 22.5
Colombia 1.3 13.1 17.1 11.8 18.6
Cuba 9.0 9.3 8.5 8.5 7.7
Czechoslovakia 1.5 3.0 4.5 4.5 4.5

Dominican Republic 53 21.2 24.2 25.8 22.0
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Table 6. (contd)

Region 1982 1983 1984 1985 1986
Finland 12.6 14.8 15.3 15.7 16.0
France 76.4 4.9 52 7.1 10.0
France (New Caledonia) 28.0 21.7 29.2 36.1 33.0
German Democratic Republic 3.0 3.0 3.0 3.0 3.0
Germany, Federal Republic of 1.2 1.2 1.0 0.7 -
Greece 4.5 12.9 15.8 16.0 12.0
Indonesia 5.0 4.9 4.8 4.8 5.0
Japan 90.6 82.2 89.3 92.7 88.8
Norway 25.8 28.6 35.6 37.5 38.2
Philippines 11.2 6.1 3.5 17.0 2.1
Poland 2.1 2.1 2.1 2.1 2.1
South Africa 14.4 17.0 20.5 20.5 20.0
UK 7.4 23.2 233 17.8 31.0
USA 40.8 30.3 40.8 33.0 1.5
USSR 180.0 185.1 191.4 198.0 215.0
Yugoslavia 1.5 1.5 2.0 3.0 3.0
Zimbabwe 133 10.2 10.3 9.4 9.8
Total 585.9 646.6 713.3 741.2 736.2

*From Chamberlain (1988)

Nickel is produced from two kinds of ore: sulfide and silicate-oxide. The latter occurs in
tropical regions, such as New Caledonia, and in regions that used to be tropical, such as
Oregon (USA). Both types of ore generally contain no more than % nickel (Warner, 1984).
Mining is practised by open pit and underground methods for sulfide ores and by open pit
for silicate-oxide ores. Sulfide ores are extracted by flotation and magnetic separation into
concentrates containing nickel and various amounts of copper and other metals, such as
cobalt, precious metals and iron. Silicate-oxide ores are extracted by chemical means.

The extractive metallurgy of sulfide nickel ores (see Fig. 1) is practised in a large variety
of processes. Most of these processes begin with oxidation of iron and sulfur at high
temperatures in multiple hearth roasters or in fluid bed roasters, or, in the early days, in
linear calciners or on travelling grate sinter machines (‘sintering’). The roaster calcine is
smelted in reverberatory or electric furnaces to remove rock and oxidized iron as a slag,
leaving a ferrous nickel (copper) matte. In modern processes, both operations—roasting and
smelting—are combined in a single operation called ‘flash smelting’. The furnace matte is
upgraded by oxidizing and slagging most of the remaining iron in converters. If the
converter matte or ‘Bessemer matte’ contains copper, the matte can be separated into nickel
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Fig. 1. Extraction and refining of nickel and its compounds from sulfides ores®
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subsulfide, copper sulfide and metallic concentrates by a slow cooling process followed by
magnetic concentration and froth flotation.

The high-grade nickel subsulfide concentrate is then refined by various processes. Most
of them begin with roasting of the concentrate to a crude nickel oxide. When the copper
content is low, this crude oxide is directly saleable (‘Sinter 75). In older processes, copper
was leached directly from the crude oxide with sulfuric acid (as in Clydach, Wales) or by an
acidic anolyte from copper electrowinning (as in Kristiansand, Norway). Refining can be
pursued after reducing the crude nickel oxide to metal either in a rotary kiln or in an electric
furnace with addition of a carbonaceous reductant. In the first case, the crude particulate
metallic nickel is refined by the atmospheric pressure nickel-carbonyl process (Mond
carbonyl process) which allows a clear-cut separation of nickel from other metals. Nickel is
then produced either as nickel powder or as nickel pellets. The carbonylation residue is
further processed to recover precious metals and some nickel and cobalt salts. In the second
case, the molten crude nickel is cast into anodes which are ‘electrorefined’. The anolyte is
purified outside the electrolytic cell by removal of the main impurities, which are iron,
arsenic, copper and cobalt. These impurities are generally extracted as filter cakes
containing significant amounts of nickel, warranting recycling upstream in the process.
Nickel is then produced in the form of electrolytic cathodes or small ‘rounds’. This
electrorefining process, which was used in Kristiansand, Norway, and Port Colborne,
Ontario, is no longer practised there.

The Bessemer nickel (copper) matte can also be refined without roasting, either by a
combination of hydrometallurgy and electrolysis (‘electrowinning’) or by hydrometallurgy
alone. There are three types of nickel ‘electrowinning’ processes: (i) directly from matte cast
into (soluble) anodes; (ii) from nickel sulfate solutions obtained by leaching matte with a
very low sulfur content; and (iii) from nickel chloride solutions obtained by leaching matte
with chloride solution in the presence of chlorine gas. In the three cases, the solutions
obtained by dissolving the matte must be purified before plating pure nickel, as for the
electrorefining process. In the chloride-electrowinning process, purification is accomplished
through solvent extraction methods using tributylphosphate and aliphatic amines diluted in
petroleum extracts.

Complete hydrometallurgy can be practised directly on sulfide concentrates or on
Bessemer matte by ammonia leaching in sulfate medium in autoclaves. The solution is
purified by precipitation of sulfides, and nickel is recovered as metal powder by hydrogen
precipitation in autoclaves. The nickel powder can be further sintered into briquettes.

Silicate-oxide ores (‘garnierites’/‘laterites’) are processed either by pyrometallurgy or by
hydrometallurgy (Fig. 2). Pyrometallurgy consists of drying, calcining in rotary kilns, then
reduction/smelting in electric furnaces. The crude ferronickel obtained (containing 20-40%
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Fig. 2. Extraction and refining of nickel and its compounds from silicate-oxide
(laterite) ores®
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Ni) is partially refined by thermic processes (in ladles) before being cast into ingots or
granulated in water. With pyrometallurgy, nickel matte can be produced from silicate-oxide
ore either by smelting the ore in the presence of calcium sulfate in a blast furnace (old
process) or in an electric furnace, or by direct injection of molten sulfur into molten
ferronickel.

Hydrometallurgy of silicate-oxide ores, preferentially poor in silica and magnesia, is
practised by ammoniacal leaching or by sulfuric acid leaching. Ammoniacal leaching is
used for ore that is selectively reduced in rotary kilns by a mixture of hydrogen and carbon
monoxide. Cobalt, the main dissolved impurity, is removed from solution by precipitation as
cobalt monosulfide (containing nickel monosulfide). This by-product is further refined to
separate and refine nickel and cobalt. The purified nickel stream is then transformed into the
hydroxycarbonate by ammonia distillation. The hydroxycarbonate is then dried, calcined
and partially reduced to a saleable nickel oxide sinter. Sulfuric acid leaching is conducted
under pressure in autoclaves. Nickel and cobalt are extracted from the process liquor by
precipitation with hydrogen sulfide, and the mixed nickel-cobalt (10:1) sulfide is further
refined in one of the processes described above.

Nickel is obtained not only by recovery from nickel ores but also by recycling process or
consumer scrap. Nickel scrap is generated in forming and shaping operations in fabricating
plants where nickel-containing materials are used and is also recovered from obsolete
consumer goods containing nickel. Small amounts of nickel are also produced as a
coproduct of copper and platinum metal refining (Sibley, 1985).

Nickel-containing steels (stainless steels and others) are produced by melting cast iron
and adding ferronickel and/or pure nickel or steel scraps in large electric furnaces. The melt
is transferred to a refining vessel to adjust the carbon content and impurity levels and is then
cast into ingots or continuously into casting shapes. Defects in cast steel are repaired by
cutting or scarfing or by chipping or grinding. The desired shapes are produced by a variety
of operations, including grinding, polishing and pickling (Warner, 1984). Production
volumes of stainless-steel are given in Table 7.

The technology for the production of nickel alloys is very similar to that used for steel
production, except that melting and decarburizing units are generally smaller, and greater
use is made of vacuum melting and remelting (Warner, 1984). In western Europe, it was
estimated that 15% of nickel consumption was in nonferrous nickel alloys (Eurometaux,
1986).
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Table 7. Stainless-steel” production (in thousands
of tonnes) in selected regions”

Region 1987 1988
Austria 54 67
Belgium 182 254
Finland 189 206
France 720 784
Germany, Federal Republic of 957 1186
Italy 550 623
Spain 327 426
Sweden 457 482
United Kingdom 393 427
Yugoslavia 30 30
Total Europe 3859 4485
USA 1840 1995
Japan 2722 3161
Other countries 787 798
Total 9208 10439

4Stainless steels with and without nickel
PERAMET-SLN (1989a)

(b) Nickel oxides and hydroxides

Nickel oxide sinter (a coarse, somewhat impure form of nickel monoxide) is
manufactured by roasting a semipure nickel subsulfide at or above 1000°C or by
decomposing nickel hydroxycarbonate. The sinters produced commercially contain either
76% nickel or, in partially reduced form, 90% nickel. Nickel oxide sinter is produced in
Australia, Canada and Cuba (Sibley, 1985).

Green nickel oxide, a finely divided, relatively pure form of nickel monoxide, is
produced by firing a mixture of nickel powder and water in air at 1000°C (Antonsen, 1981).
Nickel monoxide is currently produced by two companies in the USA, six in Japan, two in
the UK and one in the Federal Republic of Germany (Chemical Information Services Ltd,
1988).

Black nickel oxide, a finely divided, pure nickel monoxide, is produced by calcination of
nickel hydroxycarbonate or nickel nitrate at 600°C (Antonsen, 1981). It is produced by one
company each in Argentina, Brazil, Canada, Japan, Mexico, the UK and the USA (Chemical
Information Services Ltd, 1988).
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Nickel hydroxide is prepared by (1) treating a nickel sulfate solution with sodium
hydroxide to yield a gelatinous nickel hydroxide which forms a fine precipitate when
neutralized, (2) electrodeposition at an inert cathode using metallic nickel as the anode and
nickel nitrate as the electrolyte, or (3) extraction with hot alcohol of the gelatinous
precipitate formed by nickel nitrate solution and potassium hydroxide (Antonsen, 1981).
Nickel hydroxide is currently produced by four companies in Japan, three in the USA and
one each in the Federal Republic of Germany and the UK (Chemical Information Services
Ltd, 1988).

(c¢) Nickel sulfides

Purified nickel sulfide can be prepared by (i) fusion of nickel powder with molten sulfur
or (i) precipitation using hydrogen sulfide treatment of a buffered solution of a nickel[II]
salt (Antonsen, 1981).

Nickel subsulfide can be made by the direct fusion of nickel with sulfur. Impure nickel
subsulfide is produced during the processing of furnace matte.

Nickel sulfide and nickel subsulfide are formed in large quantities as intermediates in the
processing of sulfidic and silicate-oxide ores and are traded and transported in bulk
quantities for further processing. No data on production volumes are available for any of the
nickel sulfides.

(d) Nickel salts

Nickel acetate 1s produced by heating nickel hydroxide with acetic acid in the presence
of metallic nickel (Sax & Lewis, 1987). This salt is currently produced by six companies in
the USA, three each in Argentina, Brazil, Italy, Japan and the UK, two each in the Federal
Republic of Germany and Mexico, and one each in Australia and Spain (Chemical
Information Services Ltd, 1988).

An impure basic nickel carbonate (roughly 2NiCO3.3Ni(OH),.4H,0) is obtained as a
precipitate when sodium carbonate is added to a solution of a nickel salt. A pure nickel
carbonate is prepared by oxidation of nickel powder in ammonia and carbon dioxide
(Antonsen, 1981). Nickel carbonate is currently produced by six companies each in the USA
and Japan, three each in India and the Federal Republic of Germany, two each in Argentina,
France, Italy, Mexico and the UK, and one each in Belgium, Brazil, Canada, Spain and
Switzerland (Chemical Information Services Ltd, 1988). Finland and Japan produce the
largest volumes of nickel carbonate (ERAMET-SLN, 1989b).

Nickel ammonium sulfate is prepared by reacting nickel sulfate with ammonium sulfate
and crystallizing the salt from a water solution (Antonsen, 1981; Sax & Lewis, 1987).
Nickel ammonium sulfate (particular form unknown) is currently produced by three
companies in the UK, two in the USA and one in Japan (Chemical Information Services,
Ltd, 1988).
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Nickel chloride (hexahydrate) is prepared by the reaction of nickel powder or nickel
oxide with hot aqueous hydrochloric acid (Antonsen, 1981). It is currently produced by
eight companies in the USA, six in India, four each in the Federal Republic of Germany,
Japan and the UK, three in Mexico, two each in Brazil, France and Italy and one each in
Spain, Switzerland and Taiwan (Chemical Information Services Ltd, 1988). The countries or
regions that produce the largest volumes are: Czechoslovakia, Federal Republic of
Germany, France, Japan, Taiwan, UK, USA and USSR (ERAMET-SLN, 1989b).

Nickel nitrate (anhydrous) can be prepared by the reaction of fuming nitric acid and
nickel nitrate hexahydrate. The hexahydrate is prepared by reaction of dilute nitric acid and
nickel carbonate (Antonsen, 1981). Nickel nitrate hexahydrate is manufactured on a
commercial basis by three methods: (1) slowly adding nickel powder to a stirred mixture of
nitric acid and water; (2) a two-tank reactor system, one with solid nickel and one with nitric
acid and water; and (3) adding nitric acid to a mixture of black nickel oxide powder and hot
water (Antonsen, 1981). Nickel nitrate is currently produced by six companies in the USA,
four each in Brazil, Japan and the UK, two each in the Federal Republic of Germany,
France, India, Italy and Spain and one each in Argentina, Australia, Belgium, Mexico and
Switzerland (Chemical Information Services Ltd, 1988).

Nickel sulfate hexahydrate is made by adding nickel powder or black nickel oxide to hot
dilute sulfuric acid or by the reaction of nickel carbonate and dilute sulfuric acid. Large-
scale manufacture of the anhydrous form may be achieved by gas-phase reaction of nickel
carbonyl with sulfur dioxide and oxygen at 100°C or in a closed-loop reactor that recovers
the solid product in sulfuric acid (Antonsen, 1981).

Nickel sulfate hexa- and heptahydrates are currently produced by nine companies each in
Japan and the USA, six in India, four each in Argentina, the Federal Republic of Germany,
Mexico and the UK, three in Canada, two each in Austria, Belgium, Brazil and Italy, and
one each in Australia, Czechoslovakia, Finland, the German Democratic Republic, Spain,
Sweden, Switzerland, Taiwan and the USSR (Chemical Information Services Ltd, 1988).
The countries or regions that produce nickel sulfate in the largest volumes are: Belgium,
Czechoslovakia, the Federal Republic of Germany, Finland, Japan, Taiwan, the UK, the
USA and the USSR (ERAMET-SLN, 1989D).

(e) Other nickel compounds

Nickel carbonyl can be prepared by the Mond carbonyl process, described above for
nickel. Two commercial processes are used to manufacture nickel carbonyl. In the UK, the
pure compound is produced by an atmospheric method in which carbon monoxide is passed
over freshly reduced nickel. In Canada, high-pressure carbon monoxide is used in the
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formation of iron and nickel carbonyl, which are separated by distillation. In the USA,
nickel carbonyl was prepared commercially by the reaction of carbon monoxide with nickel
sulfate solution (Antonsen, 1981). Nickel carbonyl is currently produced by two companies
each in the Federal Republic of Germany and the USA and by one in Japan (Chemical
Information Services, Ltd., 1988).

Nickelocene is formed by the reaction of nickel halides with sodium cyclopentadienide
(Antonsen, 1981). It is currently produced by two companies in the USA (Chemical
Information Services Ltd, 1988).

Nickel selenide (particular form unknown) is produced by one company each in Japan
and the USA, nickel titanate by one company each in the UK and the USA and potassium
nickelocyanate by one company each in India and the USA (Chemical Information Services
Ltd, 1988).

2.2 Use

Uncharacterized alloys of nickel have been used in tools and weapons since 1200 AD or
earlier (Considine, 1974; Tien & Howsen, 1981). In fact, the principal use of nickel has
always been in its metallic form combined with other metals and nonmetals as alloys.
Nickel alloys are typically characterized by their strength, hardness and resistance to
corrosion (Tien & Howsen, 1981). The principal current uses of nickel are in the production
of stainless and heat-resistant steels, nonferrous alloys and superalloys. Other major uses of
nickel and nickel salts are in electroplating, in catalysts, in the manufacture of alkaline
(nickel-cadmium) batteries, in coins, in welding products (coated electrodes, filter wire) and
in certain pigments and electronic products (Antonsen, 1981; Tien & Howsen, 1981;
Mastromatteo, 1986). Nickel imparts strength and corrosion resistance over a wide range of
temperatures and pressures (Sibley, 1985; Chamberlain, 1988).

Worldwide demand for nickel in 1983 was 685 000 tonnes (Sibley, 1985). US consump-
tion of nickel ranged from approximately 93 000 to 122 000 tonnes over the period 1982-86
(Chamberlain, 1988). Table 8 shows the US consumption pattern by end-use for 1983. In
1978, 44% was used in stainless steels and alloy steels, 33% in nonferrous and high-
temperature alloys, 17% in electroplating and the remaining 6% primarily as catalysts, in
ceramics, in magnets and as salts (Tien & Howson, 1981). In western Europe, it was
estimated that, in 1982, 50% of the nickel was used in stainless steels, 10% in alloy steel,
15% in nonferrous alloys, 10% in foundry alloys, 10% in plating and 5% in other
applications, such as catalysts and batteries (Eurométaux, 1986).
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Table 8. US consumption pattern of nickel in 1983 (%)*

Use Consumption (%)
Transportation

Aircraft 10.3

Motor vehicles and equipment 10.2

Ship and boat building and repairs 4.3
Chemicals 15.6
Petroleum 8.2
Fabricated metal products 8.8
Electrical 10.7
Household appliances 7.9
Machinery 7.2
Construction 9.7
Other 7.1
From Sibley (1985)

(a) Metallic nickel and nickel alloys

Pure nickel metal is used to prepare nickel alloys (including steels). It is used as such for
plating, electroforming, coinage, electrical components, tanks, catalysts, battery plates,
sintered components, magnets and welding rods (Eurométaux, 1986).

Ferronickel is used to prepare steels. Stainless and heat-resistant steels accounted for
93% of its end use in 1986 (Chamberlain, 1988).

Nickel-containing steels with low nickel content (< 5% Ni) are used for construction and
tool fabrication. Stainless steels are used for general engineering equipment, chemical
equipment, domestic applications, hospital equipment, food processing, architectural panels
and fasteners, pollution control equipment, cryogenic uses, automotive parts and engine
components.

Nickel-copper alloys are used for coinage, in industrial piping and valves, marine
components, condenser tubes, heat exchangers, architectural trim, thermocouples,
desalination plants, ship propellers, etc. Nickel-chromium alloys are used in many high-
temperature applications, such as furnaces, jet engine parts and reaction vessels.
Molybdenum-containing nickel alloys are notable for their corrosion resistance and thermal
stability, as are the nickel-iron-chromium alloys, and are used in nuclear and fossil-fuel
steam generators, food-processing equipment and chemical-processing and heat-treating
equipment. The majority of permanent magnets are made from nickel-cast iron alloys
(Mastromatteo, 1986). The other groups of nickel alloys are used according to their specific
properties for acid-resistant equipment, heating elements for furnaces, low-expansion alloys,
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cryogenic uses, storage of liquefied gases, high magnetic-permeability alloys and surgical
implant prostheses.

(b) Nickel oxides and hydroxides

The nickel oxide sinters are used in the manufacture of alloys, steels and stainless steels
(Antonsen, 1981).

Green nickel oxide is used to make nickel catalysts and in the ceramics industry. In
specialty ceramics, it is added to frit compositions used for porcelain enamelling of steel; in
the manufacture of magnetic nickel-zinc ferrites used in electric motors, antennas and
television tube yokes; and as a colourant in glass and ceramic stains used in ceramic tiles,
dishes, pottery and sanitary ware (Antonsen, 1981).

Black nickel oxide 1s used in the manufacture of nickel salts and specialty ceramics. It is
also used to enhance the activity of three-way catalysts containing rhodium, platinum and
palladium used in automobile exhaust control. Like green nickel oxide, black nickel oxide is
also used for nickel catalyst manufacture and in the ceramic industry (Antonsen, 1981).

The major use of nickel hydroxide is in the manufacture of nickel-cadmium batteries. It
is also used as a catalyst intermediate (Antonsen, 1981).

(c¢) Nickel sulfides

Nickel sulfide is used as a catalyst in petrochemical hydrogenation when high
concentrations of sulfur are present in the distillates. The major use of nickel monosulfide is
as an intermediate in the hydrometallurgical processing of silicate-oxide nickel ores.

(d) Nickel salts

Nickel acetate is used as a catalyst intermediate, as an intermediate in the formation of
other nickel compounds, as a dye mordant, as a sealer for anodized aluminium and in nickel
electroplating (Antonsen, 1981).

Nickel carbonate 1s used in the manufacture of nickel catalysts, in the preparation of
coloured glass, in the manufacture of nickel pigments, in the production of nickel oxide and
nickel powder, as a neutralizing compound in nickel electroplating solutions, and in the
preparation of specialty nickel compounds (Antonsen, 1981).

Nickel ammonium sulfate has limited use as a dye mordant and is used in metal-finishing
compositions and as an electrolyte for electroplating (Sax & Lewis, 1987).

Nickel chloride is used as an intermediate in the manufacture of nickel catalysts and to
absorb ammonia in industrial gas masks. The hexahydrate is used in nickel electroplating
(Antonsen, 1981) and hydrometallurgy (Warner, 1984).

Nickel nitrate hexahydrate is used as an intermediate in the manufacture of nickel
catalysts, especially sulfur-sensitive catalysts, and as an intermediate in loading active mass
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in nickel-cadmium batteries of the sintered-plate type (Antonsen, 1981).

Nickel sulfate hexahydrate is used as an electrolyte primarily for nickel electroplating
and also for nickel electrorefining. It is also used in ‘electro-less nickel plating, as a nickel
strike solution for replacement coatings or for nickel flashing on steel that is to be porcelain-
enamelled, as an intermediate in the manufacture of other nickel chemicals, such as nickel
ammonium sulfate, and as a catalyst intermediate (Antonsen, 1981).

(e) Other nickel compounds

The primary use for nickel carbonyl is as an intermediate in the Mond carbonyl-refining
process to produce highly pure nickel. Other uses of nickel carbonyl are in chemical
synthesis as a catalyst, as a reactant in carbonylation reactions such as the synthesis of
acrylic and methacrylic esters from acetylene and alcohols, in the vapour plating of nickel,
and in the fabrication of nickel and nickel alloy components and shapes (Antonsen, 1981;
Sax & Lewis, 1987).

Nickelocene is used as a catalyst and complexing agent and nickel titanate as a pigment
(Sax & Lewis, 1987).

No information was available on the use of nickel selenides or potassium nicke-
locyanate.

2.3 Occurrence

(a) Natural occurrence

Nickel is widely distributed in nature, forming about 0.008% of the earth’s crust (0.01%
in igneous rocks). It ranks twenty-fourth among the elements in order of abundance
(Grandjean, 1984), just above copper, lead and zinc (Mastromatteo, 1986). The core of the
earth contains about 8.5% nickel; meteorites have been found to contain 5-50% (National
Research Council, 1975). Nickel is also an important constituent of deep-sea nodules,
typically comprising about 1.5% (Mastromatteo, 1986). Nickel-containing ores are listed in
Table 9.

Laterites are formed by the long-term weathering of igneous rocks which are rich in
magnesia and iron and contain about 0.25% nickel. Leaching by acidified groundwater over
a long period removes the iron and magnesia, leaving a nickel-enriched residue with nickel
contents up to 2.5%. Nickel is found as mixed nickel/iron oxide and as nickel magnesium
silicate (garnierite) (Grandjean, 1986; Mastromatteo, 1986). Laterite deposits have been
mined in many regions of the world, including New Caledonia, Cuba, the Dominican
Republic, Indonesia, the USSR, Greece, Colombia, the Philippines, Guatemala and the USA
(Mastromatteo, 1986).
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Table 9. Nickel-containing minerals®

Name Chemical composition”
Breithauptite NiSb

Niccolite NiAs

Zaratite NiCO;2Ni(OH),.4H,0
Bunsenite NiO

Morenosite NiSO,4.7H,0

Millerite NiS

Vaesite NiS,

Polydomite NisS,4

Heazlewoodite NizS,

Pentlandite (Ni,Fe)oSs

Pyrrhotite, nickeliferous (Fe,Ni);,S°

Garnierite (Ni,Mg)Si0;.nH,O
*From Grandjean (1986)

®From Warner (1984); Grandjean (1986)

Nickel and sulfur combine in a wide range of stoichiometric ratios. Nickel monosulfide
(millerite), nickel subsulfide (heazlewoodite), nickel disulfide (vaesite) and NizS,
(polydymite) are found in mineral form in nature (Considine, 1974). Sulfide nickel ores
contain a mixture of metal sulfides, principally pentlandite, chalcopyrite (CuFeS,) and
nickeliferous pyrrhotite in varying proportions. The major nickel mineral is pentlandite.
While pentlandite may contain about 35% of nickel by weight, the nickel content of
pyrrhotite is usually 1% or less, and the sulfide ore available for nickel production generally
contains only 1-2% nickel (Grandjean, 1986). A large deposit of pentlandite is located in
Sudbury, Ontario, Canada.

Other nickel ores include the nickel-arsenicals and the nickel-antimonials, but these are
of much less commercial importance (Mastromatteo, 1986).

(b) Occupational exposures

Occupational exposure to nickel may occur by skin contact or by inhalation of dusts,
fumes or mists containing nickel or by inhalation of gaseous nickel carbonyl. Nickel-
containing dusts may also be ingested by nickel workers (Grandjean, 1984). The National
Institute for Occupational Safety and Health (1977a) published a list of occupations with
potential exposure to nickel (Table 10); it has estimated that about 1.5 million workers in the
USA are exposed to nickel and nickel compounds (National Institute for Occupational
Safety and Health, 1977b).
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Table 10. Occupations with potential exposure to

nickel”
Battery makers, storage Mould makers
Catalyst workers Nickel miners

Cemented carbide makers  Nickel refiners

Ceramic makers Nickel smelters

Chemists Nickel workers
Disinfectant makers Oil hydrogenators

Dyers Organic chemical synthesizers
Electroplaters Paint makers

Enamellers Penpoint makers

Gas-mask makers Petroleum refinery workers
Ink makers Spark-plug makers
Jewellers Stainless-steel makers
Magnet makers Textile dyers

Metallizers Vacuum tube makers
Mond process workers Varnish makers
Nickel-alloy makers Welders

“Adapted from National Institute for Occupational Safety and
Health (1977b)

Occupational exposure to nickel is evaluated by monitoring air and blood serum, plasma
or urine. (For recent reviews on this subject, see Rigaut, 1983; Grandjean, 1984; Nieboer et
al., 1984a; Warner, 1984; Grandjean, 1986; Sunderman et al., 1986a). Tables 11-13
summarize exposure to nickel as measured by air and biological monitoring in various
industries and occupations. The biological indicator levels are influenced by the chemical
and physical properties of the nickel compound studied and by the time of sampling. It
should be noted that the nickel compounds, the timing of collection of biological samples
(normally at the end of a shift) and the analytical methods used differ from study to study,
and elevated levels of nickel in biological fluids and tissue samples (Table 11) are
mentioned only as indications of uptake of nickel, and may not correlate directly to
exposure levels (Angerer et al., 1989). (See also section 3.3(b) and the monographs on
chromium and chromium compounds, and on welding.)



Table 11. Occupational exposure to nickel in the nickel producing industry

Industry and activity (country) No. of Air (ug/m?) Urine (ug/l) Serum (ug/l) Reference
[year, when available] workers (mean £SD)
Mean +SD  Range Mean £=SD  Range

Mines, Ontario (Canada) [1976] 20 6-40 Rigaut (1983)
Mines, Oregon (USA) [1981] 30 Rigaut (1983)
Mines, New Caledonia 20 6-40 Rigaut (1983)

[1982]
Smelter, producing ferronickel 5_76 52745 { < 10 (86% of samples) Warner (1984)
and matte, New Caledonia <20 (98% of samples)
Laterite mining and smelting, Warner (1984)
Oregon (USA

Ore handling 3 52 5-145

Drying 4 17 9-21

Calcining 4 9% 37-146

Skull drilling 8 16 4-43

Ferrosilicon manufacturing 15 32 4-214

Mixing 17 6 47

Refining 10 11 4-34

Handling of finished products 6 5 4-9

Maintenance 9 39 7-168

Miscellaneous 3 193 8-420
Refinery, Clydach (Wales, UK) Morgan &

Kiln Rouge (1984)

Before shut-down* 310 10-5000 24424 8.945.9
(26 samples) (67 samples) (37 samples)
On return to work® 1417 3.0420
(20 samples) (20 samples)



Table 11 (contd)

Industry and activity (country) No. of Air (ug/m?) Urine (ug/l) Serum (ug/l) Reference
[year, when available] workers (mean £SD)
Mean +SD  Range Mean £SD  Range
Refinery, Clydach (Wales, UK)
Kiln (contd)
One month later 190 10-2890 24-10 55420
(30 samples) (14 samples) (16 samples)
New powder plant 310 90-1530
(20 samples)
Before shut-down® 37430 7.2448
(48 samples) (25 samples)
On return to work® 13112 40123
(17 samples) (17 samples)
One month later 500 50-1810 31413 7.61+3.5
(22 samples) (16 samples) (15 samples)
Old powder plant 1460 80-5000 33113 9.04-3.7
(5 samples) (12 samples) (6 samples)
Wet-treatment (A)” 1540 2204180 39428 74451
(8 samples) (15 samples) (7 samples)
Wet-treatment (B)* 90 30-150 34+24 3.41+19
(17 samples) (36 samples) (13 samples)
Refinery, Kristiansand (Norway)* Hggetveit et al.
Roasting-smelting p)} 86011200 65158 72428 (1978)
Electrolytic department 90 2301420 1294106 11.918.0
Other processes 13 4204490 451427 64119



Table 11 (contd)

Industry and activity (country) No. of AIr (ug/m?®) Urine (ug/1) Serum (ug/l) Reference
[year, when available] workers (mean £SD)
Mean +=SD  Range Mean 4+SD  Range
Refinery, Kristiansand (Norway) Torjussen &
Roasting-smelting 97 34435 52427 Andersen (1979)
Electrolysis 144 73185 8.116.0
Other processes 77 22418 431422
Electrolytic refinery (USA) 15 489 20-2200 222 8.6-813 Bernacki et al.
124 (ug/g 6.1-287 (1978a)
creatinine)
Electrolytic refinery (FRG) 50 14.8 (ug/g 2.5-63 Raithel (1987)
creatinine)
Electrolytic refinery 600 86-1265 264 125-450 Rigaut (1983)
(Czechoslovakia)
Hydrometallurgical refinery Warner (1984)
(Canada)
Acid leaching of matte 99 5-1630
Purification of nickel electrolyte:
Tube filterman 12 144 13-316
12/ 129 11-316
Filter pressman 16 209 61-535
16/ 152 31-246
Filter-press area 11 242 64-508
1/ 221 52-466



Table 11 (contd)

Industry and activity (country) No. of Air (ug/m?) Urine (ng/) Serum (ug/1) Reference
[year, when available] workers (mean £SD)
Mean 3=SD  Range Mean £+SD  Range
Hydrometallurgical refinery
(Canada) (contd)
Purification of nickel electrolyte®
Cementation of copper on 39 168 48-644
nickel in Pachuca tanks 39 38 1-133
Removal of iron slimes with 56 200 27-653
a tube filter 56/ 85 3-433
Oxidizing cobalt with chlorine 47 183 30-672
47 66 1-267
General operations in a tank 96¢ 336 40-1100
house using insoluble anodes 458 185 80-400
Tankhouse using nickel matte
anodes:
General area 11# 48 14-223
114 29 5-210
Tankman 15% 48 18-88
155/ 30 12-71
Anode scrapman 114 179 43-422
118/ 52 1-236

“Area air sampling
“Personal air sampling

‘Specimens obtained before and after six months’ closure of refinery operations

%Short exposures to high levels of insoluble nickel compounds

“Chronic exposures to soluble nickel suifate
Soluble nickel



Table 12. Occupational exposure in industries using primary nickel products

Industry and activity (country) No. of Air (ug/m?) Urine (ug/l) Reference
workers
Mean Range Mean Range
Stainless-steel production Warner (1984)
Electric furnace shop 84 36 9-65
Argon-oxygen decarburization 5 35 13-58
Continuous casting 2 14 11-15
Grinding/polishing (machine) 6 134 75-189
Grinding/chipping (hand tool) 2 39 23-48
Welding, cutting and scarfing® 5 111¢ 13-188¢
Heat treating 1 544 < 1-104¢
Rolling and forging 6 49 <11-72
Other operations (maintenance, 5 58 10-107
pickling)
High nickel alloy production (FRG) 59 300¢ 26 0.5-52 Raithel (1987)
(a few persons exposed to nickel
powder)
High nickel alloy production’ Warner (1984)
Weighing and melting 369 83 1-4400
Hot working 153 111 1-4200
Cold working 504 64 1-2300
Grinding 96 298 1-2300
Pickling and cleaning 18 8 1-15
Maintenance 392 58 1-73
Production of wrought nickel and alloys 226 1500/ 1-60000 Warner (1984)

via metal powder foundries



Table 12 (contd)

Industry and activity (country) No. of Air (ug/m?) Urine (ug/l) Reference
workers
Mean Range Mean Range
Six jobbing foundries processing alloys Scholz & Hol-
containing 0-60% nickel, averaging comb (1980)
10-15% nickel:
Melting 15 21 <5-62
Casting 7 14 <4-35
Cleaning room:
Cutting and gouging 11 233 7-900
Welding 14 94 20-560
Hand grinding 24 94 <5-440
Swing grinding 3 19 13-30
Jobbing foundry processing carbon, alloy Warner (1984)
and stainless steel containing 0-10% nickel:
Melting and casting 16 13 ND&-70
Cleaning room:
Air arc gouging 7 310 40-710
Welding 34 67 10-170
Three low alloy (0-2% nickel) iron and steel Warner (1984)
foundries
Melting and casting 16 13 4-32
Cleaning room (grinding, air arc 18 54 7-156
gouging, welding)
Steel foundry (Finland) (steel cutters) 4 518 145-1100 39 18-77 Aitio et al. (1985)
Production of soluble nickel salts (Wales, 66 500 10-20 000 (68) 65*  10-200* Morgan &
UKY 60 450 <10-12 070 (60)49*  <10-210* Rouge (1979)



Table 12 (contd)

Industry and activity (country) No. of Air (ug/m?) Urine (ug/1) Reference
workers
Mean Range Mean Range

Production of nickel salts from nickel or Warner (1984)
nickel oxide:

Nickel sulfate 12 117 9-590

Nickel chloride 10 196/ 20-485"

Nickel acetate/nitrate 6 155/ 38-525

“Companies reporting exposures

’Samples taken outside protective hood

“Excludes one suspiciously high measurement (1460 pg Ni/m?3)
“Excludes one suspiciously high measurement (500 pg Ni/m?)

“The median nickel concentration in workroom air was 300 pg/m?; values that exceeded 500 pg/m? were found at 2 of 8 measuring
stations

Mainly from personal sampling
#Not detected
*Corrected to 1.6 g/l creatinine

‘Excludes one suspiciously high value (2780 pg Ni/m?)



Table 13. Occupational exposure in industries using nickel in special applications

Industry and activity (country)  No. of Air (ug/m?) Urine (ug/1) Serum (ug/1) Reference
workers
Mean Range Mean 4= SD Range Mean Range
Ni/Cd-battery production with 36 37848 20-1910%% Warner (1984)

nickel and nickel hydroxide;
assembly and welding of plates

Ni/Cd-battery production 51 4.0¢ 1.9-10.9 Raithel (1987)
(FRG)
Ni/Cd or Ni/Zn-battery 6 117475 3.4-25 Bernacki et al.
production (USA) 10.2 7.2-23 (ug/g creatinine) (1978a)
Ni/H,-battery production 7 3224-40.4 2.8-103
Ni/Cd-battery production 12-33 24-27 (ug/g creatinine) Adamsson et
al. (1980)
Ni-catalyst production 73 ' <200-5870 64 (ug/g 9-300 8 2-41 Zwennis &
(Netherlands) creatinine) Franssen
(1983)
Ni-catalyst production from 7 150¢ 10-6004 Warner (1984)
nickel sulfate (USA) 5 370¢ 190-530¢
Ni—catalyst use; coal gasifica- 9 42 0.4-7.9 Bernacki et al.
tion workers (USA) 32 0.1-5.8 (ug/g creatinine) (1978a)
Electroplating Warner (1984)
Sulfate bath, 45°C
Area 1 sample 16 <6 <5-<8
Area 2 samples 3 <4 <2-<7

Personal samples 6 <11 <7-<16



Table 13 (contd)

Industry and activity (country)  No. of Air (ug/m?) Urine (ug/) Serum (ug/) Reference
workers
Mean Range Mean £+ SD Range Mean Range
Electroplating (contd)
Sulfate bath, 70°C
Area samples 6 <3 <2-<3
Sulfamate bath, 45-55°C
Area 1 sample 9 <4 <4
Area 2 samples 6 <4 <4
Electroplating (Finland) 90 20-170 53.5 12-109 6.1 12-14.1 Tossavainen
et al. (1980)
Electroplating (Finland) - 30-160 - 25-120 - 3-14 Tola et al.
(1979)
Electroplating (USA) 9.34 0.5-21.2 48 5-262 Bernacki et al.
(1980)
Electroplating (USA) 21 304 3.6-85 Bernacki et al.
(210 2.4-62 ug/g creatinine) (1978a)
Electroplating (India) 12 122 11-26 Tandon et al.
(1977)
Electroplating (FRG) 10 (soluble anode) Gross (1987)
110 (insoluble anode)
7 (insoluble anode and wet- 1.7-3.6
ting agent)
Exposed persons in the hollow 9 3-3800 119 3.6-42.1° 16 0.75-3.25¢ Raithel (1987)
glass industry (FRG) (946 samples) (288 sam-
ples)
Flame sprayer 3-600 253 8.5-81.5 1.95 0.75-3.25
(114 samples) (40 sam-

ples)



Table 13 (contd)

Industry and activity (country)  No. of Air (ug/m?) Urine (pg/1) Serum (ug/l) Reference
workers
Mean Range Mean &= SD Range Mean Range
Grinder, polisher 18-3800 7.4 2.9-243 0.9 0.75-2.05
(406 samples) (140 sam-
ples)
Mixed mechanical work 300-410 17.5 49-53.9 165 0.75-4.10
and flame spraying (394 samples) (108 samples)
Plasma spraying (FRG) 6 200 34-125 Gross (1987)
Spark eroding (FRG) 6 <10 0.7-21 Gross (1987)
Flame spraying (USA) 5 24 <1-6.5 172 14-26 Bernacki et al.
(16.0 1.4-54 pg/g creatinine) (1978a)
Plasma cutting (FRG) 17 <100 11-6.5 Gross (1987)
Painting
Spray painting in a construc- 13 3.2 <0.5-9.2 44 <0.5-17.2 Grandjean et
tion shipyard (USA) al. (1980)
Painting in repair shipyard 18 59 <05-13  Grandjean et
(USA) al. (1980)
Manufacturing paints (USA) 10 15.34111 6-39 Tandon et al.
(1977)
Buffing, polishing, grinding
Buffers and polishers (air- 7 26 < 1-129 41 0.5-95 Bernacki et al.
craft engine factory) (USA) (2.4 0.5-4.7 ng/g creatinine) (1978a)
Grinders (abrasive wheel 9 16 <1-9.5 54 21-88 Bernacki er al.
grinding of aircraft parts) @35 1.7-6.1 ug/g creatinine) (1978a)

(USA)



Table 13 (contd)

Industry and activity (country)  No. of Air (j1g/m3) Urine (pg/) Serum (ug/l) Reference
workers
Mean Range Mean +=SD Range Mean Range
Polisher, grinder (FRG) 15 140 0.7-9.9 Gross (1987)
Polisher, grinder (stainless 46 350° 10-10 000/ 28 (12) 3-7 Heidermanns
steel) (FRG) et al. (1983)
Miscellaneous exposure
Bench mechanics (assemb- 8 52 < 1-252 122 1.4-41 Bernacki et al.
ling, fittings and finishing (7.2 0.7-20 pg/g creatinine) (1978a)
aircraft parts made of Ni-
alloys) (USA)
Riggers/carpenters (construc- 16 37 1.1-135 33 1.1-13.5 Grandjean
tion shipyard) (USA) et al, (1980)
Riggers/carpenters (repair 11 36 <05-7.4 Grandjean
shipyard) (USA) et al. (1980)
Shipfitters/pipefitters (con- 6 49 3771 4.1 1.5-6.8 Grandjean
struction shipyard (USA) et al. (1980)
Shipfitters/pipefitters (repair 15 9.1 0.5-3.8 Grandjean
shipyard) (USA) et al. (1980)

“Personal air sampling

YExcludes three suspiciously high values (5320; 18 300; 53 300 ug/m?)

‘Median
Area air monitoring
68th percentile range

R0th percentile range
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(1) Nickel mining and ore comminution

On the basis of personal gravimetric sampling among Canadian underground miners of
nickel, the time-weighted average concentration of total airborne nickel was about 25 ug/m’
and that of respirable nickel, < 5 ug/m’ (see Table 11; Warner, 1984). Ore miners may also
be exposed to radon, oil mist, diesel exhausts and asbestos (see TARC, 1977, 1988a, 1989).

(11) Nickel roasting, calcining, smelting and refining

The nickel content of air samples from a Sudbury (Canada) smelter seldom exceeded 0.5
mg/m’ but could be as high as 1 mg/m’. The average concentrations of airborne nickel were
higher in the roaster areas (0.048 mg/m’) than in the converter areas (0.033 mg/m”’), because
the handling of fine solids is a greater source of dust than the handling of molten phases.
Thus, work-place air may contain roaster feed and product, which include various nickel-
containing minerals and solid solutions of nickel in iron oxides. Nickel-bearing dusts from
converters contain mainly nickel subsulfide (Warner, 1984). Arsenic, silica, copper, cobalt
and other metal compounds may also occur in work-place air.

Emissions from the high-temperature ore calcining and smelting furnaces used to
produce ferronickel from lateritic ores would contain nickel predominantly in the form of
silicate oxides and iron-nickel mixed/complex oxides of the ferrite or spinel type. The nickel
content of these dusts can range from 1 to 10% (International Committee on Nickel
Carcinogenesis in Man, 1990).

Average concentrations of airborne nickel in refining operations can be considerably
higher than those encountered in mining and smelting because of the higher nickel content
of the materials being handled in the refining process (Table 11). The nickel species that
may be present in various refining operations include nickel subsulfide, nickel monoxide,
nickel-copper oxides, nickel-iron oxides, metallic nickel, pure and alloyed, nickel sulfate,
nickel chloride and nickel carbonate. Other possible exposures would be to hydrogen
sulfide, ammonia, chlorine, sulfur dioxide, arsenic and polycyclic aromatic hydrocarbons
(Warner, 1984; International Committee on Nickel Carcinogenesis in Man. 1990).

A recent attempt has been made, in conjunction with a large epidemiological study
(International Committee on Nickel Carcinogenesis in Man, 1990), to estimate past
exposures in various nickel refineries using different processes. Exposure estimates were
made first for total airborne nickel, based either on historical measurements (after 1950) or
on extrapolation of recent measurements. In all cases, further estimates were made of nickel
species (metallic, oxidic, sulfidic and soluble), as defined in the report, on the basis of
knowledge of the processes and rough estimates of the ratio of the various species generated
in each process.
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Prior to the widespread use of personal samplers, high-volume samplers were used to
take area samples; however, in many instances, neither personal gravimetric nor high-
volume samples were available, and konimeter readings were the only available means of
assessing the level of airborne dust. No measurement of the actual concentration of nickel,
and especially nickel species, in work places exists for any refining operation prior to 1950.
More recently, measurements have been made of total dust and, in some cases, total nickel
content of dust or mist in refinery work-place air. Conversion of high-volume sampler and
konimeter measurements to concentrations comparable to personal gravimetric sampler
measurements introduces another uncertainty in the environmental estimates. The main
reason for this uncertainty is that it is impossible to derive unique conversion factors to
interrelate measurements from the three devices; different particle size distributions give
rise to different conversion factors. Information concerning particle size in airborne dusts
was seldom available in the work places under study (International Committee on Nickel
Carcinogenesis in Man, 1990).

Estimates of nickel exposure were further divided into four categories representing
different nickel species: (i) metallic nickel, (ii) oxidic nickel [undefined, but generally
understood to include nickel oxide combined with various other metal oxides, such as iron,
cobalt and copper oxides], (iii) sulfidic nickel (including nickel subsulfide) and (iv) soluble
nickel, defined as consisting ‘primarily of nickel sulfate and nickel chloride but may in
some estimates include the less soluble nickel carbonate and nickel hydroxide’. No actual
measurement of specific nickel species in work-place air was available upon which to base
exposure estimates. As a result, the estimates are necessarily very approximate. This is
clear, for example, from the estimates for linear calciners at the Clydach refinery (Wales,
UK), which gave total nickel concentrations of 10-100 mg/m’, with 0-5% soluble nickel.
Because of the inherent error in the processes of measurement and speciation and the
uncertainty associated with extrapolating estimates from recent periods to earlier periods,
the estimated concentrations of nickel species in work places in this study (International
Committee on Nickel Carcinogenesis in Man, 1990) must be interpreted as broad ranges
indicating only estimates of the order of magnitude of the actual exposures.

(i11)  Production of stainless steel and nickel alloys

While some stainless steels contain up to 25-30% nickel, nearly half of that produced
contains only 8-10% nickel. Nickel oxide sinter is used as raw material for stainless and
alloy steelmaking in some plants, and oxidized nickel may be found in the fumes from many
melting/casting and arc/torch operations in the melting trades. The nickel concentrations in
air in the stainless and alloy producing industries were given in Table 12. Occupational
exposure in alloy steel making should generally be lower than those observed for
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comparable operations with stainless steel. The normal range of nickel in alloy steels is 0.3-
5% but the nickel content can be as high as 18% for certain high-strength steels. The
production of ‘high nickel’ alloys consumes about 80% of the nickel used for nonferrous
applications. The technology is very similar to that used for stainless steel production except
that melting and decarburizing units are generally smaller and greater use is made of
vacuum melting and remelting. Since these alloys contain more nickel than stainless and
alloy steels, the concentrations of nickel in workroom air are generally higher than for
comparable operations with stainless and alloy steels (Warner, 1984).

(iv) Steel foundries

In foundries, shapes are cast from a wide variety of nickel-containing materials. Melts
ranging in size from 0.5 to 45 tonnes are prepared in electric arc or induction furnaces and
cast into moulds made of sand, metal or ceramic. The castings are further processed by
chipping and grinding and may be repaired by air arc gouging and welding. Foundry
operations can thus be divided roughly into melting/casting and cleaning room operations.
Typical levels of airborne nickel in steel foundries were presented in Table 12 (Warner,
1984). Health hazards in foundry operations include exposure to silica and metal fumes and
to degradation products from moulds and cores, such as carbon monoxide, formaldehyde
and polycyclic aromatic hydrocarbons (see IARC, 1984).

(v) Production of nickel-containing batteries

The principal commercial product in nickel-containing batteries is the electrochemical
couple nickel/cadmium. Other couples that have been used include nickel/iron,
nickel/hydrogen and nickel/zinc. In nickel-cadmium batteries, the positive electrode is
primarily nickel hydroxide, contained in porous plates. The positive material is made from a
slurry of nickel hydroxide, cobalt sulfate and sodium hydroxide, dried and ground with
graphite flake. Sintered nickel plates impregnated with the slurry may also be used. The
nickel/hydrogen system requires a noble metal catalyst and operates at high pressures,
requiring a steel pressure vessel. Nickel/iron batteries can be produced using nickel foil
(Malcolm, 1983).

The concentrations of nickel in air and in biological samples from workers in the nickel-
cadmium battery industry were summarized in Table 13. Workers in such plants are also
exposed to cadmium.

(vi) Production and use of nickel catalysts

Metallic nickel is used as a catalyst, often alloyed with copper, cobalt or iron, for
hydrogenation and reforming processes and for the methane conversion and Fischer-
Tropsch reactions. Mixed, nickel-containing oxides are used as partial oxidation catalysts
and as hydrodesulfuration catalysts (cobalt nickel molybdate) (Gentry et al., 1983).
Occupational exposure occurs typically in the production of catalysts from metallic nickel
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powder and nickel salts such as nickel sulfate (Warner, 1984), but coal gasification process
workers who use Raney nickel as a hydrogenation catalyst have also been reported to be
exposed to nickel (Bernacki et al., 1978a). Exposure levels are generally higher in catalyst
production than during the use of catalysts (see Table 13).

(vil)  Nickel plating

Metal plating is an operation whereby a metal, commonly nickel, is deposited on a
substrate for protection or decoration purposes. Nickel plating can be performed by
electrolytic processes (electroplating) or ‘electroless’ processes (chemical plating), with
aqueous solutions (the ‘baths’). During electroplating, nickel is taken out of the solution and
deposited on the substrate, which acts as the cathode. Either soluble anodes, made from
metallic nickel feed, or insoluble anodes, in which the nickel is introduced as the
hydroxycarbonate, are used. The baths contain a mixture of nickel sulfate and/or chloride or,
less often, sulfamate. In electroless processes, a hypophosphite medium is used, the nickel
feed being nickel sulfate.

The electrolyte contains soluble nickel salts, such as nickel fluoborate, nickel sulfate and
nickel sulfamate (Warner, 1984). Nickel plating can be performed with a soluble (metallic
nickel) or insoluble anode. The principal source of air contamination in electroplating
operations is release of the bath electrolyte into the air. Electroplaters are exposed to readily
absorbed soluble nickel salts by inhalation, which subsequently causes high levels in urine
(Tola et al., 1979, see Table 13).

(vii) Welding

Welding produces particulate fumes that have a chemical composition reflecting the
elemental content of the consumable used. For each couple of process/material of
application, there is a wide range of concentrations of elements present in the fume. Nickel
and chromium are found in significant concentrations in fumes from welding by manual
metal arc, metal inert gas and tungsten inert gas processes on stainless and alloy steels.
Typical ranges of total fume and nickel, as found in the breathing zone of welders, are
presented in Table 14. Certain special process applications not listed can also produce high
nickel and chromium concentrations, and manual metal arc and metal inert gas welding of
nickel in confined spaces produce significantly higher concentrations of total fume and
elemental constituents. Exposure to welding fumes that contain nickel and chromium can
lead to elevated levels of these elements in tissues, blood and urine (see monograph on
welding for details).

(ix) Thermal spraying of nickel

Thermal spraying of nickel is usually performed by flame spraying or plasma spraying
(Gross, 1987). For flame spraying, nickel in wire form is fed to a gun
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Table 14. Total fume and nickel concentrations found in the breathing zone of welders”

Process” Total fume® (mg/mS) Ni ( ug/m3)
MMA/SS 4-10 10-1000
MIG/SS 2-5 30-500
TIG/SS 2-6 10-40

“Compiled from Table 4 of monograph on welding
"MMA, manual metal arc; SS, stainless steel; MIG, metal inert gas; TIG, tungsten inert gas

“50-90% range

fuelled by a combustible gas such as acetylene, propane or natural gas. The wire is melted in
the oxygen-fuel flame, atomized with compressed air, and propelled from the torch at
velocities up to 120 m/s. The material bonds to the workpiece by a combination of
mechanical interlocking of the molten particles and a cementation of partially oxidized
material.

The material can also be sprayed in powder form, the fuel gases being either acetylene or
hydrogen and oxygen. The powder is aspirated by an air stream, and the molten particles are
deposited on the workpiece with high efficiency. For plasma spraying, an electric arc is
established in the controlled atmosphere of a special nozzle. Argon is passed through the
arc, where it ionizes to form a plasma that continues through the nozzle and recombines to
create temperatures as high as 16 700°C. Powder is melted in the stream and released from
the gun at a velocity of approximately 10 m/s (Burgess, 1981; Pfeiffer & Willert, 1986).

Workers who construct or repair nickel-armoured moulds in hollow-glass and ceramics
factories use flame spraying with metallic powder (70-98% Ni) and are exposed to nickel
dusts (as metallic and oxidic nickel) and fumes. After the moulds have been polished with
grinding discs, abrasives and emery paper, they are installed in glass-making machines.
Exposure levels in various types of thermal spraying, cutting and eroding were shown in
Table 13.

(x) Production and use of paints

Some pigments for paints (e.g., nickel flake) and colours for enamels (e.g., nickel oxide)
contain nickel. Exposure to nickel can occur when spraying techniques are used and when
the paints are manufactured (Tandon et al., 1977; Mathur & Tandon, 1981). Paint and
pigment workers have slightly higher concentrations of nickel in plasma and urine than
controls (see Table 13). Sandblasters may be exposed to dusts from old paints containing
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nickel and, additionally, to nickel-containing abrasive materials (Stettler ef al., 1982).

(x1) Grinding & polishing and buffing of nickel-containing metals

Grinding, polishing and buffing involve controlled use of bonded abrasives for metal
finishing operations; in many cases the three operations are conducted in sequence (for
review, see Burgess, 1981). Grinding includes cutting operations in foundries for removal of
gates, sprues and risers, rough grinding of forgings and castings, facing off of welded
assemblies and grinding out major surface imperfections. Grinding is done with wheels
made of selected abrasives in bonding structural matrices. The commonly used abrasives are
aluminium oxide and silicon carbide. The wheel components normally make up only a small
fraction of the total airborne particulates released during grinding, and the bulk of the
particles arise from the workpiece. Polishing techniques are used to remove workpiece
surface imperfections such as tool marks, and this may remove as much as 0.1 mm of stock
from a workpiece. In buffing, little metal is removed from the workpiece, and the process
merely provides a high lustre surface by smearing any surface roughness with a high weight
abrasive; e.g., ferric oxide and chromium oxide are used for soft metals, aluminium oxide
for harder metals. Sources of airborne contaminants from grinding, polishing and buffing
have been identified (Burgess, 1981; Konig et al., 1985). Grinding, polishing and buffing
cause exposures to metallic nickel and to nickel-containing alloys and steels (see Table 13).

(xi1) Miscellaneous exposure to nickel

A group of employees exposed to metallic nickel dust was identified among employees
of the Oak Ridge Gaseous Diffusion Plant in the USA. In one department, finely-divided,
highly pure, nickel powder was used to manufacture ‘barrier’, a special porous medium
employed in the isotope enrichment of uranium by gaseous diffusion. The metallic powder
was not oxidized during processing. Routine air sampling was performed at the plant from
1948 to 1963, during which time 3044 air samples were collected in seven areas of the
barrier plant and analysed for nickel content. The median nickel concentration was 0.13
mg/m’ (range, <0.1-566 mg/m’), but the authors acknowledged that the median exposures
were probably underestimated (Godbold & Tompkins, 1979). Other determinations of nickel
in miscellaneous industries and activities were presented in Table 13.

(c) Air

Nickel enters the atmosphere from natural sources (e.g., volcanic emissions and
windblown dusts produced by weathering of rocks and soils), from combustion of fossil
fuels in stationary and mobile power sources, from emissions from nickel mining and
refining operations, from the use of metals in industrial processes and from incineration of
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wastes (Sunderman, 1986a; US Environmental Protection Agency, 1986). The estimated
global emission rates are given in Table 15. The predominant forms of nickel in the ambient
air appear to be nickel sulfate and complex oxides of nickel with other metals (US
Environmental Protection Agency, 1986).

Table 15. Emission of nickel into the global atmosphere”

Source Emission rate
(10° kg/year)
Natural
Wind-blown dusts 4.8
Volcanoes 2.5
Vegetation 0.8
Forest fires 0.2
Meteoric dusts 0.2
Sea spray 0.009
Total 8.5
Anthropogenic”
Residual and fuel oil combustion 27
Nickel mining and refining 7.2
Waste incineration 5.1
Steel production 1.2
Industrial applications 1.0
Gasoline and diesel fuel combustion 0.9
Coal combustion 0.7
Total 43.1
“From Bennett (1984)

’Emissions during the mid-1970s

Nickel concentrations in the atmosphere at remote locations were about 1 ng/m’
(Grandjean, 1984). Ambient levels of nickel in air ranged from 5 to 35 ng/m’ at rural and
urban sites (Bennett, 1984). Surveys have indicated wide variations but no overall trend. In
the USA, atmospheric nickel concentrations averaged 6 ng/m’ in nonurban areas and 17
ng/m’ (in summer) and 25 ng/m’ (in winter) in urban areas (National Research Council,
1975). Salmon et al. (1978) reported nickel concentrations in 1957-74 at a semirural site in
England to range from 10 to 50 ng/m’ (mean, 19 ng/m’). Nickel concentrations at seven sites
in the UK ranged, with one exception, from < 2 to 4.8 ng/kg [< 2.5 to 5.9 ng/m’] (Cawse,
1978). Annual averages in four Belgian cities were 9-60 ng/m’ during 1972-77
(Kretzschmar et al., 1980). Diffuse sources (traffic, home heating, distant sources) generally
predominated.
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High levels of nickel in air (110-180 ng/m’) were recorded in heavily industrialized areas
and larger cities (Bennett, 1984).

Local airborne concentrations of nickel are high around locations where nickel is mined
(e.g., 580 ng/m’ in Ontario, Canada) (McNeely et al., 1972). The average atmospheric
nickel concentration near a nickel refinery in West Virginia (USA) was 1200 ng/m’,
compared to 40 ng/m’ at six sampling stations not contiguous to the nickel plant. The
highest concentration on a single day was about 2000 ng/m’ near a large nickel production
facility (Grandjean, 1984).

Average exposure to nickel by inhalation has been estimated to be 0.4 ug/day (range,
0.2-1.0 ug/day) for urban dwellers and 0.2 ug/day (range, 0.1-0.4 ug/day) for rural dwellers
(Bennett, 1984).

(d) Tobacco smoke

Cigarette smoking can cause a daily absorption of nickel of 1 ug/pack due to the nickel
content of tobacco (Grandjean, 1984). Sunderman and Sunderman (1961) and Szadkowski
et al. (1969) found average nickel contents of 2.2 and 2.3 ug/cigarette, respectively, with a
range of 1.1-3.1. The latter authors also showed that 10-20% of the nickel in cigarettes is
released in mainstream smoke; most of the nickel was in the gaseous phase. The nickel
content of mainstream smoke ranges from 0.005 to 0.08 ug/cigarette (Klus & Kuhn, 1982).
It is not yet known in what form nickel occurs in mainstream smoke (US Environmental
Protection Agency, 1986); it has been speculated that it may be present as nickel carbonyl
(Grandjean, 1984), but, if so, it must occur at concentrations of < 0.1 ppm (Alexander et al.,
1983). Pipe tobacco, cigars and snuff have been reported to contain nickel at levels of the
same magnitude (2-3 ug/g tobacco) (National Research Council, 1975).

(e) Water and beverages

Nickel enters groundwater and surface water by dissolution of rocks and soils, from
biological cycles, from atmospheric fallout, and especially from industrial processes and
waste disposal, and occurs usually as nickel ion in the aquatic environment. Most nickel
compounds are relatively soluble in water at pH values less than 6.5, whereas nickel exists
predominantly as nickel hydroxides at pH values exceeding 6.7. Therefore, acid rain has a
pronounced tendency to mobilize nickel from soil and to increase nickel concentrations in
groundwater.

The nickel content of groundwater is normally below 20 ug/L (US Environmental
Protection Agency, 1986), and the levels appear to be similar in raw, treated and distributed
municipal water. In US drinking-water, 97% of all samples (n = 2503) contained <20 ug/L,
while about 90% had <10 ug/L. (National Research Council, 1975). Unusually high levels
were found in groundwater polluted with soluble nickel compounds from a nickel-plating
facility (up to 2500 ug/L) and in water from 12 wells (median, 180 ug/L) (Grandjean, 1984).
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The median level in Canadian groundwater was < 2 ug/L, but high levels were reported in
Ontario (Méranger et al., 1981). In municipal tap-water near large open-pit nickel mines, the
average nickel concentration was about 200 ug/L, while that in a control area had an
average level of about 1 ug/L (McNeely et al., 1972).

Nickel concentrations in drinking-water in European countries were reported to range in
general from 2-13 ug/L (mean, 6 ug/L) (Amavis et al., 1976). Other studies have suggested
low background levels in drinking-water, e.g., in Finland an average of about 1 ug/L
(Punsar et al.,, 1975) and in Italy mostly below 10 ug/L. In the German Democratic
Republic, drinking-water from groundwater showed an average level of 10 ug/L nickel,
slightly below the amount present in surface water (Grandjean, 1984). In the Federal
Republic of Germany, the mean concentration of nickel in drinking-water was 9 ug/L, with
a maximal value of 34 ug/L (Scheller et al., 1988).

The nickel concentration in seawater ranges from 0.1 to 0.5 ug/L, whereas the average
level in surface waters is 15-20 ug/L. Freshly fallen arctic snow was reported to contain
0.02 ug/kg, a level that represents 5-10% of those in annual condensed layers (Mart, 1983).

Nickel concentrations of 100 ug/L have been found in wine; average levels of about 30
ug/L were measured in beer and levels of a few micrograms per litre in mineral water
(Grandjean, 1984). In the Federal Republic of Germany, however, the mean concentration
of nickel in mineral waters was 10 ug/L, with a maximal value of 31 ug/L (Scheller et al.,
1988).

(H Soil

The nickel content of soil may vary widely, depending on mineral composition: a normal
range of nickel in cultivated soils is 5-500 ug/g, with a typical level of 50 ug/g (National
Research Council, 1975). In an extensive survey of soils in England and Wales, nickel
concentrations were generally 4-80 ug/g (median, 26 ug/g; maximum, 228 ug/g) (Archer,
1980). Farm soils from different parts of the world contained 3-1000 ug/g. Nickel may be
added to agricultural soils by application of sewage sludge (National Research Council,
1975).

The nickel content of coal was 4-24 ug/g, whereas crude oils (especially those from
Angola, Colombia and California) contained up to 100 ug/g (Tissot & Weltle, 1984; World
Health Organization, 1990).
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(g) Food

Nickel levels in various foods have been summarized recently (Grandjean, 1984; Smart
& Sherlock, 1987; Scheller et al., 1988; Grandjean et al., 1989). Table 16 gives the results
of analyses for nickel in various foodstuffs in Denmark; the mean level of nickel in meat,
fruit and vegetables was <0.2 mg/kg fresh weight. This result was confirmed by analysis of
hundreds of food samples from Denmark, the Federal Republic of Germany and the UK
(Nielsen & Flyvholm, 1984; Veien & Andersen, 1986; Smart & Sherlock, 1987; Scheller et
al., 1988): the nickel content of most samples was < 0.5 mg/kg. The nickel concentration in
nuts was up to 3 mg/kg (Veien & Andersen, 1986) and that in cocoa up to 10 mg/kg
(Nielsen & Flyvholm, 1984). The nickel content of wholemeal flour and bread was
significantly higher than that of more refined products due to the high nickel content of
wheat germ (Smart & Sherlock, 1981). High nickel levels in flour may also originate from
contamination during milling. In addition, fats can contain nickel, probably owing to the use
of nickel catalysts in commercial hydrogenation. Margarine normally contains less than 0.2
mg/kg, but levels up to 6 mg/kg have been found (Grandjean, 1984).

Table 16. Nickel content (mg/kg) in foods in the average

Danish diet”
Food No. of Range Mean
samples
Milk products
Full milk 63 BDL’-0.13 0.02
Yogurt 3 0.004-0.03 0.01
Cream 3 0.01-0.04 0.03
Cheese 25 0.02-0.34 0.10
Meat, fish, eggs
Beef 32 0.01-0.03 0.02
Pork 20 <0.02-0.02 0.02
Chicken 9 0.02-0.24 0.11
Lamb 12 <0.02-0.02 0.02
Liver, kidney 108 0-0.94 0.11
Fish 658 0.005-0.303 0.04
Egg 30 0.01-0.35 0.05
Roots and vegetables
Potatoes 45 BDL-0.44 0.14
Carrots 17 <0.01-0.16 0.04
Celery root 8 0.04-0.1 0.06
Beetroot 7 0.01-0.3 0.12
Cabbage 31 0.01-0.63 0.17

Cauliflower 5 0.03-1.0 0.3
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Table 16. (contd)

Food No. of Range Mean
samples

Roots and vegetables (contd)

Kale 2 0.15-0.24 0.20
Lettuce 21 BDL-1.4 0.36
Spinach 15 0.02-2.99 0.52
Asparagus 1 - 0.42
Cucumber 8 0.01-0.11 0.04
Tomatoes 21 0.01-0.25 0.07
Peas 24 0.13-0.8 0.42
Fruits
Apples 11 BDL-0.03 0.01
Pears 10 0.07-0.42 0.14
Plums 10 0.03-0.20 0.12
Currants 13 0.01-0.2 0.06
Strawberries 9 0.03-0.08 0.05
Rhubarb 10 0.01-0.22 0.13
Grapes 4 0.01-0.04 0.02
Raisins 3 0.02-0.04 0.03
Citrus fruits 3 0.01-0.04 0.03
Bananas 4 0.01-0.03 0.02
Canned fruits 65 0.02-1.36 0.31
Juice 11 0.01-0.17 0.04
Meal, grain and bread
Wheat flour 32 0.03-0.3 0.13
Rye flour 15 0.03-0.3 0.1
Oatmeal 18 0.80-4.7 1.76
Rice 16 0.08-0.45 0.21
Other
Butter 4 0.03-0.2 0.1
Margarine 13 0.2-2.5 0.34
Sugar 22 0.01-0.09 0.05

“From Grandjean et al. (1989)
’BDL below detection limit [not specified]

Stainless-steel kitchen utensils have been shown to release nickel into acid solutions,
especially during boiling (Christensen & Moller, 1978). The amount of nickel liberated
depends on the composition of the utensil, the pH of the food and the length of contact. The
average contribution of kitchen utensils to the oral intake of nickel is unknown, but they
could augment alimentary exposure by as much as 1 mg/day (Grandjean et al., 1989).
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A study of hospital diets in the USA showed that the general diet contained 160 ug/day,
and special diets varied by less than 40% from this level (Myron et al., 1978). A recent
study (Nielsen & Flyvholm, 1984) suggested a daily intake of 150 ug in the average Danish
diet. Knutti and Zimmerli (1985) found dietary intakes in Switzerland of 73 £ 9 ug in a
restaurant, 83 £ 9 pg in a hospital, 141 + 33 ug in a vegetarian restaurant and 142 + 20 ug in
a military canteen. The mean nickel intake in the UK in 1981-84 was 140-150 ug/day
(Smart & Sherlock, 1987).

(h) Humans tissues and secretions

The estimated average body burden of nickel in adults is 0.5 mg/70 kg (7.4 ug/kg bw).
In post-mortem tissue samples from adults with no occupational or iatrogenic exposure to
nickel compounds, the highest nickel concentrations were found in lung, bone, thyroid and
adrenals, followed by kidney, heart, liver, brain, spleen and pancreas in diminishing order
(Seemann et al., 1985; Sunderman, 1986b; Raithel, 1987; Raithel et al., 1987; Rezuke et al.,
1987, Kollmeier et al., 1988; Raithel et al, 1988). Reference wvalues for nickel
concentrations in autopsy tissues from unexposed persons are listed in Table 17.

The mean nickel concentration in lung tissues from 39 nickel refinery workers autopsied
during 1978-84 was 150 (1-1344) ug/g dry weight. Workers employed in the roasting and
smelting department had an average nickel concentration of 333 (7-1344) ug/g, and those
who had worked in the electrolysis department had an average nickel concentration of 34 (1-
216) ug/g dry weight. Lung tissue from 16 persons who were connected with the refinery
contained an average level of 0.76 (0.39-1.70) ug/g dry weight (Andersen & Svenes, 1989).

The concentrations of nickel in body fluids have diminished substantially over the past
ten years as a consequence of improved analytical techniques, including better procedures to
minimize nickel contamination during collection and assay. Concentrations of nickel in
human body fluids and faeces are given in Table 18 (see also Sunderman, 1986b;
Sunderman et al., 1986a).

(i) latrogenic exposures

Potential iatrogenic sources of exposure to nickel are dialysis treatment, leaching of
nickel from nickel-containing alloys used as prostheses and implants and contaminated
intravenous medications (for review, see Grandjean, 1984; Sunderman et al., 1986a).
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Table 17. Concentrations of nickel in human autopsy tissues

Tissue No. of Nickel concentration Reference
subjects
ng/g wet weight ng/g dry weight
Mean+SD Range Mean = SD  Range
Lung 4 16 +8 8-24 86 + 56 33-146 Rezuke et al.
(1987)
8 119 £50 48-221 - -
9 - - 132 +99 50-290
41 7+10 <1-70 - -
9 18+ 12 7-46 173 £ 94 71-371
15 - - 180 £ 105 43-361 Seemann et al.
(1985)
70 137 + 187 - 754+ 1010 - Kollmeier et
al. (1988)
30 20-40° 8-120° 107-195¢ 42-600" Raithel et al.
(1988)
16 - - 760 £ 390 390-1700 Andersen &
Svenes (1989)
Kidney 8 11+4 7-15 - - Rezuke et al.
(1987)
6 - - 125+ 54 50-120
36 14+ 27 <1-165 - -
10 9+6 3-25 62 +43 19-171
18 - - 34 £22 <5-84 Seemann et al.
(1985)
Liver 4 9+3 5-13 32+12 21-48 Rezuke et al.
(1987)
8 8+2 6-11 - -
10 10+7 8-21 50 +£ 31 11-102
23 - - 18 £21 <5-86 Seemann et al.
(1985)
Heart 4 6=+2 4-8 23+6 16-30 Rezuke et al.
(1987)
8 7£2 4-9 - -
9 8+5 1-14 54 + 40 10-110
Spleen 22 - - 23 +£20 <5-85 Seemann et al.
(1985)
10 7+5 1-15 37+ 31 9-95 Rezuke et al.
(1987)

*Range of median values and 68th percentile of range on the basis of 600 lung specimens from 30 autopsies
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Table 18. Nickel concentrations in specimens from healthy, unexposed
adults®

Specimen Mean = SD Range Units

Whole blood 0.34£0.28 <0.05-1.05 ng/L

Serum 0.28 +0.24 <0.05-1.08 ng/L

Urine (spot collection) 20+1.5 0.5-6.1 ng/L
20+£1.5 0.4-6.0 ug/g creatinine
28+1.9 0.5-8.8 ng/L’

Urine (24-h collection) 22+1.2 0.7-5.2 ng/L
26+14 0.5-6.4 pg/day

Faeces (3-day collection) 14.2+2.7 10.8-18.7 ng/g (dry weight)
258 £ 126 80-540 pg/day

*From Sunderman et al. (1986a)
PFactored to specific gravity = 1.024

Hypernickelaemia has been observed in patients with chronic renal disease who are
maintained by extracorporeal haemodialysis or peritoneal dialysis (Table 19; Linden et al.,
1984; Drazniowsky et al., 1985; Hopfer et al., 1985; Savory et al., 1985; Wills et al., 1985).
In one severe incident, water from a nickel-plated stainless-steel water-heater contaminated
the dialysate to approximately 250 ug/L, resulting in plasma nickel levels of 3000 ug/L and
acute nickel toxicity (Webster ef al., 1980). Even during normal operation, the average
intravenous uptake of nickel may be 100 pg per dialysis (Sunderman, 1983a).

Nickel-containing alloys may be implanted in patients as joint prostheses, plates and
screws for fractured bones, surgical clips and steel sutures (Grandjean, 1984). Corrosion of
these prostheses and implants can result in accumulation of alloy-specific metals in the
surrounding soft tissues and in release of nickel to the extracellular fluid (Sunderman et al.,
1986a, 1989a).

High concentrations of nickel have been reported in human albumin solutions prepared
by six manufacturers for intravenous infusion. In three lots that contained 50 g/L albumin,
the average nickel concentration was 33 ug/L (range, 11-17 ug/L); in nine lots that
contained 250 g/L albumin, the average nickel concentration was 83 ug/L (range, 26-222
ug/L) (Leach & Sunderman, 1985). Meglumine diatrizoate (‘Renografin-76’), an X-ray
contrast medium, tends to be contaminated with nickel. Seven lots of this preparation
(containing 760 g/L diatrizoate) contained nickel at 144 + 44 ug/L.. Serum nickel
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Table 19. Nickel concentrations in dialysis fluids and in serum specimens
from patients with chronic renal disease (CRD)*

Region and patients No. of Ni conc. in Serum Ni concentration (ug/L)
subjects dialysis fluid

(ug/L) Pre-dialysis Post-dialysis
USA
Healthy controls 30 0.3+0.2
Non-dialysed CRD patients 7 0.6+0.3
CRD patients on haemodialysis
Hospital A 40 0.82 6.2+1.8 72+£22
Hospital B 9 0.40-0.42 3.9+£2.0 52+25
Hospital C 10 0.68 30+ 1.3 3.7+13
USA
Healthy controls 50 04+0.2
CRD patients on haemodialysis 28 3.7+1.5
UK and Hong Kong
Healthy controls 71 1.0 (<0.6-3.0)
Non-dialysed CRD patients 31 1.6 (<0.6-3.6)
CRD patients on haemodialysis
Hospital A 25 2-3 8.6 (0.6-16.6) 8.8 (3.8-21.4)
Hospital B 16 2.9 (1.8-4.0) 3.4(2.2-54)
CRD patients on peritoneal dialysis 13 2-3 8.6 (5.4-11.4)

*From Sunderman et al. (1986a)

concentrations in 11 patients who received intra-arterial injections of ‘Renografin-76’ (164
+ 10 mL per patient [giving 19.1 = 4.0 ug Ni per patient]) for coronary arteriography
increased from a pre-injection level of 1.33 ug/L (range, 0.11-5.53 ug/L) to 2.95 ug/L
(range, 1.5-7.19 ug/L) 15 min post-injection. Serum levels remained significantly elevated
for 4 h and returned to baseline levels only 24 h post-injection (Leach & Sunderman, 1987).

(/) Regulatory status and guidelines

Occupational exposure limits for nickel in various forms are given in Table 20.
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Table 20. Occupational exposure limits for airborne nickel in various forms®

Country or region Year Nickel species Concentration  Interpretation”
(mg/m’)
Belgium 1987 Nickel metal and insoluble 0.1 TWA
nickel compounds (as Ni)
Nickel carbonyl (as Ni) 0.35 TWA
Brazil 1987 Nickel carbonyl (as Ni) 0.28 TWA
Chile 1987 Soluble nickel compounds 0.08 TWA
(as Ni)
China 1987 Nickel carbonyl (as Ni) 0.001 TWA
Denmark 1988 Nickel metal 0.5 TWA
Nickel carbonyl 0.007 TWA
Soluble nickel compounds 0.1 TWA
(as Ni)
Insoluble nickel compounds 1 TWA
(as Ni)
Finland 1987 Nickel metal 1 TWA
Nickel carbonyl 0.007 TWA
Soluble nickel compounds 0.1 TWA
(as Ni)
France 1986 Nickel sulfide (as Ni) 1 TWA
German Democratic 1987 Nickel compounds (as Ni) 0.25 TWA
Republic Nickel carbonyl (as Ni) 0.01 TWA
Nickel compounds (as Ni) 0.5 STEL
Nickel carbonyl (as Ni) 0.03 STEL
Hungary 1987 Nickel compounds (as Ni) 0.005 TWA/STEL
Nickel carbonyl (as Ni) 0.007 TWA/STEL
India 1987 Nickel carbonyl (as Ni) 0.35 TWA
Indonesia 1987 Nickel metal and insoluble 1 TWA
nickel compounds (as Ni)
Nickel carbonyl (as Ni) 0.007 TWA
Italy 1987 Nickel carbonyl (as Ni) 0.007 TWA
Japan 1987 Nickel 1 TWA
Nickel carbonyl (as Ni) 0.007 TWA
Mexico 1987 Nickel metal and insoluble 1 TWA
nickel compounds (as Ni)
Soluble nickel compounds 0.1 TWA
(as Ni)
Nickel carbonyl (as Ni) 0.35 TWA
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Table 20. (contd)
Country or region Year Nickel species Concentration  Interpretation”
(mg/m’)
Netherlands 1986 Nickel 1 TWA
Soluble nickel compounds 0.1 TWA
(as Ni)
Nickel carbonyl (as Ni) 0.35 TWA
Poland 1987 Nickel carbonyl (as Ni) 0.007 TWA
Romania 1987 Nickel carbonyl (as Ni) 0.002 TWA
Nickel carbonyl (as Ni) 0.005 Ceiling
Sweden 1987 Nickel metal 0.5 TWA
Nickel carbonyl 0.007 TWA
Nickel subsulfide 0.01 TWA
Other nickel compounds (as 0.1 TWA
Ni)
Switzerland 1987 Nickel metal and insoluble 0.5 TWA
nickel compounds (as Ni)
Soluble nickel compounds 0.05 TWA
(as Ni)
Taiwan 1987 Nickel carbonyl (as Ni) 0.35 TWA
UK 1987 Nickel and insoluble nickel 1 TWA
compounds (as Ni)
Soluble nickel compounds 0.1 TWA
(as Ni)
Soluble nickel compounds 0.3 STEL (10 min)
(as Ni)
Insoluble nickel compounds 3 STEL (10 min)
(as Ni)
Nickel carbonyl (as Ni) 0.35 TWA
USA
ACGIH 1988 Nickel metal; nickel sulfide 1 TWA
roasting, fume and dust (as
Ni)
Soluble compounds (as Ni) 0.1 TWA
Nickel carbonyl 0.35 TWA
NIOSH 1988 Nickel, inorganic com- 0.015 TWA
pounds (as Ni)
Nickel carbonyl 0.007 TWA
OSHA 1987 Metallic nickel 1 TWA
Nickel carbonyl 0.007 TWA
Soluble nickel compounds 0.1 TWA

(as Ni)
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Table 20. (contd)
Country or region Year Nickel species Concentration  Interpretation”
(mg/m’)

USSR 1987 Nickel metal and insoluble 0.5 MAC
nickel compounds (as Ni)
Nickel carbonyl (as Ni) 0.0005 MAC
Nickel monoxide, oxide, sul- 0.5 MAC
fide

*From Arbeidsinspectie, 1986; Institut National de Recherche et de Sécurité, 1986; National Institute for
Occupational Safety and Health (NIOSH), 1988; Arbetarskyddsstyrelsens, 1987; Cook, 1987; Health and
Safety Executive, 1987; Tyosuojeluhallitus, 1987; US Occupational Safety and Health Administration
(OSHA), 1987; American Conference of Governmental Industrial Hygienists (ACGIH), 1988;
Arbejdstilsynet, 1988

TWA, time-weighted average; STEL short-term exposure limit; MAC, maximum allowable concentration

2.4 Analysis

Typical methods for the analysis of nickel in air, water, food and biological materials are
summarized in Table 21. A method has been developed for classifying nickel in airborne
dust samples into four species—‘water-soluble’, ‘sulfidic’, ‘metallic’ and ‘oxidic’—on the
basis of a sequential leaching procedure (Blakeley & Zatka, 1985; Zatka, 1987, 1988; Zatka
et al., undated).

Atomic absorption spectrometry and differential pulse anodic stripping voltammetry
(DPASV) are the most common methods for analysis of nickel in environmental and
biological media. Air samples are collected on cellulose ester membrane filters, wet digested
with nitric acid — perchloric acid and analysed by electrothermal atomic absorption
spectrometry (EAAS) or inductively coupled argon plasma emission spectrometry (ICP)
(National Institute for Occupational Safety and Health, 1984; Kettrup et al., 1985). The
National Institute for Occupational Safety and Health (1977b, 1981) has recommended
standard procedures for personal air sampling and analysis of nickel. The routine procedure
does not permit identification of individual nickel compounds.

Assessment of individual nickel compounds, especially as components of complex
mixtures, necessitates procedures such as X-ray diffraction and would not be feasible for
routine monitoring. Sampling and analytical methods used to monitor air, water and soil
have been summarized (US Environmental Protection Agency, 1986).

Nickel concentrations in blood, serum or urine are used as biological indicators of exposure
to or body burden of nickel. Biological monitoring as a part of biomedical surveillance has
been evaluated in several reviews (Aitio, 1984; Norseth, 1984; Sunderman et al., 1986a).



Table 21. Methods for the analysis of nickel

Sample matrix Sample preparation Assay procedure® Sensitivity/detection  Reference
limit

Air Collect on cellulose ester membrane filter; AAS - National Institute for

digest with nitric acid and perchloric acid Occupational Safety and
Health (1981)
Collect on cellulose acetate membrane AAS 1 pg absolute; Hauptverband der gewerb-
filter; digest with nitric acid and hydro- 10 pg/m? (sample lichen Berufsgenossen-
chloric acid volume, 0.1 m?) schaften (1981)
Collect on cellulose ester membrane filter; ICP L5 pg/sample National Institute for
digest with nitric acid and perchloric acid Occupational Safety and
Health (1984)

Collect on cellulose ester membrane filter; AAS 20 ng/m? (sample Kettrup et al. (1985)
digest with nitric acid volume, 1.5 m?)

Water Chelate; extract with ammonium pyrroli-  AAS 0.04 pg/1 McNeely et al. (1972)
dine dithiocarbamate: methyl isobutyl ke-
tone
Filter; irradiate with ultraviolet DPASV (dimethylglyox- 1 ng/l Pihiar et al. (1981)

ime-sensitized)

Chelate; extract with ammonium pyrroli- EAAS 0.2 pg/t Sunderman (1986b)
dine dithiocarbamate: methyl isobutyl ke-
tone

Food Digest with acid AAS - Evans et al. (1978)
Wet digest with nitric acid, hydrogen per- DPASV (dimethylglyox- 1 ng/l digestion solu-  Pihlar et al. (1981)
oxide and sulfuric acid ime-sensitized) tion
Dry ash DPASYV (dimethylglyox- 5 ng/sample Meyer & Neeb (1985)

ime-sensitized)

Dry ash, chelate with sodium(ditrifluor- Chelate-GC 100 ng/sample Meyer & Neeb (1985)
ethyldithiocarbamate

Blood Wet digest with nitric acid, hydrogen per- DPASV (dimethylglyox- 1 ng/l digestion solu-  Pihlar ef al, (1981)

oxide and sulfuric acid ime-sensitized) tion



Table 21 (contd)

Sample matrix Sample preparation Assay procedure® Sensitivity/detection  Reference
limit
Serum/whole  Digest with nitric acid; heat EAAS (Zeeman) 0.05 pg/l serum Sunderman et al. (1984a)
blood 0.1 pg/l whole blood
Body fluids/ Digest with nitric acid, perchloric acid and EAAS 0.2 g/l body fluids Sunderman (1986b)
tissues sulfuric acid; chelate; extract with ammo- 0.4 pg/kg tissues
nium pyrrolidine dithiocarbamate: methyl
isobutyl ketone
Tissues Homogenize; digest with nitric acid, EAAS (Zeeman) 0.01 pg/g dry wt Sunderman et al. (1985a)
perchloric acid and sulfuric acid
Digest with nitric acid and sulfuric acid EAAS (Zeeman) 0.8 pg/g wet wt Raithel et al. (1987)
Serum/urine Digest with nitric acid, perchloric acid and EAAS - Brown et al. (1981)
sulfuric acid; chelate; extract with ammo-
nium pyrrolidine dithiocarbamate: methyl
isobutyl ketone
Urine Chelate; extract with ammonium pyrroli- EAAS 0.5 ng/l Schaller & Zober (1982)
dine dithiocarbamate: methyl isobutyl ke-
tone
Digest with nitric acid, perchloric acid and DPASV 1 gl Schramel et al. (1985)
sulfuric acid
Chelate; extract with hexamethylene am-  AAS 0.2 ug/ Angerer & Schaller (1985)
monium: hexamethylene dithiocarbamate:
diisopropylketone
Dilute with nitric acid EAAS (Zeeman) 0.5 pg/l Sunderman et al. (1986b)
Dilute directly with nitric acid EAAS 12 pg/l Kiilunen et al. (1987)

“AAS, flameless atomic absorption spectrometry; ICP, inductively coupled argon plasma spectrometry; DPASY, differential pulse anodic
stripping voltammetry; EAAS, electrothermal atomic absorption spectrometry; GC, gas chromatography
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Choice of specimen, sampling strategies, specimen collection, transport, storage and
contamination control are of fundamental importance for an adequate monitoring
programme (Sunderman et al., 1986a). As discussed in recent reviews (Stoeppler, 1980;
Schaller et al., 1982; Stoeppler, 1984a,b; Sunderman et al., 1986a, 1988a), EAAS and
DPASV are practical, reliable techniques that furnish the requisite sensitivity for
measurements of nickel concentrations in biological samples. The detection limits for
determination of nickel by EAAS with Zeeman background correction are approximately
0.45 ug/L for urine, 0.1 ug/L for whole blood, 0.05 ug/L for serum or plasma, and 10 ng/g
(dry wet) for tissues, foods and faeces (Andersen et al., 1986; Sunderman et al., 1986a,b;
Kiilunen et al., 1987; Angerer & Heinrich-Ramm, 1988). An EAAS procedure for the deter-
mination of nickel in serum and urine, which was developed on the basis of collaborative
interlaboratory trials involving clinical biochemists in 13 countries, has been accepted as a
reference method by the International Union of Pure and Applied Chemists (Brown et al.,
1981). This procedure, with additional applications for analysis of nickel in biological
matrices, water and intravenous fluids, has also been accepted as a reference method by the
IARC (Sunderman, 1986b). A new working method based on EAAS and Zeeman
background correction for the analysis of nickel in serum, whole blood, tissues, urine and
faeces has been recommended (Sunderman et al., 1986a,b, 1988a). Sample preparation
depends on the specimen and involves acid digestion for tissue and faeces protein
precipitation with nitric acid and heat for serum and whole blood, and simple acidification
for urine.

Greater sensitivity can be achieved with DPASV analysis using a dimethylglyoxime-
sensitized mercury electrode; this method has been reported to have a detection limit of 1
ng/L for determination of nickel in biological media (Flora & Nieboer, 1980; Pihlar et al.,
1981; Ostapczuk et al., 1983). However, DPASV techniques are generally more
cumbersome and time consuming than EAAS procedures. Isotope dilution mass
spectrometry provides the requisite sensitivity, specificity and precision for determination of
nickel (Fassett et al., 1985) but has not yet been used to analyse nickel in biological
samples.

Nickel carbonyl has been measured in air and exhaled breath by gas chromatography and
chemiluminescence (Sunderman et al., 1968; Stedman et al., 1979).
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3. Biological Data Relevant to the Evaluation
of Carcinogenic Risk to Humans

3.1 Carcinogenicity studies in animals'

Experimental studies on animals exposed to nickel and various nickel compounds were
reviewed previously in the JARC Monographs (IARC, 1976, 1987). Recent reviews on the
biological and carcinogenic properties of nickel have been compiled by Fairhurst and Illing
(1987), Kasprzak (1987) and Sunderman (1989), among others. In addition, a detailed
document on the health effects of nickel has been prepared for the Ontario (Canada)
Ministry of Labour (Odense University, 1986). A comprehensive technical report on nickel,
emphasizing mutagenicity and carcinogenicity, was published by the European Chemical
Industry Ecology and Toxicology Centre (1989).

(a) Metallic nickel and nickel alloys

(1) Inhalation

Mouse: A group of 20 female C57Bl mice, two months of age, was exposed by
inhalation to 15 mg/m’ metallic nickel powder ( > 99% pure; particle diameter, <4 um) for 6
h per day on four or five days per week for 21 months. All mice had died by the end of the
experiment. No lung tumour was observed. No control group was available (Hueper, 1958).
[The Working Group noted the short duration of treatment. ]

Rat: Groups of 50 male and 50 female Wistar rats and 60 female Bethesda black rats,
two to three months of age, were exposed by inhalation to 15 mg/m’ metallic nickel powder
(> 99% pure nickel; particle diameter, <4 um) for 6 h per day on four or five days per week
for 21 months and observed up to 84 weeks. Histological examination of the lungs of 50 rats
showed numerous multicentric, adenomatoid alveolar lesions and bronchial proliferations
that were considered by the author as benign neoplasms. No specific control was included in
the study (Hueper, 1958).

"The Working Group was aware of studies in progress of the carcinogenicity of nickel, nickel acetate
tetrahydrate, nickel alloys, nickel-aluminium alloys, nickel chloride hexahydrate, nickel oxide, nickel sulfide
and nickel sulfate hexa- and heptahydrate in experimental animals by intraperitoneal, subcutaneous,
inhalation and intratracheal administration (IARC, 1988b).
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In a further experiment with Bethesda black rats, exposure to metallic nickel powder
(99.95% nickel; particle diameter, 1-3 zm) was combined with 20-35 ppm (50-90 mg/m’)
sulfur dioxide as a mucosal irritant; powdered chalk was added to prevent clumping.
Exposure was for 5-6 h per day [nickel concentration unspecified]. Forty-six of 120 rats
lived for longer than 18 months. No lung tumour was observed, but many rats developed
squamous metaplasia and peribronchial adenomatoses (Hueper & Payne, 1962).

Guinea-pig A group of 32 male and 10 female strain 13 guinea-pigs, about three months
of age, was exposed by inhalation to 15 mg/m’ metallic nickel powder (> 99% pure nickel)
for 6 h per day on four or five days per week for 21 months. Mortality was high: only 23
animals survived to 12 months and all animals had died by 21 months. Almost all animals
developed adenomatoid alveolar lesions and terminal bronchiolar proliferations. No such
lesion was observed in nine controls. One treated guinea-pig had an anaplastic intra-alveolar
carcinoma, and another had an apparent adenocarcinoma metastasis in an adrenal node,
although the primary tumour was not identified (Hueper, 1958).

(1) Intratracheal instillation

Rat: Two groups of female Wistar rats [number unspecified], 11 weeks of age, received
either ten weekly intratracheal instillations of 0.9 mg metallic nickel powder [purity
unspecified] or 20 weekly injections of 0.3 mg metallic nickel powder in 0.3 mL saline
(total doses, 9 and 6 mg, respectively) and were observed for almost 2.5 years. Lung tumour
incidence in the two groups was 8/32 (seven carcinomas, one mixed) and 10/39 (nine
carcinomas, one adenoma), respectively; no lung tumour developed in 40 saline-treated
controls maintained for up to 124 weeks. Pathological classification of the tumours in the
two groups combined revealed one adenoma, four adenocarcinomas, 12 squamous-cell
carcinomas and one mixed tumour. Average time to observation of the tumours was 120
weeks, the first tumour being observed after 98 weeks (Pott et al., 1987).

Hamster: In a study reported in an abstract, groups of 100 Syrian golden hamsters
received either a single intratracheal instillation of 10, 20 or 40 mg of metallic nickel
powder (particle diameter, 3-8 um) or of one of two nickel alloy powders (particle diameter,
0.5-2.5 um; alloy I: 26.8% nickel, 16.2% chromium, 39.2% iron, 0.04% cobalt; alloy II:
66.5% nickel, 12.8% chromium, 6.5% iron, 0.2% cobalt) or four intratracheal instillations of
20 mg of one of the substances every six months (total dose, 80 mg). In the groups receiving
single instillations of alloy II, the incidence of malignant intrathoracic tumours was reported
as 1, 8 and 12%, respectively, suggesting a dose-response relationship. In the group
receiving multiple instillations of alloy II, 10% of the animals developed intrathoracic
malignant neoplasms, diagnosed as fibrosarcomas, mesotheliomas and rhabdomyosarcomas.
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Metallic nickel induced comparable numbers and types of intrathoracic neoplasms, but no
tumour was observed in animals treated with alloy I or in control animals (Ivankovic et al.,
1987).

A group of approximately 60 male and female Syrian golden hamsters (strain Cpb-ShGa
51), ten to 12 weeks of age, received 12 intratracheal instillations of 0.8 mg metallic nickel
powder (99.9% nickel; mass median diameter, 3.1 gm) in 0.15 mL saline at two-week
intervals (total dose, 9.6 mg). Additional groups were treated similarly with 12 intratracheal
instillations of 3 mg pentlandite (containing 34.35% nickel; total dose, 36 mg), 3 or 9 mg
chromium/nickel stainless-steel dust (containing 6.79% nickel; total doses, 36 and 108 mg)
or 9 mg chromium stainless-steel dust (containing 0.5% nickel; total dose, 108 mg). The
median lifespan was 90-130 weeks in the different groups. Two lung tumours were
observed: an adenocarcinoma in the group that received nickel powder and an adenoma in
the pentlandite-treated group. No lung tumour was observed in vehicle-treated controls or in
the groups treated with stainless-steels (Muhle et al., 1992). [The Working Group noted that
no lung tumour was observed in the positive control group.]

(i11) Intrapleural administration

Rat: A group of 25 female Osborne-Mendel rats, six months of age, received injections
of a 12.5% suspension of metallic nickel powder in 0.05 mL lanolin into the right pleural
cavity [6.25 mg nickel powder] once a month for five months. A group of 70 rats received
injections of lanolin only. The experiment was terminated after 16 months. Four of the 12
treated rats that were examined had developed round-cell and spindle-cell sarcomas at the
site of injection; no control animal developed a local tumour [p < 0.01] (Hueper, 1952).

A group of five male and five female Fischer 344 rats, 14 weeks of age, received
injections of 5 mg metallic nickel powder suspended in 0.2 mL saline into the pleura (total
dose, 25 mg) once a month for five months. Two rats developed mesotheliomas within
slightly over 100 days; no tumour occurred in 20 controls (Furst ez al., 1973). [The Working
Group noted the limited reporting of the experiment. ]

(iv)  Subcutaneous administration

Rat: Groups of five male and five female Wistar rats, four to six weeks of age, received
four subcutaneous implants of pellets (approximately 2x2 mm) of metallic nickel or nickel-
gallium alloy (60% nickel) used for dental prostheses and were observed for 27 months.
Local sarcomas were noted in 5/10 rats that received the metallic nickel and in 9/10 rats that
received the nickel-gallium alloy. No local tumour occurred in ten groups of rats that
received similar implants of other dental materials (Mitchell et al., 1960).
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(v) Intramuscular administration

Rat: A group of ten female hooded rats, two to three months of age, received a single
intramuscular injection of 28.3 mg pure metallic nickel powder in 0.4 mL fowl serum into
the right thigh. All animals developed rhabdomyosarcomas at the injection site within 41
weeks. Historical controls injected with fowl serum alone did not develop local tumours
(Heath & Daniel, 1964).

Groups of 25 male and 25 female Fischer 344 rats [age unspecified] received five
monthly intramuscular injections of 5 mg metallic nickel powder in 0.2 mL trioctanoin.
Fibrosarcomas occurred in 38 treated animals but in none of a group of 25 male and 25
female controls given trioctanoin alone (Furst & Schlauder, 1971).

Two groups of ten male Fischer 344 rats, three months of age, received a single
intramuscular injection of metallic nickel powder (3.6 or 14.4 mg/rat) in 0.5 mL penicillin G
procaine. Surviving rats were killed 24 months after the injection. Sarcomas at the injection
site were found in 0/10 and 2/9 treated rats, respectively, as compared with 0/20 vehicle
controls (Sunderman & Maenza, 1976). [The Working Group noted the small number of
animals used.]

Groups of 20 WAG rats [sex and age unspecified] received a single intramuscular
injection of 20 mg metallic nickel powder in an oil vehicle [type unspecified]. A group of 56
control rats received 0.3 mL of the vehicle alone. Local sarcomas developed in 17/20 treated
and 0/56 control rats (Berry et al., 1984). [The Working Group noted the inadequate
reporting of tumour induction. ]

Groups of 20 or 16 male Fischer 344 rats, two to three months of age, received a single
intramuscular injection of 14 mg metallic nickel powder (99.5% pure) or 14 mg (as nickel)
of a ferronickel alloy (NiFe,.¢) in 0.3-0.5 mL penicillin G vehicle into the right thigh. Of the
20 rats receiving nickel powder, 13 developed tumours at the site of injection (mainly
rhabdomyosarcomas), with an average latency of 34 weeks. No local tumour developed in
the 16 rats given the ferronickel alloy, in 44 controls given penicillin G or in 40 controls
given glycerol (Sunderman, 1984).

Groups of 40 male inbred WAG rats, 10-15 weeks of age, received a single in-
tramuscular injection of 20 mg metallic nickel in paraffin oil. One group also received
intramuscular injections of interferon at 5 x 10* U/rat twice a week beginning in the tenth
week after nickel treatment. Rhabdomyosarcomas occurred in 14/30 and 5/10 rats in the two
groups, respectively. Metallic nickel depressed natural killer cell activity. Prospective
analysis of individual natural killer cell responses indicated that a persistent depression was
restricted to rats that subsequently developed a tumour (Judde et al., 1987).

Hamster: Furst and Schlauder (1971) compared the tumour response in Syrian hamsters
with that of Fischer 344 rats (see above) to metallic nickel powder. Groups of 25 male and
25 female hamsters, three to four weeks old, received five monthly intramuscular injections
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of 5 mg nickel powder in 0.2 mL trioctanoin. Two fibrosarcomas occurred in males. No
local tumour occurred in 25 male and 25 female controls injected with trioctanoin alone.

(vi) Intraperitoneal administration

Rat: As reported in an abstract, a group of male and female Fischer rats [numbers
unspecified], weighing 80-100 g, received intraperitoneal injections of 5 mg metallic nickel
powder in 0.3 mL corn oil twice a month for eight months. A control group received
injections of corn oil only. In the treated group, 30-50% of rats were reported to have
developed intraperitoneal tumours (Furst & Cassetta, 1973).

A group of 50 female Wistar rats, 12 weeks of age, received ten weekly intraperitoneal
injections of 7.5 mg metallic nickel powder [purity unspecified] (total dose, 75 mg).
Abdominal tumours (sarcomas, mesotheliomas or carcinomas) developed in 46/48 (95.8%)
rats at an average tumour latency of approximately eight months. Concurrent controls were
not reported, but, in non-concurrent groups of saline controls, abdominal tumours were
found in 0-6% of animals (Pott ef al., 1987).

Groups of female Wistar rats, 18 weeks of age, received single or repeated in-
traperitoneal injections of metallic nickel powder (100% nickel) or of one of three nickel
alloys in 1 mL saline once or twice a week. All animals were sacrificed 30 months after the
first injection. The incidences of local sarcomas and mesotheliomas in the peritoneal cavity
are shown in Table 22. A dose-response trend was apparent for metallic nickel, and the
tumour responses to the nickel alloys increased with the proportion of nickel present and the
dose (Pott et al., 1989, 1992). [The Working Group noted that the results at 30 months were
available as an extended abstract only.]

(vil) Intravenous administration

Mouse: A group of 25 male C57BI mice, six weeks old, received two intravenous
injections of 0.05 mL of a 0.005% suspension of matallic nickel powder in 2.5% gelatin into
the tail vein. Nineteen animals survived more than 52 weeks, and six survived over 60
weeks. No tumour was observed. No control group was used (Hueper, 1955). [The Working
Group noted the short period of observation. ]

Rat: A group of 25 Wistar rats [sex unspecified], 24 weeks of age, received intravenous
injections of 0.5 mL/kg bw metallic nickel powder as a 0.5% suspension in saline into the
saphenous vein once a week for six weeks. Seven rats developed sarcomas in the groin
region along the injection route [probably from seepage at the time of treatment]. No control
group was used (Hueper, 1955).
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Table 22. Tumour responses of rats to intraperitoneal injection of nickel and
nickel alloys”

Compound Total dose Schedule Mesotheliomas  Sarcomas at  Local tumours
(mg, as Ni) at two years two years at 30 months”
Metallic nickel 6 Single injection 3 0 4/34
12 2 X 6mg 3 2 5/34
25 25 x 1 mg 16 9 25/35
Alloy (50%) Ni) 50 Single injection 1 7 8/35
150 3 x50 mg 2 8 13/35
Alloy (29%) Ni)* 50 Single injection 0 0 2/33
100 2 x50 mg 0 1 1/36
Alloy (66% Ni)* 50 Single injection 0 11 12/35
150 3 x50 mg 4 20 22/33
Saline 3x1mL 0 1 1/33
50 x 1 mL 0 0 0/34

*From Pott et al. (1989, 1992)

®Results not given separately for mesotheliomas and sarcomas
“Before milling: 32% Ni, 21% Cr, 0.8% Mn, 55% Fe

dBefore milling: 74% Ni, 16% Cr, 7% Fe

(viil) Intrarenal administration

Rat: A group of 20 female Sprague-Dawley rats, weighing 120-140 g, received an
injection of 5 mg metallic nickel in 0.05 mL glycerine into each pole of the right kidney. No
renal carcinoma or erythrogenic response developed within the 12-month period of
observation (Jasmin & Riopelle, 1976).

Groups of male Fischer 344 rats, approximately two months of age, received an
intrarenal injection of 7 mg metallic nickel powder or of a ferronickel alloy (NiFe;.q; 7 mg
Ni per rat) in 0.1 or 0.2 mL saline solution into each pole of the right kidney. The study was
terminated after two years; the median survival time was 100 weeks in the two treated
groups compared with 91 weeks in controls. Renal cancers occurred in 0/18 and 1/14 rats,
respectively, compared with 0/46 saline-treated controls. The tumour was a nephroblastoma
which was observed at 25 weeks (Sunderman ef al. 1984b).

(ix) Implantation of ear-tags

Rat: In a study carried out to assess the carcinogenicity of cadmium chloride, 168 male
Wistar rats, six weeks of age, received identification ear-tags fabricated of nickel copper
alloy (65% Ni, 32% Cu, 1% Fe, 1% Mn). A total of 14 tumours, mostly osteosarcomas,
developed within 104 weeks at the site of implantation. The authors implicated nickel in the
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alloy as the probably causative agent and apparent local microbial infection as a
contributory factor (Waalkes et al., 1987).

(X)  Other routes of administration

Rat: In groups of 20 WAG rats [sex and age unspecified] subperiosteal injection of 20
mg metallic nickel powder resulted in local tumours in 11/20 rats; intramedullary injection
of 20 mg metallic nickel resulted in local tumours in 9/20 rats (Berry et al., 1984). [The
Working Group noted the absence of controls and the inadequate reporting of tumour
induction. ]

(xi) Administration with known carcinogens

Rat: Four groups of female Wistar rats [initial numbers unspecified], four to six weeks
old, received intratracheal instillations of 1 or 5 mg 20-methylcholanthrene (MC) alone or
with 10 mg metallic nickel powder (99.5% nickel). A fifth group received 10 mg metallic
nickel powder only. At 12 weeks, squamous-cell carcinomas had developed as follows: 5
mg MC, 2/7; 5 mg MC plus Ni, 3/5; 1 mg MC, 0/8; 1 mg MC plus Ni, 0/7; metallic Ni
alone, 0/7. Pretumorous lesions were more marked and the amount of epithelial metaplasia
enhanced in groups receiving the combined treatment or MC only (Mukubo, 1978). [The
Working Group noted the small number of animals used and the short duration of
observation. ]

(b) Nickel oxides and hydroxides

The compounds considered under this heading include a variety of substances of
nominally similar composition, which, however, may vary considerably due to differences
in production methods. These differences were not generally defined in the studies
described below, beyond the relatively recent designation of green and black nickel oxide.

(1) Inhalation

Rat: Groups of six or eight male Wistar rats, two months of age, were exposed by
inhalation to 0.6 or 8.0 mg/m’ nickel monoxide (green) particles (median aerodynamic
diameter, 1.2 um) for 6 h per day on five days per week for one month, after which they
were maintained with no further exposure for an additional 20 months. Histopathological
examination revealed one adenocarcinoma and one adenomatous lesion of the lung in the
low-exposure rats and one adenomatosis in the high-exposure group. Bronchial glandular
hyperplasia was seen in five and six rats in the low- and high-dose groups, respectively; a
malignant histiocytoma that emanated from the paranasal region was noted in the upper
respiratory tract of one rat [group unspecified]. None of the five control rats developed these
lesions, although both control and exposed animals exhibited some squamous metaplasia
(Horie et al., 1985). [The Working Group noted the small number of animals used and the
short exposure period. ]
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Groups of 40 and 20 male Wistar rats, five weeks of age, were exposed by inhalation to
60 and 200 xg/m’ nickel as nickel monoxide aerosol (particle size, < 0.3 um) continuously
for 18 months, followed by an observation period of one year under normal atmospheric
conditions. At 24 months, 80% of animals in the treatment group had died, and at
termination of the study (30 months) 62.5% of controls had died. No carcinogenic effect
was observed (Glaser et al.,, 1986). [The Working Group noted that the toxic effects,
particularly alveolar proteinosis, were severe, that the survival of the animals was too short
for carcinogenicity to be evaluated fully, and that nickel oxide aerosols were generated by
atomization of aqueous nickel acetate solutions.]

Hamster: A group of 51 male Syrian golden hamsters, two months of age, was exposed
by inhalation to a mean aerosol concentration of 53.2 mg/m’ nickel monoxide (mean particle
diameter, 0.3 um) for 7 h per day on five days per week for life. Another group of 51 males
was exposed to nickel monoxide plus cigarette smoke. Two control groups of 51 animals
were exposed to smoke and sham dust or to sham smoke and sham dust. Massive
pneumoconiosis with lung consolidation developed in the nickel monoxide-exposed animals
but did not affect their lifespan. Mean lifespan was 19.6 = 1.6 months for animals exposed
to smoke and nickel monoxide, 16.1 = 1.1 for sham-exposed nickel oxide-treated animals
and 19.6 = 1.4 and 15.3 £ 1.3 months for the respective controls. No significant increase in
the incidence of respiratory tumours or any evidence of cocarcinogenic interaction with
cigarette smoke was noted for nickel monoxide. One osteosarcoma occurred in the nickel
monoxide-treated group and one osteosarcoma and one rhabdomyosarcoma in the muscle of
the thorax were seen in the group given nickel monoxide plus cigarette smoke (Wehner et
al., 1975, 1979).

(11) Intratracheal instillation

Rat: Groups of female Wistar rats [numbers unspecified], 11 weeks of age, received ten
weekly intratracheal instillations of 5 or 15 mg nickel as nickel monoxide (99.99% pure) in
0.3 mL saline to give total doses of 50 and 150 mg nickel, respectively. A control group of
40 rats received injections of saline only and were observed for 124 weeks. Lung tumour
incidence in the two treated groups was 10/37 (27%) and 12/38 (31.6%), respectively; the
tumours in the two groups consisted of four adenocarcinomas, two mixed tumours and 16
squamous-cell carcinomas. No lung tumour occurred in controls (Pott ef al., 1987).

Hamster: In an experiment designed to study the effects of particulates on the
carcinogenesis of N-nitrosodiethylamine, groups of 25 male and 25 female hamsters [strain
unspecified], five weeks old, received intratracheal instillations of 0.2 mL of a suspension of
2 g nickel monoxide (particle size, 0.5-1.0 um) in 100 mL 0.5% w/v gelatin/saline once a
week for 30 weeks. A group of 50 controls received injections of carbon dust in the vehicle.
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Only three hamsters in each group survived beyond 48 weeks. One respiratory tract tumour
[unspecified] was found in the 47 nickel monoxide-treated animals that were necropsied and
four in controls. A high incidence of respiratory-tract tumours was observed in animals
treated with N-nitrosodiethylamine alone (Farrell & Davis, 1974). [The Working Group
noted the poor survival of treated and control animals.]

(i11) Intrapleural administration

Rat: A group of 32 male Wistar rats, three months of age, received a single intrapleural
injection of 10 mg nickel monoxide in 0.4 mL saline suspension. A positive control group of
32 rats received a 10 mg injection of crocidolite, and a negative control group of 32 rats
received saline alone. After 30 months, 31/32 rats in the nickel monoxide-treated group had
developed injection-site tumours (mostly rhabdomyosarcomas). Median survival time was
224 days. Nine of 32 rats in the crocidolite-treated group had local tumours, but none of the
saline controls developed local sarcomas (Skaug et al., 1985).

(iv) Intramuscular administration

Mouse: Two groups of 50 Swiss and 52 C3H mice, equally divided by sex, two to three
months of age, received single intramuscular injections of 5 mg nickel monoxide in
penicillin G procaine into each thigh muscle and were observed for up to 476 days. Local
sarcomas (mainly fibrosarcomas) occurred in 33 Swiss and 23 C3H mice. No control was
reported (Gilman, 1962).

Rat: A group of 32 Wistar rats [sex unspecified], two to three months of age, received
single intramuscular injections of 20 mg nickel monoxide powder into each thigh muscle
and were observed for up to 595 days. Twenty-one rats developed a total of 26 tumours at
the site of injection; 80% of the tumours were rhabdomyosarcomas, and the average latent
period was 302 days. No control was reported (Gilman, 1962).

Groups of 20 Fischer rats [sex and age unspecified] received single intramuscular
injections at two sites of either nickel hydroxide or nickel monoxide [dose unspecified] in
aqueous penicillin G procaine. Local sarcomas developed in 15/20 (19 tumours at 40 sites)
and 2/20 rats, respectively. Concurrent vehicle controls were not used. Seventeen of 20
animals given nickel subsulfide [dose unspecified] as positive controls developed local
sarcomas. No tumour developed at the injection sites in two other groups of rats in the same
experimental series injected intramuscularly with either nickel sulfate or nickel sulfide
[presumed to be amorphous] (Gilman, 1966).

Ten male and ten female Wistar rats, weighing 150-170 g, received an intramuscular
injection of 3 mg nickel trioxide powder. No control group was reported. No neoplasm
developed at the injection site (Sosinski, 1975).
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A group of 15 male Fischer 344 rats, two months of age, received a single intramuscular
injection of nickel at 14 mg/rat as nickel monoxide (bunsenite, green-grey (Sunderman,
1984); 99.9% pure; particle diameter, <2 um) in 0.3 mL of a 1:1 v/v glycerol:water vehicle
into the right thigh and were observed for 104 weeks. Fourteen animals developed local
sarcomas (mostly rhabdomyosarcomas) with a median tumour latency of 49 weeks and a
median survival time of 58 weeks; metastases occurred in 4/14 rats. None of 40 control rats
injected with vehicle alone developed tumours at the site of injection; 25/40 control rats
were still alive at termination of the experiment (Sunderman & McCully, 1983).

Groups of 20 male Wistar rats, weighing 200-220 g, received a single intramuscular
injection of 120 umol [7.1 mg] nickel as one of three nickel hydroxide preparations — an
air-dried gel, crystalline industrial nickel hydroxide and a freshly prepared colloidal nickel
hydroxide — in 0.1 mL distilled water. A positive control group was treated with 120 xgmol
[7.1 mg] nickel as nickel subsulfide (see also p. 337) and a negative control group was
treated with sodium sulfate. Seven rats treated with the colloidal preparation and one treated
with the gel died from haematuria one to two weeks after the treatment. Six ulcerating,
tumour-like growths developed between five and six months after treatment in the
crystalline-treated group, but these regressed and were not included in tabulations. Local
tumours occurred in 5/19 rats (four rhabdomyosarcomas, one fibrosarcoma) given the dried
gel, 3/20 (all rhabdomyosarcomas) given the crystalline compound, 0/13 given the colloidal
preparation, 16/20 positive controls and 0/20 negative controls (Kasprzak et al., 1983). [See
also pp. 360-361.]

In the study by Berry et al. (1984) described on p. 321, no tumour was induced by 20 mg
nickel monoxide by either the intramuscular or subperiosteal route in groups of 20 rats.

In the study by Judde et al. (1987) described on p. 321, no tumour was induced by 20 mg
nickel trioxide in ten rats.

(v) Intraperitoneal administration

Rat: A group of 50 female Wistar rats, 12 weeks of age, received two intraperitoneal
injections of 500 mg nickel as nickel monoxide (99.99% pure); 46/47 of the animals
developed abdominal tumours (sarcomas, mesotheliomas or carcinomas) with an average
tumour latency of 31 months. Concurrent controls were not reported but, in other groups of
saline controls, the incidence of abdominal tumours ranged from 0 to 6% (Pott et al., 1987).

In a study described earlier (p. 322), single injections of 25 and 100 mg nickel as nickel
monoxide induced local sarcomas and mesotheliomas in the peritoneal cavity in 12/34 and
15/36 female Wistar rats, respectively, after 30 months (Pott er al., 1989, 1992). [The
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Working Group noted that the results at 30 months were available as an extended abstract
only.]

(vi) Intrarenal administration

Rat: A group of 12 male Fischer 344 rats, two months of age, received an injection of
nickel monoxide (green; 7 mg/rat nickel) in 0.1 or 0.2 mL saline into each pole of the right
kidney and were observed for two years. No renal carcinoma was observed (Sunderman et
al., 1984b; see also p. 323).

(vil) Intracerebral injection

Rat: A group of ten male and ten female Wistar rats, weighing 150-170 g, received an
intracerebral injection of 3 mg nickel trioxide powder into the cerebral cortex. No control
group was reported. Cerebral sarcomas [gliomas] were observed in two rats that were killed
at 14 and 21 months, respectively, and a meningioma was found in one rat that was killed at
21 months (Sosinski, 1975).

(¢) Nickel sulfides

The experiments described below refer primarily to a-nickel subsulfide and to other
crystalline forms of nickel sulfide, except where specifically stated that an amorphous form
was tested.

(1) Inhalation

Rat: A group of 122 male and 104 female Fischer 344 rats [age unspecified] was
exposed by inhalation to 0.97 mg/m’ nickel subsulfide (particle diameter, < 1.5 um) for 6 h
per day on five days per week for 78 weeks. The remaining rats were observed for another
30 weeks, by which time survival was less than 5%. Survival of a group of 241 control rats
exposed to filtered room air was 31% at 108 weeks. A significant increase in the incidence
of benign and malignant lung tumours was observed compared to controls. Among treated
rats, 14 malignant (ten adenocarcinomas, three squamous-cell carcinomas, one fibro-
sarcoma) and 15 benign lung tumour-bearing animals were identified; one adenocarcinoma
and one adenoma developed among controls. The earliest tumour appeared at 76 weeks, and
the average tumour latency was approximately two years. An elevated incidence of
hyperplastic and metaplastic lung lesions was also noted among nickel subsulfide-treated
rats (Ottolenghi et al., 1974).

(1) Intratracheal instillation

Mouse: Groups of 20 male B6C3F1 mice, eight weeks of age, received intratracheal
instillations of 0.024, 0.056, 0.156, 0.412 or 1.1 mg/kg bw nickel subsulfide (particle size,
<2 um) in saline once a week for four weeks and were observed for up to 27 months, at
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which time about 50% of the animals had died. Lung tumours occurred in all groups; no
significant difference from controls and no dose-response relationship was observed. No
damage to the respiratory tract that was attributable to treatment was seen (Fisher et al.,
1986). [The Working Group noted the low doses used.]

Rat: Groups of 47, 45 and 40 female Wistar rats, 11 weeks of age, received intratracheal
instillations of 0.063, 0.125 or 0.25 mg/animal nickel subsulfide in 0.3 mL saline (total
doses, 0.94, 1.88 and 3.75 mg/animal) once a week for 15 weeks. At 120 weeks, 50% of the
animals were still alive; the experiment was terminated at 132 weeks. The incidences of
malignant lung tumours were 7/47, 13/45 and 12/40 in the low-, medium- and high-dose
groups; 12 adenocarcinomas, 15 squamous-cell carcinomas and five mixed tumours
occurred in the lungs of treated animals. No lung tumour occurred in 40 controls given 20
intratracheal injections of 0.3 mL saline (Pott ez al., 1987).

Hamster: In the study reported on p. 320 (Muhle et al., 1992), no lung tumour was seen
in 62 animals given 12 doses of 0.1 mg a-nickel subsulfide by intratracheal instillation. [The
Working Group noted the low total dose given.]

(iil)) Intrapleural administration

Rat: A group of 32 male Wistar rats, three months of age, received a single intrapleural
injection of 10 mg nickel subsulfide in 0.4 mL saline. Average survival was 177 days. Local
malignant tumours (mainly rhabdomyosarcomas) developed in 28/32 animals but in none of
32 saline-injected controls (Skaug et al., 1985)

(iv) Topical administration

Hamster: Groups of male golden Syrian hamsters of the LVG/LAK strain, two to three
months of age, were painted on the mucosa of the buccal pouches with 1 or 2 mg a-nickel
subsulfide in 0.1 mL glycerol three times a week for 18 weeks (six to seven animals; total
doses, 54 and 108 mg nickel subsulfide) or with 5 or 10 mg three times a week for 36 weeks
(13-15 animals; total doses, 540 and 1080 mg nickel subsulfide), and were observed for
more than 19 months. Two control groups received applications of glycerol. No tumour
developed in the buccal pouch, oral cavity or intestinal tract in the treated or control groups.
Squamous-cell carcinomas of the buccal pouch developed in all four hamsters that received

applications of 1 mg dimethylbenz[a]anthracene in glycerol three times a week for 18 weeks
(Sunderman, 1983b).

(v) Intramuscular administration

Mouse: Groups of 45 Swiss and 18 C3H mice, approximately equally divided by sex,
two to three months of age, received single intramuscular injections of 5 mg nickel
subsulfide into both or only one thigh muscle. Local tumours (mainly sarcomas) developed
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in 27 and nine mice, respectively. No control was reported (Gilman, 1962).

Three groups of ten female and one group of ten male NMRI mice, six weeks of age,
received an injection of 10 mg labelled nickel subsulfide into the left thigh muscle, or of 5
mg into the interscapular subcutaneous tissue, in 0.1 mL olive oil:streptocillin (3:1). Two
mice from each group were killed two months after injection for whole-body
autoradiography; no tumour was seen at this stage. The remaining animals were autopsied at
14 months, when local sarcomas were seen in 7/8 and 4/8 females that received
subcutaneous injections and in 4/8 males and 4/8 females that received intramuscular
injections. Metastases to the lung, liver and regional lymph nodes occurred in approximately
half of the 19 tumour-bearing mice. No control group was used (Oskarsson et al., 1979).

Groups of four male and six female DBA/2 and five male and five female C57B16 mice,
two to three months of age, received a single intramuscular injection of 2.5 mg a-nickel
subsulfide in 0.1-0.5 mL penicillin G procaine solution into one thigh muscle. Local
sarcomas developed in six DBA/2 (p < 0.01) and in five C57BIl6 (p < 0.05) mice, with
median latent periods of 13 and 14 months, respectively. None of nine control mice of each
strain injected with penicillin G alone developed a sarcoma (Sunderman, 1983b).

Rat: A group of 32 male and female Wistar rats, two to three months of age, received a
single intramuscular injection of 20 mg nickel subsulfide into one or both thigh muscles.
After an average of 21 weeks, 25/28 rats had developed 36 local tumours. Vehicle controls
were not available, but two further groups of 30 rats each injected with ferrous sulfide did
not develop tumours at the site of injection after 627 days (Gilman, 1962).

Groups of ten male and ten female Fischer rats, five months of age, were administered
nickel subsulfide either by an intramuscular injection of 10 mg powder (particle size, 2-4
um), by implantation of an intact 11-mm disc (500 mg), by implantation of 3-5-mm disc
fragments or by implantation of 10 mg powder in a 0.42-um porosity millipore diffusion
chamber. Local tumours (mostly rhabdomysarcomas) developed in 71-95% of rats, which
demonstrated diffusion of soluble nickel from the chambers. The mean tumour latency for
the last group was 305 days, almost twice that for the other three groups. Among 19 controls
given 38 implants of empty diffusion chambers, one tumour developed after 460 days. The
authors considered that the experiment demonstrated that the induction of neoplasms by
nickel subsulfide is a chemical rather than a physical (foreign-body) reaction and that
phagocytosis is not essential for nickel tumorigenesis (Gilman & Herchen, 1963).

Groups of 15 Fischer rats received implants of nickel subsulfide discs (250 mg) or 8 x 1-
mm discs of ferric oxide (control) in opposite sides of the gluteal musculature. The nickel
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subsulfide discs were removed in a geometric sequence at two, four, eight... up to 256 days
after implantation, and average tumour incidence after 256 days was 66%. The critical
exposure (tissue contact) period necessary for nickel subsulfide to induce malignant
transformation was 32-64 days (Herchen & Gilman, 1964).

Groups of 15 male and 15 female hooded and 15 male and 12 female NIH (Bethesda)
black rats, two to three months of age, received injections of 10 mg nickel subsulfide in
penicillin G procaine into each gastrocnemius muscle. NIH Black rats were less susceptible
to local tumour induction (14/23 rats) than hooded rats (28/28). Massive phagocytic
invasion of the nickel injection site occurred in the NIH black rats (Daniel, 1966).

Groups of 20 male and 20 female Fischer 344 rats, five weeks of age, received a single
subcutaneous injection of 10 or 3.3 mg nickel subsulfide in 0.25 mL saline. Two further
groups received single intramuscular injections of 10 or 3.3 mg nickel subsulfide. A group
of 60 male and 60 female control rats received injections of 0.25 mL saline twice a week for
52 weeks, and a further control group received no treatment. At 18 months, the groups
injected subcutaneously with nickel subsulfide had tumour incidences of 90 and 95%, and
the groups injected intramuscularly had tumour incidences of 85% and 97%. Most tumours
in both groups were rhabdomyosarcomas. No local tumour occurred in controls (Mason,
1972).

Groups of ten male Fischer 344 rats, three months of age, received intramuscular
injections of amorphous nickel sulfide and a-nickel subsulfide in 0.5 mL penicillin G
procaine suspension at two comparable dose levels (about 5 and 20 mg/rat), to provide 60
and 240 ug Ni per rat. A further group received injections of nickel ferrosulfide matte (85
and 340 ug atom of nickel per rat). Sarcomas at the injection site developed in 8/10 and 9/9
of the low- and high-dose nickel subsulfide-treated groups and in 1/10 and 8/10 of the low-
and high-dose nickel ferrosulfide matte-treated groups, respectively. No local sarcoma
developed in the groups given nickel sulfide, among control rats given penicillin G procaine
suspension alone or in two control groups treated with metallic iron powder (Sunderman &
Maenza, 1976).

Groups of 63 male and female inbred Fischer and 20 male and female hooded rats, ten to
14 weeks old, received an intramuscular injection of 10 mg nickel subsulfide in penicillin G
procaine. Tumour-bearing rats were autopsied 30 days after detection of the tumour.
Tumours occurred in 59/63 Fischer and 11/20 hooded rats; 81.9% of tumours in hooded rats
metastasized, compared to 25.4% in Fischer rats. Metastatic lesions were observed in the
heart, pleura, liver and adrenal glands, as well as in lungs and lymph nodes of nine hooded
rats. Of the primary tumours, 67% were rhabdomyosarcomas (Yamashiro et al., 1980).
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Groups of 30 male Fischer 344 rats, approximately two months of age, received a single
intramuscular injection of 0.6, 1.2, 2.5 or 5 mg nickel subsulfide. Local sarcomas were
recorded in 7/30, 23/30, 28/30 and 29/30 of the animals, respectively [p < 0.01], indicating a
dose-related increase in incidence. No such tumour developed in 60 untreated controls
(Sunderman et al., 1976). In an extension of this study, a total of 383 animals received
injections of 0.63-20 mg a-nickel subsulfide. Sarcoma incidence at 62 weeks after treatment
ranged from 24% at the lowest dose level to 100% at the highest dose level. Of the 336
sarcomas induced, 161 were rhabdomyosarcomas, 91 undifferentiated sarcomas, 72
fibrosarcomas, nine liposarcomas, two neurofibrosarcomas and one a haemangiosarcoma.
Metastasis was seen in 137 of the 336 tumour-bearing animals (Sunderman, 1981).

In a study on the relationship between physical and chemical properties and carcinogenic
activities of 18 nickel compounds at a standard 14-mg intramuscular dose of nickel under
comparable experimental conditions in male Fischer 344 rats (see p. 321), five nickel
sulfides were among the compounds tested. Three of these (a-nickel subsulfide, crystalline
B-nickel sulfide and nickel ferrosulfide matte) induced local sarcomas in 100% of animals
(9/9, 14/14 and 15/15). Metastases developed in 56, 71 and 67%, respectively, of the
tumour-bearing rats. Nickel disulfide induced local tumours in 86% (12/14) animals and
amorphous nickel sulfide in 12% (3/25). Median latent periods were 30 weeks for nickel
subsulfide, 40 weeks for crystalline nickel sulfide, 36 weeks for nickel disulfide, 41 weeks
for amorphous nickel sulfide, but only 16 weeks for nickel ferrosulfide. Median survival
times were 39, 48, 47, 71 and 32 weeks, respectively (Sunderman, 1984).

In the study by Berry et al. (1984) described on p. 321, tumours developed in 10/20 rats
given 5 mg nickel subsulfide intramuscularly, in 0/20 treated subperiosteally and in 10/20
given intrafemoral injections.

In the study by Judde et al. (1987) described on p. 321, a single intramuscular injection
of 5 mg nickel subsulfide induced tumours in 2/100 rats.

[The Working Group was aware of several other studies in which nickel subsulfide was
used as a positive control or as a model for the induction of rhabdomyosarcomas. ]

Hamster: Groups of 15 or 17 male Syrian hamsters, two to three months of age, received
a single intramuscular injection of 5 or 10 mg nickel subsulfide in 0.02-0.5 mL sterile saline.
Of the 15 animals receiving the 5-mg dose, four developed local sarcomas, with a median
latent period of ten months. At the 10-mg dose, 12/17 hamsters had local tumours, with a
mean latency of 11 months [p < 0.01, trend test]. No tumour occurred among 14 controls
injected with saline alone (Sunderman, 1983a).
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Rabbit: Six-month-old white rabbits [sex and number unspecified] received
intramuscular implants of agar-agar blocks containing approximately 80 mg nickel
subsulfide powder. Sixteen rabbits with local tumours (rhabdomyosarcomas) were
examined. Tumours were first observed about four to six months after implantation as small
growths, which usually ceased active progression for up to 80 weeks then grew rapidly over
the next four or five weeks (Hildebrand & Biserte, 1979a,b). [The Working Group noted the
limited reporting of the study.]

Four male New Zealand albino rabbits, two months old, received bilateral intramuscular
injections of 25 mg a-nickel subsulfide (50 mg/rabbit) in 0.1-0.5 mL penicillin G procaine
suspension. All animals died between 16 and 72 months. No local tumour was found on
autopsy (Sunderman, 1983a). [The Working Group noted the short observation period.]

(vi) Intraperitoneal administration

Rat: Of a group of 37 Fischer rats [sex and age unspecified] that received a single
intraperitoneal injection of nickel subsulfide [dose unspecified], nine developed tumours,
eight of which were rhabdomyosarcomas and one a mesothelioma (Gilman, 1966). [The
Working Group noted the limited reporting of the study.]

A group of 50 female Wistar rats, 12 weeks of age, received a single intraperitoneal
injection of 25 mg nickel subsulfide. Abdominal tumours (sarcomas, mesothliomas and
carcinomas) occurred in 27/42 animals, with an average latent period of eight months (Pott
etal., 1987).

In a study described above (p. 322), three doses of nickel subsulfide were injected into
the peritoneal cavities of groups of female Wistar rats. Local tumours were observed at 30
months in 20/36 animals that received 6 mg (as Ni) as a single injection, in 23/35 receiving
12 mg (as Ni) as two 6-mg injections and in 25/34 given 25 mg (as Ni) as 25 1-mg
injections. The tumours were mesotheliomas or sarcomas of the abdominal cavity (Pott et
al., 1989, 1992). [The Working Group noted that the results at 30 months were available as
an extended abstract only.]

(vil) Intrarenal administration

Rat: Groups of 16 and 24 female Sprague-Dawley rats, weighing 120-140 g, received a
single injection of 5 mg nickel subsulfide in 0.05 mL glycerine or 0.5 mL saline into each
pole of the right kidney. Renal-cell carcinomas occurred in 7/16 and 11/24 animals
compared with 0/16 in animals given 0.5 mL glycerine (Jasmin & Riopelle, 1976).

In a second experiment (Jasmin & Riopelle, 1976), the activity of other nickel
compounds and divalent metals was investigated under identical experimental conditions
using glycerine as the vehicle; all rats were autopsied after 12 months’ exposure. In one
group of 18 rats, nickel sulfide [probably amorphous] exhibited no renal tumorigenic
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activity. [The Working Group noted that it was not stated whether crystalline or amorphous
nickel sulfide was used.]

Groups of male and female Wistar Lewis, NIH black, Fischer 344 and Long-Evans rats,
eight weeks of age, received an intrarenal injection of 5 mg a-nickel subsulfide. The
incidence of malignant renal tumours 100 weeks after exposure was 7/11 in Wistar Lewis,
6/12 in NIH black, 9/32 in Fischer and 0/12 in Long-Evans rats. Groups of 11-24 male
Fischer rats were given an intrarenal injection of 0.6, 1.2, 2.5, 5 or 10 mg nickel subsulfide;
no tumour was seen with 0.6, 1.2 or 2.5 mg, but responses of 5/18 and 18/24 were obtained
with 5 mg and 10 mg, showing a dose-response effect. All tumours were malignant, but the
authors could not establish whether the tumours were of epithelial or mesenchymal origin;
70% had distant metastases (Sunderman et al., 1979a).

Groups of male Fischer 344 rats [initial number unspecified], approximately eight weeks
old, received an intrarenal injection of 7 mg nickel as one of several sulfides in 0.1 or 0.2
mL saline or in glycerol:distilled water (1:1, v/v) in each pole of the right kidney and were
observed for two years after treatment. The incidence of renal cancer was significantly
elevated in treated groups: nickel disulfide, 2/10 (fibrosarcomas); crystalline, B-nickel
sulfide, 8/14 (three fibrosarcomas, three other sarcomas, one renal-cell carcinoma, one
carcinosarcoma); and o-nickel subsulfide, 4/15 (mesangial-cell sarcomas). Renal cancers
occurred in 1/12 (sarcoma) rats treated with nickel ferrosulfide and in 0/15 rats treated with

amorphous nickel sulfide. No local tumour developed in vehicle controls (Sunderman et al.,
1984Db).

(viil) Intratesticular administration

Rat: A group of 19 male Fischer 344 rats, eight weeks of age, received an injection of 10
mg o-nickel subsulfide in 0.3 mL saline into the centre of the right testis and were observed
for 20 months, at which time all the animals had died. A control group of 18 rats received an
injection of 0.3 mL saline only, and a further two groups of four rats each received
injections of either 10 mg metallic iron powder in saline or 2 mg zinc[III] as zinc chloride in
distilled water. Of the nickel subsulfide-treated rats, 16/19 developed sarcomas in the treated
testis, ten of which were fibrosarcomas, three malignant fibrous histiocytomas and three
rhabdomyosarcomas. Four of the rats had distant metastases. No tumour occurred in the
other groups (Damjanov et al., 1978).

(ix) [Intraocular administration

Rat: A group of 14 male and one female Fischer 344 rats, four weeks of age, received an
injection of 0.5 mg a-nickel subsulfide in 20 uL saline into the vitreous cavity of the right
eye under anaesthetic. Eleven male controls were similarly injected with saline alone. The
experiment was terminated at 40-42 weeks after treatment, when 11 control and one
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surviving treated rats were killed. Between 26 and 36 weeks after injection, 14/15 rats
developed ocular tumours. Five of the tumorous eyes contained multiple neoplasms, and 22
distinct ocular tumours were identified as 11 melanomas, four retinoblastomas, three
gliomas, one phakocarcinoma [lens capsular tumour] and three unclassified malignant
tumours. No tumour developed in either the controls or in the uninjected, left eyes of treated
rats. It was postulated that the very high incidence (93%) and short latent periods may have
been due in part to the relative isolation of the vitreous bodies from the systemic circulation
(blood-retina barrier), which would result in a high concentration of nickel[II]. The authors
also pointed out that nickel particles within the vitreous body were relatively sequestered
from phagocytosis. The visibility of developing tumours within the chamber permits their
very early recognition (Albert et al., 1980; Sunderman, 1983b).

Salamander A group of eight lentectomized Japanese common newts received a single
injection of 40-100 ug nickel subsulfide into the vitreous chamber of the eye under
anaesthetic. Seven newts developed ocular melanoma-like tumours within nine months,
while no tumour occurred in six controls injected with 2-3 uL sterile 0.6% saline or eye-
dropper oil after lens extirpation. The lens regenerated in each of the control eyes. The site
of tumour origin could not be determined, although it was suggested to be the iris, which
showed numerous aberrant proliferating cells at three months (Okamoto, 1987).

(x) Transplacental administration

Rat: A group of eight pregnant female Fischer 344 rats, 120-150 days of age, received an
intramuscular injection of 20 mg a-nickel subsulfide in 0.2 mL procaine penicillin G
suspension on day 6 of gestation, allowing for gradual dissolution of the nickel subsulfide
throughout the remainder of the pregnancy. A group of controls received an injection of
vehicle only. No difference in the incidence of benign or malignant tumours was seen
between the 50 pups born to treated dams and 53 control pups observed for 26 months
(Sunderman et al, 1981). [The Working Group noted that only one dose was used, which
was not toxic to the fetuses.]

(x1) Implantation into subcutaneously implanted tracheal grafts

Rat: Groups of 30 and 32 female Fischer 344 rats, ten weeks of age, received five gelatin
pellets containing 1 or 3 mg nickel subsulfide in heterotopic tracheal transplants inserted
under the dorsal skin. At the lower dose level, tumours developed in 9/60 tracheas (six
carcinomas and three sarcomas); at the higher dose level, tumours developed in 45/64
tracheas (one carcinoma and 44 sarcomas). No tumour developed in 20 control transplanted
tracheas. The high dose resulted in necrosis of the epithelium and thus favoured the
development of sarcomas (Yarita & Nettesheim, 1978).
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(xi1) Intramuscular, subcutaneous or intra-articular injection or injection into
retroperitoneal fat

Rat: In a study designed to determine the types of sarcoma that develop from various
mesenchymal tissue components, groups of 20 male Fischer 344 rats, seven to eight weeks
of age, received injections of 5 mg nickel subsulfide either intramuscularly, subcutaneously,
into the intra-articular space or into retroperitoneal fat. Control groups of ten rats each were
injected with 0.5 mL aqueous procaine penicillin G vehicle. The incidences and types of
sarcoma that developed in the experimental groups were: intramuscular, 19/20 (all
rhabdomyosarcomas); subcutaneous, 18/19 (ten malignant fibrous histiocytomas, five
rhabdomyosarcomas, three fibrosarcomas or unclassified); intra-articular, 16/19 (eight
rhabdomyosarcomas, three malignant fibrous histiocytomas, five fibrosarcomas or
unclassified); and retroperitoneal fat, 9/20 (five malignant fibrous histiocytomas, three
rhabdomyosarcomas, one fibrosarcoma or unclassified). Controls did not develop tumours
(Shibata et al., 1989).

(xiil) Administration with known carcinogens

Rat: Groups of 30 male Fischer rats, eight to nine weeks of age, received intramuscular
injections in both thighs of either 10 mg nickel subsulfide, 10 mg benzo[a]pyrene or 20 mg
nickel subsulfide plus 10 mg benzo[a]pyrene in penicillin G procaine suspension, or vehicle
alone. All treated rats developed sarcomas; rhabdomyosarcomas occurred in 24/30 given 10
mg nickel subsulfide, 4/30 given benzo[a]pyrene and 28/30 given 20 mg nickel subsulfide
plus benzo[a]pyrene. No sarcoma occurred in controls (Maenza et al., 1971).

Groups of 13, 13 and 12 male Wistar rats, weighing approximately 200 g, received
single intratracheal injections of 5 mg nickel subsulfide,2 mg benzo[a]pyrene or 5 mg nickel
subsulfide plus 2 mg benzo[a]pyrene and were observed for 15 months. One rat from each
group developed a tumour, consisting of one hepatoma, one retroperitoneal tumour and one
squamous-cell carcinoma of the lung, respectively. Significant differences were seen in the
incidence of preneoplastic lesions (peribronchial adenomatoid proliferation and bronchial
squamous metaplasia), the occurrence decreasing in the order: nickel subsulfide plus
benzo[a]pyrene > benzo[a]pyrene > nickel subsulfide (Kasprzak et al., 1973).

(d) Nickel salts

(1) Intramuscular administration
Rat: A group of 32 male and female Wistar rats, two to three months of age, received an
injection of 5 mg nickel sulfate hexahydrate in one or both thigh muscles (54 injected sites).
Thirteen rats survived until the end of the experiment at 603 days.
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No local tumour was found at the site of injection. No vehicle control was used (Gilman,
1962).

In a study reported as an abstract, sheep fat pellets, each containing 7 mg of either nickel
sulfate, nickel chloride, nickel acetate, anhydrous nickel acetate, nickel carbonate or nickel
ammonium sulfate, were given as three intramuscular implants [interval unspecified] into
groups of 35 Bethesda black [NIH black] rats. Animals were observed for 18 months. Six
tumours developed in the nickel carbonate group; single tumours developed in the nickel
acetate and nickel sulfate groups. No tumour developed in any of the other groups or in 35
controls (Payne, 1964).

In a study comparing the in-vitro solubility and carcinogenicity of several nickel
compounds, nickel fluoride and nickel sulfate were suspended in penicillin G procaine and
injected intramuscularly [dose unspecified] into groups of 20 Fischer rats [sex and age
unspecified]. The incidence of local sarcomas was 3/18 (17%; 3/36 sites) with nickel
fluoride and 0/20 with nickel sulfate. Seventeen of 20 (85%) rats given nickel subsulfide as
a positive control developed local sarcomas. No tumour developed in 20 rats injected with
nickel sulfide [presumed to be amorphous] (Gilman, 1966). [The Working Group noted that
no concurrent vehicle control was used and that the length of observation was not specified.]

A group of 20 male Wistar rats, weighing 200-220 g, received 15 intramuscular
injections of 20 uL of a 0.2 M solution of nickel sulfate (4.4 umol [0.26 mg]/injection of
nickel; total dose, 66 umol [4 mg]/rat nickel) every other day during one month. Further
groups of 20 male rats received injections of nickel subsulfide (total dose, 40 umol [7.1 mg
nickel]; positive control) or sodium sulfate (15 injections of 20 4L of a 0.2 M solution;
negative control). Nickel subsulfide induced local tumours in 16/20 rats; no tumour
developed in nickel sulfate- or sodium sulfate-treated rats (Kasprzak et al., 1983).

One local sarcoma was found in 16 male Fischer 344 rats, two to three months old, given
an intramuscular injection of nickel chromate into the right thigh as 14 mg/rat nickel. Ten
rats survived two years (Sunderman, 1984).

(i1) Intraperitoneal administration

Mouse: In a screening assay for lung adenomas in strain A mice, groups of ten male and
ten female Strong strain A mice, six to eight weeks old, received intraperitoneal injections
of nickel acetate in 0.85% physiological saline (total doses, 72, 180 and 360 mg/kg bw)
three times a week for 24 weeks and were observed for 30 weeks, at which time all
survivors were autopsied. Further groups of mice received a single intraperitoneal injection
of 20 mg urethane (positive control), 24 injections of saline only or remained untreated. The
incidences of lung tumours were: saline control, 37% (0.42 tumours/animal); untreated
control, 31% (0.28 tumours/animal); positive control, 100% (21.6 tumours/animal); 72 mg
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nickel acetate, 44% (0.67 tumours/animal); 180 mg nickel acetate, 50% (0.71 tumours/-
animal); and 360 mg nickel acetate, 63% (1.26 tumours/animal). The difference in response
between the group given 360 mg nickel acetate and the negative control group was
significant (p < 0.01). Five adenocarcinomas of the lung were observed in the nickel-treated
mice compared to none in controls (Stoner et al., 1976).

In the same type of screening assay, 30 male and female Strong strain A mice, six to
eight weeks of age, received intraperitoneal injections of 10.7 mg/kg bw nickel acetate
tetrahydrate (maximal tolerated dose; 0.04 mmol [2.4 mg]/kg bw nickel) three times a week
for 24 weeks. A control group received injections of 0.9% saline under the same schedule.
Animals were autopsied 30 weeks after the first injection. Of the nickel-treated group, 24/30
animals survived to 30 weeks and had an average of 1.50 lung adenomas/animal, whereas
25/30 controls had an average of 0.32 lung adenoma/animal (p < 0.05) (Poirier et al., 1984).

Rat: In a study described earlier (p. 322), groups of female Wistar rats were given
repeated intraperitoneal injections of 1 mg of each of four soluble nickel salts. The dose
schedule and tumour responses at 30 months are shown in Table 23. The tumours were
either mesotheliomas or sarcomas (tumours of the uterus were not included) (Pott et al.,
1989, 1992). [The Working Group noted that administration of nickel sulfate and nickel
chloride by intramuscular injection has not been shown to induce tumours in rats. They
suggest that in this instance the repeated small intraperitoneal doses permitted repeated
exposure of potential target cells. Repeated intramuscular injections would result in nickel
coming into contact with different cells at each injection. The Group also noted that the
results at 30 months were reported only as an extended abstract. ]

(ii1)) Administration with known carcinogens

Rat: Groups of 12 rats [strain, sex and age unspecified] received a single subcutaneous
injection of 9 mg/mL dinitrosopiperazine in aqueous Tween 80. The following day, one
group received topical insertion into the nasopharynx of 0.02 mL of a 0.5% solution of
nickel sulfate in 4% aqueous gelatin once a week for seven weeks. A further group was held
for six days and then administered 1 mL of aqueous 1% nickel sulfate solution in the
drinking-water for six weeks. Additional groups of 12 rats received treatment with
dinitrosopiperazine, nickel sulfate solution or nickel sulfate in gelatin only. Survival at 371
days was lower in the group treated with dinitropiperazine plus nickel sulfate solution in the
drinking-water than in the group given the nitrosamine or the nickel sulfate solution alone.
Two nasopharyngeal tu-mours (one squamous-cell carcinoma, one fibrosarcoma) occurred
in the group treated with dinitropiperazine plus nickel sulfate in drinking-water and two
(one papilloma, one early carcinoma) in the group treated with dinitropiperazine plus
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Table 23. Tumour responses of rats to intraperitoneal injection of soluble
nickel salts®

Compound Total dose Schedule Incidence of abdominal
(mg, as Ni) tumours
Nickel chloride.6H,O 50 50 x 1 mg 4/32 [p <0.05]
Nickel sulfate.7H,O 50 50 x 1 mg 6/30 [p <0.05]
Nickel acetate.4H,O 25 25 x 1 mg 3/35
50 50 x 1 mg 5/31 [p < 0.05 for trend]
Nickel carbonate 25 25 x 1 mg 1/35
Nickel hydroxide.2H,O 50 50 x 1 mg 3/33
Saline 3x1mL 1/33
50 x 1 mL 0/34

*From Pott et al. (1989, 1992)

insertion of nickel sulfate in gelatin. No tumour occurred in the other groups. The authors
concluded that ‘probably nickel has a promoting action in the induction of nasopharyngeal
carcinoma in rats following dinitrosopiperazine initiation’ (Ou et al., 1980). [The Working
Group noted the small number of animals used and the poor survival.]

As reported in an abstract, in an extension of the study by Ou et al. (1980), five of 22
rats given an initiating injection of dinitrosopiperazine developed carcinomas following oral
administration of nickel sulfate in gelatin. Two of the carcinomas were of the nasopharynx,
two of the nasal cavity and one of the hard palate. No tumour developed in rats [numbers
unspecified] treated with dinitrosopiperazine plus aqueous nickel sulfate, with nickel sulfate
in gelatin alone or with dinitrosopiperazine alone (Liu et al., 1983). [The Working Group
noted the small number of animals used and the poor survival.]

As reported in an abstract, a group of 13 female rats [strain and age unspecified]
received a single subcutaneous injection of 9 mg dinitrosopiperazine on day 18 of gestation.
Pups of treated dams were fed 0.05 mL of 0.05% nickel sulfate beginning at four weeks of
age every day for one month. The dose of nickel sulfate was increased by 0.1 mL per month
for a further five months, by which time 5/21 pups had developed carcinomas of the nasal
cavity. In a group of untreated pups of treated dams, 3/11 rats developed tumours (one
nasopharyngeal squamous-cell carcinoma, one neurofibrosarcoma of the peritoneal cavity
and one granulosa-thecal-cell carcinoma of the ovary). Groups given nickel sulfate and
untreated control groups of seven pups each did not develop tumours. None of the pregnant
rats that had been injected with dinitrosopiperazine alone developed tumours (Ou et al.,
1983).
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Groups of 15 male Fischer 344 rats, seven weeks old, were administered 500 mg/L N-
nitrosoethylhydroxyethylamine (NEHEA) in the drinking-water for two weeks. Thereafter,
rats received drinking-water alone or drinking-water containing 600 mg/L nickel chloride
hexahydrate for 25 weeks, when the study was terminated. The incidence of renal-cell
tumours in the group receiving NEHEA and nickel chloride (8/15) was significantly higher
(» < 0.05) than that in controls given NEHEA alone (2/15) or nickel chloride alone (0/15)
(Kurokawa et al., 1985). Nickel chloride did not show promoting activity in livers of
Fischer 344 rats after initiation with N-nitrosodiethylamine, in gastric tissue of Wistar rats
after initiation with N-methyl-N"-nitro-N-nitrosoguanidine, in the pancreas of Syrian golden
hamsters following initiation with N-nitrosobis(2-oxy-propyl)amine or in skin of SENCAR
mice initiated with 7,12-dimethylbenz[a]anthracene. The authors concluded that nickel
chloride is a promoter in renal carcinogenesis in rats (Hayashi et al., 1984; Kurokawa et al.,
1985).

(e) Other nickel compounds
(1) Inhalation

Rat: Groups of 64 or 32 male Wistar rats, weighing 200-250 g, were exposed by
inhalation for 30 min to 30 or 60 mg/m’ nickel carbonyl vapourized from a solution in 50:50
ethanol:diethyl ether, respectively, three times a week for 52 weeks. Another group of 80
rats was exposed once to 250 mg/m’ nickel carbonyl. All treated animals had died by 30
months. One lung carcinoma appeared in each of the first two groups, and two pulmonary
carcinomas developed in the last group. No pulmonary tumour occurred among 41 vehicle-
treated control rats (Sunderman et al., 1957, 1959). A further group of 285 rats was exposed
for 30 min to 600 mg/m’ nickel carbonyl; 214 died from acute toxicity. One lung
adenocarcinoma was observed in the remaining 71 animals. Similar exposure to nickel
carbonyl followed by intraperitoneal injection of sodium diethyl dithiocarbamate, an
antidote, resulted in survival of all 60 treated rats and the development of a single anaplastic
lung carcinoma. Minimal time to observation of lung tumours in these groups was in excess
of 24 months. No lung carcinoma was observed in a group of 32 controls (Sunderman &
Donnelly, 1965).

A group of five non-inbred rats [sex and age unspecified] was exposed by inhalation to
70 mg/m’ nickel refinery dust (containing 11.3% metallic nickel, 58.3% nickel sulfide
[identity unspecified], 1.7% nickel monoxide and 0.2% water-soluble nickel [composition
of sample unclear]) for 5 h per day on five days per week for six months. Seventeen months
after the start of treatment, one of five rats developed a squamous-cell carcinoma of the
lung. No tumour developed among 47 untreated controls (Saknyn & Blokhin, 1978). [The
Working Group noted the small number of animals used.]
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Hamster: Groups of 102 male Syrian golden outbred LAK:LVG hamsters, two months
old, were exposed by inhalation to concentrations of 17 or 70 mg/m’ nickel-enriched fly ash
from the addition of nickel acetate to pulverized coal before combustion (nickel content,
6%) for 6 h per day on five days per week for 20 months. Further groups were exposed to 70
mg/m’ fly ash containing 0.3% nickel, or were sham-exposed. Five animals from each group
were autopsied at four-month intervals up to 16 months, and all survivors were sacrificed at
20 months. No significant difference in mortality rate or bodyweight was observed between
the groups. There were 14, 16, 16 and seven benign and malignant tumours in the sham-
exposed, fly ash, low-dose and high-dose nickel-enriched fly ash groups, respectively. The
only two malignant pulmonary neoplasms (one adenocarcinoma, one mesothelioma)
occurred in the group receiving fly ash enriched with the high dose of nickel (Wehner et al.,
1981, 1984).

(1) Intratracheal instillation

Rat: A group of 26 white non-inbred rats [sex and age unspecified] received a single
intratracheal instillation of 20-40 mg aerosol dust (64.7% nickel monoxide (black), 0.13%
nickel sulfide, 0.18% metallic nickel) in 0.6 mL saline. One squamous-cell carcinoma of the
lung had developed by 17 months. No tumour developed among a group of 47 controls
(Saknyn & Blokhin, 1978). [The Working Group noted that it was not stated whether the
controls were untreated or received the vehicle alone.]

(111)  Intramuscular administration

Mouse: A group of 40 female Swiss mice, two to three months of age, received an
intramuscular injection in each thigh of 10 mg of a nickel refinery dust (57% nickel
subsulfide, 20% nickel sulfate hexahydrate, 6.3% nickel monoxide) suspended in penicillin
G procaine. Of the 36 mice that survived more than 90 days, 20 developed a total of 23 local
sarcomas, with an average latent period of 46 weeks. No tumour occurred among 48 control
mice injected with the vehicle alone (Gilman & Ruckerbauer, 1962).

Rat: A group of 35 male and female hooded rats, two to three months of age, received an
intramuscular injection in each thigh of 20 mg of a nickel refinery dust (57% nickel
subsulfide, 20% nickel sulfate hexahydrate, 6.3% nickel oxide) suspended in penicillin G
procaine. Of the 27 rats that survived more than 90 days, 19 developed local sarcomas.
Another group of 31 male and female rats received injections of the same refinery dust after
repeated washing in distilled water; 20/28 of the rats that survived more than 90 days
developed local tumours at one or other of the injection sites. No tumour occurred among 30
control rats injected with the vehicle alone (Gilman & Ruckerbauer, 1962).
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Groups of 25 male and 25 female Fischer 344 rats [age unspecified] received 12
intramuscular injections of 12 or 25 mg nickelocene in trioctanoin. Tumour incidences were
18/50 and 21/50, respectively. No local tumour occurred in a group of 25 male and 25
female controls (Furst & Schlauder, 1971).

Groups of 15-30 male Fischer 344 rats, approximately eight weeks old, received a single
intramuscular injection of 14 mg nickel as one of four nickel arsenides, nickel antimonide,
nickel telluride, nickel sinter matte (NizFeS,; positive control), nickel titanate or ferronickel
alloy (NiFe,.¢; negative controls) in 0.3 mL glycerol:water (1:1; v/v) into the exterior thigh.
The compounds were > 99.9% pure and were ground down to a median particle size of < 2
um. Rats that died within two months of the injection were excluded from the experiment;
remaining animals were observed for two years. Median survival ranged from 32 weeks
(positive controls) to over 100 weeks (negative controls). The incidences of local tumours in
the groups were: nickel sinter matte, 15/15; nickel sulfarsenide, 14/16; nickel arsenide
hexagonal, 17/20; nickel antimonide, 17/29; nickel telluride, 14/26; and nickel arsenide
tetragonal, 8/16. No tumour was observed in the groups treated with nickel arsenide,
ferronickel alloy or nickel titanate nor in a vehicle control group. Median latency for tumour
induction ranged from 16 weeks (positive controls) to 33 weeks (nickel arsenide tetragonal-
treated group). The incidence of tumours induced by the test compounds was significantly
greater than that in the vehicle control group (p < 0.001); 67% of all the sarcomas were
rhabdomyosarcomas, 11% fibrosarcomas, 15% osteosarcomas and 5% undifferentiated
sarcomas. Metastases occurred in 57% of tumour-bearing rats (Sunderman & McCully,
1983).

In a continuation of these tests, nickel selenide, nickel subselenide and nickel monoxide
(positive control; see p. 327) were tested using the same experimental techniques. Nickel
selenide and nickel subselenide induced significant increases in the incidence of local
tumours (8/16 and 21/23, respectively; p < 0.001); the positive control group had 14/15
tumours. Metastases occurred in 38 and 86%, respectively, of tumour-bearing rats in the
selenium-treated groups and in 29% of positive controls. Approximately 50% of the
tumours were rhabdomyosarcomas (Sunderman, 1984).

Hamster: Groups of 25 male and 25 female hamsters, three to four weeks old, received
eight monthly injections of 5 mg nickelocene in 0.2 mL trioctanoin into the right thigh. No
tumour was induced. A group of survivors from another test [age unspecified] received a
single intramuscular injection of 25 mg nickelocene in trioctanoin; fibrosarcomas occurred
in 1/13 females and 3/16 males. No tumour occurred in 25 male or 25 female vehicle
controls (Furst & Schlauder, 1971).
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(iv) Intraperitoneal administration

Rat: Groups of 16 and 23 non-inbred albino rats [sex and age unspecified] received a
single intraperitoneal injection of 90-150 mg of one of two refinery dusts: the first contained
11.3% metallic nickel, 58.3% nickel sulfide, 1.7% nickel monoxide and 0.2% water-soluble
nickel; the second contained 2.9% metallic nickel, 26.8% nickel sulfide, 6.8% nickel
monoxide and 0.07% water-soluble nickel. Each was given in 1.5 mL physiological saline.
Three local sarcomas developed within six to 15 months in animal treated with the first dust,
and three local sarcomas developed within nine to 11 months in animals treated with the
second dust. No tumour was observed in 47 control rats (Saknyn & Blokhin, 1978). [The
Working Group noted that it was not specified whether control rats were untreated or were
treated with the vehicle.]

(V) Intravenous administration

Rat: A group of 61 male and 60 female Sprague-Dawley rats, eight to nine weeks of age,
received six injections of 9 mg/kg bw nickel carbonyl (as Ni) at two- to four-week intervals
and were observed for life. Nineteen animals developed malignancies, six of which were
undifferentiated sarcomas and three, fibrosarcomas at various sites; the other tumours were
single carcinomas of the liver, kidney and mammary gland, one haemangioendothelioma,
one undifferentiated leukaemia and five pulmonary Ilymphomas. Two pulmonary
lymphomas developed in 15 male and 32 female sham-injected controls. The difference in
total tumour incidence was significant (p < 0.05) (Lau et al., 1972).

(vi) Intrarenal administration

Groups of male fischer rats [initial number unspecified], approximately eight weeks old,
received intrarenal injections of 7 mg nickel as one of several nickel compounds in 0.1 or
0.2 mL saline solution or in glycerol:distilled water (1:1, v/v) in each pole of the right
kidney and were observed for two years after treatment. The incidence of renal cancer was
significantly elevated in the groups treated with nickel sulfarsenide (3/15 sarcomas) but not
in those treated with nickel arsenide (1/20 renal-cell carcinoma), nickel selenide (1/12
sarcoma), nickel subselenide (2/23 sarcomas), nickel telluride (0/19), nickel subarsenides
(tetragonal and hexagonal; 0/15 and 0/17), nickel antimonide (0/20) or nickel titanate (0/19).
No local tumour developed in vehicle controls (Sunderman et al., 1984b).

The experiments described in section 3.1 are summarized in Table 24.



Table 24. Summary of studies used to evaluate the carcinogenicity to experimental animals of metallic

nickel and nickel compounds

Compound Route Species Tumour incidence (no. of animals Reference
(No. at start)  with tumours/effective number)
Metallic nickel powder and nickel alloys
Cr/Ni stainless steel Intratracheal Hamster (60) 36 mg, no local tumour Mubhle et al. (1990)
108 mg, no local tumour
Metallic nickel powder Inhalation Mouse (20) No lung tumour Hueper (1958)
Metallic nickel powder Inhalation Rat (160) Benign lung neoplasms Hueper (1958)
Metallic nickel powder (plus sulfur Inhalation Rat (120) 0/46 lung tumour Hueper & Payne
dioxide) (1962)
Metallic nickel powder Inhalation Guinea-pig 1/23 intra-alveolar carcinoma, Hueper (1958)
(42) 1/23 metastasis of adenocarcinoma
Metallic nickel powder Intratracheal Rat (80) 10. X 0.9 mg, 8/32 lung tumours Pott et al. (1987)
[P < 0.05]
20X 0.3 mg, 10/39 lung tumours
[p < 0.05]
Controls, 0/40 lung tumour
Metallic nickel powder Intratracheal Hamster (100 10 mg, 1% local tumours Ivankovic et al.
per group) 20 mg, 8% local tumours (1987)
40 mg, 12% local tumours
4 X 20 mg, 10% local tumours
Metallic nickel powder Intratracheat Hamster (60)  1/56 lung tumour Muhle et al. (1990)
Metallic nickel powder Intrapleural Rat (25) 4/12 local sarcomas vs 0/70 in con-  Hueper (1952)
trols [p < 0.01]
Metallic nickel powder Intrapieural Rat (10) 2/10 mesotheliomas vs 0/20 in con-  Furst et al. (1973)
trols
Metallic nickel powder Subcutaneous Rat (10) 5/10 local tumours Mitchell et al.
(1960)
Metallic nickel powder Intramuscular ~ Rat (10) 10/10 local tumours vs 0 in controls Heath & Daniel

(1964)



Table 24 (contd)

Compound Route Species Tumour incidence (no. of animals Reference
(No. at start)  with tumours/effective number)
Metallic nickel powder Intramuscular ~ Rat (50) 38/50 local tumours vs 0 in controls  Furst &
Schlauder (1971)
Metallic nickel powder Intramuscular ~ Rat (20) 3.6 mg, 0/10 local tumours Sunderman &
14.4 mg, 2/9 local tumours Maenza (1976)
Controls, 0/20 local tumours
Metallic nickel powder Intramuscular ~ Rat (20) 17/20 local tumours vs 0/56 in con-  Berry et al. (1984)
trols
Metallic nickel powder Intramuscular ~ Rat (20) 13/20 local tumours vs 0/44 in con-  Sunderman (1984)
trols
Metallic nickel powder Intramuscular ~ Rat (40) 14/30 local tumours vs 0/60 in con-  Judde er al. (1987)
trols
Metallic nickel powder Intramuscular ~ Hamster (50)  2/50 local tumours vs 0/50 in con- Furst & Schiauder
trols (1971)
Metallic nickel powder Intraperitoneal Rat 30-50% local tumours vs none in Furst & Cassetta
controls (1973)
Metallic nickel powder Intraperitoneal  Rat (50) 46/48 abdominal tumours Pott et al. (1987)
Metallic nickel powder Intraperitoneal Rat 6 mg, 4/34 local tumours Pott et al. (1990)
2X 6 mg, 5/34 local tumours
25X 1 mg, 25/35 local tumours
Metallic nickel powder Intravenous Mouse (25) No tumour Hueper (1955)
Metallic nickel powder Intravenous Rat (25) 7/25 local tumours Hueper (1955)
Metallic nickel powder Intrarenal Rat (20) No local tumour Jasmin & Riopelle
(1976)
Metallic nickel powder Intrarenal Rat No local tumour Sunderman ef al.
(1984b)
Metallic nickel powder Subperiosteal Rat (20) 11/20 local tumours Berry et al. (1984)
Metallic nickel powder Intrafemoral Rat (20) 9/20 local tumours Berry et al. (1984)



Table 24 (contd)

Compound Route Species Tumour incidence (no. of animals Reference
(No. at start)  with tumours/effective number)

Nickel alloy: 26.8%, Ni, 16.2% Cr, Intratracheal Hamster (100 10 mg, no local tumour Ivankovic et al,
39.2% Fe, 0.04% Co per group) 20 mg, no local tumour (1987)

40 mg, no local tumour

420 mg, no local tumour
Nickel alloy: 66.5%, Ni, 12.8% Cr, Intratracheal Hamster (100 10 mg, 1% local tumours Ivankovic et al.
6.5% Fe, 0.2% Co per group) 20 mg, 8% local tumours (1987)

40 mg, 12% local tumours

4 X 20 mg, 10% local tumours
Nickel-gallium alloy (60% Ni) Subcutaneous Rat (10) 9/10 local tumours Mitchell et al.

(1960)

Nickel-iron alloy (NiFe;,.q) Intramuscular  Rat (16) 0/16 local tumours Sunderman (1984)
Nickel-iron alloy (NiFe,.q) Intrarenal Rat 1/14 renal cancers vs 0/46 controls ~ Sunderman et al.

Nickel alloy (50% Ni)
Nickel alloy (29% Ni)
Nickel alloy (66% Ni)

Pentlandite

Nickel oxides and hydroxides
Nickel monoxide (green)

Nickel monoxide

Nickel monoxide

Intraperitoneal  Rat
Intraperitoneal Rat

Intraperitoneal Rat

Intratracheal Hamster (60)
Inhalation Rat (6, 8)
Inhalation Rat (40, 20)
Inhalation Hamster (51)

50 mg, 8/35 local tumours
3X 50 mg, 13/35 local tumours

50 mg, 2/33 local tumours
2X 50 mg, 1/36 local tumours

50 mg, 12/35 local tumours
3X 50 mg, 22/33 local tumours

1/60 local tumour

8 mg/m?3, 1/8 lung tumour
0.6 mg/m?, 0/6 lung tumour

0.06 mg/m3, no tumour
0.2 mg/m3, no tumour

1/51 osteosarcoma

(1984b)

Pott et al. (1989,
1990)

Pott et al. (1989,
1990)

Pott et al. (1989,
1990)

Muhle et al. (1990)
Horie et al. (1985)
Glaser et al. (1986)

Wehner et al. (1975,
1979)



Table 24 (contd)

Compound

Route

Species
(No. at start)

Tumour incidence (no. of animals

with tumours/effective number)

Reference

Nickel monoxide

Nickel monoxide

Nickel monoxide

Nickel monoxide

Nickel monoxide
Nickel monoxide
Nickel monoxide
Nickel monoxide

Nickel monoxide
Nickel monoxide
Nickel monoxide
Nickel monoxide

Nickel monoxide (green)

Nickel hydroxide
Nickel hydroxide

Nickel trioxide
Nickel trioxide

Intrapleural

Intratracheal

Intratracheal
Intramuscular

Intramuscular
Intramuscular
Intramuscular
Intramuscular

Intramuscular
Subperiosteal
Intraperitoneal
Intraperitoneal

Intrarenal
Intramuscular

Intramuscular

Intramuscular
Intracerebral

Rat (32)

Rat

Hamster (50)

Mouse (50,
52)

Rat (32)
Rat (20)
Rat (20)
Rat (15)

Rat (20)
Rat (20)
Rat (50)
Rat

Rat (12)
Rat

Rat (3 x 20)

Rat (10)
Rat (20)

31/32 local tumours vs 0/32 in con-

trols

10 5 mg, 10/37 lung tumours
10 X 15 mg, 12/38 lung tumours
controls, 0/40

1/49 lung tumours vs 4/50 in con-

trols
33/50 and 23/52 local tumours

21/32 local tumorus
2/20 local tumours
No local tumour
14/15 local tumours

0/20 local tumour
0/20 local tumour
46/47 local tumours

25 mg, 12/34 local tumours
100 mg, 15/36 local tumours

0/12 local tumour

15/20 local tumours

Dried gel: 5/19 local tumours
Crystalline: 3/20 local tumours
Colloidal: /13 local tumour

0/10 local tumour
3/20 local tumours

Skaug et al. (1985)

Pott et al. (1987)

Farrell & Davis
(1974)

Gilman (1962)

Gilman (1962)
Gilman (1966)
Sosinski (1975)

Sunderman &
McCully (1983)

Berry et al. (1984)
Berry et al. (1984)
Pott et al. (1987)

Pott et al. (1989,
1990)

Sunderman ef al.
(1984b)

Gilman (1966)

Kasprzak et al.
(1983)

Judde et al. (1987)
Sosinski (1975)



Table 24 (contd)

Compound Route Species Tumour incidence (no. of animals Reference
(No. at start)  with tumours/effective number)
Nickel sulfides
Nickel disulfide Intramuscular  Rat 12/14 local tumours Sunderman (1984)
Nickel disulfide Intrarenal Rat 2/10 local tumours Sunderman et al.
(1984b)
Nickel sulfide (amorphous) Intramuscular ~ Rat (10 per 5.6 mg, no local tumour Sunderman &
group) 22.4 mg, no local tumour Maenza (1976)
B-Nickel sulfide Intramuscular ~ Rat 14/14 local tumours Sunderman (1984)
Nickel sulfide (amorphous) Intramuscular  Rat 3/25 local tumours Sunderman (1984)
Nickel sulfide Intrarenal Rat (18) 0/18 local tumour Jasmin & Riopelle
(1976)
B-Nickel sulfide Intrarenal Rat 8/14 local tumours Sunderman et al.
(1984b)
Nickel sulfide (amorphous) Intrarenal Rat 0/15 local tumour Sunderman et al.
(1984b)
Nickel subsulfide Inhalation Rat (226) 14/208 malignant lung tumours; Ottolenghi et al.
15/208 benign lung tumours (1974)
Nickel subsulfide Intratracheal Mouse (100)  No increase in lung tumours Fisher et al. (1986)
Nickel subsulfide Intratracheal Rat 0.94 mg: 7/47 lung tumours Pott et al. (1987)
1.88 mg: 13/45 lung tumours
3.75 mg: 12/40 lung tumours
o-Nickel subsulfide Intratracheal Hamster (62) 0/62 lung tumour Mubhle et al. (1990)
Nickel subsulfide Intrapleural Rat (32) 28/32 local tumours Skaug et al. (1985)
Nickel subsulfide Subcutaneous  Mouse (20) S mg, 4/8 local tumours Oskarsson et al.
10 mg, 7/8 local tumours (1979)
Nickel subsulfide Subcutaneous Rat (40 per 3.3 mg, 37/39 local tumours Mason (1972)
group) 10 mg, 37/40 local tumours
Nickel subsulfide Subcutaneous Rat (20) 18/19 local tumours Shibata et al. (1989)



Table 24 (contd)

Compound Route Species Tumour incidence (no. of animals Reference
(No. at start)  with tumours/effective number)
Nickel subsulfide Intramuscular ~ Mouse (45, Swiss, 27/45 local tumours Gilman (1962)
18) C3H, 9/18 local tumours
Nickel subsulfide Intramuscular ~ Mice (20) 5 mg, 4/8 local tumours Oskarsson et al.
10 mg, 4/8 local tumours (1979)
Nickel subsulfide Intramuscular Mouse (10, CS57Bl6, 5/10 local tumours Sunderman (1983b)
10) DBA/2, 6/10 local tumours
Nickel subsulfide Intramuscular ~ Rat (32) 25/28 local tumours Gilman (1962)
Nickel subsulfide Intramuscular  Rat (20) 10 mg powder, 19/20 local tumours  Gilman & Herchen
500 mg fragments, 5/7 local tumours (1963)
500 mg discs, 14/17 local tumours
10 mg diffusion chamber, 14/17 lo-
cal tumours
controls, 1/19 local tumour
Nickel subsulfide (disc) Intramuscular  Rat (groups 4/10 local tumours with removal of  Herchen & Gilman
of 15) disc after 64 days (1964)
7/10 local tumours with removal of
disc after 128 days
10/10 local tumours with removal of
disc after 206 days
Nickel subsulfide Intramuscular ~ Rat (30,27)  NIH black, 28/28 local tumours Daniel (1966)
Hooded, 14/23 local tumours
Nickel subsulfide Intramuscular ~ Rat (40 per 3.3 mg, 38/39 local tumours Mason (1972)
group) 10 mg, 34/40 local tumours
Nickel subsulfide Intramuscular ~ Rat (10 per 5 mg, 8/20 local tumours Sunderman &
group) 20 mg, 9/9 local tumours Maenza (1976)
Nickel subsulfide Intramuscular ~ Rat (63,20) Fischer, 59/63 local tumours Yamashiro et al.

Hooded, 11/20 local tumours

(1980)



Table 24 (contd)

Compound Route Species Tumour incidence (no. of animals ~ Reference
(No. at start)  with tumours/effective number)
Nickel subsulfide Intramuscular ~ Rats (groups 0.6 mg, 7/30 local tumours Sunderman et al.
of 30) 1.2 mg, 23/30 local tumours (1976)
2.5 mg, 28/30 local tumours
S mg, 29/30 local tumours
Nickel subsulfide Intramuscular ~ Rat 0.63 mg, 7/29 local tumours Sunderman (1981)
20 mg, 9/9 local tumours
a-Nickel subsulfide Intramuscular Rat 9/9 local tumours Sunderman (1984)
Nickel subsulfide Intramuscular ~ Rat (20) 10/20 local tumours Berry et al. (1984)
Nickel subsulfide Intramuscular ~ Rat (100) 2/100 local tumours Judde et al. (1987)
Nickel subsulfide Intramuscular ~ Hamster 5 mg, 4/15 local tumours Sunderman (1983a)
(15, 17) 10 mg, 12/17 local tumours
controls, 0/14 local tumour
Nickel subsulfide Intramuscular ~ Rabbit 16 local tumours Hildebrand &
Biserte (1979a,b)
a-Nickel subsulfide Intramuscular ~ Rabbit (4) 0/4 local tumour Sunderman (1983a)
Nickel subsulfide Intramuscular ~ Rat (20) 19/20 local tumours Shibata et al. (1989)
a-Nickel subsulfide Topical Hamster 54 mg total, 0/6 local tumour; Sunderman (1983b)
(6-7, 13-15) 108 mg total, 0/7 local tumour;
540 mg total, 0/15 local tumour;
1080 mg total, 9/13 local tumour
Nickel subsulfide Intraperitoneal Rat (37) 9/37 local tumours Gilman (1966)
Nickel subsulfide Intraperitoneal  Rat (50) 27/42 local tumours Pott et al. (1987)
Nickel subsulfide Intraperitoneal  Rat 6 mg, 20/36 local tumours Pott et al. (1989,

12 mg, 23/35 local tumours
25 mg, 25/34 local tumours

1990)



Table 24 (contd)

Compound Route Species Tumour incidence (no. of animals Reference
(No. at start)  with tumours/effective number)
Nickel subsulfide Subperiosteal Rat (20) 0/20 local tumour Berry et al. (1984)
Nickel subsulfide Intrafemoral Rat (20) 10/20 local tumours Berry et al. (1984)
Nickel subsulfide Intrarenal Rat (16/24) In glycerin, 7/16 local tumours Jasmin & Riopelle
In saline, 11/24 local tumours (1976)
a~Nickel subsulfide Intrarenal Rat (11-32) Wistar Lewis, 7/11 local tumours Sunderman et al.
NIH black, 6/12 local tumours (1979a)
Fischer 344, 9/32 local tumours
Long-Evans, 0/12 local tumour
Nickel subsulfide Intratesticular  Rat (19) 16/19 local tumours Damjanov et al.
(1978)
Nickel subsulfide Intraocular Rat (15) 14/15 local tumours Albert et al. (1980);
Sunderman (1983b)
Nickel subsulfide Intraocular Salamander  7/8 local tumours Okamoto (1987)
@®)
Nickel subsulfide Transplacental  Rat (8) No difference in tumour incidence ~ Sunderman ez al.
(1981)
Nickel subsulfide Pellet implanta- Rat (60, 64) 5 mg, 9/60 local tumours Yarita & Nettes-
tion into subcu- 15 mg, 45/64 local tumours heim (1978)
taneous im-
planted tracheal
grafts
Nickel subsulfide Intra-articular  Rat (20) 16/19 local tumours Shibata et al. (1989)
Nickel subsulfide Intra-fat Rat (20) 9/20 local tumours Shibata et al. (1989)
Nickel ferrosulfide Intramuscular  Rat 15/15 local tumours Sunderman (1984)
Nickel ferrosulfide Intrarenal Rat 1/12 local tumour Sunderman et al

(1984b)



Table 24 (contd)

Compound Route Species Tumour incidence (no. of animals Reference
(No. at start)  with tumours/effective number)
Nickel salts
Basic nickel carbonate tetrahydrate  Intraperitoneal Rat 25 mg, 1/35 lung tumours vs 1/33 in  Pott et al. (1989,
controls 1990)
50 mg, 3/33 lung tumours vs 1/33 in
controls
Nickel acetate Intramuscular  Rat (35) 1/35 local tumour Payne (1964)
Nickel acetate Intraperitoneal Mouse 72 mg, 8/18 lung tumours Stoner et al. (1976)
(B x20) 180 mg, 7/14 lung tumours
360 mg, 12/19 lung tumours
Nickel acetate tetrahydrate Intraperitoneal Mouse (30) 1.50 lung tumours/animal Poirier et al. (1984)
Controls, 0.32 lung tumours/animal
Nickel acetate tetrahydrate Intraperitoneal  Rat 25 mg, 3/35 lung tumours vs 1/33 in  Pott er al. (1989,
controls 1990)
50 mg, 5/31 lung tumours vs 1/33 in
controls
Nickel ammonium sulfate Intramuscular  Rat (35) 0/35 local tumour Payne (1964)
Nickel carbonate Intramuscular  Rat (35) 6/35 local tumours Payne (1964)
Nickel chloride Intramuscular  Rat (35) 0/35 local tumour Payne (1964)
Nickel chloride hexahydrate Intraperitoneal  Rat 4/32 lung tumours vs 1/33 in con- Pott et al. (1989,
trols 1990)
Nickel chromate Intramuscular ~ Rat (16) 1/16 local tumour Sunderman (1984)
Nickel fluoride Intramuscular ~ Rat (20) 3/18 local tumours Gilman (1966)
Nickel sulfate Intramuscular ~ Rat (35) 1/35 local tumour Payne (1964)
Nickel sulfate Intramuscular  Rat (20) 0/20 local tumour Gilman (1966)
Nickel sulfate Intramuscular ~ Rat (20) 0/20 local tumour Kasprzak et al.
(1983)
Nickel sulfate hexahydrate Intramuscular  Rat (32) 0/32 local tumour Gilman (1962)



Table 24 (contd)

Compound Route Species Tumour incidence (no. of animals Reference
(No. at start)  with tumours/effective number)
Nickel sulfate heptahydrate Intraperitoneal  Rat 6/30 lung tumours vs 1/33 in con- Pott et al. (1989,
trols 1990)

Other nickel compounds

Ferronickel alloy Intramuscular  Rat No local tumour Sunderman &
McCully (1983)

Nickel antimonide Intramuscular  Rat 17/29 vs 0/40 control (p < 0.05) Sunderman &
McCully (1983)

Nickel antimonide Intrarenal Rat 0/20 local tumour Sunderman et al.
(1984b)

Nickel arsenide Intramuscular  Rat No local tumour Sunderman &
McCully (1983)

Nickel arsenide Intrarenal Rat 1/20 local tumour Sunderman et al.
(1984b)

Nickel arsenide hexagonal Intramuscular ~ Rat 17/20 vs 0/40 controls Sunderman &

(p < 0.05) McCully (1983)

Nickel arsenide hexagonal Intrarenal Rat 0/17 local tumour Sunderman et al.
(1984b)

Nickel arsenide tetragonal Intramuscular Rat 8/16 vs 0/40 control (p < 0.05) Sunderman &
McCully (1983)

Nickel arsenide tetragonal Intrarenal Rat 0/15 local tumour Sunderman et al.
(1984b)

Nickel carbonyl Inhalation Rat (64, 32, 30 mg/m? for 32 weeks: 1/64 pulmo- Sunderman et al.

80) nary tumour (1957, 1959)

60 mg/m? for 32 weeks: 1/32 pulmo-

nary tumour
250 mg/m? once: 1/80 pulmonary
tumour



Table 24 (contd)

Compound Route Species Tumour incidence (no. of animals Reference
(No. at start)  with tumours/effective number)

Nickel carbonyl Inhalation Rat 1/71 lung tumour vs 0/32 control Sunderman & Don-
nelly (1965)

Nickel carbony!l Intravenous Rat (121) 19/120 lung tumours Lau et al. (1972)

Nickel-enriched fly ash Inhalation Hamster (102) No significant difference Wehner et al. (1981,
1984)

Nickelocene Intramuscular ~ Rat (50) 144 mg, 18/50 local tumours Furst & Schlauder

300 mg, 21/50 local tumours (1971)
Nickelocene Intramuscular Hamster (50) 8 S mg, 0/50 local tumour Furst & Schiauder
25 mg, 4/29 local tumours (1971)

Nickel monoxide dust Intratracheal Rat (26) 1/26 lung tumour vs 0/47 control Saknyn & Blokhin
(1978)

Nickel selenide Intramuscular Rat 8/16 local tumours Sunderman (1984)

Nickel selenide Intramuscular Rat 1/12 local tumour vs 0/79 control Sunderman et al.
(1984b)

Nickel subselenide Intramuscular Rat 21/23 local tumours Sunderman (1984)

Nickel subselenide Intrarenal Rat 2/23 local tumours vs 0/79 control Sunderman et al.
(1984b)

Nickel sulfarsenide Intramuscular  Rat 14/16 vs 0/40 control (p < 0.05) Sunderman &
McCully (1983)

Nickel sulfarsenide Intrarenal Rat 3/15 local tumours vs 0/79 control Sunderman et al
(1984b)

Nickel telluride Intramuscular ~ Rat 14/26 vs 0/40 control (p < 0.05) Sunderman &
McCully (1983)

Nickel telluride Intrarenal Rat 0/19 local tumour Sunderman et al.
(1984b)

Nickel titanate Intramuscular Rat No local tumour Sunderman &

McCully (1983)



Table 24 (contd)

Compound Route Species Tumour incidence (no. of animals Reference
(No. at start)  with tumours/effective number)
Nickel titanate Intrarenal Rat 0/19 local tumour Sunderman et al.
{1984b)
Refinery dust Inhalation Rat (5) 1/5 lung tumour vs 0/47 control Saknyn & Blokhin
(1978)
Refinery dust Intramuscular Mouse (40) 20/36 local tumours vs 0/48 control  Gilman &
(p < 0.01) Ruckerbauer (1962)
Refinery dust Intramuscular  Rat (35) Dust, 19/27 local tumours Gilman &
Washed dust, 20/28 local tumours Ruckerbauer (1962)
Controls, 0/30 local tumour
Refinery dust Intraperitoneal  Rat (16, 23) Dust 1, 3/16 local tumours Saknyn & Blokhin

Dust 2, 3/23 local tumours
Controls, (/47 local tumour

(1978)
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3.2 Other relevant data in experimental systems
(a) Absorption, distribution, excretion and metabolism

The results of studies on absorption, distribution, excretion, and metabolism of nickel
compounds have been reviewed and/or summarized in several publications (National
Research Council, 1975; Sunderman, 1977; Kasprzak, 1978; Bencko, 1983; Mushak, 1984;
Sarkar, 1984; Fairhurst & Illing, 1987; Kasprzak, 1987; Sunderman, 1988; Maibach &
Menng¢, 1989).

(1) Nickel oxides and hydroxides

Male Wistar rats were exposed to 0.4-70 mg/m’ (0.6-4-um particles) nickel monoxide
aerosols for 6-7 h per day on five days per week for a maximum of three months. The
clearance rate of nickel monoxide from the lung after a one-month exposure to 0.6-8 mg/m’
(1.2-um particles) was estimated to be about 100 ug per year. The exposure did not increase
background nickel levels in organs other than the lung (Kodama ez al., 1985).

Electron microscopic examination of the lungs of male Wistar rats exposed to nickel
monoxide aerosols (0.6-8 mg/m’; 1.2- or 2.2-um particles) for a total of 140-216 h showed
that the particles were trapped mainly by alveolar macrophages. One year after termination
of exposure, the particles were distributed in the alveoli, hilar lymphoid apparatus and
terminal bronchioli. Some nickel monoxide particles were present within the lysosomes of
macrophages (Horie et al., 1985).

Female Wistar rats were given a single intratracheal injection of black nickel monoxide,
prepared by heating nickel hydroxide at 250°C for 45 min (final product containing a
mixture of nickel monoxide and nickel hydroxide; > 90% to insoluble in water; particles,
3.7 um or less in diameter) in a normal saline suspension (100 nmol [7.5 ug] nickel
monoxide in 0.2 mL). The highest concentrations of nickel were seen in the lungs and
mediastinal lymph nodes, followed by the heart, femur, duodenum, kidney, pancreas,
ovaries, spleen, blood and other tissues. Following injection, the concentration of nickel in
the lung decreased at a much slower rate than in other tissues. By the third day after
injection of nickel monoxide, about 17% of the nickel was excreted with the faeces and
about 16% in the urine. By 90 days, about 60% of the dose of nickel had been excreted. half
of it in the urine. The overall pattern indicates a partial transfer of nickel from lung to the
mediastinal lymph nodes and slow solubilization of this product in tissue fluids (English et
al., 1981).

(i)  Nickel subsulfide

After intratracheal instillation of 11.7 ug a-*Ni-nickel subsulfide powder (1-66-um
particles) in a normal saline suspension to male strain A/J mice, 38% was cleared from the
lungs with a half-time of 1.2 days, while 42% was cleared with a half-time of 12.4 days;
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10% of the dose was retained in the lung 35 days after instillation. The highest amounts of
nickel were found in the kidney, followed by blood > liver > femur up to seven days; at 35
days, levels were greatest in kidney, followed by femur > liver > blood; maximal levels
occurred 4 h after dosing and decreased rapidly thereafter with biological half-times similar
to those in the lung. The urine was the primary excretion pathway; after 35 days, 100% of
the nickel dose was recovered in the excreta, 60% of which was in urine (Valentine &
Fisher, 1984).

The cumulative eight-week urinary excretion of nickel following intramuscular injection
of ®*Ni-nickel subsulfide to male Fischer rats (1.2 mg/rat, 1.4 um-particles) was 67%, while
faecal excretion during that time was only 7% of the dose. The residual nickel contents at
the injection site at 22 and 31 weeks after injection were 13-17% and 13-14% of the dose,
respectively. The kinetics of nickel disappearance were described by a three-compartmental
model, with pool sizes of 60, 27 and 11% of the dose and half-times of 14, 60 and indefinite
number of days, respectively (Sunderman et al., 1976).

o-Nickel subsulfide particles labelled with ®*Ni and *S injected intramuscularly into
Fischer rats (Kasprzak, 1974) or intramuscularly and subcutaneously into NMRI mice of
each sex (Oskarsson et al., 1979) persisted at the injection site for several months, with a
gradual loss of both ®Ni and *’S. In mice, nickel subsulfide was transferred to regional
lymph nodes and to the reticuloendothelial cells of the liver and spleen. The presence of Ni
in the kidney and *’S in the cartilage indicated solubilization of the subsulfide from the site
of injection during tumorigenesis. There was no excessive or specific localization of the
solubilized **Ni or S in the tumours or in metastases. Most of the radioactivity in the
tumours appeared to be associated with dust particles.

FElevated concentrations of nickel were detected in fetuses after intramuscular

administration of a-nickel subsulfide to Fischer rats on day 6 of gestation (Sunderman et al.,
1978a).

(i11)  Nickel salts

Intratracheal instillation of nickel chloride (100 nmol[13 ug]/rat) to female Wistar rats
resulted in a fast distribution of nickel throughout the body, followed by rapid clearance.
During the first six days after injection, over 60% of the dose was excreted in the urine and
approximately 5% in faeces; after 90 days, these amounts had increased only slightly to
64% and 6%, respectively (English et al., 1981) Similar distribution and excretion patterns
were observed after intratracheal injection of nickel chloride (1.27 wug/rat Ni) to male
Sprague-Dawley rats (Carvalho & Ziemer, 1982).

Pulmonary clearance and excretion of nickel following intratracheal instillation of nickel
sulfate at doses of 17, 190 or 1800 nmol [1, 11 or 106 ug] Ni per rat to Fischer 344 rats
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appeared to depend on the dose. At periods up to four days after instillation, lungs, trachea,
larynx, kidney and urinary bladder contained the highest concentrations of nickel. The half-
time for urinary excretion (the predominant route of excretion) varied from 23 h for the
lowest dose to 4.6 h for the highest. Faecal excretion accounted for 30% (17- and 190-nmol
doses) and 13% (1800-nmol) of the dose. The long-term half-time of nickel clearance from
the lung varied from 21 h at the highest dose to 36 h at the lowest dose (Medinsky et al.,
1987).

In male Sprague-Dawley rats exposed to nickel chloride aerosols (90 xg/m’ Ni; 0.7-0.9-
um particles) for 2 h per day for 14 days, the nickel burden in the lung reached a steady
level after five days. The maximal clearance velocity was calculated to be 34.6 ng/g.h.
These data support the hypothesis of a saturable clearance mechanism for ‘soluble nickel’ in
the lung (Menzel et al., 1987).

After intratracheal administration of ‘nickel carbonate’ (0.05 mg/mouse Ni) to female
Swiss albino mice, most of the dose was eliminated in the urine in about 12 days (Furst &
Al-Mahrouq, 1981). [The Working Group noted that the compound tested was most
probably basic nickel carbonate. ]

After a single intravenous injection of 10 ug nickel as “Ni-nickel chloride per mouse
(albino or brown mice [strains not specified], including pregnant mice), whole-body
autoradiography at 30 min showed that nickel persisted in the blood, kidney, urinary
bladder, lung, eye and hair follicles; at three weeks, nickel persisted in the lung, central
nervous system, kidneys, hair follicles and skin (Bergman et al., 1980). In C57BI mice,
nickel was also localized in the epithelium of the forestomach; in the kidney, it was present
in the cortex at sites that probably corresponded to the distal convoluted tubules. Nickel was
retained much longer in the lung than in other tissues (Oskarsson & Tjélve, 1979a).

A single intravenous injection of 1 mg/kg bw >’Ni-nickel chloride to male Sprague-
Dawley rats resulted in rapid urinary excretion of 87% of the dose in the first day after
injection and 90% after four days. Faecal excretion was much lower, up to a total of
approximately 3% of the dose after four days (Sunderman & Selin, 1968). Lung and spleen
were ranked after kidney as nickel-accumulating organs in Sprague-Dawley rats given an
intraperitoneal injection of 82 ug/kg bw “Ni-nickel chloride (Sarkar, 1980).

The kinetics of nickel metabolism in rats and rabbits after a single intravenous injection
of “Ni-nickel chloride followed a two-compartmental mathematical model, with first-order
kinetics of nickel elimination from plasma with half-times of 6 and 50 h for rats and 8 and
83 h for rabbits, respectively, for the two compartments (Onkelinx ef al., 1973).

Following a single intraperitoneal injection of **Ni-nickel chloride to BALB/c mice (100
uCi/mouse), nickel was found to remain in the lung much longer than in any other tissue
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(Herlant-Peers et al., 1982). Preferential accumulation of nickel in the lung was also
observed in Fischer 344 rats following daily subcutaneous injections of 62.5 or 125 umol
[8.1 or 16.3 mg]/kg bw nickel chloride for up to six weeks (Knight ez al., 1988). In contrast,
multiple intraperitoneal injections of nickel acetate to male Swiss albino mice (0.5, 0.75 or
1.0 mg/mouse; 10, 20 or 30 daily injections each) resulted in preferential accumulation of
nickel in the thymus (Feroz et al., 1976).

Daily oral administration of 2.5 mg nickel sulfate per rat [strain unspecified] for 30 days
resulted in accumulation of nickel in trachea > nasopharynx > skull > oesophagus >
intestine > skin > liver = spleen > stomach > kidney > lung = brain > heart (Jiachen ef al.,
1986).

Nickel was taken up from the lumen of male Sprague-Dawley rat jejunum in vitro at a
rate proportional to the concentration of *’Ni-nickel chloride in the perfusate up to 20 uM
[1.2 mg] Ni. At higher concentrations (6 and 12 mg Ni), apparent saturation was
approached. Nickel was not retained by the mucosa and showed a very low affinity for
metallothionein (Foulkes & McMullen, 1986).

Dermal absorption of 2 or 40 uCi *’Ni-nickel chloride was observed in guinea-pigs.
After 1 h, nickel had accumulated in highly keratinized areas, the stratum corneum and hair
shafts. Following exposure for 4-48 h, nickel also accumulated in basal and suprabasal
epidermal cells. After 4 h, nickel appeared in blood and urine (Lloyd, 1980).

It has been demonstrated in several studies that nickel chloride crosses the placenta in
mice (Jacobsen et al., 1978; Lu et al., 1979; Olsen & Jonsen, 1979; Lu et al., 1981; Jasim &
Tjdlve, 1986) and rats (Sunderman et al., 1977; Mas et al., 1986).

(iv)  Other nickel compounds

In NMRI mice, high levels of nickel were found in the respiratory tract, brain, spinal
cord, heart, diaphragm, adrenal cortex, brown fat, kidney and urinary bladder 5 min to 24 h
following inhalation of ®*Ni- and '*C-nickel carbonyl at 3.05 g/m’ Ni for 10 min (Oskarsson
& Tjélve. 1979D).

After exposure of rats to nickel carbonyl by inhalation, increased levels of nickel were
found predominantly in microsomal and supernatant fractions of the lung and in the
microsomal fraction of the liver (Sunderman & Sunderman, 1963).

After an intravenous injection of nickel carbonyl as 22 mg/kg bw Ni to Sprague-Dawley
rats, most of the subcellular nickel in liver and lung was bound to supernatant fractions,
followed by nuclei and debris, mitochondria and microsomes (Sunderman & Selin, 1968).

Twenty-four hours after an intravenous injection of “Ni-nickel carbonyl (0.9 mg/kg bw
Ni) to NMRI mice, nickel was found to be associated with both particulate and soluble
cellular constituents of the lung, liver and kidneys. Radioactivity was detected in the gel
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chromatograms of cytosols from lung, kidney and blood serum of treated mice in the void
volume and salt volume (Oskarsson & Tjélve, 1979c).

Following intravenous injection of 50 uL/kg bw nickel carbonyl (22 ug/kg bw Ni) to
Sprague-Dawley rats, over 38% of the dose was exhaled during 6 h after injection and none
after that time. Average total urinary excretion of nickel over four days was 31% (23%
within the first 12 h), whereas total faecal excretion was 2.4% and biliary excretion was
0.2%. Total average excretion of nickel in four days was 72%. Most of the remaining nickel
carbonyl underwent intracellular decomposition and oxidation to nickel[II] and carbon
monoxide. Twenty-four hours after the injection, nickel injected as nickel carbonyl was
distributed among organs and tissues, with the highest concentration in lung (Sunderman &
Selin, 1968; Kasprzak & Sunderman, 1969).

(b) Dissolution and cellular uptake
(1) Metallic nickel and nickel alloys

Slow dissolution and elimination of finely powdered nickel metal from the muscle
injection site was observed in rats. In the local rhabdomyosarcomas that developed, nickel
was recovered in the nuclear fraction and mitochondria; little or no nickel was found in the
microsomes (Heath & Webb, 1967). The nuclear fraction of nickel is preferentially bound to
nucleoli (Webb et al., 1972).

Slow dissolution of metallic nickel occurred when nickel metal powder was incubated at
37°C with horse serum or sterile homogenates of rat muscle, liver, heart or kidney prepared
in Tyrode solution. The solubilization may have involved oxygen uptake and was faster for
a freshly reduced powder than for an older commercial powder; over 97% of the dissolved
nickel became bound to diffusible components of the tissue homogenates (mostly histidine,
followed by nucleotides, nucleosides and free bases) (Weinzierl & Webb, 1972).

(11)  Nickel oxides and hydroxides

The dissolution half-times of six differently prepared samples of nickel oxide and four
samples of nickel-copper oxides in water were longer than 11 years. However, in rat serum
and renal cytosol, the half-time dropped to about one year for a low-temperature nickel
oxide and to 2.7-7.2 years for three nickel-copper oxides, the rest retaining the > 11-year
value. Two preparations of nickel oxide obtained at temperatures <735°C and all four
nickel-copper oxides appeared to be phagocytized by C3H/10T": cells more actively than
the other nickel oxides (Sunderman et al., 1987).

Kasprzak et al. (1983) found the half-times for two preparations of nickel hydroxide (air-
dried colloidal and crystalline) in an 0.1 M ammonium acetate buffer of pH 7.4 to be 56
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h and 225 h, respectively. Corresponding values in an artificial lung fluid were 360 h and
1870 h, respectively.

(111) Nickel sulfides

The dissolution rate of a-nickel subsulfide depends on the particle size, the presence of
oxygen and the dissolving medium (Gilman & Herchen, 1963; Kasprzak & Sunderman,
1977; Dewally & Hildebrand, 1980; Lee et al., 1982).

Both in vivo and in cell-free systems in vitro, a-nickel subsulfide reacts with oxygen to
yield insoluble crystalline B-nickel sulfide and soluble nickel[II] derivatives; [B-nickel
sulfide also dissolves through oxidation of its sulfur moiety (Kasprzak & Sunderman, 1977;
Oskarsson et al., 1979; Dewally & Hildebrand, 1980). It has been suggested that the
transformation of nickel subsulfide into B-nickel sulfide under anaerobic conditions in the
muscle might be due to reaction with sulfur from sulfhydryl groups in the host organism
(Dewally & Hildebrand, 1980).

Particles of crystalline nickel sulfides, a-nickel subsulfide and B-nickel sulfide ( <5 um
in diameter, 1-20 ug/mL) were phagocytized by cultured Syrian hamster embryo cells and
Chinese hamster CHO cells, while particles of amorphous nickel sulfide were taken up only
sparingly by the cells. Pretreatment of Syrian hamster embryo cells with benzo[a]pyrene
enhanced the uptake of nickel subsulfide. The half-life of the engulfed particles was about
40 h in Syrian hamster cells; they disappeared from the cells through solubilization, and
solubilized nickel was detected in the nuclear fraction (Costa & Mollenhauer, 1980a,b;
Costa et al., 1981a).

a-Nickel subsulfide and B-nickel sulfide were also incorporated into human embryonic
L132 pulmonary cells in culture. B-Nickel sulfide was present within large intracellular
vesicles; nickel subsulfide was generally bound to the membranes of intracellular vesicles,
to lysosomal structures and to the outer cell membrane (Hildebrand et al., 1985, 1986).

The soluble nickel derived from nickel subsulfide and B-nickel sulfide intracellularly
undergoes subcellular distribution that differs from that following entry of nickel from
outside the cells (Harnett e al., 1982; Sen & Costa, 1986a). Treatment of cultured Chinese
hamster CHO cells with B-nickel sulfide (10 ug/mL, three-day incubation) resulted in
binding of nickel to DNA and RNA at a level 300-2000 times higher and to protein at a
level 15 times higher than after similar treatment with nickel chloride (Harnett et al., 1982).
Cellular uptake of B-nickel sulfide facilitates a specific interaction of nickel with the
heterochromatic long arm of the X chromosome of Chinese hamster CHO cells (Sen &
Costa, 1986a). Lee et al. (1982) found that soluble nickel derived from nickel subsulfide
forms an exceptionally stable ternary protein-nickel-DNA complex in vitro in the presence
of DNA and rat liver microsomes.
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(iv)  Nickel salts

Soluble nickel retained in the tissues of mice becomes bound to particulate and soluble
cellular constituents, the distribution depending on the tissue. In lung and liver of NMRI
mice, nickel was bound predominantly to a high-molecular-weight protein; in the kidney, it
was bound mainly to low-molecular-weight ultrafiltrable ligands. No nickel was bound to
metallothionein or superoxide dismutase (Oskarsson & Tjélve, 1979c).

Several nickel-binding proteins were found in lung and liver cytosol of BALB/c mice
that were different after incorporation in vivo and in vitro. The composition and structures of
these proteins were not identified (Herlant-Peers et al., 1982).

Intracellular nickel concentrations in the lungs of strain A mice given intraperitoneal
injections of nickel acetate were highest in the microsomes, followed by mitochondria,
cytosol and nuclei (Kasprzak, 1987).

In blood serum, nickel was sequestered mainly by albumin, which had a high binding
capacity for this metal in most species tested, except for dogs and pigs (Callan &
Sunderman, 1973). Nickel in human serum is chelated by histidine, serum albumin or both
in a ternary complex, although a small fraction is bound to a glycoprotein (Sarkar, 1980;
Glennon & Sarkar, 1982).

Less nickel chloride was taken up by Chinese hamster CHO cells than insoluble nickel
sulfides; moreover, nickel incorporated from nickel chloride had a much higher affinity for
cellular proteins than for DNA or RNA (Harnett et al., 1982). A greater effect on the
heterochromatic long arm of the X chromosome was observed when Chinese hamster CHO
cells were exposed to nickel-albumin complexes encapsulated in liposomes than to nickel
chloride alone (Sen & Costa, 1986a).

Cellular binding and uptake of nickel depend on the hydro- and lipophilic properties of
the nickel complexes to which the cells are exposed. Nickel-complexing ligands, L-
histidine, human serum albumin, D-penicillamine and ethylenediaminetetraacetic acid,
which form hydrophilic nickel complexes, inhibited the uptake of nickel by rabbit alveolar
macrophages, human B-lymphoblasts and human erythrocytes. The same ligands also
sequestered nickel from nickel-preloaded cells. Diethyldithiocarbamate, however, which
forms a lipophilic nickel complex, enhanced the cellular uptake of nickel and prevented its
removal from nickel-preloaded cells. It also induced transfer of nickel in a cell lysate from
the cytosol to the residual pellet (Nieboer et al., 1984b). Sodium pyridinethione, which
forms a lipophilic nickel complex, behaved similarly (Jasim & Tjélve, 1986).

Nickel applied to rat liver and kidney nuclei as nickel chloride bound in a dose-related
manner to the chromatin and as to polynucleosomes and to the DNA molecule. In the
nuclear chromatin. nickel was associated with both the DNA and histone and non-histone
proteins; a ternary nickel-DNA-protein complex more stable than binary nickel-DNA
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complexes was identified (Ciccarelli & Wetterhahn, 1985).

Calf thymus DNA appeared to have more than two types of binding site for nickel; DNA
phosphate moieties were identified as having the highest affinity for nickel (Kasprzak et al.,
1986).

(v) Other nickel compounds

‘Nickel carbonate’ particles were actively phagocytized by human embryonal lung
epithelial cells L132 in culture and showed an increased affinity for cytoplasmic and cell
membranes (Hildebrand et al., 1986). [The Working Group noted that the compound tested
was most probably basic nickel carbonate.]

Following an intraperitoneal injection of ‘nickel carbonate’ to male Sprague-Dawley
rats, nickel was found to be associated with liver and kidney nuclear DNA as early as 3 h
after injection, with a further increase by 20 h. The nickel concentration in kidney DNA was
five to six times higher than that in liver. Significant differences were found in the
distribution of nickel between nucleic acids and associated proteins in DNA samples
extracted from kidney and liver (Ciccarelli & Wetterhahn, 1984a,b). [The Working Group
noted that the compound tested was most probably basic nickel carbonate. ]

Sunderman et al. (1984b) determined dissolution half-times in rat serum and renal
cytosol and phagocytic indices in peritoneal macrophages in vitro of various water-insoluble
nickel derivatives, including nickel selenide, nickel subselenide, nickel telluride, nickel
sulfarsenide, nickel arsenide, nickel arsenide tetragonal, nickel arsenide hexagonal, nickel
antimonide, nickel ferrosulfide matte, a ferronickel alloy (NiFe;.¢) and nickel titanate. No
correlation was found between those two parameters and the carcinogenic activity of the
tested compounds in the muscle of Fischer 344 rats.

(¢) Interactions

Parenteral administration of soluble nickel salts induced changes in the tissue
distribution of other metal ions (Whanger, 1973; Nielsen, 1980; Chmielnicka et al., 1982;
Nieboer ef al., 1984b; Nielsen et al., 1984).

Several physiological divalent cations appeared to affect nickel metabolism. Thus,
manganese decreased the proportion of ultrafiltrable nickel constituents of muscle
homogenates; the gross muscle uptake and excretion of nickel were not affected. Metallic
manganese dust also inhibited the dissolution rate of nickel subsulfide in rat serum, serum
ultrafiltrate and water (Sunderman et al., 1976). Manganese dust reduced the phagocytosis
of nickel subsulfide particles by Syrian hamster embryo cells in vitro (Costa et al., 1981a).
Magnesium decreased the uptake of nickel by pulmonary nuclei and cytosol of strain A
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mice and decreased nickel uptake by lung, kidney and liver of Fischer 344 rats (Kasprzak et
al., 1987). Both manganese and magnesium strongly antagonized the binding of nickel to
the phosphate groups of calf thymus DNA in vitro, while copper, which did not inhibit
nickel carcinogenesis, was a much weaker antagonist (Kasprzak et al., 1986).

Nickel that accumulated in mouse tissues following administration of nickel carbonyl in
vivo could be displaced from those tissues by treatment in vitro with other cations, including
H', in proportion to their valence; Mg®" and La’* were the most effective (Oskarsson &
Tjalve, 1979b).

Certain nickel[II]-peptide complexes in aqueous solution were found to react with
ambient oxygen by a facile autocatalytic process in which nickel[III] intermediates played a
major role. Such reactions may lead to degradation, e.g., decarboxylation, of the organic
ligand (Bossu et al., 1978). Nickel[IlI] was also identified in a nickel[Il]-glycyl-glycyl-n-
histidine complex, indicating possible redox effects of the nickel[III]/nickel[II] redox couple
on that protein (Nieboer et al., 1986).

(d) Toxic effects

The toxicity of nickel and its inorganic compounds has been reviewed (US En-
vironmental Protection Agency, 1986; Fairhurst & Illing, 1987; World Health Orga-
nization, 1990), and the chemical basis of the biological reactivity of nickel has been
discussed (Ciccarelli & Wetterhahn, 1984a; Nieboer et al., 1984b,c¢).

(1) Metallic nickel and nickel alloys

The lungs of male rabbits exposed by inhalation to 1 mg/m’ nickel metal dust ( < 40 xm
particles) for 6 h per day on five days per week for three and six months showed two- to
three-fold increases in the volume density of alveolar type II cells. The six-month exposure
caused focal pneumonia (Johansson et al., 1981; Camner et al., 1984).

Similar changes, resembling alveolar proteinosis, were observed in rabbits after exposure
to nickel metal dust by inhalation for four weeks (Camner et al., 1978). After three or six
months of exposure at 1 mg/m’, phagocytic activity in vitro was increased upon challenge
by Escherichia coli (Johansson et al., 1980).

A single intramuscular injection of 20 mg nickel metal dust to male WAG rats resulted
in long-lasting suppression of natural killer cell activity in peripheral blood mononuclear

cells. Between eight and 18 weeks after the nickel injection, the activity decreased to 50-
60% of that in the control rats (Judde et al., 1987).

(11)  Nickel oxides

Exposure of female Wistar rats by inhalation to nickel monoxide aerosols (generated at
550° C from nickel acetate) at concentrations of 200, 400 and 800 xg/m’ for 24 h per day for
120 days resulted in a significant, dose-related reduction in growth rate, decreased kidney
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and liver weights and erythrocyte count, decreased activity of serum alkaline phosphatase,
increased wet lung weight and leukocyte count and increased mean erythrocyte cell volume
(Weischer et al., 1980a,b).

Male Wistar rats exposed continuously to nickel monoxide (generated at 550°C from
nickel acetate) aerosols at 50 ug/m’ (median particle diameter, 0.35 um) for 15 weeks
showed no significant difference in the overall ability of the lungs to clear ferrous oxide up
to day 7. After that time, lung clearance in nickel oxide-exposed rats decreased significantly.
The half life of ferrous oxide clearance after day 6 was 58 days for control rats and 520 days
for nickel oxide-exposed rats; in excised lungs, the values were 56 and 74 days, respectively
(Oberdoerster & Hochrainer, 1980).

An increase in lung weight (six-fold) and alveolar proteinosis were observed in male
Wistar rats that died during life-time exposure to an aerosol of nickel monoxide (produced
by pyrolysis of nickel acetate [probably at 550°C] [particle size unspecified]) at 60 or 200
ug/m’, 23 h per day, seven days per week. With longer exposures, marked accumulation of
macrophages and focal septal fibrosis were also observed (Takenaka ef al., 1985).

No significant histopathological change was found in male Wistar rats exposed to green
nickel oxide (0.6 xm particles) for up to 12 months at 0.3 or 1.2 mg/m’, 7 h per day on five
days per week (Tanaka et al., 1988).

No mortality was observed following exposure by inhalation of Fischer 344/N rats and
B6C3F;, mice to nickel monoxide (formed at 1350°C; 3 um particles) at 0.9-24 mg/m’ Ni
for 6 h/day on five days per week for 12 days. Lung inflammation and hyperplasia of
alveolar macrophages occurred primarily at the highest exposure concentration in both
species; generally, the lung lesions in mice were less severe than those in rats. Atrophy of
the olfactory epithelium was seen only in two rats at the highest dose, while atrophy of the
thymus and hyperplasia of the lymph nodes were seen in both rats and mice exposed to the
highest concentrations (Dunnick et al., 1988).

In Syrian golden hamsters, life-time inhalation of 53 mg/m’ nickel monoxide
([unspecified] 0.3 um particles) for 7 h per day resulted in emphysema in animals that died
early in the experiment. Other lung effects included interstitial pneumonitis and diffuse
granulomatous pneumonia, fibrosis of alveolar septa, bronchiolar (basal-cell) hyperplasia,
bronchiolization of alveolar epithelium, squamous metaplasia and emphysema and/or
atelectasia of various degrees (Wehner et al., 1975).

The median lethal concentration for rat macrophages exposed in vitro to green nickel
monoxide exceeded 12 umol (708 ug)/mL Ni. The LCs, for canine macrophages was 3.9
umol (230 ug)/mL Ni as nickel monoxide for 20 h. Nickel monoxide was far less toxic to
macrophages than nickel sulfate, nickel chloride or nickel subsulfide (Benson et al., 1986a).



366 IARC MONOGRAPHS VOLUME 49

The toxicity of six different preparations of nickel monoxide calcined at temperatures of
<650-1045°C and four mixed nickel-copper oxides was tested in vitro on alveolar
macrophages of beagle dogs, Fischer 344 rats and B6C3F; mice. Nickel oxides were less
toxic to the macrophages than were the nickel-copper oxides; the toxicity of the nickel-
copper oxides increased with increasing copper content. Generally, dog macrophages were
more sensitive to the oxides than mouse and rat macrophages (Benson et al., 1988a).

The ability of the same oxides to stimulate erythropoiesis in Fischer 344 rats correlated
well with their cell transforming ability in Syrian hamster embryo cells (see also genetic and
related effects; Sunderman et al., 1987).

(i11)  Nickel sulfides

The LDs after a single instillation in B6C3F; mice of nickel subsulfide (particle size, <2
um) in a normal saline suspension was 4 mg/kg bw (Fisher et al., 1986).

Acute toxic effects of nickel subsulfide (1.8 um particles) administered intratracheally to
male BALB/c mice (12 ug/mouse) included pulmonary haemorrhaging, most evident three
days after exposure. The number of polymorphonuclear cells in the pulmonary lavage fluid
was increased, whereas the number of macrophages tended to decrease below the control
values later (20 h to seven days) after the exposure (Finch et al., 1987).

Alveolitis was observed in Fischer 344 rats following intratracheal instillation of nickel
subsulfide as a saline/gelatin suspension (3.2-320 ug/kg bw). The effects closely resembled
those of nickel chloride and nickel sulfate at comparable doses of nickel. Pulmonary lesions
also included type II cell hyperplasia with epithelialization of alveoli and, in some animals,
fibroplasia of the pulmonary interstitium (Benson et al., 1986b).

Chronic active inflammation, fibrosis and alveolar macrophage hyperplasia were
observed in Fischer 344 rats and B6C3F, mice exposed by inhalation to nickel subsulfide
(low-temperature form) for 13 weeks (6 h per day, five days per week; 0.11-1.8 mg/m’ Ni).
The toxicity of nickel subsulfide to the lung resembled that of nickel sulfate hexahydrate,
and both were more toxic than nickel oxide. Rats were more sensitive than mice (Dunnick et
al., 1989).

Administration of nickel subsulfide to female rats as a single intrarenal injection caused
pronounced erythrocytosis (Jasmin & Riopelle, 1976; Oskarsson et al., 1981). A single
intrarenal injection of nickel subsulfide to male rats also caused an increase in renal haem
oxygenase activity; no correlation between the induction of haem oxygenase and
erythrocytosis was observed (Sunderman et al., 1983a). Administration of nickel sulfide
[probably amorphous] in glycerine or saline into each pole of the kidney of female rats did
not induce renal erythropoietic activity (Jasmin & Riopelle, 1976).
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Under comparable exposure in vitro, beagle dog alveolar macrophages were more
sensitive to the toxicity of nickel subsulfide than were those of Fischer 344 rats. Nickel
subsulfide appeared to be much more toxic to the macrophages of both species than nickel
chloride, nickel sulfate or nickel monoxide (Benson et al., 1986a).

Nickel subsulfide incubated with calf thymus histones in the presence of molecular
oxygen caused random polymerization of those proteins; this effect was not produced by
soluble nickel acetate (Kasprzak & Bare, 1989).

(iv)  Nickel salts

The oral LDs, of nickel acetate was 350 mg/kg bw in rats and 420 mg/kg bw in mice; the
intraperitoneal LDs, was 23 mg/kg bw in rats (National Research Council, 1975). The LDs,
of nickel acetate in ICR mice after an intraperitoneal injection was 97 mg/kg bw in females
and 89 mg/kg bw in males at days 3 and 5 for three-week-old animals and 39-54 mg/kg bw
in nine- or l4-week-old animals of either sex (Hogan, 1985). With nickel chloride,
intraperitoneal LDs, values of 6-9.3 mg/kg bw Ni were reported for female Wistar rats (Mas
et al., 1985), 11 mg/kg bw rats and 48 mg/kg bw for mice (National Research Council,
1975).

Exposure of B6C3F,, mice and Fischer 344/N rats to nickel sulfate hexahydrate by
inhalation for 6 h per day for 12 days (five days per week plus two consecutive days; 0.8-13
mg/m’ Ni; 2 um particles) caused death of all mice at concentrations of >1.6 mg/m’ and of
some rats at concentrations of 13 mg/m’. Lesions of the lung and nasal cavity were observed
in both mice and rats after exposure to 0.8 mg/m’ nickel or more; these included necrotizing
pneumonia, chronic inflammation and degeneration of the bronchiolar epithelium, atrophy
of the olfactory epithelium, and hyperplasia of the bronchial and mediastinal lymph nodes
(Benson et al., 1988b; Dunnick ef al., 1988).

A single intratracheal instillation of nickel chloride hexahydrate or nickel sulfate
hexahydrate to Fischer 344/Cr1 rats (0.01, 0.1 or 1.0 umol [0.59, 5.9 or 59 ug Ni/rat) caused
alveolitis and affected the activities of several enzymes measured in the pulmonary lavage
fluid (Benson et al., 1985, 1986b).

Rabbits were exposed to nickel chloride (0.2-0.3 mg/m’ Ni) for 6 h per day on five days
per week for one to eight months. Nodular accumulation of macrophages was seen in lung
tissue, and the volume density of alveolar type II cells was elevated. The phagocytic activity
of macrophages was normal after one month of exposure but was decreased after three
months (Camner et al., 1984; Lundborg & Camner, 1984; Camner ef al., 1985).

Exposure of Syrian golden hamsters to a nickel chloride aerosol (100-275 ug/m’ Ni; <2-
um particles) for 2 h per day for one or two days resulted in a dose-related decrease in the
ciliary activity of the tracheal epithelium and in mucosal degeneration (Adalis et al., 1978).
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A single intramuscular injection of nickel chloride (18.3 mg/kg bw) to male CBA/J mice
caused significant involution of the thymus within two days. Significant reduction in the
mitogen-stimulated responses of B and T lymphocytes in vitro as well as significant
suppression of the primary antibody response (T-cell-dependent) to sheep red blood cells
were observed after the treatment. Natural killer cell activity was also suppressed. The
immunosuppressive effects of nickel chloride lasted for a few days. The activity of
peritoneal macrophages was not affected (Smialowicz et al., 1984, 1985).

Following a single intramuscular injection of 10-20 mg/kg bw nickel chloride into
Fischer 344 rats, the activity of natural killer cells was transiently suppressed for three days.
In contrast to mice, rats showed no significant difference in the lymphoproliferative
responses of splenocytes to B and T mitogens from those of controls (Smialowicz et al.,
1987).

Intramuscular injection of nickel chloride (20 mg/kg bw Ni) to Fischer 344 rats 4 h
before death inhibited thymidine uptake into kidney DNA (Hui & Sunderman, 1980). An
immediate, significant decrease, followed by a transient sharp increase of thymidine
incorporation into pulmonary DNA was observed in strain A mice following intraperitoneal
administration of nickel acetate (Kasprzak & Poirier, 1985).

After 90 daily intraperitoneal injections of nickel sulfate (3 mg/kg bw Ni) to male albino
rats, focal necrosis of the proximal convoluted tubules in the kidneys and marked cellularity
around periportal areas and necrotic areas in the liver were observed. Bile-duct proliferation
and Kupffer-cell hyperplasia were also evident, and degenerative changes were observed in
a few seminiferous tubules and in the inner wall of the myocardium (Mathur ef al., 1977a).

Subcutaneous injection of up to 0.75 mmol [98 mg]/kg bw nickel chloride to male
Fischer 344 rats increased lipid peroxidation in the liver, kidney and lung in a dose-related
manner (Sunderman et al., 1985b).

Renal, hepatic, pulmonary and brain haem oxygenase activity was induced after
subcutaneous injection of 15 mg/kg bw nickel chloride to male Fischer 344 rats. Induction
of haem oxygenase was also observed in the kidneys of male BL6 mice, male Syrian golden
hamsters and male guinea-pigs killed 17 h after subcutaneous injection of 0.25 mmol [32
mg]/kg bw nickel chloride (Sunderman et al., 1983a).

The skin of male albino rats was painted once daily for up to 30 days with 0.25 mL
nickel sulfate hexahydrate solution in normal saline (40, 60 and 100 mg/kg bw Ni). The 30-
day painting caused atrophy in some areas and acanthosis in other areas of the epidermis,
disorder in the arrangement of epidermal cells and hyperkeratinization. Liver damage,
including focal necrosis, was seen in histological studies (Mathur et al., 1977b).
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The toxicity of nickel sulfate and nickel chloride to alveolar macrophages from beagle
dogs and Fischer 344 rats in vitro was intermediate to that of nickel subsulfide and nickel
monoxide (median lethal concentrations, 0.30-0.36 umol [17.7-21.2 ug] and 3.1-3.6 umol
[183-212 ug]/mL Ni for dog and rat macrophages, respectively) (Benson et al., 1986a).
Macrophages lavaged from rabbit lungs and incubated for two days with 3-24 ug/mL Ni as
nickel chloride showed a decrease of up to 50% in lysozyme activity with increasing
concentrations of nickel (Lundborg et al., 1987).

Although nickel salts inhibit the proliferation of normal mammalian cells in culture,
nickel sulfate hexahydrate increased proliferation of some lymphoblastoid cell lines carrying
the Epstein-Barr virus (Wu et al., 1986).

Exposure of Syrian hamster embryo cells to nickel chloride or nickel sulfate at a
concentration of 10 umol [600 xg]/L Ni or more enhanced nucleoside excretion (Uziel et
al., 1986).

Nickel chloride inhibited the transcription of calf thymus DNA and phage T4 DNA with
Eschenchia coli RNA polymerase in a concentration-dependent manner (0.01-10 mM [0.6-
600 mg] Ni). It also stimulated RNA chain initiation at very low concentrations (maximal at
0.6 mg), followed by a progressive decrease in initiation at concentrations that significantly
inhibited overall transcription (Niyogi et al., 1981).

(v) Other nickel compounds

Animals exposed to nickel carbonyl by inhalation developed pulmonary oedema within
1 h. LCs, values (30-min exposure) reported include 67 mg/m® for mice, 240 mg/m’ for rats
and 190 mg/m’ for cats (National Research Council, 1975). Even after administration by
other routes, the lung is the main target organ (Hackett & Sunderman, 1969); the LDs, for
rats was 65 mg/kg, 61 mg/kg and 38 mg/kg after intravenous, subcutaneous and
intraperitoneal administration, respectively (National Research Council, 1975).

Male Wistar rats exposed by inhalation to 0.03-0.06 mg/L nickel carbonyl for 90 min
three times a week for 52 weeks developed extensive inflammatory lesions in the lung,
contiguous pericarditis and suppurative lesions of the thoracic walls. Squamous-cell
metaplasia was present in bronchiectatic walls of several rats (Sunderman et al., 1957).

Exposure of female Fischer 344 rats by inhalation to 1.2-6.4 umol [0.2-1.1 mg]/L nickel
carbonyl for 15 min caused acute hyperglycaemia (Horak et al., 1978). Urinary excretion of
proteins and amino acids indicated nephrotoxicity (Horak & Sunderman, 1980).

After exposure of rats to 0.6 mg/L nickel carbonyl by inhalation, RNA derived from the
lung showed alterations in the phase transition curve, indicating disruption of hydrogen
bonds (Sunderman, 1963). Nickel carbonyl administered intravenously at an LDs, dose of



370 IARC MONOGRAPHS VOLUME 49

20 mg/kg bw nickel to Sprague-Dawley rats inhibited cortisone-induced hepatic tryptophan
pyrrolase (Sunderman, 1967), orotic acid incorporation into liver RNA in vivo and in vitro
(Beach & Sunderman, 1969, 1970) and incorporation of leucine into liver and lung protein
(Witschi, 1972). Intravenous administration of nickel carbonyl to Fischer 344 rats (20 mg/kg
bw nickel) caused a significant decrease in thymidine incorporation into liver and kidney
DNA 4 h later (Hui & Sunderman, 1980).

The toxicity of ‘nickel carbonate’ to human embryo pulmonary epithelium L132 cells in
culture did not differ significantly from that of nickel chloride at the same 25-150 uM
concentration range applied (Hildebrand et al., 1986). [The Working Group noted that the
compound tested was most probably basic nickel carbonate.]

A highly significant correlation was found between carcinogenic potential and the
incidence of erythrocytosis for various water-insoluble nickel compounds, including nickel
selenide, nickel subselenide, nickel telluride, nickel sulfarsenide, nickel arsenide, nickel
arsenide tetragonal, nickel arsenide hexagonal, nickel antimonide, nickel ferrosulfide matte,
a ferronickel alloy (NiFe;.¢) and nickel titanate (Sunderman et al., 1984Db).

Dusts of nickel-converter mattes (58% nickel sulfide, 11% metallic nickel, 2% nickel
monoxide, 1% copper, 0.5% cobalt, 0.2% soluble nickel salts), a nickel concentrate (67%
total nickel, 57% nickel sulfide) and two nickel-copper mattes (27-33% nickel sulfides, ~3%
metallic nickel, 23-36% copper) were administered to white rats and mice by inhalation or
by intragastric, intratracheal or intraperitoneal routes and onto the skin. The intratracheal
LDs, was 200-210 mg/kg bw for the mattes and 220 mg/kg for the nickel concentrate. The
intraperitoneal LDs, varied from 940 mg/kg bw for the nickel concentrate to 1000 mg/kg bw
for the nickel-copper mattes and 1100 mg/kg bw for the nickel matte. Mice and rats were
almost equally sensitive. Chronic exposure of rats and mice by inhalation to the same dusts
caused bronchitis, perivasculitis, bronchopneumonia and fibrosis. Haemorrhagic foci and
atrophy were observed in the kidneys (Saknyn et al., 1976).

(e) Effects on reproduction and prenatal toxicity

The embryotoxicity and genotoxicity of nickel, both directly to the mammalian embryo
and indirectly through maternal injury, have been reviewed (Léonard & Jacquet, 1984).

(1) Metallic nickel and nickel alloys

Treatment of chick embryo myoblasts with 20-40 ug nickel powder per litre of culture
fluid prevented normal differentiation of cells, with only a few mitoses seen after five days’
incubation. Reduction of cell division was coupled with cell degeneration, resulting in
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small colony size. At concentrations of 80 ug/L. nickel, extensive degeneration of the
cultures and complete suppression of mitosis occurred within five days (Daniel ef al., 1974).

(11) Nickel sulfides

Nickel subsulfide (80 mg/kg bw Ni) administered intramuscularly to Fischer rats on day
6 of gestation reduced the mean number of live pups per dam. No anomaly was found, and
no evidence of maternal toxicity was reported (Sunderman et al., 1978a). In another study,
intrarenal injection of nickel subsulfide (30 mg/kg bw Ni) to female rats prior to breeding
produced intense erythrocytosis in pregnant dams but not in the pups, which had reduced
blood haematocrits at two weeks (Sunderman et al., 1983b).

Both rats and mice administered 5 or 10 mg/m’ nickel subsulfide acrosols by inhalation
for 12 days developed degeneration of testicular germinal epithelium (Benson ef al., 1987).

(i11)  Nickel salts

Studies on the teratogenic effects of nickel chloride in chick embryos have produced
conflicting results, perhaps due to differences in dose and route of administration. Cardiac
anomalies (Gilani, 1982), exencephaly and distorted skeletal development (Gilani &
Marano, 1980) have been reported, whereas some authors found no nickel-induced anomaly
(Ridgway & Karnofsky, 1952; Anwer & Mehrotra, 1986).

Embryo cultures from BALB/c mice were used to determine the mechanism of
preimplantation loss of embryos derived from matings three and four weeks after treatment
of males with 40 or 56 mg/kg bw nickel nitrate. Treated and control animals were allowed
to mate with superovulated females and the number of cleaved eggs and the development of
embryos to blastocysts and implantations were counted. Neither the fertilizing capacity of
spermatozoa nor the development of cultured embryos was influenced by a dose of 40
mg/kg bw. A dose of 56 mg/kg bw significantly reduced the fertilization rate but did not
affect the development of two-cell embryos. The results suggest that preimplantation loss
after exposure to nickel is due to toxic effects on spermatids and spermatogonia rather than
to zygotic death (Jacquet & Mayence, 1982).

Following daily intragastric administration of 25 mg/kg bw nickel sulfate to male white
rats over a period of 120 days, severe lesions in germ-cell development in the testis were
observed (Waltscheva et al., 1972). Rats administered nickel sulfate by inhalation for 12
days developed testicular degeneration (Benson ef al., 1988b).

Groups of three to five male albino rats received subcutaneous injections of 0.04 mmol
[6.2 mg]/kg bw nickel sulfate either as a single dose or as daily doses for up to 30 days.
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Treatment interfered to some degree with spermatogenesis, but this was temporary, and the
testes ultimately recovered (Hoey, 1966).

Preimplantation embryos from NMRI mice (two- and four- to eight-cell stages) were
cultured with nickel chloride hexahydrate; 10 uM (2.5 mg) adversely affected the
development of day 2 embryos (two-cell stage), whereas 300 uM (71.3 mg) were required
to affect day 3 embryos (eight-cell stage) (Storeng & Jonsen, 1980). In order to compare the
effects of nickel chloride hexahydrate on mouse embryos treated in vivo by intraperitoneal
injection during the preimplantation period, a single injection of 20 mg/kg bw nickel
chloride was given to groups of female mice on day 1, 2, 3, 4, 5 or 6 of gestation. On day 19
of gestation, the implantation frequency in females treated on day 1 was much lower than
that of controls. The litters of the control group were larger, and significantly so, among
mice treated on days 1, 3 and 5 of gestation; the body weight of fetuses was also decreased
on day 19. Nickel chloride may thus adversely affect mouse embryos during the passage
through the oviduct, with subsequent effects after implantation. Data on maternal effects
were not presented (Storeng & Jonsen, 1981).

Long-Evans rats born in a laboratory especially designed to avoid environmental
contamination from trace metals were administered nickel [salt unspecified] at 5 mg/L in the
drinking-water in five pairs. About one-third of the offspring in the first generation were
runts, and one maternal death occurred. In the second generation, there were 10% young
deaths with only 5% runts and, in the third generation, 21% young deaths with 6% runts.
Thus, the size of the litters decreased somewhat with each generation and, with some
failures in breeding, the number of rats was reduced (Schroeder & Mitchener, 1971). A
subsequent study, reported in an abstract, found similar effects on reproduction through two
generations of rats following administration of 500 mg/L nickel chloride in drinking-water.
There was no decrease in maternal weight gain or other maternal effect (Kimmel et al.,
1986).

Nickel chloride was administered in the drinking-water to female rats at a concentration
of 0.1 or 0.01 mg/L Ni for seven months and then during pregnancy. Embryonic mortality
was 57% among nine rats exposed to the higher concentration, compared to 34% among
eight controls. At the lower concentration no such difference was observed (Nadeenko et al.,
1979).

Nickel chloride (1.2-6.9 mg/kg bw Ni) was administered intraperitoneally to pregnant
ICR mice on single days between days 7-11 of gestation. Increased resorption, decreased
fetal weight, delayed skeletal ossification and a high incidence of malformations were
observed in a dose-related fashion on gestation day 18. The malformations consisted of
acephaly, exencephaly, cerebral hernia, open eyelids, cleft palate, micromelia, ankylosis of
the extremities, club foot and other skeletal abnormalities. Five of 27, 6/25 and 7/24 dams



NICKEL AND NICKEL COMPOUNDS 373

receiving 4.6 mg/kg bw or more died within 72 h after injection on days 9, 10 and 11 (Lu et
al., 1979).

Fischer rats were administered nickel chloride (16 mg/kg bw Ni) intramuscularly on day
8 of gestation. The body weight of fetuses on day 20 of gestation and of weanlings four to
eight weeks after birth were reduced. No congenital anomaly was found in fetuses from
nickel-treated dams, or in rats that received ten intramuscular injections of 2 mg/kg bw Ni as
nickel chloride twice daily from day 6 to day 10 of gestation (Sunderman et al., 1978a).

Groups of pregnant Wistar rats were given nickel chloride (1, 2 or 4 mg/kg bw Ni) by
intraperitoneal injection on days 8, 12 and 16 of pregnancy and were sacrificed on day 20.
More malformations occurred when nickel was administered during organogenesis than
after, and their occurrence was maximal at dose levels that were toxic to dams. The
abnormalities included hydrocephalus, haemorrhage, hydronephrosis, skeletal retardation
and one heart defect (Mas et al., 1985).

(iv)  Other nickel compounds

Nickel carbonyl (11 mg/kg bw Ni) was injected intravenously into pregnant Fischer rats
on day 7 of gestation. On day 20, fetal mortality was increased, the body weight of live pups
was decreased and there was a 16% incidence of fetal malformations, including
anophthalmia, microphthalmia, cystic lungs and hydronephrosis. No information was given
regarding maternal toxicity (Sunderman et al., 1983b).

Fischer rats were exposed on day 7 or 8 of gestation by inhalation to nickel carbonyl at
concentrations of 80, 160 or 360 mg/m’ for 15 min. Ophthalmic anomalies (anophthalmia
and microphthalmia) were observed in 86/511 fetuses from 62 pregnancies; they were most
prevalent at the highest dose level and were not observed when the compound was given on
day 9 of gestation (Sunderman et al., 1979b). In another experiment, pregnant rats exposed
to 60 or 120 mg/m’ nickel carbonyl by inhalation for 15 min on day 8 of gestation also had a
high incidence of ocular anomalies. Maternal toxicity was not reported (Sunderman et al.,
1978b).

Groups of pregnant hamsters were administered 60 mg/m’ nickel carbonyl by inhalation
for 15 min on days 4, 5, 6, 7 or 8 of gestation. Dams were sacrificed on day 15 and the
fetuses examined for malformation. Exposure on days 4 and 5 of gestation resulted in
malformations in about 5.5% of the progeny, which included cystic lung, exencephaly,
fused rib, anophthalmia, cleft palate and haemorrhage into the serous cavities. Nine of 14
dams lived until day 16 of gestation. Haemorrhages were not observed in controls. Among
the fetuses of dams exposed to nickel carbonyl on day 6 or 7 of gestation, one fetus had
fused ribs and two had hydronephrosis. For pregnancies allowed to reach full-term, there
was no significant difference on the day of delivery between pups from nickel carbonyl-
exposed litters and controls. Neonatal mortality was increased (Sunderman et al., 1980).
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(f) Genetic and related effects

Many reviews of the genetic effects of nickel compounds have been published (Heck &
Costa, 1982; Christie & Costa, 1984; Costa & Heck, 1984; Hansen & Stern, 1984; Reith &
Brogger, 1984; Costa & Heck, 1986; Fairhurst & Illing, 1987; Sunderman, 1989).

The genotoxic effects of different nickel compounds are divided into five categories: (i)
those for metallic nickel; (ii) those for nickel oxides and hydroxides; (iii) those for
crystalline nickel sulfide, crystalline nickel subsulfide and amorphous nickel sulfide; (iv)
those for nickel chloride, nickel sulfate, nickel acetate and nickel nitrate; and (v) those for
nickel carbonate, nickelocene, nickel potassium cyanide and nickel subselenide. The studies
on these compounds are summarized in Appendix 1 in this volume.

(1) Metallic nickel

Nickel powder was reported not to induce chromosomal aberrations in cultured human
peripheral lymphocytes [details not given] (Paton & Allison, 1972).

Nickel powder ground to a mean particle size of 4-5 ym at concentrations of 5, 10 and
20 ug/mL caused a dose-dependent increase in morphological transformation of Syrian
hamster embryo cells (Costa et al., 1981b). At 20 ug/mL, nickel powder produced a 3%
incidence of transformation, while crystalline nickel subsulfide and crystalline nickel sulfide
(at 10-20 ug/mL) produced a 10-13% incidence of transformation and 5 and 10 ug/mL of
amorphous nickel sulfide induced none. Nickel powder inhibited progression through S
phase in Chinese hamster CHO cells, as measured by flow cytometry (Costa et al., 1982).

Hansen and Stern (1984) reported that nickel powder transformed BHK 21 cells [see
General Remarks for concern about this assay]. Proliferation in soft agar was used as the
endpoint. At equally toxic doses, they found that nickel powder and crystalline nickel
subsulfide had similar transforming activities; the toxicity of 200 ug/mL nickel powder was
equal to that of 10 ug/mL nickel subsulfide.

(11)  Nickel oxides

Nickel monoxide and nickel trioxide in distilled water gave negative results in the
Bacillus subtilis rec'/rec” assay for differential toxicity at concentrations ranging from 5 to
50 mM (Kanematsu et al., 1980). [The Working Group noted that since particulate nickel
compounds such as these are relatively insoluble and their entry into mammalian cells
requires phagocytosis (Costa & Mollenhauer, 1980a,b,c), it is unlikely that they were able to
enter the bacteria. ]
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Chromosomal aberrations were not induced in human peripheral lymphocytes by
treatment in vitro with nickel monoxide [details not given] (Paton & Allison, 1972).

Nickel monoxide and nickel trioxide transformed Syrian hamster embryo cells at
concentrations of 5-20 ug/mL. The activity of the trioxide was about twice that of the
monoxide, similar to that of metallic nickel and about 20% that of crystalline nickel sulfide
(Costa et al., 1981a,b).

Nickel monoxide that was calcined at a low temperature had greater transforming
activity in this system than nickel monoxide calcined at a high temperature at concentrations
of 5 and 10 ug/mL and was equivalent to that of crystalline nickel sulfide. The cell-
transforming activity of these nickel compounds was reported to correlate well with their
ability to induce preneoplastic changes in rats (Sunderman et al., 1987).

Syrian hamster BHK 21 cells were transformed by nickel monoxide and by a nickel
oxide catalyst identified as NiO;4(3H,0). At equally toxic doses, nickel monoxide had the
same transforming activity as did nickel subsulfide. [See General Remarks for concern
about this assay.] The nickel oxide catalyst, NiO;.,4, had similar toxicity and transforming
capacity as nickel subsulfide (Hansen & Stern, 1983, 1984).

The ability of 50 M nickel monoxide to induce anchorage-independent growth in
primary human diploid foreskin fibroblasts was similar to that of 10 xM nickel subsulfide or
nickel acetate. The absolute numbers of anchorage-independent colonies induced al these
doses were 26 with nickel monoxide, 67 with nickel subsulfide, 79 with nickel sulfide (10
uM) and about 42 with nickel acetate, compared with none in cultures of untreated cells.
The frequency of anchorage-independent growth induced by nickel monoxide was about
three-fold less than with nickel subsulfide, but was equivalent to that obtained with nickel
acetate. The transformed cells had 33- to 429-fold higher plating efficiency in agar than the
parental cells; anchorage-independence was stable for eight passages only (Biedermann &
Landolph (1987).

Nickel oxide inhibited progression through S phase in Chinese hamster CHO cells, as
measured by flow cytometry (Costa et al., 1982).

(ii1)  Nickel sulfides (crystalline nickel sulfide, crystalline nickel subsulfide
and amorphous nickel sulfide)

Crystalline nickel sulfide and nickel subsulfide were actively phagocytized by cells at an
early stage following their addition to tissue cultures. Phagocytosis was dependent upon the
calcium concentration in the medium (Abbracchio et al., 1982a) and particle size (particles
> 5-6 um were much less actively taken up and much less toxic than smaller particles)
(Costa & Mollenhauer, 1980a,b,c). Particles are taken up in areas of active cell ruffling,
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internalized and moved about the cell in a saltatory motion; lysosomes repeatedly interact
with the particles, which are contained in the perinuclear region and sometimes inside
cytoplasmic vacuoles, where they slowly dissolve, releasing nickel ions (Evans et al., 1982).
Interaction between lysosomes and nickel sulfide particles may result in exposure of the
particles to the acidic content of the lysosomes, and this interaction may accelerate
intracellular dissolution of crystalline nickel sulfide to ionic nickel (Abbracchio et al.,
1982a). In contrast, amorphous nickel sulfide and nickel particles were not significantly
taken up by cells in vitro (Costa et al, 1981a). Crystalline nickel sulfide particles differ from
amorphous particles in that they have a negative surface charge, as shown using Z-potential
measurements and binding of the particles to filter-paper discs offering different charges
(Abbracchio et al., 1982b). Alteration of the positive charge of amorphous nickel sulfide
particles by treatment with lithium aluminium hydride results in activation of phagocytosis
(Abbracchio ef al., 1982b; Costa, 1983).

Crystalline nickel sulfide was actively phagocytized by the protozoan Paramaecium
tetraurelia and induced lethal genetic damage in parent cells. The activity of nickel
subsulfide was more consistent than that of nickel sulfide, but both compounds produced
higher mutagenic activities than glass beads, used as a control. The concentrations used
ranged from 0.5 to 54 ug/mL; both compounds showed greatest mutagenicity at 0.5 ug/mL,
as higher levels were toxic (Smith-Sonneborn et al., 1983).

Crystalline nickel subsulfide at 5, 10 and 50 ug/mL inhibited DNA synthesis in the rat
liver epithelial cell line T51B (Swierenga & McLean, 1985). Nickel subsulfide inhibited
progression through S phase in Chinese hamster CHO cells, as measured by flow cytometry
(Costa et al.. 1982).

Crystalline nickel sulfide and nickel subsulfide were active in inducing DNA damage in
cultured mammalian cells. Crystalline nickel sulfide induced DNA strand breaks in rat
primary hepatocytes (Sina et al, 1983) and, at 1-20 ug/mL, single-strand breaks in tritium-
labelled DNA in cultured Chinese hamster ovary cells, as determined using alkaline sucrose
gradients (Robison & Costa, 1982). Using the same technique, Robison et al. (1982) showed
that crystalline nickel subsulfide also induced strand breaks, whereas amorphous nickel
sulfide, which is not phagocytized by cells, did not. As observed with alkaline elution
analysis, crystalline nickel sulfide induced two major types of lesion — single-strand breaks
and DNA protein cross-links (Costa et al., 1982; Patierno & Costa, 1985). Treatment of
primary Syrian hamster embryo cells with crystalline nickel subsulfide at 10 ug/mL and
Chinese hamster CHO cells with crystalline nickel sulfide at 1-5 pug/mL induced DNA
repair, as determined by analysis with caesium chloride gradients. Amorphous nickel sulfide
had no effect in either cell type (Robison et al., 1983).
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Crystalline nickel subsulfide and amorphous nickel sulfide induced a weak mutation
response at the hprt (6-thioguanine and 8-azaguanine resistance) locus in Chinese hamster
ovary cells (Costa et al., 1980).

Mutation to 8-azaguanine resistance was induced in a cultured rat liver epithelial cell
line T5S1B treated with particulate crystalline nickel subsulfide at concentrations ranging
from 5 to 50 ug/mL. At noncytotoxic doses, the mutagenic activity was four-fold above
background, and at cytotoxic doses it was 20-fold above background. The mutagenic
activity of dissolved products of these particles (at 12.5-20 ug/mL) was about two-fold
above background at noncytotoxic doses and 20-fold above background at cytotoxic doses.
Neither dissolved nor particulate nickel subsulfide at 2-27 ug/mL induced unscheduled
DNA synthesis in rat primary hepatocytes (Swierenga & McLean, 1985). Nickel subsulfide,
however, was reported to inhibit unscheduled DNA synthesis induced in primary rat
hepatocytes by methyl methane sulfonate [details not given] (Swierenga & McLean, 1985).
Concentrations of 0.5-10 uM nickel subsulfide did not induce 8-azaguanine or 6-
thioguanine resistance in primary human fibroblasts (Biedermann & Landolph, 1987).

Crystalline nickel sulfide (0.1-0.8 ug/cm?®) was mutagenic in monolayer cultures in
Chinese hamster V79 cells in which the endogenous Aprt gene had been inactivated by a
mutation and a single copy of a bacterial gpf gene had been inserted (Christie et al., 1992).

The frequency of sister chromatid exchange was increased in cultured human
lymphocytes treated with nickel subsulfide at 1-10 gg/mL (Saxholm et al., 1981).

Chromosomal aberrations were induced in cultured mouse mammary carcinoma Fm3A
cells following treatment with 4-8 x 10™* M crystalline nickel sulfide dissolved in medium
and filtered. The early chromosomal aberrations consisted of gaps; following reincubation in
control medium after treatment, gaps, breaks, exchanges and other types of aberration were
observed (Nishimura & Umeda, 1979; Umeda & Nishimura, 1979). [The Working Group
noted that the chemical form of nickel used in this study is not known.]

Treatment of Chinese hamster ovary cells with crystalline nickel sulfide at 5-20 ug/mL
for 6-48 h produced a dose- and time-dependent increase in the frequency of chromosomal
aberrations, which were selective for heterochromatin and included mostly gaps and breaks,
with some exchanges and dicentrics (Sen & Costa, 1985). Crystalline nickel sulfide at 1-10
ug/mL also increased the frequency of sister chromatid exchange in a dose-dependent
fashion, selectively in heterochromatic regions, in both Chinese hamster ovary cells (Sen &
Costa, 1986b) and mouse C3H/10T" cells (Sen et al., 1987).
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A dose-dependent increase in the frequency of morphological transformation was
induced in primary Syrian hamster embryo cells by treatment with crystalline nickel
subsulfide at 1-5 ug/mL for nine days (DiPaolo & Casto, 1979) and by either crystalline
nickel sulfide or nickel subsulfide at 0.1-10 ug/mL for 48 h (Costa et al., 1979; Costa, 1980;
Costa & Mollenhauer, 1980a,b,c; Costa et al., 1981a,b, 1982). At the same dose range,
amorphous nickel sulfide had no effect. Clones derived from the transformed cells had
greater plating efficiency, saturation densities and proliferation rates than normal cells; they
also had more inducibility of ornithine decarboxylase, were able to proliferate in soft agar
and were tumorigenic in nude mice.

C3H/10T" cells were transformed at equal frequencies by crystalline nickel subsulfide
at concentrations of 0.001, 0.01 and 0.1 ug/mL; at concentrations higher than 1 ug/mL,
there was no transformation due to cell lysis or death. Transformed cells also showed long
microvilli. They were not characterized for their ability to form tumours in nude mice or for
anchorage-independent growth (Saxholm et al., 1981). [The Working Group questioned the
induction of transformation by concentrations of crystalline nickel subsulfide as low as
0.001 ug/mL.]

Crystalline nickel subsulfide induced transformed properties in rat liver epithelial T51B
cells that were related to cytokeratin lesions. Solutions prepared as leachates of nickel
subsulfide (containing about 300 wg/mL Ni) induced large juxtanuclear cytokeratin
aggregates within 24 h of exposure, which persisted after removal of the compounds and
were passed on to daughter cells. After long-term exposure to 2.5 ug/mL crystalline nickel
subsulfide (dissolution products), these lesions were related to concomitant induction of
differentiation and transformation markers, loss of density dependence, ability to grow in
calcium-deficient medium and increased growth rates. Altered cells formed differentiated
benign tumours in nude mice (Swierenga et al., 1989).

Crystalline nickel subsulfide at 5-20 ug/mL induced transformation to anchor-age-
independence of Syrian hamster BHK 21 cells (Hansen & Stern, 1983). [See General
Remarks for concern about this assay.]

Human skin fibroblasts transformed by crystalline nickel subsulfide to anchorage-
independent growth had a much higher plating efficiency than normal cells. The phenotype
was stable for eight passages (Biedermann & Landolph, 1987).

Crystalline nickel sulfide, but not amorphous nickel sulfide, at doses of 1-20 ug/mL,
inhibited the polyriboinosinic-polyribocytidylic acid-stimulated production of o/ interferon
in mouse embryo fibroblasts (Sonnenfeld et al., 1983).

Heterochromatic abnormalities were seen in early-passage cultures of cells from
crystalline nickel sulfide-induced, mouse rhabdomyosarcomas (Christie et al., 1988).
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(iv)  Nickel salts (nickel chloride, nickel sulfate, nickel nitrate and nickel acetate)

Nickel acetate induced y prophage in Escherichia coli WP2g, with a maximal effect at
0.04 mM (Rossmann et al., 1984). Nickel sulfate at 300 ug/mL did not induce forward
mutations in T4 phage (Corbett et al., 1970).

Nickel chloride at 1-10 mM decreased the fidelity of DNA polymerase using a poly (c)
template (Sirover & Loeb, 1976, 1977). Nickel acetate inhibited DNA synthesis in mouse
mammary carcinoma Fm3A cells (Nishimura & Umeda, 1979).

Nickel chloride at 200-1000 uM induced a genotoxic response in a differential killing
assay using E. coli WP2 (wild-type) and the repair-deficient derivative WP67 (uvrA~, polA’)
and CM871 (uvrA’, recA’, lexA") (Tweats et al., 1981). De Flora et al. (1984) reported
negative results with nickel chloride, nickel nitrate and nickel acetate using the same strains
in a liquid micromethod test procedure, with and without an exogenous metabolic system.

Nickel chloride did not induce differential toxicity in B. subtilis H17 rec’ (arg , trp’) or
M45 rec (arg, trp’) at 5-500 mM (Nishioka, 1975; Kanematsu et al, 1980). No
mutagenicity was induced by nickel chloride at 0.1-100 mM in S. #yphimurium LT, or
TA100 (Tso & Fung, 1981), by nickel chloride, nickel acetate or nickel nitrate in S.
typhimurium TA1535, TA1537, TA1538, TA97, TA98 or TA100 (De Flora ef al., 1984) or
by nickel chloride or nickel sulfate in S. typhimurium TA1535, TA1537, TA1538, TA98 or
TA100, when trimethylphosphate was substituted for ortho- phosphate to allow nickel to be
soluble in the media (Arlauskas ef al., 1985). Even when substantial quantities of nickel
were demonstrated to enter the bacteria, there was still no mutagenic response in S.
typhimurium strains TA1535, TA1538, TA1975 or TA1978 (0.5-2 mM) (Biggart & Costa,
1986).

Pikélek and Necasek (1983), however, demonstrated mutagenic activity of nickel
chloride at 0.5-10 ug/mL in homoserine-dependent Corynebacterium sp887, utilizing a
fluctuation test. Dubins and LaVelle (1986) demonstrated co-mutagenesis of nickel chloride
with alkylating agents in S. typhimurium strain TA100 and in E. coli strains WP2" and WP2
uvrdA; Ogawa et al. (1987) demonstrated co-mutagenesis with 9-aminoacridine. Nickel
acetate at up to 100 uM was not co-mutagenic with ultraviolet light in E. coli WP2
(Rossman & Molina, 1986). Soluble nickel salts have been shown to be negative in host-
mediated assays, using S. typhimurium G46 in NMRI mice and Serratia marcescens A21 in
mice, at concentrations of 50 mg/kg (Buselmaier et al., 1972).

Nickel chloride at 3 and 10 mM for 24 h induced gene conversion in Saccharomyces
cerevisiae D7 (Fukunaga et al., 1982). It also induced petite mutations in 13 S. cerevisiae
haploid strains (Egilsson et al., 1979).
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Negative results were obtained in the Drosophila melanogaster somatic eye colour
(zeste mutation) test with nickel chloride at 0.21 mM (Rasmuson, 1985) and at 4.2 mM
(Vogel, 1976) and with nickel nitrate at 0.14 mM (Rasmuson, 1985).

Nickel sulfate induced sex-linked recessive lethal mutations in D. melanogaster at
concentrations of 200, 300 and 400 ppm and sex chromosomal loss at the highest
concentration tested. The injection volume was not stated, but the LDs, was 400 ppm
(Rodriguez-Arnaiz & Ramos, 1986). Nickel nitrate at 3.4-6.9 mM did not induce sex-linked
recessive lethal mutations in D. melanogaster (Rasmuson, 1985).

Nickel chloride increased the frequency of strand breaks in Chinese hamster ovary cells
at 1 and 10 ug/mL with 2-h exposure (Robison & Costa, 1982) and at 10-100 M for 16 and
48 h, with a decrease in the average molecular weight of DNA from 7.2-5.7 x 107 Da
(Robison et al., 1982). Nickel chloride at 0.5-5 mM induced both single-strand breaks and
DNA-protein cross-links in the same cell line. The extent of cross-linking was maximal
during the late S phase of the cell cycle when heterochromatic DNA is replicated (Patierno
& Costa, 1985; Patierno et al., 1985).

Nickel chloride at 0.05 mM for 30 min did not induce DNA strand breaks in human
lymphocytes as evaluated by alkaline unwinding (McLean et al., 1982). [The Working
Group noted that the exposure period was very short and the dose very low.] Nickel sulfate
at 250 ug/mL did not induce DNA single-strand breaks in human fibroblasts (Ag 1522)
(Fornace, 1982).

Nickel chloride at 0.1-1 mM induced DNA repair synthesis in Chinese hamster ovary
and primary Syrian hamster embryo cells, which have a very high degree of density
inhibition of growth and very little background replication synthesis (Robison et al., 1983,
1984). It inhibited DNA synthesis in primary rat embryo cells at 1.0 ug/mL (Basrur &
Gilman, 1967) and in T51B rat liver epithelial cells (Swierenga & McLean, 1985).

Exposure of two human cell lines, HeLa and diploid embryonic fibroblasts, and of
Chinese hamster V79 cells and L-A mouse fibroblasts to nickel chloride in vitro resulted in
a dose-dependent depression of proliferation and mitotic rate. The effects on viability were
accompanied by a reduction in DNA, protein and. to a lesser degree, RNA synthesis. Cells
in G1 and early S phases were most sensitive (Skreb & Fischer, 1984). Nickel chloride also
selectively blocked cell cycle progression in the S phase in Chinese hamster ovary cells
(Harnett et al., 1982). Nickel chloride at 40-120 uM for one to several days of exposure
prolonged S-phase in Chinese hamster ovary cells (Costa ef al., 1982).

Nickel chloride at 0.4 and 0.8 mM for 20 h induced 8-azaguanine-resistant mutations in
Chinese hamster V79 cells, although 0.8 mM induced a very weak mutagenic response
(Miyaki et al., 1979). Nickel chloride at 0.5-2.0 mM induced a dose-related increase in the

frequency of mutation to 6-thioguanine resistance in Chinese hamster V79 cells. At 2 mM,
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cell survival was 50% and the mutant fraction was 8.6-fold above background (Hartwig &
Beyersmann, 1989). Trifluorothymidine-resistant mutants were induced in L5178Y tk™
mouse lymphoma cells following exposure to nickel chloride at 0.17-0.71 mM for 3 h; dose-
dependent two- to five-fold increases in mutation frequency were seen, survival ranging
from 5 to 33.5% to (Amacher & Paillet, 1980).

Nickel sulfate at 0.1 mM induced a two-fold increase in the frequency of mutation to 6-
thioguanine resistance over the background level in Chinese hamster V79 cells (G 12)
containing a transfected bacterial gpt gene (Christie et al., 1992). No gene mutation to
ouabain resistance was seen, however, in primary Syrian hamster embryo cells exposed to 5
ug/mL nickel sulfate (Rivedal & Sanner, 1980).

As assessed in a mutation assay for the synthesis of P-85%*™ viral proteins, nickel
chloride at concentrations of 20-160 uM induced expression of the v-mos gene in MuSVts
110-infected rat kidney cells (6m?2 cell line) (Biggart & Murphy, 1988).

Nickel chloride at 0.01-0.05 mM increased the incidence of sister chromatid exchange in
Chinese hamster ovary cells (Sen et al., 1987). An increased frequency was also seen with
nickel sulfate at 0.1 mM in the P33 8D, macrophage cell line (Andersen, 1983), at 0.13 mM
in Chinese hamster Don cells (Ohno et al., 1982), at 0.004-0.019 mM in Syrian hamster
embryo cells (Larramendy et al., 1981), at 0.75 pg/mL (0.003 mM) in Chinese hamster
ovary cells (Deng & Ou, 1981) and at 0.01 mM in human lymphocytes (Andersen, 1983).
Dose-dependent increases in the frequency of sister chromatid exchange were seen in
human peripheral blood lymphocytes with nickel sulfate at 0.01 mM and 0.019 mM
(Larramendy et al., 1981), 0.0023-2.33 mM (Wulf, 1980) and 0.95-2.85 uM (Deng & Ou,
1981).

Nickel chloride induced chromosomal aberrations in Fm3A mouse mammary carcinoma
cells (Nishimura & Umeda, 1979; Umeda & Nishimura, 1979). It also induced aberrations
(primarily gaps, breaks and exchanges) in Chinese hamster ovary cells at 0.001-1 mM,
preferentially in heterochromatic regions (Sen & Costa, 1985, 1986b; Sen et al., 1987); and
aberrations in Syrian hamster embryo cells at 0.019 mM (Larramendy et al, 1981).
Increased frequencies were also reported in Syrian hamster embryo cells (0.019 mM) and
human peripheral blood lymphocytes (0.019 mM) exposed to nickel sulfate hexahydrate
(Larramendy et al., 1981) and in Fm3 A mouse mammary carcinoma cells exposed to nickel
acetate at 0.6 mM for 48 h (Umeda & Nishimura, 1979) or at 1 mM for 24 h (Nishimura &
Umeda, 1979).

Nickel sulfate at 1.0 mM reduced average chromosomal length in human lymphocytes,
indicating its ability to act as a powerful spindle inhibitor at concentrations just below lethal
levels (Andersen, 1985).
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Nickel sulfate hexahydrate and nickel chloride induced a concentration-dependent
increase in morphological transformation of Syrian hamster embryo cells (Pienta et al.,
1977; DiPaolo & Casto, 1979 [2.5-10 pg/mL]; Zhang & Barrett, 1988). Nickel sulfate
transformed these cells at 5 pg/mL (Rivedal & Sanner, 1980; Rivedal et al., 1980; Rivedal
& Sanner, 1981, 1983), and concentrations of 10-40 pg/mL (38-154 uM) nickel sulfate
enhanced transformation of normal rat kidney cells infected with Molony murine sarcoma
virus (Wilson & Khoobyarian, 1982).

Nickel acetate at 100-400 pg/mL transformed Syrian hamster BHK21 cells (Hansen &
Stern, 1983) [See General Remarks for concern about this assay.]

Nickel acetate and nickel sulfate at 10 uM induced transformation to anchor-age-
dependent growth of primary human foreskin fibroblasts (Biedermann & Landolph, 1987).

Continuous exposure of cultures of normal human bronchial epithelial cells to nickel
sulfate at 5-20 pg/mL reduced colony-forming efficiency by 30-80%. After 40 days of
incubation, 12 cell lines were derived which exhibited accelerated growth, aberrant
squamous differentiation and loss of the requirement for epidermal growth factor for clonal
growth. Aneuploidy was induced and marker chromosomes were found. However, none of
these transformed cultures was anchorage-independent or produced tumours upon injection
into athymic nude mice (Lechner et al., 1984). Human fetal kidney cortex explants were
exposed continuously to 5 pg/mL nickel sulfate. After 70-100 days, immortalized cell lines
were obtained, with decreased serum dependence, increased plating efficiency, higher
saturation density and ability to grow in soft agar. However, they were not tumorigenic
(Tveito et al. 1989).

Nickel sulfate disrupted cell-to-cell communication in a dose-related manner in NIH3T3
cells from a base level of 98% at 0.5 mM to 2% at SmM; cell viability was not affected by
these concentrations (Miki et al., 1987). [The Working Group noted that the method for
determining cell viability was not described.]

Intraperitoneal injections of nickel sulfate at 15-30% of the LDs, to CBA mice in vivo
suppressed DNA synthesis in hepatic epithelial cells and in the kidney (Amlacher &
Rudolph, 1981). Nickel chloride given by intramuscular injection to rats at 20 mg/kg bw Ni
inhibited DNA synthesis in the kidney (Hui & Sunderman, 1980).

Polychromatic erythrocytes were not induced in BALB/c mice after an intraperitoneal
injection of 25 mg/kg bw nickel chloride or 56 mg/kg bw nickel nitrate (Deknudt &
Léonard, 1982).

The frequency of chromosomal aberrations in bone-marrow cells and spermatogonia of
male albino rats was not increased following intraperitoneal injections of 3 and 6 mg/kg bw
nickel sulfate. Animals were sacrificed seven to 14 days after treatment (Mathur et al.,
1978).
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Nickel chloride increased the frequency of chromosomal aberrations in bone-marrow
cells of Chinese hamsters given intraperitoneal injections of concentrations that were 4-20%
of the LDs, (Chorvatovicova, 1983) and of Swiss mice given intraperitoneal injections of 6,
12 or 24 mg/kg bw (Mohanty, 1987).

Dominant lethal mutations were not induced in BALB/c mice after an intraperitoneal
injection of 12.5-100 mg/kg bw nickel chloride or 28-224 mg/kg bw nickel nitrate (Deknudt
& Léonard, 1982).

(v)  Other nickel compounds

DNA-protein cross-linking in the presence of the nickel[Il]- and nickel[IlI]tetraglycine
complexes and molecular oxygen was observed in vitro in calf thymus nucleohistone. The
same complexes were also able to cause random polymerization of histones in vitro
(Kasprzak & Bare, 1989).

Haworth et al. (1983) reported no mutation in S. typhimurium TA100, TA1535, TA1537
or TA98 following exposure to nickelocene at doses up to 666 pg/plate.

Nickel potassium cyanide at concentrations of 0.2-1.6 mM for 48 h increased the
frequency of chromosomal aberrations in Fm3A mouse mammary carcinoma cells
(Nishimura & Umeda, 1979; Umeda & Nishimura, 1979).

Crystalline nickel subselenide at 1-5 pg/mL inhibited cell progression through S phase,
as seen with flow cytometry (Costa et al., 1982). Concentrations of 5-20 ug/mL crystalline
nickel subselenide transformed primary Syrian hamster embryo cells (Costa ef al., 1981a,b;
Costa & Mallenhauer, 1980c).

Intravenous administration of nickel carbonyl to rats at 20 mg/kg bw Ni inhibited DNA
synthesis in liver and kidney (Hui & Sunderman, 1980).

DNA-protein cross-links and single-strand breaks, as detected by alkaline elution, were
found in rat kidney nuclei 20 h after intraperitoneal injection of ‘nickel carbonate’ at 10-40
mg/kg bw (Ciccarelli et al., 1981). After 3 and 20 h, single-strand breaks were detected in
lung and kidney nuclei, and both DNA-protein and DNA interstrand cross-links were found
in kidney nuclei. No DNA damage was observed in liver or thymus gland nuclei (Ciccarelli
& Wetterhahn, 1982). [The Working Group noted that the compound tested was probably
basic nickel carbonate. ]

3.3 Other relevant data in humans

(a) Absorption, distribution, excretion and metabolism

Recent reviews include those of Raithel and Schaller (1981), Sunderman et al. (1986a),
the US Environmental Protection Agency (1986), Grandjean et al. (1988), Sunderman
(1988) and the World Health Organization (1991).

A positive relation exists between air levels of nickel and serum/plasma concentrations
of nickel after occupational exposure to various forms of nickel (see also Tables 11, 12, 13).
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A considerable scattering of results was apparent, and the correlation was poor; a better
correlation may be achieved in individual studies of well-defined exposure groups
(Grandjean et al., 1988). Sparingly soluble compounds may be retained in the lungs for long
periods of time. Thus, even three to four years after cessation of exposure, nickel
concentrations in plasma and urine were elevated in retired nickel workers exposed to
sparingly soluble compounds in the roasting/smelting department of a nickel refinery
(Boysen et al., 1984). Respiratory uptake of nickel in welders is described in the monograph
on welding.

Provided that pulmonary exposure to nickel can be excluded, the approximate fraction of
nickel absorbed by the intestinal tract can be estimated from oral intake and faecal and
urinary nickel elimination (Horak & Sunderman, 1973). Cumulative urinary excretion in
non-fasting volunteers given a single oral dose of 5.6 mg Ni as nickel sulfate hexahydrate
indicated an intestinal absorption of 1-5% (Christensen & Lagesson, 1981; Sunderman,
1988). After ingestion of nickel sulfate during fasting, 4-20% of the dose was excreted in
the urine within 24 h (Cronin et al., 1980). Compartmental analysis of nickel levels in
serum, urine and faeces in a study of intestinal absorption of nickel sulfate by human
volunteers showed that an average of about 27% was absorbed when ingested as an aqueous
solution after 12 h of fasting, while 0.7%was absorbed when the nickel was ingested with
scrambled eggs (Sunderman et al., 1989b). Ingestion of food items with a high natural
nickel content resulted in a urinary excretion corresponding to about 1% Of the amount
ingested (Nielsen et al., 1987). The bioavailability of nickel can be reduced by various
dietary constituents and beverages. Drugs may influence intestinal nickel absorption.
Ethylenediaminetetraacetic acid very efficiently prevented intestinal absorption of nickel
(Solomons et al., 1982); and, as reported in an abstract, disulfiram increased the intestinal
absorption of nickel, probably by forming a lipophilic complex between its metabolite
diethyldithiocarbamate and nickel (Hopfer et al., 1984).

After intestinal absorption of nickel ingested as nickel sulfate hexahydrate in lactose by
eight volunteers, most of the nickel present in blood was in serum; nickel concentrations in
serum and blood showed a very high positive correlation (» = 0.99) (Christensen &
Lagesson, 1981). In patients with chronic renal failure, a high nickel concentration was
found in serum but no significant increase was observed in lymphocytes (Wills et al., 1985).
However, in nickel refinery workers, plasma nickel concentrations were lower than those in
whole blood, and about 63% appeared to be contained in the buffy coat (Barton et al.,
1980).

As reported in an abstract, nickel levels in intercellular fluid were significantly lower in
a group of nickel-allergic patients than in controls, possibly due to cell binding or uptake
(Bonde et al., 1987). This finding may be related to the observation that incubation with
nickel subsulfide in vitro caused considerable binding of nickel to the cell membrane of



NICKEL AND NICKEL COMPOUNDS 385

T-lymphocytes from nickel-sensitized patients but to very few cells from nonsensitized
persons (Hildebrand et al., 1987).

The lungs contain the highest concentration of nickel in humans with no known
occupational nickel exposure; lower levels occur in the kidneys, liver and other tissues
(Sumino et al., 1975; Rezuke et al., 1987). One study documented high levels in the thyroid
and adrenals (Rezuke er al., 1987) and another in bone (Sumino et al., 1975). The
pulmonary burden of nickel appears to increase with age (Kollmeier ef al., 1987), although
this correlation was not confirmed in another study (Raithel et al., 1988). The upper areas of
the lungs and the right middle lobe contained higher nickel concentrations than the rest of
the lung (Raithel et al., 1988), and high concentrations were found in hilar lymph nodes
(Rezuke et al., 1987).

Lung tissue from three of four random cases of bronchial carcinoma from an area with
particularly high local emissions of chromium and nickel contained increased concentrations
of nickel and chromium (Kollmeier et al., 1987), while no such tendency was seen in ten
other cases with no known occupational exposure to nickel (Turhan et al., 1985).

High nickel concentrations were found in biopsies of nasal mucosa from both active and
retired workers from the Kristiansand, Norway, nickel refinery, particularly in workers from
the roasting/smelting department. After retirement, increased nickel levels persisted for at
least ten years, with slow release at a half-time of 3.5 years (Torjussen & Andersen, 1979).
Biopsies from two nasal carcinomas in nickel refinery workers contained nickel
concentrations similar to those seen in biopsies from workers without cancer (Torjussen et
al., 1978). Lung tissue obtained at autopsy of workers from the roasting and smelting
department of the Norwegian nickel refinery contained higher nickel concentrations
(geometric mean, 148 pg/g dry weight; n = 15) than tissue from workers from the
electrolysis department (geometric mean, 16 ug/g; n = 24); nickel concentrations in lung
tissue were not higher in workers who had died from lung cancer than in workers who had
died of other causes (Andersen & Svenes, 1989).

In cases of nickel carbonyl poisoning, the highest nickel concentrations have been
recorded in the lungs, with lower levels in kidneys, liver and brain (National Research
Council, 1975).

The half-time of nickel in serum was 11 h (one-compartment model during the first 32 h)
in eight volunteers after ingestion of 5.6 mg nickel sulfate hexahydrate in lactose; serum
nickel concentration and urinary nickel excretion showed a highly positive correlation (r =
0.98) (Christensen & Lagesson, 1981). Possibly due to delayed absorption of inhaled nickel,
somewhat longer half-times were reported for nickel concentrations in plasma and urine
(20-34 h and 17-39 h, respectively) in nickel platers (Tossavainen et al., 1980), glass
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workers (30-50 h in urine) (Raithel et al., 1982; Sunderman et al., 1986a) and welders (53 h
in urine) (Zober et al., 1984). Ten subjects who had accidentally ingested soluble nickel
compounds and were treated the following day with intravenous fluids to induce diuresis,
showed an average elimination half-time of 27 h, while the half-time was twice as high in
untreated subjects with lower serum nickel concentrations (Sunderman et al., 1988b).

Urinary excretion of nickel is frequently used to survey workers exposed to inorganic
nickel compounds (Aitio, 1984; Sunderman et al., 1986a; Grandjean et al., 1988). The best
indicator of current exposure to soluble nickel compounds is a 24-h urine sample
(Sunderman et al., 1986a). In cases of nickel carbonyl intoxication, urinary nickel level is an
important diagnostic and therapeutic guide (Sunderman & Sunderman, 1958; Adams, 1980),
but its use in biological monitoring of exposure to nickel carbonyl has not been evaluated in
detail.

Systemically absorbed nickel may be excreted through sweat (Christensen et al., 1979).
Faecal excretion includes non-absorbed nickel and nickel secreted into the gastrointestinal
tract (World Health Organization, 1991). Saliva contains nickel concentrations similar to
those seen in plasma (Catalanatto & Sunderman, 1977). Secretin-stimulated pancreatic juice
was reported to contain an average of 1.09 nmol [64 pg]/mL nickel, corresponding to a total
nickel secretion of about 1.64-2.18 umol [96-128 ng] per day at a pancreatic secretion rate
of 1.5-2 L/day (Ishihara et al., 1987). Bile obtained at autopsy contained an average nickel
concentration of 2.3 pug/L, suggesting daily biliary excretion of about 2-5 pg (Rezuke et al.,
1987). A biliary nickel concentration of 62 pg/g was recorded at autopsy of a small girl who
had swallowed about 15 g nickel sulfate crystals (Daldrup et al., 1983); since biliary ex-
cretion in this case would correspond to about 0.1% of the dose, it was considered that this
route of excretion would be of minimal importance in acute intoxication (Rezuke et al.,
1987). Nickel-exposed battery production workers showed high faecal nickel excretion,
probably owing to direct oral intake of nickel (e.g., via contamination of food from exposed
surfaces); faecal nickel content (24 pg/g dry weight) was correlated with the amount present
in air (18 pg/m’) (Hassler ez al., 1983).

Nickel was found in cord blood from full-term infants at 3 pg/L (McNeely et al., 1971).

Tissue levels at 22-43 weeks of gestation were similar to those seen in adults (Casey &
Robinson, 1978).

(b) Toxic effects

Nickel is an essential nutrient in several species, but no essential biochemical function
has been established in humans. Recent reviews of nickel toxicity in humans include those
of Raithel and Schaller (1981), the US Environmental Protection Agency (1986),
Sunderman (1988) and the World Health Organization (1991).

Acute symptoms reported in 23 patients exposed to severe nickel contamination during
haemodialysis included nausea, vomiting, weakness, headache and palpitations; the
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symptoms disappeared rapidly upon cessation of dialysis (Webster et al., 1980). Twenty
workers who accidentally ingested water contaminated with nickel sulfate and chloride
hexahydrates at doses estimated at 0.5-2.5 g Ni developed nausea, abdominal pain or
discomfort, giddiness, lassitude, headache, diarrhoea vomiting, coughing and shortness of
breath; no related sequela was observed on physical examination, and all individuals were
asymptomatic within three days (Sunderman et al., 1988b). In a study of fasting human
volunteers, one subject who ingested nickel sulfate (as 50 ug/kg bw Ni) in water developed
a transient hemianopsia at the time of peak nickel concentration in serum (Sunderman et al.,
1989b). One fatal case of oral intoxication with nickel sulfate has been reported (Daldrup et
al., 1983).

Biochemical indications of nephrotoxicity, mainly with tubular dysfunction, have been
observed in nickel electrolysis workers (Sunderman & Horak, 1981). Increased haemo-
globin and reticulocyte counts were reported in ten subjects three to eight days after they
had accidentally ingested 0.5-2.5 g Ni as nickel sulfate and chloride hexahydrates in
contaminated drinking-water (Sunderman et al., 1988b).

Nickel is a common skin allergen — in recent studies, the most frequent cause of allergic
contact dermatitis in women and one of the most common in men; about 10-15% of the
female population and 1-2% of males show allergic responses to nickel challenge (Peltonen,
1979; Menné et al., 1982). Nickel ions are considered to be exclusively responsible for the
immunological effects of nickel (Wahlberg, 1976). Sensitization appears to occur mainly in
young persons, usually due to non-occupational skin exposures to nickel alloys (Menné et
al., 1982). Subsequent provocation of hand eczema may be caused by occupational
exposures, especially to nickel-containing fluids and solutions (Rystedt & Fischer, 1983).
Oral intake of low doses of nickel may provoke contact dermatitis in sensitized individuals
(Veien et al., 1985). Inflammatory reactions to nickel-containing prostheses and implants
may occur in nickel-sensitive individuals (Lyell et al., 1978).

Several cases of nickel-associated asthma have been described (Cirla et al., 1985). Case
reports suggest that inhalation of nickel dusts may result in chronic respiratory diseases
(asthma, bronchitis and pneumoconiosis) (Sunderman, 1988). [The Working Group was
unable to determine the causal significance of nickel in this regard.]

Nickel carbonyl is the most acutely toxic nickel compound. Symptoms following nickel
carbonyl intoxication occur in two stages, separated by an almost symptom-free interval
which usually lasts for several hours. Initially, the major symptoms are nausea, headache,
vertigo, upper airway irritation and substernal pain, followed by interstitial pneumonitis
with dyspnoea and cyanosis. Prostration, pulmonary oedema, kidney toxicity, adrenal
insufficiency and death may occur in severe cases (Sunderman & Kincaid, 1954; Vuopala et
al., 1970; Sunderman, 1977).
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Frequent clinical findings included fever with leukocytosis, electrocardiographic
abnormalities suggestive of myocarditis and chest X-ray changes (Zhicheng, 1986).
Hyperglycaemia has also been reported (Sunderman, 1977). Neurasthenic signs and
weakness may persist in survivors for up to six months (Zhicheng, 1986).

(c) Effects on reproduction and prenatal toxicity
No data were available to the Working Group.

(d) Genetic and related effects

Cytogenetic studies have been performed using peripheral blood lymphocytes from
electroplating and nickel refining plant workers; they are summarized in Appendix 1 to this
volume.

Waksvik and Boysen (1982) found elevated levels of chromosomal aberrations (mainly
gaps; p < 0.003), but not of sister chromatid exchanges, in two groups of nickel refinery
workers. One group of nine workers engaged in crushing/roasting/smelting processes and
exposed mainly to nickel monoxide and nickel subsulfide for an average of 21.2 years
(range, 3-33 years) at an air nickel content of 0.5 mg/m’ (range, 0.1-1.0 mg/m’) and with a
mean plasma nickel level of 4.2 pg/L had 11.9% of metaphases with gaps. Another group of
workers, engaged in electrolysis, who were exposed mainly to nickel chloride and nickel
sulfate for an average of 25.5 years (range, 8-31 years) at an air nickel content of 0.2 mg/m’
(range, 0.1-0.5 mg/m’) and with a mean plasma level of 5.2 pg/L, had 18.3% of metaphases
with gaps'. Mean control values of 3.7% of metaphases with gaps were seen in seven office
workers in the same plant with plasma nickel levels of 1 pg/L, who were matched for age
and sex. All subjects were nonsmokers and nonalcohol consumers, were free from overt
viral disease, were not known to have cancer and had not received therapeutic radiation;
none was a regular drug user and the groups were uniform as to previous exposure to
diagnostic X-rays.

Waksvik et al. (1984) investigated nine ex-workers from the same plant who had been
retired for an average of eight years who had had similar types of exposure to more than 1
mg/m’ atmospheric nickel for 25 years or more; they were selected from among a group of
workers known to have nasal dysplasia and who still had plasma nickel levels of 2 pg/L
plasma. These retired workers showed some retention of gaps (p < 0.05) and an increased
frequency of chromatid breaks to 4.1% of metaphases versus 0.5% (p < 0.001) in 11
unexposed retired workers controlled for age, life style and medication status. All subjects
were of similar socioeconomic status and had not had X-rays or overt viral disease recently;

"The exposures of these workers were clarified in an erratum to the original article, published subsequently
(Mutat. Res., 104,395 (1982)).
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none smoked or drank alcohol. Four exposed and nine unexposed subjects were on
medication but not with drugs known to influence chromosomal parameters.

Deng et al. (1983, 1988) studied the frequencies of sister chromatid exchange and
chromosomal aberrations in lymphocytes from seven electroplating workers exposed to
nickel. Air nickel concentrations were 0.0053-0.094 mg/m’ (mean, 0.024 mg/m’). Control
subjects were ten administrative workers from the same plant matched for age and sex; the
groups were uniform as to socioeconomic status, and none of the subjects smoked or used
alcohol, had overt viral disease, had recently been exposed to X-rays or was taking
medication known to have chromosomal effects. The exposed workers had an increased
frequency of sister chromatid exchange (7.50 + 2.19 (SEM) versus 6.06 £ 2.30 (SEM); p <
0.05). [The Working Group noted that this is a small difference between groups.] The
frequency of chromosomal aberrations (gaps, breaks and fragments) was increased from
0.8% of metaphases in controls to 4.3% in nickel platers.

The frequencies of sister chromatid exchange and chromosomal aberrations were studied
in workers in a nickel carbonyl production plant. The subjects were divided into four
groups: exposed, exposed smokers, controls and control smokers. Controls were ex-
employees. None of the subjects had a history of serious illness; none was receiving
irradiation or was infected by viruses at the time of blood sampling. No significant
difference in the frequency of chromosomal breaks or gaps was observed between the
different groups, and there was no statistically significant difference in the frequency of
sister chromatid exchange between unexposed and nickel-exposed workers (Decheng et al.,
1987). [The Working Group noted that several discrepancies in the description of this study
make it difficult to evaluate.]

Studies of mutagenicity and chromosomal effects in humans are summarized in Table 25.

3.4 Epidemiological studies of carcinogenicity to humans

(a) Introduction

The report of the International Committee on Nickel Carcinogenesis in Man (ICNCM)
(1990) presents updated results on nine cohort studies and one case-control study of nickel
workers, one of which was previously unpublished. The industries include mining, smelting,
refining and high-nickel alloy manufacture and one industry in which pure nickel powder
was used. The report adds to or supersedes previous publications on most of these cohorts,
as various new analyses are included, some cohorts have been enlarged, and follow-up has
been extended. Nickel species were divided into four categories: metallic nickel, oxidic
nickel, soluble nickel and sulfidic nickel (including nickel subsulfide). Soluble nickel was



Table 25. Cytogenetic studies of people exposed occupationally to nickel and nickel compounds

Occupational exposure  Reported principal Mean reported dose Sister chromatid Chromosomal Reference
components (range) exchange aberrations
Crushing, roasting, Nickel monoxide, nickel Air: 0.5 (0.1-1.0) mg/m?® None Only gaps Waksvik &
smelting subsulfide Exposure: 21.2 (3-33) years Boysen (1982)
Electrolysis Nickel chloride, nickel sulfate ~ Air: 0.2 (0.1-0.5) mg/m? None Mainly gaps Waksvik &
Exposure: 25.2 (8-31) years Boysen (2982)
Crushing, roasting, Nickel monoxide, nickel Air: 1 mg/m? None Gaps and breaks  Waksvik ef al.
smelting and/or subsulfide, nickel chloride,  Exposure: >25 years in retired workers  (1984)
electrolysis nickel sulfate
Nickel carbonyl Nickel carbonyl Exposure: 7971 h None None Decheng et al.
production (1987)
Electroplating Nickel and chromium com- Air: 0.0053-0.094 mg/m? Small increase Mainly gaps, but  Deng et al.
pounds Exposure: 2-27 years also breaks and (1983, 1988)

fragments
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defined as consisting ‘primarily of nickel sulfate and nickel chloride but may in some
estimates include the less soluble nickel carbonate and nickel hydroxide’.

The historical estimates of exposure cited in the reviews of the following studies were
not based on contemporary measurements. Furthermore, total airborne nickel was estimated
first, and this estimate was then divided into estimates for four nickel species (metallic,
oxidic, sulfidic and soluble), as defined in the report of the committee (ICNCM, 1990). The
procedures for dividing the exposure estimates are described in section 2 of this monograph
(pp. 297-298). Because of the inherent error and uncertainties in the procedures for
estimating exposures, the estimated concentrations of nickel species in workplaces in the
ICNCM analysis must be interpreted as broad ranges indicating only estimates of the order
of magnitude of the actual exposures.

In order to facilitate the interpretation of the epidemiological findings on mortality from
lung cancer and nasal cancer, selected estimates of exposure are presented in Tables 26, 27
and 28 (pp. 402-404) for some of the plants and subcohorts. The exposure estimates
presented in the tables should be used only to make qualitative comparisons of exposure
among departments within a plant and should not be used to make comparisons of exposure
estimates among plants, for the reasons given above.

(b)  Nickel mining, smelting and refining
(i) INCO Ontario, Canada (mining, smelting and refining)’

Follow-up of all sinter plant workers and of all men employed at the Ontario division of
INCO for at least six months and who had worked (or been a pensioner) between 1 January
1950 and 31 December 1976 (total number of men, 54 509) was extended to the end of 1984
by record linkage to the Canadian Mortality Data Base (ICNCM, 1990). Sinter plant
workers included men who had worked in two different sinter plants in the Sudbury area
(the Coniston and Copper Cliff sinter plants) and in the leaching, calcining and sintering
department at the Port Colborne nickel refinery. In the Coniston sinter plant, sulfidic nickel
ore concentrates were partially oxidized at 600°C (Roberts et al., 1984) on sinter machines
to remove about one-third of the sulfur and to agglomerate the fine material for smelting in a
blast furnace. In the Copper Cliff sinter plant, nickel subsulfide was oxidized to nickel oxide
at very high temperatures (1650°C). The leaching, calcining and sintering department

"There are some discrepancies between the figures cited here and those reported by Roberts et al. (1989a,b),
but the differences are not substantial.
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produced black and green nickel oxides from nickel subsulfide by a series of leaching and
calcining operations. The department also included a sinter plant like that at Copper CIiff.
Employment records for men employed in the department did not allow them to be assigned
to individual leaching, calcining or sintering operations. Mortality up to the end of 1976 in
this cohort of about 55 000 men was described by Roberts et al. (1984); an earlier study of
495 men employed at the Copper Cliff sinter plant was reported by Chovil et al. (1981). The
nickel species to which men were exposed in dusty sintering operations were primarily
oxidic and sulfidic nickel, and possibly soluble nickel at lower levels (see Table 26). High
concentrations of nickel compounds were estimated in the Copper Cliff sinter plant, which
ranged from 25-60 mg/m’ Ni as nickel oxide and 15-35 mg/m’ Ni as nickel subsulfide, with
up to 4 mg/m’ Ni soluble nickel as anhydrous nickel sulfate between 1948 and 1954.
Among the 3769 sinter plant workers, there were 148 lung cancer deaths (standardized
mortality ratio (SMR), 261; 95% confidence interval (CI), 220-306) and 25 nasal cancer
deaths (SMR, 5073; 95% CI, 3282-7489). Among the 50 977 nonsinter workers in the
cohort, there were 547 lung cancer deaths (SMR, 110; 95% CI, 101-120) and six nasal
cancer deaths (SMR, 142; 95% CI, 52-309). The only other site for which cancer mortality
was significantly elevated was the buccal cavity and pharynx (12 deaths in sinter plant
workers: SMR, 211; 95% CI, 109-369; 35 deaths in other workers: SMR, 71; 95% CI, 49-
99). The sinter plant workers had little or no excess risk during the first 15 years after
starting work (no nasal cancer death; five lung cancer deaths; SMR, 158 [95% CI, 51-370]),
and their subsequent relative risk increased with increasing duration of employment. There
were also statistically significant excesses of mortality from lung cancer in men employed
for 25 or more years in the Sudbury area, both in mining (129 deaths; SMR, 134 [95% (I,
112-159]) and in copper refining (24 deaths; SMR, 207 [95% CI, 133-308]). In the
electrolysis department of the Port Colborne plant, workers were estimated to be exposed to
low concentrations of metallic, oxidic, sulfidic and soluble nickel. Seven nasal cancer deaths
occurred (SMR, 5385; 95% CI, 2165-11 094) in men who had spent over 15 years in the
electrolysis department at Port Colborne; all seven had spent some time in the leaching,
sintering and calcining area at the Sudbury site, although two had spent only three and seven
months, respectively. Lung cancer mortality among workers in the electrolysis department
with no exposure in leaching, calcining and sintering, but with 15 or more years since first
exposure, gave an SMR of 88 (19 deaths; 95% CI, 53-137). There was a marked difference
in the ratio of lung to nasal cancer excess between the Copper Cliff sinter plant and the Port
Colborne leaching, calcining and sintering plant: 7:1 at Copper Cliff (63 observed lung
cancers, minus 20.5 expected, versus six nasal cancers) and only about 2:1 at Port Colborne
(72 observed lung cancers, minus 30.0 expected, versus 19 nasal cancers).
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(11) Falconbridge, Ontario, Canada (mining and smelting)

A cohort of 11594 men employed at Falconbridge, Ontario, between 1950 and 1976,
with at least six months’ service, was previously followed up to the end of 1976 (Shannon et
al., 1984a,b). Follow-up has now been extended to the end of 1985 by record linkage to the
Canadian Mortality Data Base (ICNCM, 1990). Expected numbers were calculated from
Ontario provincial death rates. One death was due to nasal cancer, compared with 0.77
expected. The only cause of death showing a statistically significant excess in the overall
analysis was lung cancer (114 deaths; SMR, 135; 95% CI, 111-162). Subdivision of the total
cohort by duration of exposure in different areas and latency revealed no SMR for lung
cancer that differed significantly from this moderate overall excess, but the highest SMRs
occurred in men who had spent more than five years in the mines (46 deaths; SMR, 158;
95% CI, 116-211) or in the smelter (15 deaths; SMR, 163; 95% CI, 91-269). Men who had
worked in the smelter are reported to have had low levels of exposure to pentlandite and
pyrrhotite, sulfidic nickel, oxidic nickel and some exposure to nickel sulfate. Estimated total
exposures to nickel in all areas of the facility were below 1 mg/m® Ni (ICNCM, 1990).

(i1) INCO, Clydach, South Wales, UK (refining)

The excess of lung and nasal sinus cancer among workers in the INCO refinery in
Clydach, South Wales, which opened in 1902, was recognized over 50 years ago (Bridge,
1933). The first formal analyses of cancer mortality were carried out by Hill in 1939 and
published by Morgan (1958), who identified calcining, furnaces and copper sulfate
extraction as the most hazardous processes. Subsequent reports indicated that the risk had
been greatly reduced by 1925 or 1930 (Doll, 1958; Doll et al., 1970, 1977; Cuckle et al.,
1980); trends in risk with age at first exposure, period of first exposure and latency were
analysed (Doll et al., 1970; Peto et al., 1984; Kaldor ef al., 1986). The cohort of 845 men
employed prior to 1945 studied by Doll ef al. (1970) has now been extended to include 2521
men employed for at least five years between 1902 and 1969, and followed up to the end of
1984 (ICNCM, 1990). Among 1348 men first employed before 1930 there were 172 lung
cancer deaths (SMR, 393; 95% CI, 336-456) and 74 nasal cancer deaths (SMR, 21 120; 95%
CI, 16 584-26 514); the highest risks were associated with calcining, furnaces and copper
sulfate production. The calcining and furnace areas had high estimated levels of oxidic,
sulfidic and metallic nickel (see Table 27). Until the late 1930s, the oxidic nickel consisted
of nickel-copper oxide. Men in the copper plant were exposed to very high concentrations of
nickel-copper oxide; they were also exposed to soluble nickel: the extraction of copper from
the calcine involved the handling of large volumes of solutions containing 60 g/L nickel as
nickel sulfate. Until 1923, arsenic present in sulfuric acid is believed to have accumulated at
significant levels in several process departments, mainly as nickel arsenides. The only other
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significantly elevated risks were an excess of five lung cancer deaths (SMR, 333; 95% CI,
108-776) and four nasal cancer deaths (SMR, 36 363; 95% CI, 9891-93 089) in men
employed before 1930 with less than one year in calcining, furnace or copper sulfate but
over five years in hydrometallurgy, an area in which exposure to soluble nickel was similar
to that in other high-risk areas and exposures to oxidic nickel were an order of magnitude
lower than in other high-risk areas, with negligible exposure to sulfidic nickel (see Table 27);
and in the small subgroup of nickel plant cleaners (12 lung cancer deaths; SMR, 784 [95%
CI, 402-1361]), who were highly exposed to metallic nickel (5 mg/m’ Ni), oxidic nickel (6
mg/m’ Ni) and sulfidic nickel ( > 10 mg/m’ Ni), with negligible exposure to soluble nickel
(ICNCM, 1990). A notable anomaly in the data for the whole refinery was the marked
reduction in nasal cancer but not lung cancer mortality, when comparing men first exposed
before 1920 and those first exposed between 1920 and 1925 (Peto et al., 1984). The risk,
although greatly reduced, may not have been entirely eliminated by 1930, as there were 44
lung cancers (SMR, 125 [95% CI, 91-168]) and one nasal cancer (SMR, 526 [95% CI, 13-
3028]) among the 1173 later employees.

(iv) Falconbridge, Kristiansand, Norway (refining)

The cohort of 3250 men reported by ICNCM (1990) is restricted to men first employed
in 1946-69 with at least one year’s service and followed until the end of 1984. For each
work area, average concentrations for the four categories of nickel (sulfidic nickel, metallic
nickel, oxidic nickel and soluble nickel) were estimated as four ranges for three periods
(1946-67, 1968-77 and 1978-84). The four ranges and the arithmetic average computed for
each range were: low (0.3 mg/m’), medium (1.3 mg/m’), high (5 mg/m’) and very high (10
mg/mS). There were 77 lung cancer deaths (SMR, 262; 95% CI, 207-327), three nasal cancer
deaths (SMR, 453; 95% CI, 93-1324) and a further four incident cases of nasal cancer. Five
of the nasal cancer cases had spent their entire employment in the roasting, smelting and
calcining department, where oxidic nickel was estimated to have been the predominant
exposure, with lesser amounts of sulfidic and metallic nickel. Before 1953, arsenic was
present in the feed materials, and significant contamination with nickel arsenides is believed
to have occurred at various steps of the process. The remaining two cases were in
electrolysis workers who were exposed mainly to soluble nickel (nickel sulfate until 1953
and nickel sulfate and nickel chloride solutions thereafter) and nickel-copper oxides. No
other type of cancer occurred significantly in excess. Among men first employed after 1955,
there have been 13 lung cancer deaths (SMR, 173 [95% CI, 92-296]) and no nasal cancer
(0.2 expected). Several comparisons were made assuming 15 years’ latency. The highest
risk for lung cancer was seen among a group of workers who had worked in the electrolysis
department but never in roasting and smelting (30 deaths; SMR, 385; 95% CI, 259-549). In



NICKEL AND NICKEL COMPOUNDS 395

the group of workers who had worked in roasting and smelting but never in the electrolysis
department, 14 lung cancer deaths were seen (SMR, 225; 95% CI, 122-377) (see also Table 28).
In those who had spent no time in either of these departments, the SMR was 187 (six cases
[95% CI, 68-406]). Although exposure to soluble nickel in the roasting, calcining and
smelting department was initially estimated to be negligible, it was noted that soluble nickel
was certainly present in the Kristiansand roasting department in larger amounts than had
been allowed for, and to some extent in all smelter and calcining plants (ICNCM, 1990).

The overlapping cohort reported by Pedersen et al. (1973) and Magnus et al. (1982)
included 2247 men employed for at least three years from when the plant began operation in
1910. Results for cancers diagnosed up to 1979 were presented by Magnus et al. (1982).
There were 82 lung cancers [standardized incidence ratio (SIR), 373; 95% CI, 296-463] and
21 nasal cancers (SIR, 2630 [95% CI, 1625-4013]). Of the nasal cancers, eight occurred in
men involved in roasting-smelting, eight in electrolysis workers, two in workers in other
specified processes and three in administration, service and unspecified workers. The
incidence of no other type of cancer was significantly elevated overall, although there were
four laryngeal cancers (SIR, 670) among roasting and smelting workers. An analysis of lung
cancer incidence in relation to smoking suggested an additive rather than a synergistic
effect. Adjustment for national trends in lung cancer rates, assuming an additive effect of
nickel exposure, suggested little or no reduction in lung cancer risk between men first
employed in 1930-39 and those first employed in 1950-59. This contrasts with the marked
reduction in nasal cancer risk.

(v) Hanna Mining and Nickel Smelting, Oregon, USA

A total of 1510 men who had worked for at least six months between 1953, when the
plant opened, and 1977 were followed up to the end of 1983 (ICNCM, 1990). Expected
numbers of deaths were those for the state of Oregon. A statistically significant excess of
lung cancer was observed among men with less than one year of exposure (seven deaths;
SMR, 265 [95% CI, 107-546]) but not in men with longer exposure (20 deaths; SMR, 127
[95% CI, 77-196]) or in the subgroup who had worked in areas with potentially high
exposures (smelting, ‘skull plant’, refining and ferrosilicon plant; seven deaths; SMR, 113;
95% CI, 45-233). There was no nasal cancer, and no excess of other cancers (21 deaths;
SMR, 65 [95% CI, 41-100]). Average airborne concentrations were estimated to have been
1 mg/m’ Ni or less, even in areas with potentially high exposure, and in most areas were
below 0.1 mg/m’ Ni. The principal nickel compounds to which workers were exposed were
nickel-containing silicate ore and iron-nickel oxide, with very little soluble nickel and no
sulfidic nickel.
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(vi) Societé Le Nickel, New Caledonia (mining and smelting)

Approximately 25% of the adult male population of New Caledonia has worked in
nickel mines (silicate-oxide nickel ores) or smelters. Since the local rates for cancer of the
lung and upper respiratory tract are higher than those in neighbouring islands, a small
hospital-based case-control study was conducted (Lessard et al., 1978). Of the 68 cases
identified in 1970-74, 29 cases and 22/109 controls had been exposed to nickel, giving an
age- and smoking-adjusted relative risk (RR) of 3.0. [The Working Group noted that control
subjects were selected from among patients seen in the laboratory of one hospital, while
cases were identified through a variety of sources. Selection bias could have contributed to
the apparent excess risk.]

Another study showed no difference in the incidence of lung cancer (RR, 0.9, not
significant) or of upper respiratory tract cancer (RR, 1.4; not significant) between nickel
workers and the general population. In a case-control study conducted among the nickel
workers, no association was found between cancers at these sites and exposure to total dust,
nickeliferous dust, raw ore or calcined ore (Goldberg ef al., 1987). Subsequent analyses
(Goldberg et al., 1992) provided little evidence that people with lung and upper respiratory
tract cancer had had greater exposure to nickel than controls. Exposure was principally to
silicate oxides, complex oxides, sulfides, metallic iron-nickel alloy and soluble nickel. The
estimated total airborne nickel concentration in the facility was estimated to be low (<2
mg/m’ Ni) (ICNCM, 1990).

(vil)  Other studies of mining, smelting and refining

Several studies have been published in which the results were not described in sufficient
detail for evaluation. Saknyn and Shabynina (1970, 1973) reported elevated lung cancer
mortality among process workers in four nickel smelters in the USSR (SMRs, 200, 280,
380, 400 [no observed numbers given]). Electrolysis workers, exposed mainly to nickel
sulfate and nickel chloride, were reported to be at particularly high risk for lung cancer
(SMR, 820); excesses of stomach cancer and soft-tissue sarcoma were also observed.
Tatarskaya (1965, 1967) reported an excess of nasal cancer among electrolysis workers in
the USSR.

Olejar et al. (1982) reported a marginal excess of lung cancer (based on eight cases)
among workers in a Czechoslovak refinery.

One nasal sinus cancer and one lung cancer occurred among 129 men at the Outokumpu
Oy refinery in Finland, but expected numbers were not calculated. Workers were exposed
primarily to soluble nickel; the highest measurement recorded was 1.1 mg/m’® Ni (ICNCM,
1990).
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Egedahl and Rice (1984) found no excess risk among workers in a refinery in Alberta,
Canada, but there were only two cases of lung cancer in the cohort (SIR, 83 [95% CI, 10-
301)).

(¢) Nickel alloy and stainless-steel production

(1) Huntington Alloys (INCO), W. Virginia (refining and manufacture of high-nickel
alloys)

A cohort of 3208 men with at least one year's service before 1947 was followed up to the
end of 1977 (Enterline & Marsh, 1982) and then to the end of 1984 (ICNCM, 1990).
Workers were exposed to metallic, oxidic, sulfidic and soluble nickel at low levels, except
in the calcining department where high levels of sulfidic nickel (4000 mg/m’ Ni) were
present. Average airborne exposures were estimated to have been below 1 mg/m’ Ni in all
areas except calcining. On the basis of the ICNCM report (1990), there was no significant
overall excess of lung cancer (91 deaths; SMR, 97 [95% CI, 80-121]). There was a
nonsignificant excess among men first employed before 1947 (when calcining ceased) with
30 or more years’ service (40 deaths; SMR, 124; 95% CI, 88-169). The group who had
worked in calcining for five or more years was too small for useful analysis (two lung
cancers; SMR, 100; 95% CI, 12-361). Four deaths from nasal cancer occurred in the whole
cohort, all in persons employed before 1948; two were coded on death certificates as nasal
cancer (expected, 0.9) and two were classified on the death certificates as bone cancer. Two
had not worked in calcining and three had never been exposed to nickel sulfides; one had
also worked as a heel finisher in a shoe factory. There was no excess mortality from
nonrespiratory cancers.

(11) Henry Wiggin, UK (high-nickel alloy plant)

Mortality up to 1978 in a cohort of 1925 men employed for at least five years in a plant
that opened in 1953 was reported by Cox et al., (1981). Follow-up has now been extended
to April 1985 for 1907 men (ICNCM, 1990). Average exposures from 1975 on rarely
exceeded 1 mg/m’ Ni in any area, with an overall average of the order of 0.5 mg/m’ Ni.
Measurements taken since 1975 were stated probably to be underestimates of the level of
exposure to oxidic and metallic nickel of workers in earlier periods. Soluble nickel was
reported to constitute 14-49% of total nickel in various departments (Cox et al., 1981).
Thirty deaths were due to lung cancer (SMR, 98; 95% CI, 57-121), including 13 deaths
among men employed for ten years or more in areas where they were exposed to nickel
(SMR, 91; 95% CI, 57-149). Subdivision by duration of exposure or latency produced no
evidence of increased lung cancer risk, and there was no nasal cancer. An excess of soft-
tissue sarcoma was found, based on two cases (SMR, 769; 95% CI, 92-2769) (ICNCM,
1990).
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(i11) Twelve high-nickel alloy plants in the USA

Mortality up to the end of 1977 among 28 261 workers (90% male) employed for at least
one year in 12 high-nickel alloy plants in the USA, and still working at some time between
1956 and 1960, was reported by Redmond (1984). There were 332 lung cancer deaths
(SMR, 109 [95% CI, 98-122]) and two nasal sinus cancer deaths (SMR, 93 [95% CI, 12-
358]). The excess of lung cancer was confined to men employed for five or more years in
‘allocated services’, most of whom were maintenance workers (197 deaths; SMR, 127 [95%
CI, 110-146]). Excess mortality was observed from liver cancer (31 deaths; SMR, 182 [95%
CI, 124-259]) in all men, and from cancer of the large intestine (SMR, 223 [95% CI, 122-
375]) among non-white men. No data on exposure were available, but the authors noted that
there may have been exposure to asbestos in these plants.

(iv)  Twenty-six nickel-chromium alloy foundries in the USA

A proportionate mortality analysis of 851 deaths among men ever employed in 26
nickel-chromium alloy foundries in the USA in 1968-79 (Cornell & Landis, 1984) showed
no statistically significant excess of lung cancer (60 deaths; proportionate mortality ratio
(PMR, 105 [95% CI, 80-135]) or other cancers (103 deaths; PMR, 87 [95% CI, 71-106]) in
comparison with US males. No death was due to nasal cancer.

Lung cancer mortality in a cohort of foundry workers was investigated by Fletcher and
Ades (1984). The cohort consisted of men hired between 1946 and 1965 in nine steel
foundries in the UK and employed for at least one year. The 10 250 members of the cohort
were followed up until the end of 1978 and assigned to 25 occupational categories according
to information from personnel officers. Lung cancer mortality for the subcohort of fettlers
and grinders in the fettling shop was higher than expected on the basis of mortality rates for
England and Wales (32 cases; SMR, 195; 95% CI, 134-276). [The Working Group noted
that these workers may have been exposed to chromium- and nickel-containing dusts. ]

(v) Seven stainless-steel and low-nickel alloy production plants in the USA

A proportionate mortality analysis of 3323 deaths among white males ever employed in
areas with potential exposure to nickel in seven stainless-steel and low-nickel alloy
production plants (Cornell, 1984) showed no excess of lung cancer (218 deaths; PMR, 97
[95% CI, 85-111]) or of other cancers (419 deaths; PMR 91 [95% CI, 83-100]). There was
no death from nasal cancer.

(d) Other industrial exposures to nickel
(1) Two nickel-cadmium battery factories in the UK

Kipling and Waterhouse (1967) reported an excess of prostatic cancer based on four
cases among 248 men exposed for one year or longer in a nickel-cadmium battery factory.
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The cohort was enlarged to include 3025 workers (85% men) employed for at least one
month (Sorahan & Waterhouse, 1983, 1985), and the most recent report included deaths up
to the end of 1984 (Sorahan, 1987). Exposure categories were defined on the basis of
exposure to cadmium. The authors commented that almost all jobs with high exposure to
cadmium also entailed high exposure to nickel hydroxide, and there was also possible
exposure to welding fumes (Sorahan & Waterhouse, 1983). The excess of prostatic cancer
cases was confined to highly exposed workers, among whom there were eight cases (SIR,
402 [95% CI, 174-792]); in the remainder of the cohort there were seven (SIR, 78 [95% CI,
31-160]) (Sorahan & Waterhouse, 1985). An excess of cancer of the lung was seen (110
deaths; SMR, 130 [95% CI, 107-157]), and this showed a significant association with
duration in ‘high exposure’ jobs, particularly among men first employed before 1947
(Sorahan, 1987).

(11) A nickel-cadmium battery factory in Sweden

A total of 525 male workers in a Swedish nickel-cadmium battery factory employed for
at least one year were followed up to 1980 (Andersson et al., 1984). Six deaths were due to
lung cancer (SMR, 120 [95% CI, 44-261]), four to prostatic cancer (SMR, 129 [95% CI, 35-
330]) and one to nasopharyngeal cancer (SMR, > 1000). Cadmium levels prior to 1950 were
said to have been about 1 mg/m’ in some areas; nickel levels were reported as ‘about five
times higher’, although no actual measurement was reported.

(111) A4 nickel and chromium plating factory in the UK

A total of 2689 workers (48% male) employed in a nickel-chromium plating factory in
the UK were followed to the end of 1983 by Sorahan er al. (1987). There was excess
mortality from lung cancer (72 deaths; SMR, 150 [95% CI, 117-189]) and nasal cancer
(three deaths; SMR, 1000 [95% CI, 206-2922]), but this was confined to workers whose
initial employment had been as chrome bath platers, and the lung cancer excess was
significantly related to duration of chrome bath work. An earlier study of 508 men
employed only as nickel platers in the factory (Burges, 1980) showed no excess for any
cancer except that of the stomach (eight deaths; SMR, 267); among men with more than one
year’s employment, the SMR for stomach cancer was 476 (adjusted for social class and
region; four deaths [95% CI, 130-1219]). The SMR for lung cancer was 122 [95% CI, 59-
224].

(iv) A die-casting and electroplating plant in the USA

A proportionate mortality analysis of 238 deaths (79% male) in workers employed for at
least ten years in a die-casting and electroplating plant in the USA was reported by
Silverstein et al. (1981). There was excess mortality from lung cancer (28 deaths; PMR 191
[95% CI, 127-276]) among white men, but not for cancer at any other site. The PMRs for
lung cancer by duration of employment were 165 (<15 years) and 209 (>15 years), and
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those by latency were 178 ( < 22.5 years) and 211 (> 22.5 years). The authors noted that the
workers had been exposed to chromium[VI], polycyclic aromatic hydrocarbons and various
compounds of nickel.

(v) Oak Ridge gaseous diffusion plant, Tennessee, USA

Fine pure nickel powder is used as barrier material in uranium enrichment by gaseous
diffusion. A cohort of 814 white men employed at any time before 1954 in the production of
this material was followed up from 1948 to 1972 by Godbold and Tompkins (1979).
Exposure was thus entirely to metallic nickel. Follow-up was extended to the end of 1977 by
Cragle et al. (1984), and mortality up to the end of 1982 was reported by ICNCM (1990).
The median concentration of nickel was about 0.13 mg/m’, but high concentrations occurred
in some areas. About 300 of the 814 men had been employed for a total of less than two
years. There was no excess of lung cancer, either overall (nine deaths; SMR, 54; 95% CI,
25-103) or among men employed for 15 years or longer (five deaths; SMR, 109 [95% CI,
35-254]), and mortality from other cancers was close to that expected (29 deaths; SMR, 96
[95% CI, 64-137]) for the whole cohort. No death from nasal cancer occurred, but only 0.22
were expected. [The Working Group noted that measurements made in 1948-63 (Godbold &
Tompkins, 1979) suggest that the average exposure may have been to 0.5 mg/m’ Ni.]

(vi) Aircraft engine factory, Connecticut, USA

Bernacki et al. (1978b) compared the employment histories of 42 men at an aircraft
engine factory in the USA who had died of lung cancer with those of 84 age-matched men
who had died of causes other than cancer. The proportion classified as nickel-exposed was
identical (26%) among cases and controls. Atmospheric nickel concentrations in the past
were believed to have been < 1 mg/m’.

(e) Other studies

Several studies have been reported in which occupational histories of nasal cancer
patients were sought by interview with patients or relatives, from medical or other records,
or from death certificates. Acheson et al. (1981), in a study of 1602 cases diagnosed in
England and Wales over a five-year period, found an excess (29 cases; SMR, 250 [95% CI,
167-359]) in furnace and foundry workers, which was partly (but not entirely) due to the
inclusion of seven process workers from the INCO (Clydach) nickel refinery (see above).
Hernberg et al. (1983) studied 287 cases diagnosed in Denmark, Finland or Sweden over a
3.5-year period. The association with exposure to nickel (12 cases, five matched controls
among 167 matched case-control pairs who were interviewed; odds ratio, 2.4; 95% CI, 0.9-
6.6) was not statistically significant. All except one of the nickel-exposed cases (a nickel
refinery worker) had also been classified as having exposure to chromium (odds ratio, 2.7;
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95% CI, 1.1-6.6), which was significantly associated with nasal cancer risk. Brinton et al.
(1984) recorded exposure to nickel in only one (RR, 1.8; 95% CI, 0.1-27.6) of 160 cases and
one of 290 controls in a hospital-based study between 1970 and 1980 in North Carolina and
Virginia. Roush et al. (1980) examined exposure to nickel, cutting oils and wood dust in a
case-control study based on all sinonasal cancer deaths in Connecticut in 1935-75. Job titles
were obtained from deaths certificates and city directories and were classified according to
estimated airborne exposures. Ten of 216 cases and 49 of 662 controls were classified as
having been exposed to nickel (RR, 0.71; 95% CI, 0.4-1.5).

Gérin et al. (1984) reported significantly more frequent exposure to nickel among 246
Canadian lung cancer patients (29 exposed; odds ratio, 3.1; 95% CI, 1.9-5.0) than among
patients with other cancers. All 29 cases had also been exposed to chromium, and 20 (69%)
had been exposed to stainless-steel welding fumes. In a case-control study of 326 Danish
laryngeal cancer patients, Olsen and Sabroe (1984) found a statistically significant
association with exposure to nickel from alloys, battery chemicals and chemicals used in
plastics production (RR, 1.7; 95% CI, 1.2-2.5; adjusted for age, tobacco and alcohol
consumption and sex).

4. Summary of Data Reported and Evaluation

4.1 Exposure data

Nickel, in the form of various alloys and compounds, has been in widespread
commercial use for over 100 years. Several million workers worldwide are exposed to
airborne fumes, dusts and mists containing nickel and its compounds. Exposures by
inhalation, ingestion or skin contact occur in nickel and nickel alloy production plants as
well as in welding, electroplating, grinding and cutting operations. Airborne nickel levels in
excess of 1 mg/m’ have been found in nickel refining, in the production of nickel alloys and
nickel salts, and in grinding and cutting of stainless-steel. In these industries, modern control
technologies have markedly reduced exposures in recent years. Few data are available to
estimate the levels of past exposures to total airborne nickel, and the concentrations of
individual nickel compounds were not measured.

Occupational exposure has been shown to give rise to elevated levels of nickel in blood,
urine and body tissues, with inhalation as the main route of uptake. Non-occupational
sources of nickel exposure include food, air and water, but the levels found are usually
several orders of magnitude lower than those typically found in occupational situations.



Table 26. INCO Ontario (Canada) nickel refinery facilities — average nickel exposure levels and cancer risks in workers
with 15 or more years since first exposure?

Plant Depart-  Estimated airborne concentration (mg/m® Ni) Duration in department

ment

Metallic Oxidic Sulfidic Soluble Total Ever >>5 years
nickel  nickel nickel nickel  nickel -
Lung cancer Nasal cancer Lung cancer Nasal cancer
Obs SMR Obs SMR Obs SMR Obs SMR
(95% CI) (95% CI) (95% CI) (95% CI)
Coniston  Sinter Negl? 0.1-0.5 1-5 Negl. 1-5 8 292 0 - 6 492 0 -
(126-576) (181-1073)

Copper Sinter
Cliff
1948-54 Negl. 25-60 15-35 <4 40-100 63 307 6 3617 33 789 4 13 146
1955-63 Negl. 5-25 3-15 <2 8-40 (238-396) (1327-7885) (543-1109) (3576-33 654)
Port Col-  Leaching,
borne calcining,
1926-35 sintering  Negl 20-40 10-20 <3 30-80 239 19 7776 38 366 15 18 750
1936-45 Negl. 3-15 2-10 <3 5-25 72 (187-302) (4681-12 144) (259-502) (10 500-30 537)
1946-58 Negl. 5-25 3-15 <3 8-40

Electroly- <0.5 <02 <05 <03 <1 19 884 0cd - 10%¢ 89 0sd -

sis (53-137)

From ICNCM (1990), estimated average airborne concentrations of nickel species and mortality from lung cancer and nasal cancer by department; standardized mortality
ratio (SMR) and 95% confidence interval (CT)

"Negl., negligible exposure
Two nasal cancer deaths occurred in men with > 20 years in electrolysis and only short exposure (three months and seven months) in leaching, calcining and sintering
“Never worked in leaching, calcining and sintering

“Workers with 2>10 years in electrolysis



Table 27. MOND/INCO (Clydach, South Wales, UK) nickel refinery - average nickel exposure levels and cancer risks
in ‘high-risk’ departments in workers with 15 or more years since first exposure?

Department Estimated airborne concentration Duration in department
(mg/m3 Ni)?
Metallic Oxidic Sulfidic Soluble Ever =5 years
nickel nickel nickel nickel
Lung cancer Nasal cancer Lung cancer Nasal cancer
Obs SMR Obs SMR Obs SMR Obs SMR
(95% CI) (95% CI) (95% CI) (95% CI)
Furnaces, 1905-63 5.6 64 26 0.4 9 409 3 24 781 1 370 3 1000
Linear calciners, 1902-30; 53 18.8 6.8 0.8 16 725 7 44 509 12 1244 6 78 280
milling and grinding,
1902-36
Copper plant, 13.1
before 1937 - 0.4 11 17 317 5 13912 8 541 2 14 541
0.4 (185-507) (4507-32 415) (233-1066) (1759-52 493)
1938-60 - 001 001 - - - -
Hydrometallurgy 0.5 09 005 13 7 196 4 18 779 5 333 4 36 363
1902-79 (79-404) (5108-48 074) (108-776) (9891-93 089)

9From ICNCM (1990); estimated average airborne concentrations of nickel species and mortality from lung cancer and nasal cancer by department. In each row,
observations are restricted to men with < 1 year employment in other high-risk departments. Standardized mortality ratio (SMR) and 95% confidence interval
(€D

#The Working Group expressed reservations about the accuracy of these estimates, as discussed on p. 391.



Table 28. Falconbridge (Kristiansand, Norway) nickel refinery - average nickel exposure levels and cancer
risks in workers with 15 or more years since first exposure?

Department Estimated airborne concentration Duration in department
(mg/m* Ni)
Metallic  Oxidic Sulfidic Soluble  Ever =5 years
nickel nickel nickel nickel -
Lung cancer Nasal cancer? Lung cancer Nasal cancer?
Obs SMR Obs SMR Obs SMR Obs SMR
(95% CI) (95% CI) (95% CI) (95% CI)
Calcining, roasting, 0.3-1.3  5.0-10.0 0.3 Negl.¢ 14 225 5 - 8 254 5 -
smelting; never in (122-377) (109-500)
electrolysis
Electrolysis; never in 0.3-1.3 0.3-1.3  Negl-1.3 1.3-5.0 30 385 2 - 19 476 2 -
calcining, roasting (259-549) (287-744)
smelting

“From ICNCM (1990); estimated average airborne concentrations of nickel species and mortality from or incidence of lung cancer and nasal cancer
by department; standardized mortality ratio (SMR) and 95% confidence interval (CI)

5Three deaths and four incident cases
“Negl., negligible exposure
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4.2 Experimental carcinogenicity data

Metallic nickel and nickel alloys

Metallic nickel was tested by inhalation exposure in mice, rats and guinea-pigs, by
intratracheal instillation in rats, by intramuscular injection in rats and hamsters, and by
intrapleural, subcutaneous, intraperitoneal and intrarenal injection in rats. The studies by
inhalation exposure were inadequate for an assessment of carcinogenicity. After
intratracheal instillation, it produced significant numbers of squamous-cell carcinomas and
adenocarcinomas of the lung. Intrapleural injections induced sarcomas. Subcutaneous
administration of metallic nickel pellets induced sarcomas in rats, intramuscular injection of
nickel powder induced sarcomas in rats and hamsters, and intraperitoneal injections induced
carcinomas and sarcomas. No significant increase in the incidence of local kidney tumours
was seen following intrarenal injection.

Nickel alloys were tested by intramuscular, intraperitoneal and intrarenal injection and
by subcutaneous implantation of pellets in rats. A ferronickel alloy did not induce local
tumours after intramuscular or intrarenal injection. Two powdered nickel alloys induced
malignant tumours following intraperitoneal injection, and one nickel alloy induced
sarcomas following subcutaneous implantation in pellets.

Nickel oxides and hydroxides

Nickel monoxide was tested by inhalation exposure in rats and hamsters, by intratracheal
instillation in rats, by intramuscular administration in two strains of mice and two strains of
rats, and by intrapleural, intraperitoneal and intrarenal injection in rats. The two studies by
inhalation exposure in rats were inadequate for an assessment of carcinogenicity; lung
tumours were not induced in the study in hamsters. Intratracheal instillation resulted in a
significant incidence of lung carcinomas. Local sarcomas were induced at high incidence
after intrapleural, intramuscular and intraperitoneal injection. No renal tumour was seen
following intrarenal injection.

Two studies in rats in which nickel trioxide was injected intramuscularly or in-
tracerebrally were inadequate for evaluation.

In a study in which nickel hydroxide was tested in three physical states by intramuscular
injection in rats, local sarcomas were induced by dry gel and crystalline forms. Local
sarcomas were induced in one study in which nickel hydroxide was tested by intramuscular
injection in rats.

Nickel sulfides

Nickel subsulfide was tested by inhalation exposure and by intratracheal instillation in
rats, by subcutaneous injection to mice and rats, by intramuscular administration to mice,
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rats, hamsters and rabbits, by intrapleural, intraperitoneal, intrarenal, intratesticular,
intraocular and intra-articular administration in rats, by injection into retroperitoneal fat in
rats, by implantation into rat heterotopic tracheal transplants and by administration to
pregnant rats.

After exposure by inhalation, rats showed a significant increase in the incidence of
benign and malignant lung tumours. Multiple intratracheal instillations resulted in malignant
lung tumours (adenocarcinomas, squamous-cell carcinomas and mixed tumours).

A high incidence of local sarcomas was observed in rats after intrapleural ad-
ministration. Subcutaneous injection induced sarcomas in mice and rhabdomyosarcomas
and fibrous histiocytomas in rats. Nickel subsulfide has been shown consistently to induce
local sarcomas following intramuscular administration, and dose-response relationships
were demonstrated in rats and hamsters. The majority of the sarcomas induced were of
myogenic origin, and the incidences of metastases were generally high. In rats, strain
differences in tumour incidence and local tissue responses were seen. After intramuscular
implantation of millipore diffusion chambers containing nickel subsulfide, a high incidence
of local sarcomas was induced.

Mesotheliomas were included among the malignancies induced by intraperitoneal
administration. Intrarenal injections resulted in a dose-related increase in the incidence of
renal-cell neoplasms. A high incidence of sarcomas (including some rhabdomyosarcomas)
was seen after intratesticular injection, and a high incidence of eye neoplasms (including
retinoblastomas, melanomas and gliomas) after intraocular injection. Intra-articular injection
induced sarcomas (including rhabdomyosarcomas and fibrous histiocytomas), and injection
into retroperitoneal fat induced mainly fibrous histiocytomas. Implantation of pellets
containing nickel subsulfide into rat heterotopic tracheal transplants induced both
carcinomas and sarcomas; in the group given the highest dose, sarcomas predominated. The
study in which pregnant rats were injected with nickel subsulfide early in gestation was
inadequate for evaluation.

Nickel disulfide was tested by intramuscular and intrarenal injection in rats. High
incidences of local tumours were induced.

Nickel monosulfide was tested by intramuscular and intrarenal injection in rats. The
crystalline form induced local tumours, but the amorphous form did not.

Nickel ferrosulfide matte induced local sarcomas after administration by intramuscular
injection in rats.

Nickel salts

Nickel sulfate was tested for carcinogenicity by intramuscular and intraperitoneal
injection in rats. Repeated intramuscular injections did not induce local tumours; however,
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intraperitoneal injections induced malignant tumours in the peritoneal cavity.

Nickel chloride was tested by repeated intraperitoneal injections in rats, inducing
malignant tumours in the peritoneal cavity.

Nickel acetate was tested by intraperitoneal injection in mice and rats. After repeated
intraperitoneal injections in rats, malignant tumours were induced in the peritoneal cavity. In
strain A mice, lung adenocarcinomas were induced in one study and an increased incidence
of pulmonary adenomas in two studies.

Studies in rats in which nickel carbonate was tested for carcinogenicity by in-
traperitoneal administration and nickel fluoride and nickel chromate by intramuscular
injection could not be evaluated.

Other forms of nickel

Nickel carbonyl was tested for carcinogenicity by inhalation exposure and intravenous
injection in rats. After inhalation exposure, a few lung carcinomas were observed two years
after the initial treatment. Intravenous injection induced an increase in the overall incidence
of neoplasms, which were located in several organs.

Nickelocene induced some local tumours in rats and hamsters following intramuscular
injection.

One sample of dust collected in nickel refineries, containing nickel subsulfide and
various proportions of nickel monoxide and nickel sulfate, induced sarcomas in mice and
rats following intramuscular injection. Intraperitoneal administration of two samples of dust,
containing unspecified nickel sulfides and various proportions of nickel oxide, soluble
nickel and metallic nickel, induced sarcomas in rats. In a study in which hamsters were
given prolonged exposure to a nickel-enriched fly ash by inhalation, the incidence of
tumours was not increased.

Intramuscular administration to rats of nickel sulfarsenide, two nickel arsenides, nickel
antimonide, nickel telluride and two nickel selenides induced significant increases in the
incidence of local sarcomas, whereas administration of nickel monoarsenide and nickel
titanate did not. None of these compounds increased the incidence of renal-cell tumours in
rats after intrarenal injection.

4.3 Human carcinogenicity data

Increased risks for lung and nasal cancers were found to be associated with exposures
during high-temperature oxidation of nickel matte and nickel-copper matte (roasting,
sintering, calcining) in cohort studies in Canada, Norway (Kristiansand) and the UK
(Clydach), with exposures in electrolytic refining in a study in Norway, and with exposures
during leaching of nickel-copper oxides in acidic solution (copper plant) and extraction of
nickel salts from concentrated solution (hydrometallurgy) in the UK (see Table 26).
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The substantial excess risk for lung and nasal cancer among Clydach hydrometallurgy
workers seems likely to be due, at least partly, to their exposure to ‘soluble nickel’. Their
estimated exposures to other types of nickel (metallic, sulfidic and oxidic) were up to an
order of rnagnitude lower than those in several other areas of the refinery, including some
where cancer risks were similar to those observed in hydrometallurgy. Similarly, high risks
for lung and nasal cancers were observed among electrolysis workers at Kristiansand. These
men were exposed to high estimated levels of soluble nickel and to lower levels of other
forms of nickel. Nickel sulfate was the only or predominant soluble nickel species present in
these areas.

The highest risks for lung and nasal cancers were observed among calcining workers,
who were heavily exposed to both sulfidic and oxidic nickel. A high lung cancer rate was
also seen among nickel plant cleaners at Clydach, who were heavily exposed to these
insoluble compounds, with little or no exposure to soluble nickel. The separate effects of
oxides and sulfides cannot be estimated, however, as high exposure was always either to
both, or to oxides together with soluble nickel. Workers in calcining furnaces and nickel
plant cleaners were also exposed to high levels of metallic nickel.

Among hard-rock sulfide nickel ore miners in Canada, there was some increase in lung
cancer risk, but exposure to other substances could not be excluded. In studies of open-cast
miners of silicate-oxide nickel ores in the USA and in New Caledonia, no significant
increase in risk was seen, but the numbers of persons studied were small and the levels of
exposure were reported to be low.

No significant excess of respiratory tract cancer was observed in three studies of workers
in high-nickel alloy manufacture or in a small study of users of metallic nickel powder. No
increase in risk for lung cancer was observed in one small group of nickel electroplaters in
the UK with no exposure to chromium.

In a case-control study, an elevated risk for lung cancer was found among persons
exposed to nickel together with chromium-containing materials.

The results of epidemiological studies of stainless-steel welders are consistent with the
finding of excess mortality from lung cancer among other workers exposed to nickel
compounds, but they do not contribute independently to the evaluation of nickel since
welders are also exposed to other compounds. (See also the monograph on welding.)

4.4 Other relevant data

Nickel and nickel compounds are absorbed from the respiratory tract, and to a smaller
extent from the gastrointestinal tract, depending on dissolution and cellular uptake.
Absorbed nickel is excreted predominantly in the urine. Nickel tends to persist in the lungs
of humans and of experimental animals, and increased concentrations are seen notably in
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workers after inhalation of nickel. The nasal mucosa may retain nickel for many years.

Nickel carbonyl is the most acutely toxic nickel compound and causes severe damage to
the respiratory system in experimental animals and in humans. Nickel causes contact
dermatitis in humans. In experimental animals, adverse effects have also been documented
in the respiratory system and in the kidney.

In four studies, the frequency of sister chromatid exchange did not appear to be
increased in peripheral blood lymphocytes of nickel workers exposed during various
processes. Enhanced frequencies of chromosomal gaps and/or anomalies were observed in
single studies in peripheral blood lymphocytes of employees engaged in: (i) crushing,
roasting and smelting (exposure mainly to nickel oxide and nickel subusulfide); (ii)
electrolysis (exposure mainly to nickel chloride and nickel sulfate); and (iii) electroplating
(exposure to nickel and chromium compounds). Enhanced frequencies were also seen in
lymphocytes from retired workers who had previously been exposed in crushing, roasting
and smelting and/or electrolysis.

Some nickel compounds have adverse effects on reproduction and prenatal development
in rodents. Decreased fertility, reduction in the number of pups per litter and birth weight
per pup, and a pattern of anomalies, including eye malformations, cystic lungs,
hydronephrosis, cleft palate and skeletal deformities, have been demonstrated.

In one study, metallic nickel did not induce chromosomal aberrations in cultured human
cells, but it transformed animal cells in vitro. Nickel oxides induced anchorage-independent
growth in human cells in vitro and transformed cultured rodent cells; they did not induce
chromosomal aberrations in cultured human cells in one study.

Crystalline nickel subsulfide induced anchorage-independent growth and increased the
frequency of sister chromatid exchange but did not cause gene mutation in human cells in
vitro. Crystalline nickel sulfide and subsulfide induced cell transformation, gene mutation
and DNA damage in cultured mammalian cells; the sulfide also induced chromosomal
aberrations and sister chromatid exchange. Amorphous nickel sulfide did not transform or
produce DNA damage in cultured mammalian cells. In one study, crystalline nickel sulfide
and crystalline nickel subsulfide produced DNA damage in Paramoecium.

Nickel chloride and nickel nitrate were inactive in assays in vivo for induction of
dominant lethal mutation and micronuclei, and nickel sulfate did not induce chromosomal
aberrations in bone-marrow cells; however, nickel chloride induced chromosomal
aberrations in Chinese hamster and mouse bone-marrow cells.

Soluble nickel compounds were generally active in the assays of human and animal cells
in vitro in which they were tested.
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Nickel sulfate and nickel acetate induced anchorage-independent growth in human cells
in vitro. Nickel sulfate increased the frequency of chromosomal aberrations in human cells,
and nickel sulfate and nickel chloride increased the frequency of sister chromatid exchange.
Nickel sulfate did not induce single-strand DNA breaks in human cells. Nickel sulfate and
nickel chloride transformed cultured mammalian cells. Chromosomal aberrations were
induced in mammalian cells by nickel chloride, nickel sulfate and nickel acetate, and sister
chromatid exchange was induced by nickel chloride and nickel sulfate. Nickel chloride and
nickel sulfate also induced gene mutation, and nickel chloride caused DNA damage in
mammalian cells. In one study, nickel sulfate inhibited intercellular communication in cul-
tured mammalian cells.

Nickel sulfate induced aneuploidy and gene mutation in a single study in Drosophila;
nickel chloride and nickel nitrate did not cause gene mutation. Nickel chloride induced gene
mutation and recombination in yeast.

In single studies, nickel acetate produced DNA damage in bacteria, while nickel nitrate
did not; the results obtained with nickel chloride were inconclusive. In bacteria, neither
nickel acetate, sulfate, chloride nor nitrate induced gene mutation.

Nickel carbonate induced DNA damage in rat kidney in vivo. Crystalline nickel
subselenide transformed cultured mammalian cells, and nickel potassium cyanide increased
the frequency of chromosomal aberrations. Nickelocene did not induce bacterial gene
mutation. DNA damage was induced in calf thymus nucleohistone by nickel[IlI]-
tetraglycine complexes.

4.5 Evaluation’

There is sufficient evidence in humans for the carcinogenicity of nickel sulfate, and of
the combinations of nickel sulfides and oxides encountered in the nickel refining industry.

There is inadequate evidence in humans for the carcinogenicity of metallic nickel and
nickel alloys.

There is sufficient evidence in experimental animals for the carcinogenicity of metallic
nickel, nickel monoxides, nickel hydroxides and crystalline nickel sulfides.

There is limited evidence in experimental animals for the carcinogenicity of nickel
alloys, nickelocene, nickel carbonyl, nickel salts, nickel arsenides, nickel antimonide, nickel
selenides and nickel telluride.

1 o e
For descriptions of the italicized terms, see Preamble.
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There is inadequate evidence in experimental animals for the carcinogenicity of nickel
trioxide, amorphous nickel sulfide and nickel titanate.

The Working Group made the overall evaluation on nickel compounds as a group on the
basis of the combined results of epidemiological studies, carcinogenicity studies in
experimental animals, and several types of other relevant data, supported by the underlying
concept that nickel compounds can generate nickel ions at critical sites in their target cells.

Overall evaluation

Nickel compounds are carcinogenic to humans (Group 1).
Metallic nickel is possibly carcinogenic to humans (Group 2B).
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1. EXPOSURE DATA

1A. Metallic Medical and Dental Materials

1A.1 Chemical and physical data
1A.1.1 Merallurgy

All metallic materials used for the fabrication of medical and dental devices are
mixed in the molten state and poured into a mould for solidification. Some devices
may be fabricated from parts moulded or cast in nearly their final shape; others are
subjected to a series of thermomechanical processes to produce the final product from
the initial ingot. Differences in the resulting microstructures can have significant
effects on wear and corrosion rates. In order to understand what alloys were and are
used, and how they may behave in vivo, it is therefore necessary to be aware of the
physical metallurgy of the alloys used in implant surgery.

(@) Solidification and casting

As molten metal cools in a mould, solidification usually begins on the surface of
the mould. If the mould is very hot, there are only a few locations where the solid
begins to form (nucleate) and grow. If the mould is cold, there are many nucleation
sites. At each site, atoms are laid down on the solid in an orderly crystalline manner.
For most metallic alloy systems, the solid phase grows as an advancing front with side
branches. This pattern resembles the leaf of a fern, and is referred to as dendritic
growth. Solidification continues until growth areas meet and form a boundary. Each
of these growth sites is called a crystal or grain, and each boundary is a crystal or grain
boundary. On a microscopic scale, distinct regions can be identified as the dendrites,
the interdendritic region and the grain boundary (Brick eral., 1977). For dental
castings, alloying elements are added to produce fine-grained non-dendritic structures.

The positional relationship between atoms is described by what is called a primitive
cell or Bravais lattice. For example, atoms may arrange themselves with atoms at eight
corners of a cube, with one in the middle; this is called the body-centred cubic lattice or
structure. The most common crystal structures for surgical alloys are body-centred
cubic, face-centred cubic and hexagonal close-packed. The principal base metals used
for implants—iron, cobalt and titanium—undergo allotropic transformation during
cooling, resulting in a change in crystal structure. Thus, for example, iron undergoes the
phase transformation from liquid to a body-centred cubic solid structure, followed by
additional transformations to face-centred cubic and then back to body-centred cubic
during cooling (Jackman, 1981).
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Metallic allovs are mixtures of several elements in a solid solution, sometimes with
intermetallic compound precipitates. For elements of similar atomic charge, diameter
and crystal structure, there is no limit to the solubility of one element in another and
they therefore solidify as a single phase. For example. copper and nickel are fully
soluble in each other. The melting temperature of nickel is higher than that of copper,
so that the solid that forms first (the dendrite) will be richer in nickel and that which
solidifies later will be richer in copper. Thus, implants in the ‘as cast’ condition may
have a distinct dendritic structure, with differences in chemical composition on a
macroscopic scale. Cast devices may be subjected to a subsequent heat treatment
known as homogenization or solution annealing to allow atomic diffusion to produce a
more uniform chemical composition.

Small differences in the atomic diameter of the two (or more) elements in a single-
phase alloy or a two-phase alloy provide strengthening. The presence of large atoms
in a lattice ot smaller atoms produces a localized strain in the lattice so that they are
under localized compression. Similarly, a few small atoms in a lattice of larger atoms
will be under localized tension. These localized strains increase the strength of the
metal by a mechanism known as solid solution strengthening.

Elements with markedly different properties or crystal structures have limited
solubility. For example, carbon atoms are much smaller than iron atoms. In small
quantities, carbon is soluble in iron, but at higher concentrations, it precipitates out as
a second phase, such as graphite. or forms a carbide. A number of alloy systems use
the precipitation of second phases as a strengthening mechanism known as precipi-
tation hardening. In some alloys such as the cobalt alloys, carbides are advantageous
with regard to wear and strength. In contrast, they have a detrimental effect on the
corrosion resistance of stainless steel.

Carbon also influences the crystal structure of iron. At room temperature, iron has
a body-centred cubic crystal structure and is known as a ferrite. When heated, it
undergoes a phase transformation to a face-centred cubic structure and is known as
y-austenite. With further heating, it reverts to a body-centred cubic form (& ferrite)
before it melts. Since the spaces, or interstices, between atoms are larger in the face-
centred cubic than in the body-centred cubic structure, the carbon atoms fit better in
the face-centred cubic structure and thus have a higher solubility in this structure. This
has several implications. At low concentrations, carbon increases the thermodynamic
stability of the face-centred cubic structure. In other words, the presence of carbon
lowers the temperature at which the body-centred cubic a ferrite converts to the face-
centred cubic v austenite and increases the temperature at which the latter converts
back to bodyv-centred cubic & ferrite. Carbon also provides interstitial solid solution
strengthening of iron (Brick er al.. 1977; Jackman, 1981).

(b)  Mechanical forming of wrought allovs

Mechanical forming methods, combined with appropriate heat treatments, can be
utilized to produce fine-grained alloys with homogeneous microstructures. Composi-
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tional differences associated with dendrites are decreased and formation of small, rela-
tively strain-free grains results in enhancement of corrosion resistance. Hot and cold
forging techniques can produce components with uniform composition and a wide range
of strain-induced strengths (Jackman, 1981).

Point or line defects can occur in lattice structures of crystalline solids. When
viewed as a two-dimensional grid, there is an occasional line of atoms that ends at
what is called a dislocation. Above the dislocation, the atoms are in compression,
while below it they are in tension. By pushing against the side of the disiocation line
with a shear force, the position of the dislocation can move one line or plane at a time.
Because of the mobility of dislocations, metals can be deformed plastically. When a
metal solidifies, there are few dislocations. If the metal is then mechanically worked,
as in pounding with a hammer or bending (like bending a paper clip), dislocations
move around, and their number greatly increases. This is the mechanism of plastic
deformation of metals. Increasing the number of dislocations, each with its localized
stress field, makes it more difficult to implement more plastic deformation: the
dislocations obstruct one another. Thus, a metal becomes stronger and harder by the
mechanism of cold working (or work hardening). However, due to the high energy
state of cold-worked metals, cold working tends to increase the corrosion rate of a
metal (Brick et al., 1977; Foley & Brown, 1979; Jackman, 1981).

1A.1.2 Chemical composition of metals and alloys
(a)  Specifications for surgical alloys

Voluntary national and international consensus standard specifications for surgical
alloys have been developed and widely adhered to since the early days of metallic
implants. The International Organization for Standardization (1ISO) and the American
Society for Testing and Materials (ASTM) have played a central role in the deve-
Jopment and promulgation of standards worldwide. While the actual compositions of
alloys in specifications have changed somewhat over the years, these voluntary
standards have generally guided the manufacturer’s design of metallic implants.

(b) Stainless steels

Steel is an alloy of iron, carbon and other elements. In addition to mechanical
strength, corrosion resistance is the most valuable feature of stainless steel, and the
precipitation of carbon to form a two-phase alloy is undesirable, since the contact
between two phases can lead to galvanic corrosion. One way to avoid precipitation of
carbon is to keep the concentration of carbon low (typically in the 0.03-0.08% range).
It is also important that the iron is in the face-centred cubic form, since the solubility
of carbon is higher in this form (Williams & Roaf, 1973; Brick er al., 1977; Foley &
Brown, 1979).

A minimum of 12% chromium is added to make steel ‘stainless’, by the formation
of a stable and passive oxide film. Since chromium has a body-centred cubic structure,
the addition of chromium stabilizes the body-centred cubic form of iron. Carbon has a
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great affinity for chromium. forming chromium carbides with a typical composition of
Cry;C, . This leads to carbon precipitation in the region surrounding the carbide, where
the chromium concentration is depleted as it is taken up into the carbide, and thus the
corrosion resistance of the steel surrounding the carbide is reduced. If the chromium
content is depleted to below 12%, there is insufficient chromium for effective repassi-
vation, and the stainless steel becomes susceptibie to corrosion (see Section SA.D.
To be on the safe side, surgical stainless steel contains 17—19% chromium and the
carbon content of surgical alloys is kept below 0.03—-0.08%, depending upon the appli-
cation (Bechtol er a/., 1959; Williams & Roaf, 1973; Brick er al., 1977).

Nickel has a face-centred cubic structure and is added to stabilize the face-centred
cubic austenitic form of iron so as to keep the carbon in solution. Stainless steel cutlery
typically has an ‘18-8" composition (18% chromium and 8% nickel). Stainless steel
implants typically contain 17-19% chromium, 13-15% nickel and 2-3% molybdenum,
the latter being added to improve corrosion resistance, while carbon content is below
0.03%. The result is a homogeneous, single-phase, corrosion-resistant stainless steel
alloy. While stainless steel has good corrosion resistance, the options for strengthening
mechanisms have been limited 1o cold working (Brick er al., 1977).

The problem of carbide formation is especially important with welded stainless
steel parts. If steel is heated to temperatures above 870°C, the carbon is soluble in the
face-centred cubic lattice, while below 425°C, the mobility of the chromium is too low
for the formation of carbide. However, if the peak temperature in the metal near a weld
is in the ‘sensitizing range’ of 425-870°C, the chromium can diffuse within the solid
and carbides can form. This can result in what is known as weld decay, or corrosion
of the sensitized metal on each side of the weld. If the metal is heat-treated after
welding, the carbides can be redissolved, and the metal is then quickly quenched to
avoid reformation (Fontana & Greene, 1978; Foley & Brown, 1979).

Medical devices have generally been made with austenitic stainless steels desi-
gnated by the American Iron and Steel Institute (AISI) as the ‘300 series’. The nomen-
clature used varies somewhat from country to country and between standards orga-
nizations, but there is now a trend towards using a Unified Numbering System (UNS).
Reference here will be made to the UNS numbers, and the ASTM and ISO standards.

Table 7 shows the chemical composition of five alloys in the 300 series. There is
increased nickel content and added molybdenum in $31600, while $30300 has an
increased phosphorus content and a much higher sulfur content. The latter is referred
to as free-machining stainless steel and has much lower corrosion resistance than the
other alloys. While these standards are for instrument-grade stainless steel, some 302
or 304 stainless steels are used for items requiring spring-like properties, such as aneu-
rysm clips. These are similar in composition to those used in the early history of
implant surgery, as discussed below. :

Over the past couple of decades, the specifications have been tightened. The

. original ASTM specifications for stainless steel for surgical implants (F 55 and F 56)

were published in 1966. They indicated maximum concentrations of phosphorus and
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Table 7. Specifications for stainless steels, AISI 300 series (wt %)*

Type® Cr Ni Mo Mn Si C N P S

301 16-18 6-8 - <2 <1l <015 - 0.045  <0.03
302 17-19 8-10 - <2 <1 <015 <0.1 0045 <0.03
303 17-19 8-10 <007 <2 <1 <012 - 0.06  0.15-0.35
304 17-19 8-11 - <2 <1 <007 <0.1 0045 <0.03

316 16.5-185 10.5-13.5 2-25 <2 <l <007 <0.1 0.045 <0.03

2 Balance of composition in each case is iron (Fe)

® [SO and ASTM specifications:

ASTM F 899 Standard specification for Stainless Steel Billet, Bar, and Wire for Surgical
Instruments; I1SO 7153-1 Surgical Instruments - metallic materials — Part 1. Stainiess steel (304
= 830400; (Fe73Cr18Ni8); 316 = S31600)

From ASTM (1998); 1SO (1998)

sulfur 0 0.03% and.both < 0.08% (316" stainless steel) and < 0.03% (“316L" stainless
steel) of carbon. Since then, the high-carbon composition identified as grade 1 has been
deleted, F 55 and F 56 specifications have been withdrawn and moved in 1971 to the
new specifications F 138 and F 139 which are both called “316C”.

Table 8 lists the composition of stainless steels used in. implant applications accor-
ding to the current ASTM and ISO specifications. Many of these specifications corres-
pond to the wrought low-carbon S31673. ASTM separates the mechanical properties in
individual standards for rolled, drawn, forging and fixation wire products. The casting
alloy F 745 has a similar composition to S31673. There are also two slightly different
nitrogen-strengthened wrought stainless steels, F 1314 and the matching standards ISO
5832-9 and ASTM F 1586.

(c) Cobalt—chromium alloys

Cobalt is a transition metal which has a hexagonal close-packed structure at room
temperature, and a face-centred cubic structure above 417°C. The allotropic trans-
formation on cooling to below this relatively low temperature takes place slowly and
may not be complete in many alloy systems. The addition of some nickel and carbon
can stabilize the face-centred cubic structure at room temperature. Cobalt metal is
much more corrosion-resistant than iron, and therefore it can be used in a multiphase
alloy for enhanced mechanical properties (Brick er al., 1977; Planinsek, 1979).

Chromium is the primary alloying element in a wide variety of cobalt superalloys,
being added primarily to give corrosion resistance. Chromium, tantalum, tungsten,
molybdenum and nickel all enter the face-centred cubic structure and contribute to
strengthening by solid-solution effects. Molybdenum and tungsten are significantly

larger than cobalt, and are thus the elements most used for strengthening (Brick er al.,
1977).
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Carbon is also an alloving element of major importance because of the formation
and distribution of carbides. In the cast form. the alloy is made of solid-solution den-
drites surrounded by interdendritic carbides, with intergranular carbides precipitated at
the grain boundaries. The carbides may be in the form of M-Cj;, M(C or My;C;, where
M is chromium, molybdenum, cobalt and tungsten in various proportions, depending
on heat treatment. Implants in the ‘as cast’ condition may have an extensive amount of
very large intergranular carbides. Homogenization-anneal (1180°C) or solution-anneal
(1240°C) heat treatments result in a more uniform structure and dramatic changes in
carbide morphology. with their ultimate dissolution in the matrix leaving ‘Kirkendall’
holes. Porosity from casting or heat treatment may be reduced by hot isostatic pressing
(‘HIPping’) of the casting (Bardos, 1979; Semlitsch & Willert, 1980).

Thermomechanical processes such as forging and powder metallurgical methods
typically produce very fine microstructures, with a dispersion of fine carbides. Much
research in the past decade has concentrated on refining these techniques, using
carbides for control of grain growth during heat treatments and controlling the size
and distribution of the carbide for optimum wear resistance (Semlitsch, 1992).

The cast cobalt—chromium-molvbdenum (CoCrMo) alloy, first introduced in 1911
by Haynes as ‘stellite’ (the *star’ among the alloys, now referred to as Haynes-Stellite-
21), had a nominal composition of 30% chromium and 5% molybdenum with some
nickel and carbon. In 1926, an alloy of similar composition was patented under the
name of Vitallium, and this has become one of the principal cobalt alloys used for
implant applications. In the cast form, its specifications are designated F 75 and ISO
5832-4, as shown in Table 9. This is used for cast implants for osteosynthesis and
arthroplasty. With minor changes in chromium and carbon content, forged and wrought
versions of this alloy have been developed for high-stress applications, as in total hip
replacements. The first-generation metal-on-metal total hips used in the 1960s were
cast, whereas the second generation in use today are wrought (Schmidt er al., 1996).

Before the development of techniques for thermomechanically processing CoCrMo
as a wrought alloy, a second alloy known as Haynes-Stellite-25, also known as wrought
Vitallium, was introduced in 1952. This is a wrought alloy of cobalt, chromium, nickel
and tungsten, with specifications F 90 or 5832-5 (Table 9). It has seen use primarily in
intermedullary rods, side plates for stabilizing nails for femoral neck fractures, and
some prosthetic heart valve frames.

Multiphase alloys have been developed in the search for stronger and corrosion-
resistant alloys. For example, MP35N is an alloy of cobalt, nickel, chromium and
molvbdenum. In the solution-annealed condition, it has a face-centred cubic form
which is very soft. With mechanical working, it undergoes a phase transformation to
a hexagonal close-packed form, which appears as microscopically thin platelets that
greatly increase its strength. Additional strengthening results from precipitation of
Co;Mo with ageing (Younkin, 1974). Other trade names for this alloy include
Protasul-10 and Biophase. Its strength is excellent for total hip stems, but it is often
used in conjunction with a cast cobalt—chromium-molybdenum head for improved
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wear resistance. The heads are welded to the MP35N stems (Siiry & Semlitsch, 1978,
Richards Manufacturing Company, 1980; Semlitsch & Willert, 1980).

Two other cobalt alloys, Syntacoben and Elgiloy, have been developed as high-
strength, corrosion-resistant materials for mechanical spring applications. Elgiloy is
used as the stent material in some prosthetic heart valves and endovascular stents and
as orthodontic wires.

(d)  Tiranium and titanium alloys

Al room temperature. titanium has a hexagonal close-packed structure (the alpha
form). At 882°C, it transforms to a body-centred cubic (beta) form. Alloys with an all-
alpha structure develop good strength and toughness and have superior resistance to
Oxygen contamination at elevated temperatures, but have relatively poor forming charac-
teristics. The all-beta structures display better formability and have good strength, but
are more vulnerable to contamination from the atmosphere. Elements that stabilize the
alpha structure are aluminium, carbon, boron, oxygen and nitrogen, while molybdenum,
vanadium, manganese, chromium and iron stabilize the beta structure. Zirconium has
properties very similar to titanium and thus enters a solid solution without any effect on
phase (Brick er a/., 1977; Knittel, 1983).

There are four grades of commercially pure (unalloyed) titanium (sometimes called
CPTi), which contain small amounts of iron, nitrogen and oxygen. As the amounts of
these other elements increase from grade 1 to 4, strength increases. The compositions
of grades 1 and 4 are shown in Table 10.

The other common form of titanium for implant applications is known as Tj 6,4
(containing 6% aluminium and 4% vanadium), which has a two-phase structure with
a dispersion of the beta form in the alpha phase. Heat treatment can have a significant
effect on the phase morphology, from a very fine dispersion of beta particles to a very
coarse plate-like structure. Another alloy, Ti 6,7 (containing 6% aluminium and 7%
niobium), was developed due to concern regarding the toxicity of vanadium (Knittel,
1983; Semlitsch, 1992).

Recently there has been growing interest in the development of all-beta titanium
alloys. The advantage of these alloys is reduced stiffness or elastic modulus, so that
the material is mechanically more similar to bone (Brown & Lemons, 1996).

Titanium is very active electrochemically, lying between zinc and aluminium in
the electromotive series. As a result, it reacts rapidly with oxygen (either gaseous or
in an aerated solution) to form a very stable passive oxide film. With such a passive
film, titanium is very resistant to electrochemical corrosion. However, it suffers from
abrasive wear, and titanjium total joint replacements have occasionally experienced
catastrophic or ‘run-away’ wear (Knittel, 1983; Agins er al., 1988).

(e) Tanialum
Tantalum is a corrosion-resistant metal with a high atomic weight (180.95),
density (16.69) and melting-point (3000°C), but relatively poor mechanical strength.
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it is difficult to cast and form into devices, although electron beam refining and
powder metallurgical methods can be used; ASTM and ISO standards exist for two
forms designated R05200 and R05400 (Table 11). Due to its density, tantalum is used
medically as a radiographic marker in polymeric and carbon devices. Fabricated
tantalum is malleable and has been used for many vears for repair of cranial defects

(Black, 1994).

1A.1.3 Chemical composition of dental casting alloys

Three groups of precious-metal alloys are used specifically in dental castings: gold-
based, palladium-based and silver-based alloys. Two main groups of non-precious
metal (base metal) alloys are used: cobalt- and nickel-based. Commercially pure tita-
nium, as described previously, is also used as a dental casting material. Within these
groups, the alloys can be described by the weight percentages of their constituents in
decreasing order, e.g., Au70Ag13.5Cu8.8 for an alloy with 70% gold, 13.5% silver and
8.8% copper. The classification of an alloy is determined by the components with the
highest percentage. For example, Ag40Pd23In17 is a typical silver alloy, which may be
referred to as a silver—palladium alloy or as a silver—palladium-indium alloy.

Standards for dental casting alloys are:

ISO 1562: Dental casting gold alloys

ISO 6871-1: Dental base metal casting alloys. Part 1: Cobalt-based alloys

ISO 6871-2: Dental base metal casting alloys. Part 2: Nickel-based alloys

ISO 8891: Dental casting alloys with noble metal content of at least 25% but less

than 75%

ISO 9693: Dental ceramic fused to metal restorative materials

(@) Gold-based alloys

The classical dental goid alloy is a ternary alloy of gold, silver and copper, con-
taining not less than 75% gold. Palladium and platinum are added to modify the melting
point and increase the mechanical swrength. Zinc is added to ease the castability, and
small amounts of ruthenium, or other platinum group metals such as iridium or rubi-
dium, in the range of 0.005 to 1% are believed to enhance the development of nucleation
centres and thus produce a fine-grained structure throughout the alloy (Lanam & Zysk,
1982; Lloyd & Showak, 1984; Anusavice, 1996).

The alloys used for metal-ceramic reconstructions additionally need at least
approximately 1% of non-precious metallic elements such as indium, tin or gallium to
produce a slight oxide film on the surface of the dental substructure to achieve a
metal—ceramic bond strength that surpasses the cohesive strength of the ceramic itself.
If the gold content is decreased and replaced by palladium for economic reasons, the
content of low-melting elements such as tin, indium and especially gallium has to be
increased in order to lower the melting point of the alloy (Table 12) (Anusavice,
1996).
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Table 12. Composition of commonly used precious-metal dental cast alloys and
metal-ceramic alloys (wt %)

Alloy type Au Pt+Pd Ag Cu Other non-precious
metals (e.g., Zn,
Sn, In, Ga)

Gold-based alloys

High gold cast alloys 71-96 0-3 3-14 0-10 1-12

High gold metal-ceramic alloys 70-92 6-20 0-11 0-6 0.2-6

Low gold cast alloys 50-69 4-10 8-25 0-12 3-14

Low gold metal-ceramic alloys 50-69 20-36 0-18 0-14 3-13

Palladium-based alloys

Palladium-based alloys (PdAgSn) 0-16 50-78 70 - 8-14

Paliadium-based allovs (PdCuCa) 06 76—80 0-7 4-15 18-22

Palladium-based alloys (PdSnGaln) 0-2 80-8S 0-6 06 12-18

Silver-based alloys
Silver-based alloys (AgPd) 0-25 15-27  40-70 0-18  3-24

(b)  Palladium-based alloys

Palladium alloys contain 50-85% palladium (Table 12). The melting point of pure
palladium (1552°C) is much too high for dental casting machines. High proportions
of silver or copper, as well as other elements such as gallium, indium and tin have to
be added in order to lower the melting point to 1200-1400°C. These non-precious
metals also serve to form essential oxygen bridges at the surface for bonding to the
veneering ceramic afier appropriate heat treatment. In most cases, copper-free alloys
are more corrosion—resistant (Lanam & Zysk, 1982; Anusavice, 1996).

(¢c) Silver-based alloys

Silver-based alloys with a grey colour have a silver content between 50 and 70%
and contain copper, palladium and sometimes gold (Table 12). A gold-coloured silver
alloy type consists of approximately 40% silver, 23% palladium, 17% indium and
some gold, copper and zinc. It is a heterogeneous alloy, with an orange-coloured
palladium—indium phase and a silver-coloured phase. The mixture of these phases has
a golden colour which explains the popularity of this alloy, despite its low resistance
to corrosion and tarnishing (Anusavice, 1996).

(d) Cobalt- and nickel-based alloys
These alloys (Table 13) are mainly used for removable partial dentures because of
their high mechanical strength and stiffness. Nickel-chromium (NiCr) alloys are some-
times preferred over cobalt—hromium (CoCr) alloys by dental technicians because of
their much easier casting properties and brilliant appearance, especially if 2%
beryllium is added. The precious metal alloys have an inherent resistance to corrosion
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* pecause of their 'ow reactivity to oxygen. In contrast, cobalt and nickel alloys contain
‘ metallic elements having a high affinity to oxygen, but the oxide film at the surface can
protect against further corrosion. With a chromium content of around of 24% and a
molybdenum content between 2 and 5%, the corrosion resistance can be similar to that
of the precious-metal alloys (Planinsek, 1979; Tien & Howson, 1981; Anusavice,
1996). The drawback of the NiCr alloy with a high beryllium content is its very high
corrosion rate compared with other CoCr or NiCr alloys (Geis-Gerstorfer & Pissler.

1993).

(e)  Copper-based alloys
A copper alloy with typical composition Cu79.3A17.8Ni4.3Fe4Zn3Mnl.6 and
having gold-coloured appearance (irade name NPG = Non Precious Gold) but very
low corrosion resistance is used mainly in the United States, South America and
Eastern Europe because of its very low cost (Anusavice, 1996).

1A.1.4 Dental amalgam .
To produce dental amalgam, mercury is mixed with an alloyed metallic powder
consisting predominantly of silver and tin. Mercury comprises 40-50% of the amal- l

gam, and the remainder is the alloy. The conventional alloy powder contains at least
65% silver, 29% tin and less than 6% copper. Other elements, such as zinc or gold are
allowed in concentrations less than the silver or tin content. During the 1970s, high- l
copper alloys containing between 6 and 30% copper were developed. These alloys
produce amalgams that are superior in many respects to the traditional low-copper
amalgams. The amalgam is mixed by the dentist or the assistant to obtain a plastically '
formable mixture to be inserted in the tooth (IARC, 1993a; Anusavice, 1996).

1A.1.5 Orthodontic metallic materials

For orthodontic treatments, wrought base metal alloys are used for wires, brackets
and bands. The types of alloy preferred in orthodontics can be divided into six groups
according to their composition (Table 14) (Anusavice, 1996).

1A.1.6 Analytical methods
(@) Measurement of composition of metallic alloys

All ASTM metallic implant material specifications cite ASTM specifications for
chemical analysis. These specifications describe a series of wet chemistry and photo-
metric methods for determination of the alloy composition.

Specifically, the titanium alloy standards cite E 120 (Standard Test Methods for
Chemical Analysis of Titanium and Titanium Alloys), the stainless steel and cobalt
alloy standards cite E 353 (Standard Test Methods for Chemical Analysis of Stainless.
Heat-Resisting, Maraging and Other Similar Chromium-Nickel-Iron Alloys) and E 354
(Standard Test Methods for Chemical Analysis of High-Temperature Electrical.
Magnetic and Other Similar Iron, Nickel, and Cobalt Alloys).
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Table 14. Composition of commonly used orthodontic materials

Allov type Typical composition Applications

Stainless steel (type 301/302/304) Fe74Cr17Ni7 (hard and spring Wires, brackets

s

hard) bands
Manganese steel Fe60.8Cri8Mn18Mo2 Wires, brackets
Cobalt—chromium—nickel allovs Co40Cr20Nil16 (soft and hard) Wires
(Elgiloy®)
Nickel-titanium alloys Ni32Tid5Co53 or Ni31Tid9 Wires
B-Titanium alloys Ti78Mo11Zr6.5Zn4.5 Wires
Titanium (commercially pure) Ti Brackets

ISO material standards for stainless steel (5832-1 and 5832-9) cite a series of [SO
standards for chemical analysis, and ASTM E 112 for determining average grain size.
The other ISO TC-150 metal specifications do not cite chemical analysis test methods,

(6)  Measurement of merals in biological rissue and fluids
ASTM F 561 (Practice for Retrieval and Analysis of Implanted Medical Devices,
and Associated Tissues) contains detailed methods for chemical analysis of tissues by
flame atomijc absorption spectroscopy (flame AAS), graphite furnace atomic absorption
Spectroscopy (GFAAS), inductively coupled plasma optical emission spectroscopy
(ICP-OES) or mass spectroscopy. Detection limits for metal analysis by flame AAS,
GFAAS and ICP-OES are given in Table 15. Detection limits for elements in tissues

depend upon, among other factors, the amount of specimen dilution during sample
preparation.

1A.2 Production

Some metallic devices are formed by casting into the nearly final shape. Portions of
the cast parts may be subjected to subsequent machining or polishing treatments. Some
devices are used with the metal in the ‘as cast’ condition. In the case of certain devices
or certain manufacturers, castings may be subjected to subsequent heat treatments.

Metallic devices can also be made by subjecting the original cast ingot to a series
of mechanical rolling or drawing steps. After each process involving extensive cold
working, the alloy is heated to annea] it or relieve stress. This results in the formation
of new crystals with few dislocations. Suitable control of the temperature and time
gives a soft, fine-grained metal that can be subsequently cold worked. Alternatively,
the forming may be done with hot metal so that recrystallization occurs spontaneously
after the rolling or drawing. Parts can also be formed mechanically by forging a piece
from a nearly final form. Again, this can be done under hot or cold conditions
(Jackman, 1981).

Metallic components can also be made using the techniques of powder metallurgy.
A fine powder is usually made by melting the alloy and atomizing it. The powder is
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Table 15. Comparison of detection limits® for selected
analytical methods

Metal Inductively Flame atomic  Graphite furnace
coupled piasma  absorption atomic absorption
optical emission  spectroscopy  spectroscopy
Spectroscopy

Aluminium 2 30 0.01

Bervlilium 0.07 1 0.02

Chromium 2 3 0.01

Cobalt 1 4 0.02

Copper 0.9 1 0.02

Gallium 10 60 0.5

Indium 20 40 1

Molvbdenum 3 20 0.02

Nickel 3 90 0.1

Palladium 4 10 0.3

Silver 0.8 : 2 0.005

Titanium 0.4 70 0.5

Vanadium 0.7 50 0.2

Zinc 0.6 0.5 0.001

2 All values are shown as ng/L
From Gili (1993)

then compacted to a nearly final shape and subjected to controlled high temperature
and pressure in sintering and HIPping processes (Bardos, 1979; Jackman, 1981).

The treatment of surfaces during manufacture can have a major effect on both wear
and corrosion resistance. A wide variety of methods are used. Cast devices generally
have a matte surface from the ceramic of the investment casting, or may be grit-blasted
to remove residual cast material. Stainless steel implants are very often polished
mechanically and then electropolished (Schneberger, 1981). Surfaces may also be
treated by ion implantation, plasma or ion nitriding, or coated with hard ceramic-like
materials for enhanced wear resistance. Bearing surfaces receive a very high degree of
mechanical polishing, either by hand or by computer-controlled machines (Alban,
1981; Krutenat, 1981).

Since the early 1980s, a number of surface modifications have been used in total
joint replacements to provide biological fixation by in-growth of bone into a porous or
textured surface. Porosity can be created by sintering a layer of beads on the surface,
diffusion-bonding a fibre metal mesh or micromachining to create a textured surface.
Coatings are also applied by a variety of thermal spray techniques (Crowninshield,
1988).

In most cases. there is a final process of passivation (see Section 5A.1) in nitric
acid. The term passivation may be a misnomer, since the surgical alloys are all self-
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2. STUDIES OF CANCER IN HUMANS

2A. Metallic medical and dental materials

2A.1 Case reports

The pathology of the cases illustrated in the reports summarized in this section was
reviewed by the Working Group and the diagnoses were deemed reliable.

Compilations of the published case reports describing malignant rumours at the
site of the metallic implants are presented in Tables 19 (14 cases) (static orthopaedic
metallic implants) and 20 (two cases) (joint prostheses).

A total of 16 case reports of local sarcoma or lymphoma at the site of metallic
implants have been found in the medical literature. The time lapse between implan-
tation and tumour diagnosis for these cases varied from a few months to 30 years. The
ranges were 1.2-30 years for static orthopaedic implants (14 cases) but the majority
were less than 10 years (seven cases) and 3.5 and five years for joint endoprostheses
(two cases). Almost all case reports relating to tumours at the site of static implants
involved the femur. The implanted materials (where reported) were stainless steel or
cobalt—chromium alloys. The number of cases appears to be small in comparison with
large numbers of implanted metallic devices. Reporting of individual cases is not
systematic, so the actual number of occurrences is likely to be greater.

2A.2  Analytical studies

In a case—control study of sofi-tissue sarcoma by Morgan & Elcock (1995)
described in the chapter on ‘composite implants’ (see Section 2C.2.1b), a subgroup
analysis of metal implants was performed, that yielded an odds ratio of 0.8 (95%
confidence interval (CI), 0.3-1.5).

A case—control study in Australia (Ryan er al., 1992) studied the relationship
between dental amalgam containing mercury (see IARC, 1993a), diagnostic dental X-
rays (IARC, 2000) and subsequent development of brain tumours. The study included
170 cases of brain tumours (110 gliomas, 60 meningiomas) and 417 general popu-
lation controls. There was a decreased odds ratio of 0.5 (95% CI, 0.3-0.9) for glioma
and an odds ratio of 1.0 (95% CI, 0.4-2.5) for meningioma associated with amalgam
fillings for at least one year. '
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STUDIES OF CANCER IN HUMANS
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STUDIES OF CANCER IN HUMANS
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STUDIES OF CANCER IN EXPERIMENTAL ANIMALS 183

4A.2.4 Intraosseous administration

Rabbit: Two groups of 15-20 rabbits strain, sex and age unspecified] received an
implantation in the femoral cavity of metallic chromium dust or metallic cobalt dust
[purity and particle size unspecified]. Physical examination by palpation and X-ray
examination three years after implantation revealed no implantation-site tumour in 11
survivors of the chromium-treated group or six survivors of the cobalt-treated group
(Vollmann, 1938). In a follow-up study of survivors [number unspecified] at intervals
up to six years after implantation. sarcomas were observed at the implantation site in
three chromium-treated rabbits and two cobalt-treated rabbits (Schinz & Uehlinger.
1942). [The Working Group noted the limited reporting.]

4A.3 Metallic nickel
4A.3.1 Inhalation exposure

Mouse: A group of 20 female C57BL mice, two months of age, was exposed by
inhalation to 15 mg/m? metallic nickel powder (> 99% pure nickel; particle diameter,
< 4 um) for 6 h per day on four or five days per week for up to 21 months. All mice
had died by the end of the experiment. No lung tumour was observed. No control
group was available (Hueper, 1958). _

Rar: Groups of 50 male and 50 female Wistar rats and 60 female Bethesda black rats,
2-3 months of age, were exposed by inhalation to 15 mg/m? metallic nickel powder
(> 99% pure nickel; particle diameter, < 4 um) for 6 h per day on four or five days per
week for 21 months, when the experiment was terminated. Histological examination of
the lungs of 50 rats showed numerous multicentric, adenomatoid alveolar lesions and
bronchial proliferations that were considered by the author as benign neoplasms. No
control group was included in the study (Hueper, 1958).

A group of 60 male and 60 female Bethesda black rats [age unspecified] was
exposed by inhalation to metallic nickel powder (98.95% nickel; particle diameter,
1-3 um) [concentration unspecified] in combination with 20-35 ppm (50-90 mg/m?)
sulfur dioxide as a mucosal irritant; powdered chalk (1:1) was added to the nickel to
prevent clumping. Exposure was for 5—6 h per day. Forty-six of 120 rats lived longer
than 18 months. No lung tumour was observed, but many rats developed squamous
metaplasia and peribronchial adenomatoses (Hueper & Payne, 1962).

Guinea-pig: A group of 32 male and 10 female guinea-pigs (Strain 13), approxi-
mately three months of age, was exposed by inhalation to 15 mg/m? metallic nickel
powder (> 99% nickel; particle diameter, < 4 um) for 6 h per day on four or five days
per week for up to 21 months. Mortality was high; only 23 animals survived to 12
months and all animals had died by 21 months. Almost all animals developed adeno-
matoid alveolar lesions and terminal bronchiolar proliferations. No such lesion was
observed in nine controls. One treated guinea-pig had an anaplastic intra-alveolar
carcinoma, and another had an apparent adenocarcinoma metastasis in an adrenal
node, although the primary tumour was not identified (Hueper, 1958).
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4A.3.2  Inmrarracheal administration

Rat: Two groups of 39 and 32 female Wistar rats, 11 weeks of age, received either
20 or 10 weekly intratracheal instillations, respectively, of 0.3 or 0.9 mg metallic nicke]
powder [purity unspecified] in 0.3 mL saline (total doses, 6 mg and 9 mg, respectively)
and were observed for almost 2.5 vears. Lung tumour incidence in the two groups was
10/39 (nine carcinomas, one adenoma) and 8/32 (seven carcinomas, one mixed), respec-
tively; no lung tumour developed in 40 saline-treated controls maintained for up to 124
weeks. Pathological classification of the tumours in the two groups combined revealed
one adenoma, four adenocarcinomas, 12 squamous-cell carcinomas and one mixed
tumour. Average time to observation of the tumours was 120 weeks, the first tumoyr
being observed afier 98 weeks (Pott er al., 1987).

Hamster: A group of 27 male and 31 female Syrian golden hamsters (strain Cpb-
ShGa51), 10-12 weeks of age, received 12 intratracheal instillations of 0.8 mg
metallic nickel powder (99.9% nickel; mass median aerodynamic diameter, 9 um) in
0.15 mL saline at two-week intervals (total dose, 9.6 mg). Median lifetime was 111
weeks for males and 100 weeks for females. One lung tumour, an adenocarcinoma,
was observed in females that received nickel powder. No lung tumour was observed
in males or in vehicle-treated controls (Muhle er al., 1992).

4A.3.3  Intrapleural administration )

Rar: A group of 25 female Osborne-Mendel rats, six months of age, received five
injections of a 12.5% suspension of metallic nickel powder in 0.05 mL lanolin into the
right pleural cavity [6.25 mg nickel powder] once a month for five months. A group
of 70 rats received injections of lanolin only. The experiment was terminated after 16
months. Four of the 12 nickel-treated rats that were examined developed round-cell
and spindle-cell sarcomas at the site of injection; no control animal developed a local
tumour (Hueper, 1952).

A group of five male and five female Fischer 344 rats, 14 weeks of age, received
injections of 5 mg metallic nickel powder suspended in 0.2 mL saline into the pleura
once a month for five months (total dose, 25 mg nickel). Two nickel-treated rats deve-
loped mesotheliomas within slightly over 100 days; no tumour occurred in 20 controls
(Furst et al., 1973). [The Working Group noted the small number of animals and the
limited reporting of the experiment. ]

4A.3.4  Subcutaneous administration

Rar: A group of five male and five female Wistar rats, 4-6 weeks of age, received
subcutaneous implantation of four pellets (approximately 2 mm in diameter) of metallic
nickel. [No control group of sham-operated rats was available.] The animals were
observed for 27 months. Sarcomas (fibrosarcoma or rhabdomyosarcoma) developed
within 7-23 months around the implants in 5/10 rats that received metallic nickel pellets
(Mitchell er al., 1960).
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4A.3.5 Intramuscular administration

Rar: Groups of 25 male and 25 female Fischer 344 rats [age unspecified] received
five monthly intramuscular injections of 5 mg metallic nickel powder in 0.2 mL tri-
octanoin. Fibrosarcomas occurred in 38/50 nickel-treated animals but in none of a
group of 25 male and 25 female controls given trioctanoin alone (Furst & Schlauder,
1971).

Groups of 20 or 16 male Fischer 344 rats, 23 months old, received a single intra-
muscular injection of 14 mg metallic nickel powder (99.5% nickel) in 0.3-0.5 mL
penicillin G procaine vehicle into the right thigh. The metal was ground to median
particle diameter of < 2 um. Of the 20 rats receiving nickel powder, 13 developed
tumours (mainly rhabdomyosarcomas) at the site of injection, with an average latency
of 34 weeks. No local umour developed in 44 controls given penicillin G procaine or
in 40 controls given an injection of glycerol (Sunderman, 1984).

Two groups of 10 male Fischer 344 rats, three months of age, received a single
intramuscular injection of 3.6 or 14.4 mg per rat of metallic nickel powder in 0.5 mL
penicillin G procaine suspension. Surviving rats were killed 24 months after the
injection. Sarcomas at the injection site were found in 0/10 and 2/9 nickel-treated rats,
respectively, compared with 0/20 vehicle controls (Sunderman & Maenza, 1976).
[The Working Group noted the small number of animals.]

Groups of 20 WAG rats [sex and age unspecified] received a single intramuscular
injection of 20 mg metallic nickel powder in an oil vehicle [type unspecified]. A group
of 56 control rats received 0.3 mL of the vehicle alone. Local sarcomas developed in
17/20 nickel-treated and 0/56 control rats injected with oil (Berry et al., 1984). [The
Working Group noted the inadequate reporting.]

A group of 40 male WAG rats, 10-15 weeks of age, received a single intramuscular
injection of 20 mg metallic nickel in paraffin oil; 10 of these rats also received
intramuscular injections of 50 000 U interferon per rat twice a week beginning in the

10th week after nickel treatment. Rhabdomyosarcomas occurred in 14/30 and 5/10 rats
in the two groups, respectively. No local tumour occurred in 60 control rats that

received the vehicle (Judde ez al., 1987).
Hamster: Furst and Schlauder (1971) studied the local tumour response to metallic

nickel powder in Syrian hamsters compared with that in Fischer 344 rats (see above).
Groups of 25 male and 25 femnale hamsters, 3—4 weeks of age, received five monthly
intramuscular injections of 5 mg nickel powder in 0.2 mL trioctanoin. Two fibro-
sarcomas at the injection site occurred in males. No local tumours occurred in 25 male
and 25 female controls injected with trioctanoin alone. ...

4A.3.6 Inmraperitoneal administration

Rar: In a study reported in an abstract, a group of male and female Fischer rats
[number and age unspecified] (weighing 80-100 g) received 16 intraperitoneal injec-
tions of 5 mg metallic nickel powder in 0.3 mL corn oil twice per month for eight
months. A control group received injections of comn oil only. In the nickel-treated
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group, 30-30% of rats were re
Cassetta, 1973).

A group of 50 female Wistar rats, 12 weeks of age, received 10 weekly intra.
peritoneal injections of 7.5 mg metallic nickel powder [purity and particle size up.
specified] (total dose, 75 mg nickel). Abdominal tumours (sarcoma, mesothelioma or
carcinoma) developed in 46/48 (96%) nickel-treated rats, with an average tumoyr
latency of approximately eight months. Concurrent controls were not reported, but ip

flon-concurrent groups of saline controls, abdominal tumours were found in 0—6% of
animals (Pott er al., 1987).

ported to develop intraperitoneal tumours (Furst &

4A.3.7 Inmraosseous administration

Rar: In groups of 20 WAG rats [sex and age unspecified], subperiosteal injection
of 20 mg metallic nickel powder resulted in local tumours in 11,20 rats; intramedullary
injection of 20 mg metallic nickel powder resulted in local tumours in 9/20 rats (Berry

et al., 1984). [The Working Group noted the absence of controls and the inadequate
reporting of tumour induction.] '

4A.3.8 Inrrarenal administration

Rar: A group of male Fischer 344 rats, approximately two months of age, received
an intrarenal injection of 7 mg metallic nickel powder in 0.1 mL saline solution into
each pole of the right kidney (total dose, 14 mg nickel per rat). The study was termi-
nated after two years; the median survival time was 100 weeks compared with 91
weeks in a group of saline-treated controls. Renal tumours occurred in 0/18 rats
compared with 0/46 saline-treated controls (Sunderman et al., 1984).

4A39 Intravenous administration

Mouse: A group of 25 male C57BL mice, six weeks of age, received two intra-
venous injections of 0.05 mL of a 0.005% suspension of metallic nickel powder in 2.5%

weeks, and six survived over 60 weeks. No tumour was observed. No control group
was used (Hueper, 1955b). [The Working Group noted the short period of observation.]

Rat: A group of 25 Wistar rats [sex unspecified], 24 weeks of age, received intra-
venous injections of 0.5 mL/kg bw (0.1-0.18 mL) of a 0.5% suspension of nickel
powder in saline into the saphenous vein once a week for six weeks. Seven rats deve-
loped sarcomas in the groin region along the injection route [probably from seepage
at the time of treatment]. No control group was used (Hueper, 1955b).

4A .4 Metallic titanium
4A.4.1  Imtramuscular administrarion

Rat: Groups of 15 male and 15 female Sprague-Dawley rats, 20-30 days old,
received intramuscular implants of polished rods (1.6 mm in diameter, 8 mm in length)
of metallic titanium (> 99% titanium) and were observed for up to two vears [survival
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unspecified]. Two groups of 15 male and 15 female untreated or sham-operated control
animals were available. No benign or malignant tumour developed at the implantation
site or in the sham-operated control group. The incidences of malignant tumours at
distant sites did not differ significantly between control and treated rats (Gaechter et al.,

1977).

4A.4.2 Intraosseous administration

Rat: Four groups of 11-15 male and 11-15 female Sprague-Dawley rats, 30—43 days
of age, received implants in the femoral bone of metallic titanium as small rods (1.8 mm
in diameter, 4 mm in length), as powders (fine, diameter < 28 pm; coarse, diameter
28-44 um) or as compacted wire (4 x 2.8 mm). A total of 77 rats in three groups of 12-13
male and 13 female untreated or sham-operated controls were available. Average survival
in all groups exceeded 21 months; the animals were observed for up to 30 months. No
sarcoma at the implantation site was observed in rats that received titanium implants or
in two groups of 25 and 26 untreated rats or in a group of 26 sham-treated control rats.
Two implant site-associated lymphomas were observed in the groups receiving titanium
powder, but none in sham-operated controls (Memoli er al., 1986).

4A.5 Metallic foils
4A.5.1 Subcutaneous administration

Rat: Three groups of Wistar rats [initial number, sex and age unspecified] were
given subcutaneous implants of gold, silver or platinum foils as discs (17 mm
diameter [thickness unspecified]) and observed for 23 months. The total number of
sarcomas at the implantation site was 68/77 (88.3%) for gold foil, 65/84 (77.4%) for
silver foil and 39/73 (53.4%) for platinum foil (Nothdurft, 1956). [The Working Group
noted that no sham-operated controls were available.]

Five groups of 25 male Wistar rats [age unspecified] were given subcutaneous
implants of silver, tin, tantalum, Vitallium or stainless steel foils as discs or squares
(1.5 cm; two discs or squares per rat) and observed for > 596 days. Local sarcomas
were found in 14/25 (56%) rats with silver foil, 5/21 (24%) rats with steel foil, 2/23
(8.7%) rats with tantalum foil, 0/25 (0%) rats with tin foil and 5/23 (21.7%) rats with
Vitallium foil (Oppenheimer er al., 1956). [The Working Group noted that no sham-
operated controls were available and that the composition of the stainless steel was not
specified.]

4A.5.2 Intraperitoneal administration

Mouse: A group of 43 female Marsh mice, three months of age, received intra-
peritoneal implants of open-end tin foil cylinders (2 x 4 mm; 151 mm? surface area).
A control group of 39 female mice was sham-operated. The animals were observed for
18 months. Local sarcomas were found in 8/31 test animals versus 1/23 controls. [The
low effective numbers of test and control rats reflect the occurrence of pneumonia.]
(Bischoff & Bryson, 1977).
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Rar: Groups of 31 male and 29 female Evans rats, five 1o six weeks of age, recejveq
intraperitoneal implants of open-end tin foj] cylinders (25 x 8 mm; 628 mmz Surface

area). Four control groups of 29-31 male and female mice were sham-operated. The
animals were observed for 18-2

4A.6 Metal alloys

4A.6.1 Inmrarracheal administrarion

Hamster: Groups of 50 male and 50 female S
of age, received a single intratrachea] instillatio
powder (particle diameter, 3-8 um) or powders

yrian golden hamsters, three months
n of 10, 20 or 40 mg meralljc nicke]
of nickel-containing alloys (particje

» mass median aerodynamic diameter,
3-5um)or 9 mg chromium stainless-stee] dust (Fe68Cr13C3AI2; mass median aero-

No lung tumour was observed in vehicle-treat
the stainless-steel powders (Muhle er a/, 1992).
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4A.6.2  Intrabronchial administration

Rar: A group of 35 male Bethesda black rats, approximately three months old,
received implants via tracheotomy into the left inferior bronchus of a coiled wire fabri.
cated of surgical-grade stainless stee] Suture material (Fe70Cr15Nil2, 28 gauge,

4A.63  Subcutaneous administration

Rar: Six groups of five male and five fernale Wistar rats, 4-6 weeks of age, received
subcutaneous implants of four pellets (~2 mm diameter) of: (a) Vitallium alloy,
(b) metallic nickel, (c) metallic copper, (d) Ni60Ga4( alloy, (e) metallic silver or
() AgHg dental amalgam. [The percentage compositions of the metal constituents of the
Vitallium alloy and the dental amalgam were unclear. No control group of sham-ope.-
rated rats was available.] The animals were observed for 27 months. Sarcomas (fibro-

4A.6.4  Intramuscular administration

Rar: A group of 59 female rats of the Chester-Beatty strain, three months old,
received intramuscular implants of stainless steel discs (18-, 12- and 4-mm diameter,
1.5 mm thick). Each rat recejved one large (18-mm) disc into the left buttock and one
small (4-mm) and one medium (12-mm) disc into the right buttock. Three animals
were killed at 6, 12, 18, 24 and 30 months; the remainder were observed for their
lifespan. Six rats developed a total of seven sarcomas in juxtaposition to the large discs

In a series of three €xperiments, a total of 80 female hooded rats, 7-9 weeks of age,
received an intramuscular injection of 28 mg of wear particles (Co67Cr26Mo7Mn1;
particle diameter, mostly 0.1-1 pm; obtained following repeated frictional movement
in Ringer’s solution of artificial hip or knee prostheses) in 0.4 mL horse serum and were
observed for up to 29 months [survival not specified]. No control group was reported.
Sarcomas developed at the injection site in 3/ 16, 4/14 and 15/50 rats in three series,
respectively. Of the 22 tumours, 10 were rhabdomyosarcomas, 11 were fibrosarcomas
and one was an unclassified sarcoma with giant cells. Distant metastases were found in
11/22 tumour-bearing rats (Heath er al., 1971; Swanson et al., 1973).

Groups of female Wistar and hooded Lister rats, weighing 190-310 and 175-220 g,
respectively, received intramuscular implants of 28 mg of coarse (100-250 um diameter;

=

51 Wistar rats) or medium (0.3-50 um diameter, 85% 0.5-5 um; 61 Wistar and 53
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hooded rats) particles as dry powder (obtained by grinding Co68Cr28Mo4 alloy) and
were observed for life. A sham-operated control group of 50 female Wistar rats was
used. Survival at two years was 11/51 Wistar rats receiving the coarse particles, 7/61
Wistar rats receiving the fine particles. 0/53 hooded rats receiving the fine particles and
5/50 Wistar controls. No tumour was noted at the implantation site in rats treated with
either type of alloy particles or in sham-operated control animals (Meachim er al.,
1982).

[The Working Group noted in comparing these two studies that the particle size was
smaller in the studies by Heath er a/. and Swanson er al. than either of the dry powders
tested by Meachim er al., and that the studies differed in the method of production of
the test powders (the former being more relevant to the in-vivo situation), and that in
the Heath er al. and Swanson er al. studies, horse serum was used as vehicle.]

Seven groups of 15 or 20 male and 15 or 20 female Sprague-Dawley rats, aged
20-30 days, received intramuscular implants of polished rods (1.6 mm in diameter,
8 mm in length) of one of seven alloys: (a) Fe65Cr17Ni14Mo2 alloy (stainless steel
316L); (b) Co53Cr19W15Nil0 alloy (wrought Vitallium); (¢) Co63Cr29Mo6Ni2 alloy
(cast Vitallium); (d) Ni35C035Cr20Mo10 alloy (MP35N alloy); (e) metallic titanium
(> 99% titanium), (f) Ti75V8Cr6Mo4Zr4Al3 alloy (RMI alloy) and (g) Ti89Al6V4
alloy. The animals were observed for up to two years [survival unspecified]. Two
groups of 15 male and 15 female untreated or sham-operated control animals were
available. No benign or malignant tumour developed at the implant site in any of the
groups receiving metal implants or in the sham-operated control group. The incidence
of malignant tumours at distant sites did not differ significantly between any of the
treated and two control groups (Gaechter et al., 1977).

Groups of 20 or 16 male Fischer 344 rats, two to three months old, received a single
intramuscular injection of 14 mg metallic nickel powder (99.5% nickel) or 14 mg (as
nickel) of Fe62Ni38 alloy in 0.3-0.5 mL penicillin G procaine vehicle into the right
thigh. Each compound was ground to a median particle diameter of <2 pm. Of the 20
rats receiving nickel powder, 13 developed tumours (mainly rhabdomyosarcomas) at
the site of injection, with an average latency of 34 weeks. No local tumour developed
in the 16 rats given the Fe62Ni38 alloy, in 44 controls given penicillin G procaine or
in 40 controls given an injection of glycerol (Sunderman, 1984).

Guinea-pig: A group of 47 female guinea-pigs of the Hartley strain, 4-6 months
old, received intramuscular implants of stainless steel discs (18-, 12- and 4-mm
diameter, 1.5 mm thick). Each guinea-pig received one large (18-mm) disc into the left
gluteal muscle, and one small (4-mm) and one medium (12-mm) disc into the right.
Three animals were killed at 6, 12, 18, 24 and 30 months; the remainder were observed
for their lifespan. No local tumours developed (Stinson, 1964).

A group of 46 female Dunkin-Hartleyv guinea-pigs (weighing 550-930 g) received
intramuscular implants of 28 mg of a dry powder (particle diameter, 0.5-50 pm, 85%
0.5-5 um) obtained by grinding Co68Cr28Mo4 alloy. The guinea-pigs were observed
for life and 12/46 animals were alive at three vears. No control group was available.
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No tumour was observed at the implantation site in any guinea-pig; nodular fibro-
blastic hyperplasia was noted in eight animals (Meachim er al., 1982).

4A.6.5 Inrraperitoneal administration

Rar: Groups of female Wistar rats, 18 weeks of age, received single or repeated
intraperitoneal injections of one of three nickel-containing alloys (milled to particle size
<10 pum) in 1 mL saline solution once or twice per week. The alloys were (@) Ni50A]50
alloy (nickel content 52% after milling), (b) Fe55Ni32Cr21Mni alloy (nickel content
29% after milling) and (c¢) Ni74Cr16Fe7 alloy (nickel content 66% after milling). AJ]
animals were killed 30 months afier the first injection. The incidences of local sarcomas
and mesotheliomas in the peritoneal cavity are shown in Table 41. A dose—response
trend was apparent for metallic nickel and the tumour responses to the nickel alloys
increased with the proportion of nickel present and the dose (Pott er al., 1989, 1992).

Table 41. Tumour responses of rats to intraperitoneal injection of
nickel and nickel alloys

Compound Total dose  Schedule Meso- Sarco-  Local
(mg as theliomas mas tumours
nickel)

Merallic nickel 6 Single injection 2 3 4/34*

- 12 2x6mg 3 2 5/34%
25 25 x 1 mg 9 6 25/35*

Alloy (66% nickel 50 Single injection 0 12 12/35+

after milling) 150 3x50mg b 19 22/33+*

Alloy (52% nickel 50 Single injection 1 7 8/35*

after milling) 150 3 x 50 mg 3 11 13/35*

Alloy (29% nickel 50 Single injection 1 1 2/33

after milling) 100 2 x 50 mg 0 1 1736

Saline controls Ix1mL 0 1 1/33

50x1mL 0 0 0/34

From Pott er al. (1989, 1992)
. *p<0.05

4A.6.6 Intrarenal administration

Rat: Groups of male Fischer 344 rats, approximately two months of age, received
an intrarenal injection of 7 mg metallic nickel powder or 7 mg (as nickel) Fe62Ni38
alloy in 0.1 or 0.2 mL saline solution into each pole of the right kidney (total dose,
14 mg nickel per rat). The study was terminated afier two years; the median survival
time was 100 weeks in the two treated groups compared with 91 weeks in a group of
saline-treated controls. Renal tumours occurred in 0/18 (nickel-treated) and 1/14
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(alloy-treated) rats, compared with 0/46 saline-treated controls. The tumour, a nephro-
blastoma, was observed at 25 weeks (Sunderman er a/., 1984).

4A.6.7 Intraosseous administration

Rat: Groups of 10-17 male and 815 female Sprague-Dawiey rats (total number,
409), 3045 days of age, received implants in the femoral bone of various metallic
materials as small rods (1.6 mm diameter, 4 mm length), powders (fine, diameter
< 28 um; coarse, diameter 28—44 um) or porous compacted wire. A total of 77 rats in
groups of 12-13 male and 13 female untreated or sham-operated controls was avai-
lable. Average survival in all groups exceeded 21 months; the animals were observed
for up to 30 months. Sarcomas at the implantation site were observed in 1/18 rats
given Co41Cr18Zr16Sill powder, 3/32 rats given Co51Cr20W14Nil0Fe2Mn2 com-
pacted wire and 3/26 rats given Ni35C033Cr22Mo9Til powder (MP35N alloy). No
sarcoma at the implant site was observed in rats that received other metallic implants
or in two groups of 25 and 26 untreated rats or in a group of 26 sham-treated control
rats. A total of 12 implant site-associated lymphomas was observed sporadically in the
test groups, but none in sham-operated controls (Memoli et al., 1986).

Four groups of 52 male and 52 female Sprague-Dawley rats, four weeks of age, were
given implants of metal half-cylinders (5 mm in diameter, 13 mm in length) fixed on the
left, lateral femur by an intraosseous cylindrical peg (1.5 mm diameter, 3 mm length)
(groups 1, 2 and 3) or subcutaneous injections of metal microspheres (50-80 pm
diameter, group 4). Group 1 received half-cylinders of Ti89Al6V4 alloy (F 136 alloy);
group 2 received half-cylinders of Co67Cr27Moé6 alloy (F 75 alloy); group 3 received
half-cylinders of sintered-porous Co67Cr27Mo6 alloy (F 75 alloy); and group 4 received
microspheres of Co66Cr28Mo6 (F 75 alloy). No sham-operated or vehicle-injected
control groups were available. The experiment was terminated 24 months after implan-
tation [survival data not specified]. Implant-associated tumours were observed in 23/102,
14/101, 3/102 and 15/103 rats of Groups 1, 2, 3 and 4, respectively. The total of 55
implant-associated tumours included 52 malignant tumours (mostly sarcomas) and three
benign tumours (lipomas, all in Group 4). Within Groups 1-3, 34/40 of the tumours were
associated with loose implants, 3/40 with undetermined implant fixation status and 3/40
with implants fixed to the bone, supporting an association between implant looseness and
implant-associated neoplasms (p < 0.001) (Bouchard ez al., 1996).

4A.6.8 Intra-articular administration

Rat: Two groups of 12 and eight male Fischer 344 rats, 2—4 months old, received an
intra-articular injection into the suprapatellar pouch of 20 mg wear-debris powders of
either Co59Cr29Mo6MnlSil alloy (F 75-82 alloy; particle dimensions, 1.5-50 pum;
suspended in 0.1 mL saline vehicle) or TiS9AI6V4 alloy (F 136-84 alloy; particle dimen-
sions, 20650 pm; suspended in 0.1 mL 50% glycerol vehicle). Two control groups were
available: a negative control group of 11 rats received a similar intra-articular injection
of metallic manganese powder (Mn 94%, O 6%; median particle diameter, 1.5 um;
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suspended in 0.1 mL saline vehicle); a positive control group of 12 rats received a simijar
intra-articular injection of nickel subsulfide powder (median particle diameter, 1.5 um;
suspended in 0.1 mL saline vehicle). The animals were followed up to 24 months afier
injection. Median survival exceeded 18 months in the test groups and the negative
control group, and was 10 months in the positive control group. Tumours (mostly malj-
gnant fibrous histiocytomas) developed at the injection site in 10/12 rats in the positive
control group. No injection site tumour was observed in either test group or in the nega-
tive control group (Lewis et al., 1995).

4A.6.9 Implantation of ear rags

Rar: In two studies on the carcinogenicity of cadmium salts, groups of male Wistar
rats, six weeks of age, received identification ear-tags made of a Ni67Cu30Fe2Mn]
alloy. In one study, a total of 14/168 rats surviving to two years developed a tumour
(mostly osteosarcoma) at the site of ear-tag implantation. In the second study, 2/193
surviving rats developed a tumour (one osteosarcoma, one giant-cel] tumour) at the site
of ear-tag implantation within two vears. The authors implicated nicke! in the alloy as
the probable causative agent and suggested that local microbial infection might be a
contributory factor (Waalkes er al., 1987).

4B. Non-metallic Medical and Dental Materials

4B.1 Polydimethylsiloxanes (silicones)
4B.1.1  Subcutaneous administration

Mouse: Three groups of 50 male and female CS7BL/6JN mice [age unspecified]
received subcutaneous implants of a silicone rubber cube (prepared by heat-curing of
linear gum (polysilicone gum) with silica powder and a catalyst (benzoyl peroxide)) (10
mm thickness, 200 mg), a polysilicone gum ball (200 mg) or silica powder (200 mg) into
the nape of the neck. All animals were observed for a maximal period of 24 months. No
tumour was found at the site of implantation with any sample (Hueper, 1961).

Rat: A group of Wistar rats [sex and age unspecified] was given subcutaneous
implants of plain films of Silastic (1515 mm x 0.25 mm). Of the 35 rats that survived
at the minimal latent period, 14 animals developed malignant tumours at the implan-

- tation site within a latent period of 300-609 days (Oppenheimer er al., 1955).

Five groups of 25-30 male and female Wistar rats, weighing 60 g, received sub-
cutaneous implants of Silastic 250, 450, 675, 2000 or 9711 (4 x 5 x 0.16 mm) and were
observed for two years. At 300 days, 112 rats were still alive. Two malignant fibro-
sarcomas developed at the site of implantation of Silastic 250 and Silastic 2000 at 583
and 562 days, respectively (Russell e al., 1959). [The Working Group noted the small
size of the film.]

Three groups of 30 female Bethesda black rats, three months of age, received sub-
cutaneous implants of a Silastic cube (300 mg), a polysilicone gum ball (300 mg) or
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5. OTHER DATA RELEVANT TO AN EVALUATION
OF CARCINOGENICITY AND ITS MECHANISMS

SA. Metallic Medical and Dental Materials

5A.1 Degradation of metallic implants in biological systems

Implanted metallic materials are subject to corrosion, which can result from direct
interaction with the surrounding tissue or body fluids or be the consequence of
mechanical damage. The resistance of metallic biomaterials to corrosion depends on
the presence of a passive, protective film of oxide covering the surface. Titanium,
which appears as an active metal in the electromotive series, forms a resistant oxide,
which prevents further corrosion. Stainless steel and cobalt alloys form chromium
oxide films. The composition of the oxide film has an important influence on bio-
compatibility. Metallic biomaterials in an aqueous environment represent a system in
which active and passive surfaces exist simultaneously in contact with electrolyte
(Kelly, 1982). At the surface of the metal oxide film, there is a continuous process of
dissolution and reprecipitation, so that the composition of the film can change even
though it seems macroscopically stable. Calcium, phosphorus and sulfur have been
found to be incorporated into the surface film of titanium bolts surgically implanted
into human jaw bone (McQueen et al., 1982). Similarly, calcium and phosphorus have
been detected in the oxide film of 316L stainless steel pins and wires that had been
implanted during hand surgery and maxiliofacial surgery (Sundgren et al,, 1985).

5A.1.1 Mechanisms of degradation

The principal mechanisms by which surgical alloys corrode are galvanic, crevice and
fretting corrosion. These types of degradation involve the release of ions. Galvanic
corrosion can occur when two metallic implants of different composition or two regions
of the same implant with different electrochemical properties are in contact. For
example, during the development of techniques for internal fixation of fractures, plates
of one material were occasionally fixed with screws of another material. In modular total
hip prostheses, femoral components may have a head made of a cobalt—chromium—
molybdenum (CoCrMo) alloy and a stem made of titanium~aluminium-vanadium alloy
(Ti 6,4). However, as more corrosion-resistant materials have become used in such
mixed metal combinations, the issue of mixed metal galvanic corrosion has become less
problematic.

-231-
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{
Crevice corrosion can occur in a confined space that is exposed to a chloride soly.
tion. Such a space can exist in a gasket-type connection between a metal and a non-mety)
or between two pieces of metal bolted or clamped together. Crevice corrosion involveg

scale, contact between two surfaces is not across an entire area, but rather occurs at
high points or local asperities. Adhesive wear occurs when asperities of two surfaces
adhere to each other, as with loca] spot welding due to high contact stress. With sliding
between the surfaces, portions of one surface are tomn off. Abrasive wear involves 3

5A.1.2  In-vitro corrosion of dental alloys
The expression ‘corrosion-resistant’ in connection with precious-metal or well
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Table 55. Jon release from preconditioned specimens of various cast
alloy types

Alloy type Composition Released Amount of release
ions (ug/cm” per day)
High gold Au77-87; Pt9-19; In 1.97-2.88
Zn1-2;In0.7-1.6
Low gold Au 51-57; Pd 31-38; In 0.48-3.84
in8 Gal.s Ga 0.76-3.57
Palladium—copper Pd 73-78; Cu 8.5-11.5; Pd 3.65-11.11
Ga 7-9; Sn 3-16 Cu 6.03-9.98
Ga 10.8-21.0
Palladium-silver Pd 75-77; Ag 6~§; Pd 0.1
Ga2-6.5; Aus-6 Ag <0.1
Ga 1.22-2.36
Cobalt-based alloy Co 63-65; Cr 27-29 Co 0.3
Mo 5-7; Mn <]
Nickel-based alloy Ni65;Cr22.5; M0 9.5 Ni 0.07
without Be
Nickel-based alloy Ni76;Cr13; Mo 3;Bel.s Ni 101
with 1.5% Be Cr 5.6
Mo 2.3
Be 10.3
CPTi (grade 2, cast) Ti99 Ti 0.36
NPG Cu79.3; Al 17.8; Ni 4.3; Cu 1226
Fe4;Zn3;Mn 1.6 Al 117
Ni 67
Fe 45
Zn 40
Mn 32

From Kappert er al. (1998)
CPTi, commercially pure Ti; NPG, non-precious gold

A similar analysis of various types of alloy used in orthodontics has shown that
nickel and chromium were released when these alloys were stored in physiological
saline. Soldered stainless steel bows were very susceptible to corrosion. The release
of nickel seemed to be related to both the composition of the alloys and the method of
manufacture of the appliances, but was not proportional to the nickel content
(Grimsdottir et al., 1992).

SA.2  Absorption, distribution and excretion

Implants in soft tissue or bone give rise to exposure in that tissue, and the biological
effects depend on the interactions of the tissue with the surface of the implant. Such
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effects may remain localized 10 the site of the implant itself, but metal ions or parti-
culate debris released as a result of corrosion or wear may cause effects at distant sites,
Oral exposures prevail in the case of dental fillings, while materials released from these
may be ingested and give rise to exposure via the gastrointestinal tract.

Published studies of biological effects of implants in surrounding tissue have
various limitations; many were based on cases of failed implants, which may have led
to additional corrosion and/or wear, hence to stronger effects than would normally be
the case. Furthermore, the composition and properties of the implants are often poorly
described. In addition, it is not always clear whether the effects observed are due 10
the implant itself or to material released from it. In terms of their possible carcinogenic
hazard, metal ions reieased systemically can be regarded as metal salts, several of
which have been the subject of previous IARC Monographs (IARC, 1990a,b, 1991,
1993a,b). When metal ions are released svstemically, accumulation may occur in
specific organs. Thus nickel accumulates in the liver, spleen and kidney of mice after
administration of high doses of the metal ion (Pereira er al., 1998), vanadium accumuy-
lates in the liver, spleen and bone, but titanium is reported to accumulate less (Merritt
& Brown, 1995). A complex mixture of ionic species may be formed during corrosion,
and a wide range of sizes, shapes and numbers of particles may be produced by wear,
but many reports provide very little information on these aspects.

5A2.1 Humans

Doorn er al. (1998) described the analysis of metallic particles in tissue from 13
patients with cobalt—chromium-molybdenum metal-on-meta] total hip implants for
periods ranging from seven months to 25 vears. Samples were obtained at either
revision or autopsy from different sites around the implant and particles were found in
eight patients. There was marked inter- and intra-individual variability in both the
number (range, 1-580) and size (range, 6-834 nm, most < 50 nm) of particles. The
authors had previously determined volumetric wear in three of these patients
(McKellop er al., 1996). They estimated that wear produced 6.7 x 1012, 4.9 x 1013 and
2.5 x 10** particles per year in three metal-on-metal prostheses and contrasted these
figures with their estimate for polyethylene wear debris of 5 x 10! particles per year
in a metal-on-polyethylene hip implant.

Willert et al. (1996) determined metal concentrations in tissue samples from
19 patients with cobalt—chromium metal-on-metal total hip implants for periods of one
to 282 months (average, 86). Samples were obtained at revision from various sites
around the implant, mainly the joint capsule, and metal particles were found in
15 patients. As far as they were visible in the light microscope, these were irregularly
shaped, ranged from 0.5 to 5 um in size and were most ofien found in the vicinity of
blood vessels. Poly(methyl methacrylate) bone cement particles were found at greater
concentrations than metal particles. Both the worn surface and the wear particles
undergo repassivation to cobalt(1) hvdroxide, chromium(IIl) oxide, chromium(I1I)
hydroxide and nickel(Il) hydroxide. While these cobalt and nickel compounds have
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solubilities greater than 10~ M at physiological pH, the chromium compounds are
essentially insoluble under the same conditions, so that chromium accumulates in
local tissues while the other products are eliminated by urinary and faecal excretion.
Merritt and Brown (1996) reported that the estimated dissolution of cobalt—chromium
alloy is 0.15-0.30 pg/cm? per day. which corresponds to around 11 mg per vear for a
total hip replacement. This can be increased by corrosion.

Jacobs et al. (1996) determined cobalt and chromium concentrations in serum and
chromium concentrations in urine from eight patients with long-term (> 20 years)
cobalt—chromium metal-on-metal total hip replacements. six patients with short-term
(<2 years) cobalt—chromium metal-on-metal surface replacement arthroplasties and
three controls. Single samples were obtained at average implantation times of 295 (range
266-324) months from the total hip replacements and 12.4 (range 2—-19) months from
the surface replacements. No details of diet were recorded, nor was this variable
controlled. The controls had chromium concentrations in serum and urine of 0. 14 ng/mL
(2.7 nmol/L) and 0.035 ng/mL (0.66 nmol/L), respectively, and cobalt concentrations in
serum were below the detection limit (0.3 ng/mL, 5.2 nmol/L). The mean total 24-h uri-
narv chromium excretion in the controls was 0.071 ug per day (1.37 nmol per day). The
mean serum chromium and cobalt concentrations in the total hip replacement patients
were nine- and threefold higher respectively, whilst urinary chromium concentrations
were 35-fold higher than in the controls. The mean total 24 h urinary chromium excre-
tion was 30-fold higher than in the controls. The mean serum chromium and cobalt con-
centrations in the subjects with surface replacements were three- and four-fold higher,
respectively than in the hip replacement patients, whilst urinary chromium concen-
trations were four-fold higher. The mean total 24-h urinary chromium excretion was 2.5-
fold higher in the surface replacement group than in the hip replacement subjects.

In a study to investigate nickel and chromium concentrations in saliva of patients
with different types of fixed dental appliances (containing 8-12% nickel and 17-22%
chromium), fresh saliva samples were obtained from each of 47 orthodontic patients
before insertion of the appliance and 1-2 days, 1 week and 1 month after treatment. The
methed of sampling shows the momentary total concentration of soluble nickel and
chromium. The saliva concentrations of both metals showed considerable variation, and
no significant differences were found in samples taken before and afier treatment. The
authors note that minor amounts of nickel released from dental fixtures could be
important in case of hypersensitivity 10 nickel or in evoking allergic reactions in the oral
mucosa (Kerusuo er al., 1997).

SA.22  Experimental systems

Harmand er al. (1994) described the dissolution in culture medium and cellular
Uptake in an osteoblast cell line of ISO 5832/3 titanium alloy, 1SO 5832/1 316L
Stainless steel and 1SO 5832/4 cobali—hromium alloy (defined in Tables 8-10) over
a nine-day period. The presence of the cells had varying effects (increase, decrease or
none) on release of metal ions from these metals. Uptake of extracellular ions by the
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cells was limited to chromium. vanadium, titanium. iron and cobalt, with the higheg;
uptake been observed for chromium.

Gray and Stirling (1950) exposed serum and red blood cell cultures to radioactive
chromium (5'Cr) with a valency of +3 (3'CrCly) and with a valency of +6 (Nag—‘ICrQ‘).
Almost all of the wivalent chromium remained in the plasma, whereas hexavalen,
chromium crossed the red cell membrane and was, primarily cell-associated. Simjja,
results were obtained with fretting corrosion experiments in cell culture (Merritt ef al.
1991). These results imply that the valency of chromium affects its biological activity
It is clear that the biological fate of corrosion products needs to be understood befo;e
conclusions can be drawn regarding the relevance of chemical analytical data of tissyeg
and fluids for effects of implant corrosion.

In a study to investigate the effect of anodization on the dissolution of titanium,
Sprague-Dawley rats were given anodized or unanodized titanium implants intra.
peritoneally, in the left paracolic gutter. At days 7, 14 and 28, peritoneal lavages and
blood samples were obtained. At day 28 the animals were killed and liver, kidneys,
spleen. lung and brain were removed, as well as tissue surrounding the implant.
Titanium was not detected in any distant organs or in the lavage fluid. In the capsular
tissues surrounding the implants titanium concentrations were higher in animals with
unanodized implants than in those with anodized implants, but the difference was not
significant. Peritoneal leukocytes showed significantly higher titanium levels in
animals from the unanodized implant group, compared with the controls, while
titanium leveis in leukocytes from animals with anodized implants were not signi-
ficantly different from the controls. Despite the presence of titanium in leukocytes,
only minimal biological responses and histopathological changes were detected. The
presence of titanium in the tissue surrounding the implants is probably the result of
corrosion. Surface treatment of titanium by anodization reduces passive dissolution
(Jorgenson er al., 1999).

To examine the biological transport of released metal ions, Merritt er al. (1984a)
injected metal salts (nickel chloride, cobalt chioride, chromium chloride, potassium
dichromate) intramuscularly into hamsters. Blood samples were taken at 2, 4, 6, 24,
48 and 96 h after injection. Nickel was found in the blood serum at 2, 4 and 6 h, but
the levels dropped rapidly. Levels of nicke] in red and white blood cells were low.
Cobalt and trivalent chromium were similarly found in serum, but the levels did not
drop as rapidly. In contrast, hexavalent chromium from potassium dichromate was
found in the red blood cells, confirming the results of Gray and Stirling (1950).
Corrosion products generated by fretting corrosion of 316 LVM stainless steel or
MP35N plates and screws were suspended in serum and injected intramuscularly into
hamsters; chromium was again found in the red blood cells. When serum that had
interacted with the metal salts or corrosion products was separated into its components
by isoelectric focusing on polyacrylamide gels, almost all of the metal, whatever the

source, was detected in the albumin region of the gels, indicating strong albumin
binding (Merritt ez al.. 1984b).
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Brown er al. (1988) carried out chemical analysis ot urine from Syrian hamsters
after intramuscular injection of nickel(ous) chioride, cobalt chloride and potassium
dichromate, or after accelerated anodic corrosion both in virro and in vivo of stainless
steel implants. The amounts of metal injected were 90 pg of nickel, 94 ug of cobalt
and 117 pg of chromium in one group of animals. and 5.18 pg of nickel, 5.40 pg of
cobalt and 6.91 ug of chromium in the second group. Total daily urine samples were
collected during three days. In both dose groups, virtually all of the injected nickel and
most of the cobalt were excreted in the first 24 h, whereas less than 50% of the
chromium dose was excreted. After acceierated anodic corrosion of stainless steel,
nickel excretion was complete within 24 h. while chromium excretion was minimal.
Similar studies were performed with rods of a nickel—cobalt—chromium-molybdenum
alloy (F 73) with a porous coating. These rods were implanted subcutaneously in
Syrian hamsters and subjected 10 accelerated anodic corrosion in situ. Even though the
nickel content of F 75 alloy is less than 1%, it was rapidly excreted and detected in the
urine, as was the molybdenum. Recovery in urine of cobalt was close to 80%, whereas
that of chromium was in the range of 37-67% due to in vivo storage and significant
binding of chromium to red cells (Brown er al., 1993).

These studies also showed that the corrosion rates of these alloys in 10% serum
were much lower those that in saline. The rates in vivo were similar to those in serum.
Thus, for testing materials for corrosion, the use of proteins in the test solution
provides a better simulation of the in-vivo environment (Brown er al., 1988).

The implication of these results is that chemical analysis of body fluids and tissues
must be interpreted in light of the mechanism of degradation. If an implant corrodes
and releases metal ions, nickel and cobalt will be transported and excreted, while
chromium may be cell-bound, either in local tissues or in organs such as the lung,
kidney, liver and spleen. Thus tissue levels may be different from that of the alloy
composition. Also, if there is significant wear and particulate debris in the tissues,
chemical analysis of the tissue will indicate a composition different from that of the
alloy.

SA3 Tissue responses and other expressions of toxicity
SA.3.1 Humans
(@) Inflammatory and immunological responses

No relevant systematic studies of tissue responses in orthopaedic implant patients
have been reported, although some reviews of case reports have tried to link the
occurrence of tumours to carcinogenic mechanisms. In a review of nine cases of
implantation site tumours following knee arthroplasty, and in a wider-ranging review
of the use of metallic implants, it was suggested that carcinogenicity could result from
the release of carcinogenic corrosion products (Jacobs & Oloff, 1982; Wapner, 1991).

A case series of 20 failed hip replacements (two Charnley (metal (T1AlV)-on-
polyethylene) and 18 McKee-Farrar (metal-on-metal)) revealed mild to severe acute
inflammatory response (characterized by the predominant occurrence of polymorpho-
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nuclear leukocytes) in all 12 cases that failed due to infection. The remaining eigh,
cases failed due to loosening. Chronic inflammation was seen in all but one of the 12
infected cases (predominantly lymphocytes and plasma cells). Acrylic debris from the
cement was found in all cases extracellularly and in three also intracellularly; ope
patient from this group and one other patient showed polvethylene debris (Charosky
eral., 1973). )

A case was reported of aseptic aggressive granulomatosis seven years after knee
arthroplasty. Both titanium- and polyethylene-containing fragments were observed
around the prosthesis, some titanium being found within macrophages or giant cel]s
(Tigges er al., 1994).

None of the pathological changes noted in clinical reports are suggestive of pre-
cancerous states.

When a material is implanted, it is recognized as a foreign body and macrophages
adhere 10 the surface of the material (Tang er al., 1993; Mrksich & Whitesides, 1996).
Large amounts of macrophages and polyethvlene debris are observed in tissues around
aseptically loosened hip arthroplasty (Dorr er al., 1990: Wroblewski, 1997). Macro-
phages generate active oxygen species by themselves without being active in phago-
cytosis, but the production of active oxygen is much higher during this process
(Johnston & Kitagawa, 1985; Edwards er al., 1988). The primary oxygen radical (059)
is converted by superoxide dismutase to hydrogen peroxide, which penetrates the
metal surface to which the macrophage has adhered. In the case of a titanium implant,
hydrogen peroxide reacts with the surface oxide film of titanium, which results in the
formation of a stable TIOOH(H,0), complex. This TIOOH matrix traps the superoxide
radical so that no or verv small amounts of free hydroxyl radicals are formed. Apart
from titanium, other biocompatible metals such as zirconium and aluminium also
show low hydroxy! radical production (Tengvall et al., 1989).

(b)  Oral contact lichenoid reactions

Contact lichenoid reactions topographically related to dental restorations display
various clinical characteristics, ranging from asymptomatic papular, reticular and
plague type lesions to symptomatic atrophic and reticular lesions (Holmstrup, 1991).
Contact lesions present with similar clinical characteristics as oral lichen planus.
These two types of lesion can be discriminated only by the degree to which the oral
mucosa is involved (Bolewska er al., 1990a,b). By definition, contact lesions are
limited to areas of frequent contact with dental restorations, whereas oral lichen planus
also involves other regions of the oral mucosa. In a study of the effect of replacement
of dental amalgam with gold or metal—ceramic crowns on oral lichenoid reactions.
Bratel er al. (1996) found that the lesions showed considerable improvement in 95%
of the patients. This effect was parallelled by a disappearance of svmptoms, in contrast
to patients with persisting contact lesions (5%), who did not report any significant
improvement. The healing response was not found to correlate with age, gender,
smoking habits, subjective drvness of the mouth or current medication. The healing
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effect in patients who received gold crowns was superior compared with that of
patients receiving metal—ceramic crowns. Similar contact lesions have been seen in
the topographical relationship to dental composite restorations (Lind, 1988) and palla-
dium-based crowns (Downey, 1989).

The etiology of these lesions remains uncertain. An immunological mechanism is
involved in some cases, whereas others seem to be related to irritative or cumulative
insult-tvpe reactions. Microbial factors such as viral or fungal infections may also
contribute to the clinical appearance. It is unclear whether oral lichen planus is a
multivariant group of etiologically diverse diseases or a disease entity characterized
by a type IV hypersensitivity reaction to an antigen in the junction zone between epi-
thelium and connective tissue. The premalignant potential of oral lichenoid lesions
requires regular follow-up at three- to six-month intervals (for reviews, see Scully
et al., 1998; Holmstrup, 1999).

(¢)  Allergic reactions

In questionnaire surveys about side-effects associated with dental materials, the
prevalence was estimated to be 1:300 in periodontics and 1:2600 in pedodontics. None
of these reactions was related to dental casting alloys. In prosthodontics, the pre-
valence was calculated to be about 1:400, and about 27% were related to base-metal
alloys for removable partial dentures (cobalt, chromium, nickel) and to precious-
metal-based alloys for porcelain-fused-to-metal restorations. The complaints
consisted of intra-oral reactions (such as redness. swelling and pain of the oral mucosa
and lips), oral/gingival lichenoid reactions and a few instances of systemic allergic
reactions. In orthodontics. the prevalence was 1:100, and most reactions (85%) were
related to metal parts of the extra-oral anchorage devices (Hensten-Pettersen, 1992).

Even though the extensive use of base-metal alloys has been of major concemn to
the dental profession, relatively few case reports of allergic reactions substantiate this
concern. Allergy to gold-based dental restorations has been more commonly reported.
Palladium-based alloys have been associated with several cases of stomatitis and oral
lichenoid reactions. Palladium allergy seems to occur mainly in patients who are highly
sensitive to nickel. All casting alloys, except titanium, seem to have a potential for eli-
citing adverse reactions in individual hypersensitive patients. Induction of tolerance
may be a possible benefit of the use of intra-orally placed alloys. In non-sensitized indi-
viduals, oral antigenic contacts to nickel and chromium may induce tolerance rather
than sensitization (Hensten-Pettersen, 1992).

Both local and systemic reactions may sometimes occur following implantation of
metallic devices (Rostoker er al., 1986; Wilkinson. 1989; Guyuron & Lasa, 1992).
Metal allergy has been suggested as a predisposing factor for infection of peri-
prosthetic tissues (Hierholzer & Hierholzer, 1984). However, the majority of indivi-
duals—even the majority of sensitized individuals—seem to tolerate low levels of
allergens in the tissues without adverse effect. Induction of immunological tolerance
may be a potential benefit.
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The mechanisms by which local cutaneous and systemic reactions are induced by
nickel in orthopaedic implants remain obscure and the development of such reactiong
is unpredictable. Some reactions appear to be type [ in nature. In others. there is goog
evidence of type IV hypersensitivity. In some patients. however, type L. III (Arthus)
and IV reactions seem to coexist (Wilkinson, 1989). The reaction patterns elicited by
other metals seem to0 be similar to those induced by nickel.

5A3.2  Experimenial systems
(@) Animal studies

The chemical carcinogenicity of metal compounds (such as that of chromium,
nickel, cobalt and arsenic) is believed to be dependent largely on their oxidation state and
solubility. with oxidative DNA damage or interference with DNA repair having been
postulated as likely mechanisms (Hartwig er al. 1996). Additional mechanisms of meta]
carcinogenesis include epigenetic changes, chromatin condensation or altered patterns of
gene methyiation (Costa, 1997; Salnikow er al., 1997). However, verv few experimental
studies have provided information on tissue responses to metallic implants that is of rele-
vance to carcinogenicity.

A series of five 18-24-month studies of rumour incidence following implantation
of tin revealed unusual non-neoplastic pathology, but only in tumour-bearing groups.
The studies were carried out in female Marsh mice and male and female Evans rats
given intraperitoneal tin implants (open-end cvlinders, 12 x 4 mm in mice. 25 x 8 mm
in rats). In addition to tumours (an increase was seen in local sarcomas with metastases,
but not in spontaneous lymphoid tumours in rats), atypical mesothelial hyperplasia,
adenomatous hyperplasia and osseous metaplasia were noted. Chronic inflammatory
responses were also common. These included focal histiocytic aggregation, multi-
nucleate giant cells, granulomata, fibrohyalinized capsular tissue, necrosis, fibrocellular
fat, lack of capsule, hyalinized sclerosis and cysts (Bischoff & Bryson, 1977).

Male WAB rats, 20 weeks of age, were given implants of either Walker 256 carci-
noma cells (as 5-mg solid tumour fragments) or syngeneic neonatal thymus tissue.
These tissues were placed in the centre of platinum-silicone elastomer loops, which
had been implanted earlier. Control animals received tissues without implants.
Colchicine was used to facilitate the assessment of cell proliferation. Rats with thymus
grafts were killed after three weeks and those with tumour grafis afier up to six days.
Group sizes were not reported. Historical data indicated 100% tumour growth at six
days in 1500 controls, whereas tumour growth was inhibited in 200/230 rats with
implants. Marked reductions in cell density and mitotic rate were seen, in comparison
with controls, at two. three, four and six davs afier tumour implantation. the cell density
being lowest close to the implant. Unlike in controls, proliferation of tumour cells in
the vicinity of implants was concentrated into foci of intense activity. In contrast, proli-
feration of thymus tissue was unaffected bv the presence of the platinum-silicone
implant. The authors ruled out restriction of the blood supply as a reason for the
observed effects and suggested that the selective inhibition of tumour cell proliferation
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may be a result of an alteration of the electrochemical environment by the implant
(Hinsull er al.. 1979). [The Working Group found it difficult to interpret these data.]

(b)Y  Cwvrotoxicirv of metal ions

The cytotoxicity of metal ions has been investigated systematically in L-929
fibroblasts (Takeda er al., 1989; Schedle er al., 1995; Yamamoto er al., 1998) and 3T3
fibroblasts (Wataha er al., 1991. Yamamoto et ai.. 1998). The rank orders of cytotoxiciry
that were found are: Cr > Co >V > Fe > Mn > Cu > Ni >> Mo (Takeda er al., 1989):
Cd» > Ag > Zn? > Cu?* > Ga** > Au’™ > Ni2* > Pd>* > In3- (Wataha er al., 1991), Ag-
> Pt~ > Co?- > In¥* > Ga’ > Au’- > Cu* > Ni2* > Zn2* > Pd?* > Mos~ > Sn2* > Cr2-
(Schedle er al., 1995); Cd?- > In?= > V3 > Be2+ > Sb3- > Ag~ > Hg?* > Cro~ > Co2* > Bi3-
> It > Cr3- > Hgw > Cu?* > Rh > Tl*- > Sn2* > Ga3- > Pb>- > Cu* > Mn2* > Tl* > Ni>*
>Zn? > Y > Wé- > Fed* > Pd?- > Fei > Ti#+ > Hf4%- > Ru3~ > Sr2+ > Sp*+ > Ba2* > Cs-
> Nbs~ > Ta*" > Zr* > AF* > Mo > Rb~ > Li- (data for 3T3 cells; Yamamoto er ai.,
1998). The concentrations that reduced [*H}thymidine incorporation to 50% of the
control ranged between 0.4 and > 435 umol/LL (Wataha er a/., 1991) and between 0.017
mmol/L and > 1 mmol/L (Schedle er al., 1995). Yamamoto et al. (1998) calculated the
IC4, values (50% of cell growth inhibition), which ranged from 1.36 x 106 to 1.42
x 10-2(mol L-1). For both cell types studied. the ions of chromium, cadmium, vanadium,
silver and cobait were generally the more cytotoxic. Sun er al. (1997) tested the effects
of A=, Co?+, Cr3+, Ni2*, Ti#+- and V3~ on osteoblast-like cell metabolism and differen-
tiation. DNA synthesis, succinate dehyvdrogenase and alkaline phosphatase activities,
culture calcification and osteocalcin and osteopontin gene expression were investigated
in ROS 17/2.8 cells. It was shown that metal ions can alter osteoblast behaviour at sub-
toxic concentrations, but do not affect the expression of all genes similarly. Granchi
et al. (1998) showed that large amounts of nickel and cobalt extracted from the metal
powders induced necrosis in virro in mononuclear cells from human peripheral blood
and high concentrations of chromium or limited amounts of nickel and cobalt caused
cell death by apoptosis. The cytotoxicity of metal ions extracted from commercial gold
alloys. silver alloys and nickel—chromium alloys was tested on 1929 mouse fibroblasts
(Schmalz er al., 1998a). The TCs, values were slightly lower in corresponding salt solu-
tions than in extracts. Nickel and cobalt ions upregulated the expression of adhesion
molecules as well as of the cyvtokines interleukin (TL)-6 and -8 in human endothelial cell
cultures, as do proinflammatory mediators (Wagner er al., 1998). Silver, mercury and,
to a lesser extent, gold ions induced direct toxicity (histamine release, ultrastructural
signs of necrosis) and platinum ions induced cell death through induction of apoptosis
in the human mast cell line HMC-1 (Schedle er al., 1998a). Extracts from titanium—
nickel alloy (50:50) were not cytotoxic in virro, not allergenic in vivo in guinea-pig, nor
genotoxic in virro in Salmonella typhimurium for gene mutation or in V79 cells for
chromosomal aberrations (Wever er al., 1997). Extracts from cobalt—chromium ortho-
paedic alloys caused inhibitory effects on cell viability, on alkaline phosphatase activity
and, to a lower extent, on protein production in all rat, rabbit and human bone-marrow
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cell cultures tested. the human cells being most sensitive to exposure to meta] ions
(Tomas er al., 1997). lons associated with the titanium—chromium-vanadium alloy T
6,4 inhibited the normal differentiation of rat bone-marrow stromal cells to Matyre
osteoblasts in virro (Thompson & Puleo, 1996).

(¢)  Cwvroroxicity of merallic materials
Cobalt—chromium allov was toxic to macrophages in virro, as reflected by release
of tumour necrosis factor (TNF) a, prostaglandin E2 and the enzyme lactate dehydro.
genase (Horowitz er al., 1998). Test specimens fabricated from copper, cobalt, Zin,
indium, nickel and precious-metal cast alloys reduced cell viability by 10-80¢,
(copper being the most active) in a three-dimensional cell-culture system consisting of
human fibroblasts and keratinocytes (Schmalz er al., 1998b). Nickel-titanium

(Nitinol) did not induce cytotoxic effects in human osteoblasts and fibroblasts in vigrg
(Ryhénen er al., 1997).

(d)  Effects of metal ions and merallic materials on cytokine levels and
histamine release

Effects of dental amalgam and heavy metal cations on cytokine production by
peripheral blood mononuclear cells were investigated in virro (Schedle er al., 1998b).
Fresh amalgam specimens and salt solutions containing Cu?* and Hg?* induced a
decrease in interferon-y and IL-10 levels, whereas fresh amalgam specimens and Hg2*
caused an increase in TNF-a levels. Amalgam specimens preincubated in cell-culture
medium for six weeks did not cause any effects. Ag . Au’~ and Hg? induced rapid
histamine release from human tissue mast cells in virro (Schedle er al., 1998a). Expo-
sure of macrophages cocultured with osteoblasts to cobalt—chromium alloy led to
significant,release of TNF-a and prostaglandin E2. but no significant IL-6 or IL-1p
production (Horowitz er al., 1998).

5A4 Genetic and related effects
5A.4.1 Humans

Case er al. (1996) studied chromosomal aberrations in blood and bone marrow in
71 patients (mean age 73 years) with hip (n = 69) or knee (n = 2) replacements who
required revision surgerv because of worn prostheses, and in 30 control patients (mean
age 70.3 years) having primary arthroplasty. Bone marrow was taken at the site of the
worn prostheses in the case of revision surgery or at the site of the newly inserted pros-
theses in the case of primary arthroplasty. Bone marrow from the ipsilateral iliac crest
and peripheral blood samples were also taken from all patients for metaphase analysis.
The frequency of chromosomal aberrations (mean + SD) in marrow taken from the
femur at primary arthroplasty (5.8 + 4.3 aberrant cells per 100 cells) was not different
from that found in the iliac crest marrow taken from revision cases (4.6 * 3.3 aberrant
cells per 100 cells). However, there was a significant increase in the frequency of chro-
mosomal aberrations (mean + SD: aberrant cells per 100 cells) in the cells taken from
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the femoral marrow adjacent to a worn prosthesis (11.4 £ 10.2, n= 16, < 10 years after
primary arthroplasty; 12.7 £ 10.8, n = 9, > 10 years) compared with the frequency in
the iliac crest marrow from the same patients (3.3 £ 2.7, n = 11, < 10 years; 5.6 + 2.0,
n =10, > 10 years) or with femoral marrow from patients at primary arthroplasty (see
above). Nine out of 27 femoral marrow samples from revision cases had higher
chromosomal aberration frequencies (17—40 aberrations/100 cells) than any of the
control femoral bone marrow (I1-15 aberrations/100 cells) or iliac crest marrow
samples from revision cases (0-15 aberrations/100 cells). Chromosomal aberration
frequencies were only slightly higher in patients requiring revision more than 10 years
afier primary arthroplasty. Two patients with a long duration of arthroplasty (18 and
20 years) showed clonal expansion of B or T cells which was associated in one case
with a high level of chromosomal aberrations in the femur (26/100 cells) compared
with ipsilateral iliac crest (6/100 cells). The authors cautioned that the results should
be seen as preliminary due to the low patient numbers. They discounted concomitant
disease and X-ravs as predisposing factors, leaving wear debris as a potential causative

agent.

5A.4.2 Experimental systems

Very few mutagenicity studies have been performed with metallic medical and
dental materials. The evaluation of the mutagenic potential is normally based on either
the results of tests with extracts or on knowledge of the mutagenic potential of the
individual metallic components of the biomaterial.

(@) Genoroxic activity of metals and metal compounds

Data on the genotoxicity and mutagenicity of some of the metals used in implants
have been compiled in previous IARC Monographs and are summarized here.

Chromium[ V1] compounds of various solubilities in water were consistently active
in numerous studies covering a wide range of tests for genetic and related effects
(IARC, 1990a).

The chromium([111] compounds tested were generally not genotoxic in numerous
studies and only weak effects were observed in some tests (IARC, 1990a).

Soluble nickel compounds were generally active in the human and animal cells in
which they were tested in virro (IARC, 1990b).

Cobalt[1l] compounds induced DNA damage, mutations, sister chromatid exchanges
and aneuploidy in mammalian cells. Some cobalt[IlI] complexes with heterocyclic
ligands were also active in these assays (IARC, 1991).

Chromosomal aberrations and aneuploidy were observed in mammalian cells
invirro and in rodents in vivo after treatment with cadmium chloride. DNA strand
breaks, mutations, chromosomal damage and cell transformation have been observed
after exposure of mammalian cells to cadmium compounds in vitro (IARC, 1993b).

DNA damage, sister chromatid exchanges, chromosomal aberrations and aneu-
ploidy (spindle disturbances) have been induced by mercury compounds in mammalian
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cells in virro. Weak positive genotoxic effects were observed with mercuric chloride i !
rodents in vivo (IARC, 1993a).
Bervllium salts are not mutagenic in most bacterial svstems but they induced Sister -
chromatid exchanges and possible chromosomal aberrations in mammalian cells -
in virro. Beryllium chloride induced gene mutation and chromosomal aberrations ip

mammaiian cells in virro (IARC, 1993¢).

(b)  Tests using extracts

Extracts for testing are generally prepared by adding the biomaterial 10 water, saline
or cell-cuiture medium for a few hours or days at 37°C. The corrosion that occurs under
these conditions has generally not been compared with the corrosion that is observed jn
vivo. Also. an analysis of leachable material is often not made, so there is no assurance
that any such substances have indeed been extracted from the biomaterial. Reference o
the muiagenicitv of individual metallic components can be misleading, because the
ionic species tested mav be different from those generated by leaching.

Tests on extracts are often performed for regulatorv compliance, and results are
not usually published in the open literature. [The Working Group noted that many
genotoxicity tests carried out for such purposes are not adequate to identify all muta-
genic hazards and they may not address all relevant mutagenic end-points or optimize
exposure 10 the test system.]

Assad er al. (1998) studied single-strand DNA breakage in interphase and meta-
phase human lymphocytes in virro using an in-situ end-labelling method with electron
microscopy. Twenty-four-hour extracts of particles of a nickel-titanium alloy (diameter
250-500 um) were prepared using complete RPMI medium at 37°C. The lvmphocytes
were exposed to the extracts for 72 h. The results were compared with those obtained
with extracts of commercially pure titanium or 316 L stainless steel particles. No
determination of the quantity of each meta] extracted by the medium was performed.
DNA strand breaks were significantly increased in metaphase chromatin with extracts
of 316 L stainless steel. Extracts of the nickel—titanjum alloy or of pure titanium did not
show an effect. However, no information on the metallic species from stainless steel
producing the effect was provided. No effect on chromatin in interphase nuclei was
observed with any of the extracts.

Wever er al. (1997) tested a nickel—titanium alloy (50% nickel) and compared the
results with those obtained with stainless stee] containing 13-15% nickel. Both alloys
were extracted in aqueous 0.9% sodium chloride for 72 h at 37°C. No determination of
the metal content of the extracts was performed. Extracts were tested with and without
metabolic activation for mutagenic acuvity in four strains of Salmonella typhimurium
(TA1535, TA1537, TA9S and TA100) and for induction of chromosomal aberrations in
Chinese hamster ovary (CHO) cells. The two alloys gave negative results in both tests.

The potential to induce neoplastic transformation in C3H T fibroblasts was tested
for eight metals (cobalt, chromium, nickel, iron, molybdenum, aluminium, vanadium
and titanium) and their alloys (stainless steel, chromium alloy, titanium-aluminium-
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vanadium alloy). The cells were exposed to solutions of the metal salts or to metal or
alloy particles (particle size <5 pm). Cell transformation was observed with soluble
forms of cobalt. chromium, nickel and molybdenum, although in some cases only at
cytotoxic concentrations. Vanadium, iron. aluminium and titanium salts did not induce
cell transformation. The particulate metals and alloys failed to induce cell transfor-
mation, although large differences in toxicity were noted (Doran et al., 1998).

§A.5  Mechanisms of carcinogenic action

Surgical alloys and metallic medical devices are insoluble in physiological media.
but are subject to corrosion and wear. Corrosion can result in the release of soluble
ions. Information with respect to the potential carcinogenic hazard of such ions is
available in previous [ARC Monographs. However, it is difficult to evaluate whether
the metal salts play any significant role in the possible carcinogenic effects observed
with implants, because there is a striking lack of data on the actual amounts of ions
released into the surrounding tissue and on the nature of the ionic species involved. It
is possible that irritation of the surrounding tissue by the implant itself, presumably
occurring at the boundary berween the metal surface and the tissue, can provoke
responses that lead to disturbances of normal cellular function. In addition, inflamma-
tory reactions observed at the site of implants may enhance oxidative processes,
inducing cellular damage and regenerative cell proliferation. Particulate debris gene-
rated by wear may induce similar reactions in the surrounding tissue or at more distant
sites. One single study has reported an enhanced frequency of chromosomal aberra-
tions in cells adjacent to a loose or worn prosthesis (hip or knee replacement) in
elderly patients (Case er al., 1996).

SB. Non-metallic Medical and Dental Materials

Of the many components of non-metallic medical and dental materials, only a few
are discussed here, which are those for which some data are available.

5B.1 Degradation, distribution, metabolism and excretion
5B.1.1 Humans
(@) Degradarion of polyurethane foam

Following early studies on degradation of polyurethane foam in implants in humans,
it was widely suggested that the foam either broke up or disappeared. However, Szycher
and Siciliano (1991) considered that the apparent fragmentation was observed because
of ingrowth of tissue into the foam structure and preparation of histological sections cut
through the three-dimensional matrix of the foam. It is however clear that degradation
of the foam in vivo can lead to loss of at least 30% over nine vears.

The urine of a female patient was analysed following implantation of Méme® poly-
urethane-covered breast implants. The implants were replaced at a revision operation
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abnormal band migration patterns consistent with p53 gene mutation. Reamplification
and direct sequencing of an abnormal SSCP band revealed a double mutation in exon
6 of the gene (C—T. G—T). Further analysis revealed a hot-spot mutation in 50% of
the tumours with p33 mutations, comprising GCT—CCC (Ala—»Pro), at codon 201 of
exon 6. The authors concluded that these results suggest, for the first time, that indirect
genotoxic mechanisms resulting in p53 mutations are involved in foreign- body
carcinogenesis (Pogribna er al., 1997). [The Working Group noted that p353 mutations
may arise during the later stages of tumour development.]

5C. OTHER FOREIGN BODIES

5C.1 Degradation in biological systems
~ No data were available to the Working Group.

5C.2 Distribution and excretion

The potential for components of implanted bullets and shell fragments to be
mobilized (solubilized or degraded by phagocytosis) and distributed to distant parts of
the body is relevant to the systemic carcinogenicity of such foreign bodies. Of the
possible metals in these objects, lead and depleted uranium are those of greatest concern.

5C.2.1 Lead
(@) Humans

That lead is distributed from the site of retained bullets to other areas of the body
has been clearly demonstrated from the number of case reports of lead toxicity in
individuals with retained bullets.

Machle (1940) reported in detail on two cases in which clinical diagnoses of lead
poisoning were correlated with retained bullets. He further reviewed 40 other cases
that had been described in the literature from 1867 to 1938 and was impressed with
the paucity of cases compared with the frequency of gunshot wounds and of bullets
that had been permitted to remain in the body. Bird and buck shot accounted for a
fairly high proportion of the cases, even though it is likely that many more persons had
implanted artillery shrapnel and rifle bullets from the First World War. The interval
between lodgment of the bullets (including buckshot) and initial lead poisoning
symptoms varied considerably (from 12 days to 48 years), although among the 13
cases in which the symptoms developed in less than one year, only two would be
considered cases of lead poisoning at the present time. The location of lodgment
seemed important, as more than half of the bullet-related lead poisoning cases
consisted of bullets retained within bones or joints.

Since Machle’s review, a number of individual case reports of bullet-related lead
poisoning have been published. In 1982, Linden er al. (1982) presented three addi-
tional bullet-lead poisoning cases plus a review of 13 other cases. Additional sporadic
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reports of bullet retention and resultant lead poisoning have been reported since thy,
time.

In a more recent review and critical analysis of lead poisoning associated wiy,
retained bullets, Magos (1994) analysed the data presented by Machle (1940), Lindey,
et al. (1982) and other published reports. On the basis of this extensive review, the
author concluded that while it is likely that only a fraction of persons with implanteq
lead projectiles actually develop lead poisoning, it is even more likely that only ,
fraction of those with bullet-reiated lead poisoning were actually diagnosed with the
condition. The number of mild lead poisoning cases is probably quite high but many
were missed by the examining clinicians due to (1) non-specificity of signs and-
symptoms of lead poisoning. (2) general lack of awareness and familiarity as to the
toxicity of lead and (3) inappropriate use of laboratory tests of lead indicators (blood,
serum. urine analysis). Mobilization of iead from retained bullets and shot may be
influenced by several factors, depending on mobilization from either the projectile
itself or from the surrounding tissues and other secondary storage sites. The factors
that can be considered most important are indicated in Table 62. On the basis of the
cases reviewed. the risk of lead poisoning and the latent period could not be predicted,
but it was noted that the number of known clinical cases was small in relation to the
actual number of persons carrving lead-containing bullets (Magos, 1994).

(b)  Experimental svstems

Discs of lead (enriched with two natural isotopes) were implanted into the knee
joints or leg (thigh) muscle of two mongrel dogs. The animals were monitored by mass
spectrometry for release of lead in biood over a three-year period. 206Pb served as a
marker for the discs implanted into the synovium, while 208Pb served as the marker for
lead implanted in the muscle. The knee implant underwent vigorous attack by the
synovial fluid and blood lead levels reached a maximum in four to six months,
declining thereafier as the remaining fragments became encapsulated. In contrast, there
was only minor mobilization of lead from the discs placed in the muscle during the first
month and even less thereafter as the discs became encapsulated. Very little physical
change was noted in the muscle implants, whereas the joint implants had disintegrated
after six months into a number of particles with corroded outlines. The smaller particles
subsequently became encapsulated within the joint (Manton & Thal, 1986). I

i

5C.2.2 Depleted uranium
(@) Humans

The distribution of uranium was determined radiochemically in tissues obtained at
autopsy of a man who had been emploved in the uranium processing industry for 26
years. The deposition of uranium in human tissues followed the order: skeleton > liver
> kidney. with concentration ratios of 63:2.8:1. This study indicates that the long-term
storage compartment for uranium in the skeleton may be greater than previously
estimated (Kathren er al.. 1989). I
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Table 62. Factors that may affect the mobilization of lead from
retained bullets

Mobilization from the projectile (lead builet)

Surface area Dissolution is faster from multiple pellets than from an
equal mass of a single bullet and is faster from fragmented
bullets than from non-fragmented ones.

Location Bullets retained in soft tissues tend to become encapsulated
by fibrous tissue which impedes release of lead.

Mechanical effects Impact of bullet with bone creates abrasive effect on bullet
lodged in a joint, which promotes disiniegration of the
bullet.

Acidity Low pH of synovial and bursal fluids promotes dissolution,
with high lead concentrations in the fluids and surrounding
tissues.

Mobilization from surrounding tissues and other secondary storage sites

Inflammation Lead taken up by the surrounding tissues may cause syno-
vitis and arthritis, which will promote dispersal of lead to
other areas. Cell migration and increased blood flow may
also play a role.

Impaired use of limbs  Inactivity due to painful arthritis can promote mobilization
of lead from bones.

Hypermetabolic Alcoholic acidosis, hyperthyroidism and fever may promote
conditions lead mobilization and increase sensitivity to lead.

Modified from Magos (1994)

(b)  Experimental systems

The distribution of implanted depleted uranium was studied with Sprague-Dawley
rats using three dose levels (low, medium, high: 4, 10, 20 pellets). The implants
consisted of 99.25% depleted uranium and 0.75% titanium with the uranium isotopes
amounting to 99.75% 238 U and 0.2% 235U and trace levels of 224U. [The Working
Group noted that the authors did not consider the radioactivity of the residual 23U and
2341 isotope as a major concern.] The pellets were implanted into the gastrocnemius
muscle of male Sprague-Dawley rats and tissue samples were analysed at day 1 and
at 1, 6, 12 and 18 months. Within one day, uranium had appeared in the kidney and
bone. By six months, the uranium level had reached a plateau in the kidney but
continued to rise in bone throughout the 18-month period in the high-dose group. The
urine concentration of uranium reached a maximum at 12 months and had declined by
18 months. A dose- and time-related increase in uranium levels was found in many
tissues. The greatest concentrations were found in the kidney and bone. the primary
reservoirs for uranium redistributed from intramuscularly embedded depleted uranium
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fragments. Many tissues other than muscle had significant concentrations of uranium,
including the brain, liver, spleen, lung, lymph nodes and testes (Pellmar et al., 1999).

The effects of implantation of depleted uranium pellets were studied in Spragye.
Dawley rats. Groups of animals received 20 depleted uranium pellets (high dose), 19
depleted uranium pellets and 10 tantalum (inert control) pellets (medium dose), or four
depleted uranium and 16 tantalum pellets (low dose). The control group received 20
tantalum pellets. At 6, 12 and 18 months after implantation, the concentrations of
uranium in urine were significantly increased in all dose groups, peak concentrationg
being observed at 12 months (Miller er al., 1998a). In the same study, mutagenicity ip
urine was investigated (see Section 5C.4.2).

5C.3  Tissue responses and other expressions of toxicity
5C3.1 Lead

The toxicity of systemically distributed lead is well known and has been reviewed
by IARC (1980) and elsewhere. The toxic effects in humans involve several different
organ systems with subtle clinical symptoms in most cases. In adults, the main organs
affected are the neurological system, the haem-synthesizing system and the kidneys.
With excess occupational exposure or accidental exposures to lead, the most evident
effects have been peripheral neuropathy and chronic nephropathy. The most sensitive
effects in adults may be hypertension and anaemia. Less commonly, lead-induced
toxicity may affect the gastrointestinal and reproductive systems (sterility and
neonatal deaths).

5C.3.2 Deplered uranium

In humans, the kidney and bone are the primary target organs of internal exposure
to uranium, regardless of the route of exposure. Most of the absorbed uranium is
cleared from the blood stream and excreted in the urine within 24 h. The uranium that
is not excreted is reabsorbed by the proximal tubules of the kidney, where it causes its
primary toxic effects (Kathren er al., 1989; Pellmar et al., 1999). Chronically exposed
uranjium mill workers showed mild dysfunction of the kidney and increased urinary
excretion of beta-2-microglobulin (Thun er al., 1985). In one case study, neurological
effects were seen (Goasguen er al., 1982). These data indicate that embedded fragments
of depleted uranium may lead to neural damage, which may affect both cognitive and
motor functions.

Preliminary results have been published of toxicity studies in rats with implanted
depleted uranium. Depleted uranium pellets (1 x 2 mm) consisting of 99.25% depleted
uranium and 0.75% titanium by weight were implanted at three dose levels (4, 10 and
20 pellets) into the gastrocnemius muscle of male Sprague-Dawley rats. Clinical and
laboratory analyses are being performed to detect kidney, behavioural and neural
toxicity. Six months after implantation, decreased weight gain, a dose-related increase
in levels of depleted uranium in the kidneys, bone and urine, and a decrease in neuronal
excitation in the hippocampus were reported. However, while uranium was found in the
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brain, no behavioural toxicity was observed at six months after implantation. The
authors indicated that the kidney toxicity was less than would be expected on the basis
of the uranium levels in the kidneys (Pellmar ez al., 1998).

A preliminary report was given of an ongoing study to assess the potential carcino-
genicity of long-term exposure of rats to implants of depleted uranium (DU), such as
shrapnel in wounds. Groups of 50 male Wistar rats were given implants into the thigh
muscle of 5.0 x 5.0 x 1.5-mm or 2.5 x 2.5 x 1.5-mm DU squares composed of 99.25%
uranium and 0.75% titanium. Other groups were given implants of 2.0 x 1.0-mm
diameter DU pellets, tantalum squares (negative controls) and thorotrast (thorium
dioxide) injections (positive controls). After 15 months of the planned 24-month
exposure period, a marked local tissue reaction (including fibrous capsule formation)
had developed around the DU and tantalum implants, the capsules being much thicker
around the uranium implants. There was also a decrease in weight of the group that
received the largest mass of DU, although survival was not affected in any of the
groups. Carcinogenic response is not yet known (Hahn er al., 1999).

5C.4 Genetic and related effects
5C.4.1 Lead
The genetic and related effects of lead have been reviewed (IARC, 1987c¢).

5C.4.2 Depleted uranium
(@) Humans
No data were available to the Working Group.

(b) Experimental systems

Mutagenicity induced by depleted uranium implants has been demonstrated in
experiments with male Sprague-Dawley rats. Urine and serum of these animals were
evaluated for mutagenic potential using the Ames Salmonella mutation assay. The
implants consisted of pellets implanted into the gastrocnemius muscle at three dose
levels. Tantalum was used as a negative control. Urine and blood were collected at 0,
6, 12 and 18 months for the mutagenicity assay. While no mutagenicity was observed
with the sera, a substantial dose- and time-dependent increase in mutagenicity was seen
with urine samples. Positive results were obtained with S. typhimurium strain TA9® and
the Ames II™ mixed strains (TA7001-7006). A significant elevation in mutagenic
potential was observed in TA98 strain and Ames 1™ tests with the Amberlite XAD-4
and XAD-8 column fractions of urine, which was dependent on both the length of time
since implantation and the number of uranium pellets implanted. Urine from animals
that had tantalum implants showed no increase in mutagenicity. A strongly positive
correlation was observed between urinary mutagenicity and urinary uranium levels at
6, 12 or 18 months afier pellet implantation (Miller er al., 1998a).

A doubling of sister chromatid exchanges was found in human osteoblast-like
cells treated with 10 uM of depleted uranium-urany! chloride for 24 h. This was a
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greater response than that found with the positive control, nickel sulfate (Miller et g,
1998b) | ’

In the same series of experiments, in-vivo transformation of human osteoblast-}ike
cells with depleted uranium was demonstrated. Human osteosarcoma cells (HOS TEgs
clone F-5) were treated with depleted uranium-uranyl chloride (10 uM) for 24 h, a;
which time the cells were rinsed, trypsinized and seeded onto tissue culture dishes. The
dishes were incubated for five weeks and examined for the appearance of transformeg
foci. Morphologically, the uranium-exposed cells developed into diffused type II foc;.
A 10-fold increase in transformation frequency was observed in the treated compared to
the non-treated cells. The transformation response was stronger with depleted uranium
than with the positive controls (nickel sulfate or lead acetate). The transformed cells
showed increased expression of the K-ras oncogene, and suppression of the phos-
phorylation of the Rb protein. Transformation was confirmed by injection of 1 x 106 or
5 x 10¢ of uranyl chloride-treated cells subcutaneously into four- to five-week-old
female athymic mice. Tumours developed within four weeks. The histological appea-
rance resembled a carcinoma characterized by an undifferentiated, sheet-like growth
(Miller ez al., 1998b).

. e
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6. SUMMARY OF DATA REPORTED AND EVALUATION

6.1 Exposure data

A wide range of metals and their alloys, polymers, ceramics and composites are
used in surgicaily implanted medical devices and prostheses and dental materials. Most
implanted devices are constructed of more than one kind of material (implants of
complex composition). Since the early 1900s, metal allovs have been developed for
these applications to provide improved physical and chemical properties, such as
strength, durability and corrosion resistance. Major classes of metals used in medical
devices and dental materials include stainless steels, cobalt—chromium alloys and
titanium (as allovs and unalloyed). In addition, dental casting alloys are based on
precious metals (gold, platinum, palladium or silver), nickel and copper and may in
some cases contain smaller amounts of many other elements, added to improve the
alloys’ properties.

Orthopaedic applications of metal alloys include arthroplasty, osteosynthesis and
in spinal and maxillofacial devices. Metallic alloys are also used for components of
prosthetic heart valve replacements, and pacemaker casings and leads. Small metallic
parts may be used in a wide range of other implants, including skin and wound staples,
vascular endoprostheses, filters and occluders. Dental applications of metals and
alloys include fillings, prosthetic devices (crowns, bridges, removable prostheses),
dental implants and orthodontic appliances.

Polymers of many types are used in implanted medical devices and dental
materials. Illustrative examples are silicones (breast prostheses, pacemaker leads),
polyurethanes (pacemaker components), polymethacrylates (dental prostheses, bone
cements), poly(ethylene terephthalate) (vascular grafis, heart valve sewing rings,
sutures), polypropylene (sutures), polyethylene (prosthetic joint components), poly-
tetrafluoroethylene (vascular prostheses), polyamides (sutures) and polylactides and
poly(glycolic acids) (bioresorbables).

Ceramic materials based on metal oxides (alumina. zirconia) find use in joint
replacements and dental prostheses. Other materials based on calcium phosphate are
used as bone fillers and implant coatings. Pyrolytic carbon applications include heart
valves and coatings for implants. Composites are used mainly in dental fillings.

Although precise numbers are not available, many millions of people worldwide
have implanted devices, which may remain in place for vears.

Foreign bodies, such as bullets and pellets from firearms and metallic fragments
from explosions, may penetrate and remain in human tissues for long periods of time.
Internal exposure to constituents, including lead (from bullets and pellets) and
depleted uranium (from shell and missile fragments), may result.
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6.2 Human carcinogenicity data

Sixteen case reports have described neoplasms originating from bone or soft
connective tissue in the region of metal impiants. An analytical study did not repor an
increased risk for soft-tissue sarcoma after metal implants. No association with dentg
amalgam was found in a case-control study in Australia.

The 30 case reports of breast cancer following silicone implants for cosmetic breast
augmentation appear unlikely to correspond to an excess of breast cancer. All five
cohort studies involving a total of more than 18 000 women treated with surgical pros-
theses made of silicone (or polyurethane-coated silicone) for cosmetic breast augmen.
tation conducted in Canada, Denmark, Sweden and the United States consistently foung
no evidence of increased risk of breast cancer. The combined results of the four largest
cohort studies show a 25% reduction in risk. Similar results were reported by a large
case—control study including more than 2000 cases and 2000 controls in the United
States. All cohort studies were based on subjects exposed to implanted silicone at an
early age. usually berween the ages of 30 and 40 years, so that the number of breast
cancer cases observed in each studv was relativelv small. Except for the case-
control study in the United States, only limited allowance was made for potential con-
founding factors, although no clear evidence has emerged as to the relevance of any
such factor to a possible association between implanted silicone and breast cancer risk.

Three of the studies considered the issue of latency, with observation periods of up
to 10 years or more, but even in the group of women with follow-up of 10 years or
more, there was no suggestion of increased risk. The risk of cancer following surgical
implantation of silicone prostheses for breast reconstruction after breast cancer was
considered in a study in France. The results of this study suggest no excess risk of
second primary breast or other cancer, distant metastases, local recurrence or death
from breast cancer. The reduced risks for breast cancer found in the cohort and case-
control studies are unlikely to be due to chance, and no bias that would explain these
findings has been identified. Four cohort studies of women with surgical breast
implants in Denmark, Sweden and the United States reported on cancers at sites other
than the breast. None of these studies found an increased risk for all cancers combined. I
Two studies reported increased risk for lung cancer, but these results were based ona
total of only nine observed cases. For no other cancer site was there consistent l

evidence of an increased risk, although the statistical power to detect an increased risk
of rare neoplasms. including soft-tissue sarcomas, was small.

Out of the large number of patients with orthopaedic implants of complex compo-
sition (metal with bone cement with or without polyethyvlene), a total of 35 cases have
been reported of malignant neoplasms arising from the bone or the soft tissue in the
region of an implant. Fourteen cohort studies of patients following total knee or total
hip replacement from six countries were performed to investigate cancer incidence in
these populations. Two of the studies from Finland and two studies from Sweden were
partially overlapping. One study included onlyv patients with metal-on-metal implants.
five studies included only patients with polvethylene-on-metal implants. while the I
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remaining studies included patients with mixed or unspecified types of implant. One
study showed a small increase in overall cancer incidence, while the remaining studies
showed overall decreases. Four of these studies suggested an excess risk for specific
cancers, including Hodgkin’s disease, non-Hodgkin lymphoma. leukaemia and kidney
cancer. However, results of the other studies were not consistent with this observation.
In one small cohort study from Denmark of patients with a finger or hand implant, an
increased risk of lvmphohaematopoietic cancer was observed. Additionally, two
case—control studies, one including cases with'soft-tissue sarcoma and the other inclu-
ding lymphoma and leukaemia, were carried out in the United States. The latter
overlaps with one of the cohort studies. Neither of these studies showed an association
with the presence of implants of complex composition. Most of the studies did not
have information on possible confounding variables such as immunosuppressive
therapy or rheumatoid arthritis for the lymphomas and analgesic drugs for kidney
cancer. The follow-up in most of the studies mav have been too short to evaluate
cancer occurring many years after exposure; in some studies with longer follow-up,
the numbers of long-term survivors were low.

Thirteen cases of breast cancer and one case of plasmacytoma have been reported
in patients with cardiac pacemakers. Ten cases of different neoplasms have been
reported at the site of non-metallic foreign bodies. Eight cases of sarcoma have been
reported at the site of vascular grafts. No conclusions can be drawn from these case
reports. ;

Twenty-three cases of sarcomas, twenty-three cases of carcinomas and seven
cases of brain tumours have been reported at the site of metallic foreign bodies,
mainly bullets and shrapnel fragments.

6.3 Veterinary studies

Despite the large number and variety of both metallic and non-metallic internal
fixation devices used in dogs in recent decades, only about 60 cases of sarcomas,
primarily of bone, have been reported. In addition, four cases of sarcomas at the site
of other foreign bodies have been reported in dogs. One case—control study found no
association berween metallic implants used to stabilize fractures in dogs and the deve-
lopment of bone or soft-tissue tumours.

In contrast, at least 563 cases of vaccine-associated sarcomas in cats have been
reported in just six years, with an estimated annual incidence of 1-13 per 10 000 vacci-
nated cats. Vaccine-associated sarcomas have been mostly associated with admi-
nistration of recently introduced feline vaccines containing adjuvant. Tumours that
develop at vaccination sites are morphologically different from those that develop at
non-vaccination sites. A cohort study found that cats developed sarcomas in a shorter
time at sites used for vaccination than at non-vaccination sites and that there was an
increased risk for sarcoma development with increased numbers of vaccines at a given
site.
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6.4 Animal carcinogenicity data

Chromium meral powder was tested in rats by intramuscular and INtrare
administration, in mice and rats by intrapleural and intraperitoneal administraIiOn, .
rats and rabbits by intraosseous implantation and in mice, rats and rabbits by intrs.
venous injection. No increase in tumour incidence was observed in these Smdi‘
although most studies had limitations in design, duration or reporting.

Cobalt metal powder was tested in rats by intramuscular or intrathoracic injecticn,
producing sarcomas at the injection site. Studies in rats by intrarenal injection andl
rabbits by intraosseous injection had limitations in design, duration or reporting.

Nickel meral powder was tested by inhalation exposure in mice, rats and guinea-pigs_
by intratracheal instillation in rats and Syrian hamsters, by intramuscular injection in
and hamsters and by intrapieural. intraperitoneal, intraosseous and intrarenal injecxio;?'
rats. It was also tested by intravenous injection in mice and rats. Nickel meta] pel
were tested by subcutaneous administration in rats. The studies by inhalation expos

let

were inadequate for an evaluation of carcinogenicity. After intratracheal instillation
nickel, significant numbers of squamous-cell carcinomas and adenocarcinomas of the
lung were observed in rats: one adenocarcinoma of the lung was observed in hamstexj
Intrapleural injections induced sarcomas in rats. Subcutaneous administration of nick
metal pellets induced sarcomas in rats; intramuscular injection of nickel powder induced
sarcomas in rats and hamsters; and intraperitoneal injections induced local carcinomaj
mesotheliomas and sarcomas in rats. No significant increase in the incidence of loc
kidney tumours in rats was seen following intrarenal injection. Studies by the intra-
osseous and intravenous routes were inadequate for evaluation.

Tizanium meral was tested in rats by intramuscular implantation of rods and by
intraosseous administration of powder, rods or wire. No local tumours occurred.

Most nickel-based allovs that have been tested for carcinogenicity in animals ar’
not actually used in clinical devices, and carcinogenicity data are not available for
number of alloys which are commonly used, including nickel-titanium.

Metal alloys containing a preponderance of nickel in combination with varyin’
amounts of chromium. iron, gallium, copper, aluminium and manganese have bee
tested as powder or pellets by subcutaneous or intraperitoneal administration to rats
and by intratracheal administration to hamsters. In these studies, local sarcomas wer
consistently found at the injection site in the treated animals and were absent i
vehicle controls. One of the nickel-based alloys (which contained approximately
66-67% nickel, 13-16% chromium and 7% iron) was tested independently by tw
laboratories, using different species (hamsters and rats) and different routes of admi-
nistration (intratracheal and intraperitoneal). In both studies, local tumours were seen
in proportion to the dose of alloy. Local tumours were also observed in two bioassa}’i
in which rats recéived identification ear tags made of an alloy that contained 67%
nickel, 30% copper, 2% iron and 1% manganese.

Most other nickel-containing alloys tested as powder and rods in rats by intra-
muscular, intraperitoneal. intrarenal and intraosseous administration gave negative or
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5% equivocal results for induction of tumours at the injection site. One study in hamsters

by intratracheal administration of an alloy powder containing approximately 27%
nickel, 39% iron and 16% chromium also gave negative resuits.

One clinically relevant alloy, Ni35C035Cr20Mo10 (MP35N alloy), gave negative
results for carcinogenicity when tested in two studies by intramuscular implantation in
rats as rods, but produced local sarcomas in one study following intramuscular admi-
nistration to rats as a powder.

Titanium-based alloys were tested in rats by intramuscular administration of rods
and by intraosseous administration of rods and intra-articular administration of wear-
debris. No local umours were observed at the injection site in these experiments,
except in one study by intraosseous administration in which a titanium/aluminium/
vanadium alloy implanted into the femur as hemi-cylinders produced a high incidence
of local tumours, especially where there was loosening of the implant.

Cobalr-based alloys were tested in rats by intramuscular administration. Local
rumours were induced by a powder (particle size, 0.1-1 um) in horse serum but not
by dry powders (particle size, 0.5-50 and 100-250 um) or by polished rods. No local
tumours were observed in guinea-pigs following intramuscular injection of cobalt as
a dry powder (particle size, 0.5-50 pm). A low incidence of local tumours was
observed in rats following intraosseous administration of two cobalt-based alloys
given as powder or wire. Local tumours did not occur following intraosseous implan-
tation of rods of two other cobalt-containing alloys. No local tumours occurred in rats
following intra-articular administration of a cobalt alloy powder.

Stainless steels containing 13—17% chromium were tested by intratracheal admi-
nistration of powder to hamsters, intrabronchial administration of wire to rats and by
intramuscular administration of rods and discs to rats and intraosseous administration
of rods and powder to rats. No local tumours were observed, except in rats receiving
stainless steel discs.

Thin foils of silver, gold, platinum, tin, steel, Vitallium (CoCrMo alloy) and tantalum
were tested by subcutaneous implantation in rats. All of these foils produced local
sarcomas.

In one study in rats, subcutaneous implantation of discs of aluminium oxide
ceramic produced local sarcomas. In a few studies in mice and rats, local sarcomas
were observed following subcutaneous implantation of glass sheets.

Numerous polymeric materials have been tested for carcinogenicity in mice and
rats, most frequently by subcutaneous, intramuscular or intraperitoneal injection. Many
materials—cellophane, e-caprolactone-L-lactide copolymer, polvamide (Nylon), poly-
(ethvlene terephthalate), polvethylene, poly-L-lactide, poly(2-hvdroxyethylmeth-
acrvlate), poly(methyl methacryvlate), polypropylene, polystyrene, polytetrafluoro-
ethylene, polyurethane, poly(vinyl alcohol), poly(viny! chloride), polymethylsiloxane
(silicone) film or polysilicone gum and vinyl chloride-viny! acetate copolymers—
produced sarcomas at the site of implantation with varying incidence. When several
polymers were tested in rats according to the same experimental protocol, sarcoma
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incidences ranged from 70% (polypropylene) to 7% (silicone). A low incidence of ]
tumours was seen with silicone in five separate experiments using rats.

A few experiments with various polymeric materials have been reported uSinJ
small number of other animal species. such as rabbits, guinea-pigs and hamsters, with
generally negative findings.

Polymeric materials with a large surface area and a flat and smooth surface morpho-l
logy generally induced a significantly increased incidence of sarcomas at the site or
implantation. In most studies, perforated or foam materials or textiles induced lower
incidences of sarcomas in comparison with flat films. Some studies suggest that Surfac;;l
roughening decreases local sarcoma incidence. The diameter and number of trans.
membrane channels (pores) per unit surface area are critical for this trend of decrease i
sarcoma incidence. Segmenting or pulverizing polymeric materials signiﬁcamlyl
decreases local sarcoma incidences, often to nil.

For biodegradable polymers, the degradation rate is critical for local tumour induc-
tion in rodents. No local umours were observed with poly(glycolic acid), which isl
quickly degraded within two months, whereas local sarcomas were induced by poly-
L-lactide and e-caprolactone-L-lactide copolymer which degraded more slowly (the
polylactide degraded but was dimensionally unchanged at 24 months; 8-caprolactone-l
L-lactide copolymer fragmented after six months).

ocaj

6.5 Other relevant data '
The mutagenicity and carcinogenicity of a biomaterial are influenced by the exact
composition of the biomaterial or extract(s); the composition and rates of release of
leachable materials into the biological environment; degradation, which may lead to
the formation of compounds with different mutagenic properties or leachability; the
physical environment; and the surface properties. Much of the information availablel
for assessment is inadequate in these respects, and methods are dften not validated.
Wear and corrosion of metal implants result in the generation and release of a wide
range of degradation products. The composition of the material surface or particles can
vary as individual components are selectively removed or chemically modified. In the case
of alloys, the release of one type of metal ion can be strongly influenced by the identity of
other metals in the alloy. Most studies provide inadequate characterization data, but there l
is potential for the release of chemical species of known mutagenicity or carcinogenicity.
Experimental studies have shown that the potential for lead toxicity as a compli-
cation of lead projectile or bullet injury appears to be related to the surface area of the I
bullet (the greater the surface area, the greater the absorption), the location of the
bullet (muscle or joint tissues), the presence of synovial fluid and length of time that
the bullet resided in the body.
Available studies are inadequate 10 permit reliable and accurate estimates of long-
term effects of depleted uranium in humans. Because of the low specific radioactivity

of depleted uranium, the long-term toxicitv is thought to be due to chemical rather than
radiation effects.

i
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Inflammatory (fibrotic) reactions have been observed with several non-metallic
implant materials, including silicones and polyurethanes. Depending on the physical
properties of the biomaterial, its presence can be associated with implantation-site
sarcomas in rodents. There are insuffictent data to conclude that a genotoxic mechanism
operates In solid-state carcinogenesis. There are in-vitro data demonstrating the inhi-
bitory effects of polyurethane, polyethylene and poly(ethylene terephthaiate) on gap
junctional intercellular communication.

Mutagenic properties of some biomaterial extracts have been demonstrated in some
studies. The compounds shown or suspected to be responsible for this are components
of the biomaterial. unreacted monomers or products of secondary reactions.

Data on the local and systemic availability of chemical species have been reported
for only a limited number of biomaterials. In the case of poly(ester urethane) foam,
biodegradation results in the generation of 2.4-diaminotoluene. This compound
induces hepatocellular carcinomas when fed to mice and rats. There is no evidence
that chemical carcinogenesis due to this compound plays a direct role in the mecha-
nism of implant-site sarcoma development. There is no convincing evidence for the
biodegradation of polydimethylsiloxanes (silicones).

Cytotoxicity of freshly cured dental composite materials and bonding agents has
been demonstrated. Also, the components of resin composites all cause significant
toxicity in direct contact with fibroblasts. However, the hazard for the dental pulp
depends on the quantities which permeate the dentin and accumulate in the pulp.

A limited number of animal studies have shown pulpal responses to acid etching
and bonding agents, which indicates a possible risk of pulpal reactions in patients.
Composite materials may give rise to biological effects, but microleakage and
bacterial infection complicate the evaluation of pulpal effects of composites.

Clinical reports on the adverse effects of composite filling materials indicate that
pulpal and mucosal reactions rarely occur.

With few exceptions, the amounts of individual chemicals to which professionals
and patients are exposed from adhesive agents and composite dental filling materials
seem to be insufficient to cause clear, systemic toxic effects. Some constituents of
adhesive agents and composite materials may have genotoxic potential. For most com-
pounds of dental composites, there is little information on toxicity. With the exception
of methyl methacrylate, no relevant data are available to compare local concentrations
of released compounds with levels that produce toxic effects.

Formaldehyvde has been shown to be released from some dental polvmers in vitro,
but the levels appear to be low.

6.6 Evaluation

There is evidence suggesting lack of carcinogenicity in humans of breast implants,
made of silicone, for female breast carcinoma.

There is inadequate evidence in humans for the carcinogenicity of implanted
prostheses made of silicone for neoplasms other than female breast carcinoma.
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There is inadequare evidence in humans for the carcinogenicity of non-metalljc !
implants other than those made of silicone. y

There is inadequate evidence in humans for the carcinogenicity of metalml
implants and metallic foreign bodies.

There is inadequate evidence in humans for the carcinogenicity of orthopaedj
implants of complex composition and of cardiac pacemakers. cl

No epidemiological data relevant to the carcinogenicity of ceramic implants of
dental alloys of precious metals were available.

There is sufficient evidence in experimental animals for the carcinogenicity orl
implants of metallic cobalt. metallic nickel and for nickel alloy powder containing
approximately 66—67% nickel. 13-16% chromium and 7% iron.

There is limited evidence in experimental animals for the carcinogenicity of!
implants of alloys containing cobalt and alloys containing nickel, other than the
specific aforementioned alloy.

There is inadequate evidence in experimental animals for the carcinogenicity of
implants of chromium metal, stainless steel, titanium metal, titanium-based allovs and
depleted uranium.

There is sufficient evidence in experimental animals for the carcinogenicity of
polymeric and metallic materials in the form of thin films, foils or sheets when
implanted into connective tissues of rodents. '

There is inadequate evidence in experimental animals for the carcinogenicity of
poly(glycolic acid) implants.

There is inadequate evidence in experimental animals for the carcinogenicity of
polymeric materials in the form of powders when inserted into connective tissues of
rodents.

There is inadequate evidence in dogs for the carcinogenicity of metallic implants
and metallic and non-metallic foreign bodies.

There is limited evidence in cats for the carcinogenicity of certain feline vaccines
containing adjuvants.

Overall evaluation

Organic polymeric materials as a group are not classifiable as to their carcino-
. genicity to humans (Group 3).
i Polymeric implants prepared as thin smooth films (with the exception of poly-
" (glycolic acid)) are possiblv carcinogenic to humans (Group 2B).

Orthopaedic implants of complex composition and cardiac pacemakers are nor

classifiable as to their carcinogenicity to humans (Group 3). .

el e e e 0 0 At e o bl e . i S b B e 18 B ok 1E e 2P B EW A D FLT LI, Pal3lon IR a Bt JWRA e o s o
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Silicone breast implants are nor classifiable as 1o their carcinogenicity to humans
(Group 3).

Metallic implants prepared as thin smooth films are possibly carcinogenic to
humans (Group 2B).
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: Implanted foreign bodies of metallic cobalt, metallic nickel and an alloy powder
: containing 66—67% nickel, 13—-16% chromium and 7% iron are possibly carcinogenic
to humans (Group 2B).

Implanted foreign bodies of metallic chromium or titanium and of cobalt-based,
chromium-based and titanjum-based alloys, stainless steel and depleted uranium are
not classifiable as to their carcinogenicity to humans (Group 3).

Dental materials are nor classifiable as 10 their carcinogenicity to humans
(Group 3).

Ceramic implants are not classifiable as to their carcinogenicity to humans
(Group 3).
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NICKEL AND CERTAIN NICKEL COMPOUNDS
First Listed in the First Annual Report on Carcinogens

CARCINOGENICITY

There is sufficient evidence for the carcinogenicity of nickel (CAS No. 7440-02-0) and
the following nickel compounds in experimental animals: nickel acetate (373-02-4), nickel
carbonate (3333-67-3), nickel carbonyl (13463-39-3), nickel hydroxide (12054-48-7 or 11113-
74-9), nickelocene (1271-28-9), nickel oxide (1313-99-1), and nickel subsulfide (12035-72-2)
(IARC V.2, 1973; IARC V.11, 1976; IARC S.4, 1982; IARC S.7, 1987). When injected
intramuscularly, nickel induced incidences of fibrosarcomas in rats and hamsters of both sexes,
local sarcomas in rats of both sexes, and local tumors with some metastases to pre-vertebral
lymph nodes in female rats. When injected intrapleurally, nickel powder induced round cell and
spindle cell tumors at the injection site in female rats. When administered by inhalation, nickel
induced lymphosarcomas in female mice and anaplastic intraalveolar carcinomas, including one
with extensive pulmonary adenomatosis, in male and femae guinea pigs. Subdermal
implantation of nickel pellets induced sarcomas surrounding the pellet in female and male rats.
When injected intramedullarly into the femur, rats developed neoplasms a or near the site,
including fibrosarcomas (neurogenic in origin), and one reticulum cell sarcoma with metastases.
The same route of administration induced one metastasizing endothelial fibrosarcoma in a rabbit
(IARC V.11, 1976; IARC V.2, 1973). When administered intraperitoneally, nickel acetate
induced an excess of lung adenomas and carcinomas in mice (IARC S.4, 1982). When
implanted intramuscularly, nickel carbonate induced sarcomas at the site of the implanted pellet.
When administered nickel carbonyl through inhalation, male rats developed one pulmonary
adenocarcinoma with metastases, extensive squamous metaplasms of the epithelium, neoplasms
of the lung, one mixed adenocarcinoma and squamous cell carcinoma with metastases to the
kidney and mediastinum, and papillary bronchiolar adenomas. Injection of nickel carbonyl into
the tail vein of rats of both sexes induced malignant tumors including undifferentiated leukemia,
pulmonary lymphomas, and individual incidences of liver, kidney, and mammary carcinomas.
When millipore diffusion chambers containing nickel hydroxide were implanted in rats, loca
tumors were induced. When administered by intramuscular injection, nickelocene induced
fibrosarcomas in rats and hamsters of both sexes. When administered by intramuscular injection,
nickel oxide induced injection site sarcomas in mice and rats, administration by intramuscular
implantation induced rhabdomyosarcomas and fibrosarcomas in mice and implantation site
sarcomas in rats. When administered by intramuscular implantation, nickel subsulfide induced
rhabdomyosarcomas and fibrosarcomas in mice and rats, rhabdomyosarcomas with distant
metastases and implantation site sarcomas in rats, and tumors in mice. Palpable local tumors
arose at implantation sites after nickel subsulfide pellets were removed from rats at various
times. Intratracheal injection of nickel subsulfide induced malignant neoplasms of the lungs,
adenocarcinomas, and squamous cell carcinomas, in rats of both sexes. Intramuscular injection
of nickel subsulfide induced injection site sarcomas and rhabdomyosarcomas in rats and mice
and fibrosarcomas and undifferentiated sarcomas in male rats;, in addition, the sarcomas
metastasized to distant sites, e.g., lungs, liver, heart, spleen, mediastinum, and mesentery and
para-aortic lymph nodes (IARC V.2, 1973; IARC V.11, 1976). Nickel subsulfide induced
malignant tumors in rats after insertion into heterotransplanted tracheas and after intrarenal,
intratesticular, and intraocular administration (IARC S.4, 1982).

An IARC Working Group determined that there is limited evidence for the
carcinogenicity of nickel and certain nickel compounds, and sufficient evidence for the
carcinogenicity of nickel refining in humans (IARC S4, 1982). A subsequent IARC Working
Group determined that there is sufficient evidence for the carcinogenicity of the group of nickel
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Nickel and Certain Nickel Compounds (Continued)

compounds in humans. However, the specific carcinogenic substance(s) could not be identified
(IARC S.7, 1987). Severa epidemiological studies demonstrated excess incidences of cancers of
the nasal cavity, lung, and possibly the larynx in workers exposed to nickel or nickel compounds.
The cancer hazards seemed to be associated with the early stage of nickel refining, and with
exposure primarily to nickel subsulfide and nickel oxide (IARC V.2, 1973; IARC V.11, 1976;
IARC S.4, 1982; IARC S.7, 1987).

PROPERTIES

Nickel occurs as silver metallic cubic crystals. It is soluble in dilute nitric acid, slightly
soluble in hydrochloric acid and sulfuric acid, insoluble in cold and hot water and ammonia. It is
available with a 99.9% purity and in grades which include electrolytic, ingot, pellets, shot,
sponge, powder, high-purity strip, and single crystals. Nickel reacts violently with fluorine (Fy),
ammonium nitrate, hydrazine, ammonia, a mixture of hydrogen (H,) and dioxane, performic
acid, phosphorus, selenium, sulfur, or a mixture of titanium and potassium chlorate. Nickel
acetate occurs as a green powder that effloresces somewhat in air. It is solublein acetic acid and
water and insoluble in alcohol. It is available in a grade with purity > 99.0%. When heated to
decomposition, nickel acetate emits irritating fumes. Nickel carbonate occurs as light green
rhombic crystals or as a brown powder. It is soluble in dilute acids and ammonia and insoluble
in hot water. Nickel carbonate is available with a 99.5% purity and occurs naturally as the
minera zaratite. Nickel carbonate can react violently with iodine (I,), hydrogen sulfide, or a
mixture of barium oxide and air. Nickel carbonyl occurs as a colorless, volatile, inflammable
liquid that has a musty odor. It is soluble in agua regia, acohol, ethanol, benzene, and nitric
acid, dlightly soluble in water, and insoluble in dilute acids and dilute akalies. Itisavailableina
technical grade. Nickel carbonyl explodes when exposed to heat or flame, and it can react
violently with air, oxygen, bromine (Br,), or a mixture of n-butane and oxygen. When heated or
on contact with acid or acid fumes, nickel carbonyl emits toxic carbon monoxide fumes. Nickel
hydroxide occurs as either green crystals or as an amorphous black powder. It is solublein acid
and ammonium hydroxide, but is practically insoluble in water. Nickel hydroxide is available in
agrade containing about 60% nickel. Nickelocene occurs as dark green crystals. It issolublein
common organic solvents and insoluble in water. Nickelocene is a highly reactive compound
which decomposes in air, acetone, alcohol, and ether. It is available as a grade containing 8 to
10% nickelocene in toluene. Nickel oxide is a green-black powder that becomes yellow when
heated. It issolublein acids and ammonium oxide and insoluble in both cold and hot water. Itis
available in a grade with 99% purity. Nickel subsulfide is a pae yelowish-bronze, metdlic,
lustrous solid. It is soluble in nitric acid and insoluble in cold and hot water. When heated to
decomposition, nickel subsulfide emits toxic fumes of sulfur oxides (SOy).

USE

In 1987, approximately 39% of the primary nickel consumed went into stainless and aloy
steel production, 28% into nonferrous alloys, and 22% into electroplating. Ultimate end uses for
nickel were:  transportation, 24%; chemica industry, 15%; electrical equipment, 9%;
construction, 9%; fabricated metal products, 8%; petroleum, 8%; household appliances, 7%;
machinery, 7%; and other, 13% (USDOI, 1988). The many uses of nickel include use in aloys
(e.g., low-aloy stedls, stainless stedl, denta fillings, copper and brass, permanent magnets, and
electrical resistance aloys), electroplated protective coatings, electroformed coatings, akaline
storage batteries, fuel cell electrodes, and as a catalyst in the methanation of fuel gases and
hydrogenation of vegetable oils. Nickel acetate is used as a catalyst and in the textiles industry
as a mordant. Nickel carbonate is used in electroplating and in the preparation of nickel
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catalysts, ceramic colors, and glazes. Nickel carbonyl is used in the production of high-purity
nickel powder by the Mond process and continuous nickel coatings on steel and other metals. It
also has many small-scale applications, e.g., vapor seating of nickel and depositing of nickel in
semiconductor manufacturing. Nickel hydroxide finds use in the manufacture of nickel salts.
Nickelocene is used as a catayst and complexing agent. Nickel oxide is used in nickel salts,
porcelain painting, fuel cell electrodes, and the manufacture of stainless and aloy steel. Thereis
no reported use for nickel subsulfide (Sax, 1987; IARC V.2, 1978; IARC V.11, 1976).

PRODUCTION

The United States produced an estimated 8 million Ib of nickel from domestic ore in 1990
(USDOI, 1991). Ferronickel was produced by a smelter near Riddle, OR. Byproduct crude
nickel sulfate was produced by four copper refineries, two firms that treated secondary copper,
and scrap, nickel-base alloy scrap, and copper scrap. One firm converted particul ate wastes from
stainless steel plants and spent catalysts into nickel-bearing pigs for making stainless steel.
Another company processed nickel hydroxide waste from severa hundred metal finishers, and
its product was shipped to a smelter for nickel recovery. The U.S. imported 320 million |b and
exported 48 million Ib (6 million Ib; 42 million |b secondary nickel) in 1990 (USDOI, 1991). In
1989 the U.S. produced 764 thousand Ib of nickel from domestic ore, and imported more than
278 million Ib. Nickel exports exceeded 48 million b (4.6 million b primary nickel. 42.7
million Ib secondary nickel) in 1989. More than 308 million Ib of nickel were imported into the
U.S. in 1988, and ailmost 42 million Ib (5.4 million Ib primary, nickel; 36.5 million b secondary
nickel) exported. 1n 1987, there was no domestic mine production of nickel. Generally, nickel is
produced either as a by-product from copper refining or recycled or reclamed from secondary
sources. The 110 million Ib of nickel produced in 1987 were from secondary sources. Imports
of nickel were 302 million Ib and exports were 2 million |b in 1987. In 1986, the production of
nickel was by the following methods: > 2.3 million Ib from mine production, 2.3 million Ib from
plant production of domestic ore, and 87.5 million Ib from secondary sources. Imports of nickel
in 1986 were 258 million Ib and exports were 5.6 million Ib. In 1985, mine production of nickel
was 12.3 million Ib, plant production from domestic ore was 10.5 million Ib, plant production
from foreign matte was 62.5 million Ib, and secondary production was 107 million Ib. Imports
of nickel in 1985 were 315 million Ib and exports were 45.5 million |b (USDOI, 1988). In 1985,
25.0 million Ib of nickel powders were imported (USDOI Imports, 1986). In 1984, 29.1 million
Ib of nickel were produced by mine production, 19.2 million Ib were produced by plant
production from domestic ore, 70.7 million |b were produced by plant production from foreign
matte, and 110 million Ib were produced from secondary sources. In 1984, imports of nickel
were 353 million Ib and nickel powders were 30.1 million Ib, and exports of nickel were 63.3
million Ib (USDOI, 1988; USDOC Imports, 1985). In 1983, 66.8 million |b of nickel were
produced by plant production from foreign matte and 100 million |b were produced from
secondary sources. About 304.7 million Ib of nickel were imported and 46.7 million Ib were
exported in 1983. Mine production of nickel was 6.4 million Ib, plant production from domestic
ore was 6.9 million Ib, plant production from foreign matte was 83 million Ib, and secondary
production was 86 million Ib in 1982. Also in 1982, 259.6 million Ib of nickel were imported
and 74.7 million Ib were exported. 1n 1981, mine production of nickel was 24.2 million Ib, plant
production from domestic ore was 20.6 million Ib, plant production from foreign matte was 77
million Ib, and secondary source production was 104 million Ib. In 1981, 418 million |b and
39.2 million |b of nickel were imported and exported, respectively. 1n 1980, 29.3 million Ib of
nickel were produced by mine production, 22.5 million Ib by plant production from domestic
ore, 66 million Ib by plant production from foreign matte, and 98.6 million Ib from secondary
sources. In 1980, 378.3 million Ib of nickel were imported and 38.9 million |b were exported
(USDOQI, 1988; USDOI, 1985). The 1979 TSCA Inventory reported that in 1977, there were 21
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companies producing 106.8 million Ib of nickel and 30 companies importing 390.6 million 1b
(TSCA, 1979). In 1973, 36.6 million Ib of nickel were produced from mine production (IARC
V.11, 1976).

In 1985, 10.2 million Ib of nickel compounds and 4.3 million |b of unspecified nickel
compounds were imported, and 709,719 Ib of unspecified nickel compounds were exported
(USDOC Imports, 1986; USDOC Exports, 1986). Imports of nickel oxide in 1984 were 11.1
million |b and imports of unspecified nickel compounds were 195,840 Ib (USDOC Imports,
1985). Also during 1984, exports of unspecified nickel compounds were 409,339 Ib (USDOC
Exports, 1985). The 1979 TSCA Inventory reported that in 1977, 15 companies produced 12.7
million Ib and 2 companies imported 500 |b of nickel carbonate, with some site limitations; 13
manufacturers produced 781,000 Ib of nickel hydroxide, with some site limitations;, 27
companies produced 5.3 million Ib and 12 companies imported 30.1 million Ib of nickel oxide,
with some site limitations; and 4 companies produced 121,200 Ib of nickel subsulfide. The CBI
Aggregate was less than 1 million Ib for nickel carbonate and between 1 million and 100 million
Ib for nickel carbonyl and nickel subsulfide. Nickel acetate and nickelocene did not appear on
the TSCA Inventory (TSCA, 1979).

EXPOSURE

The primary routes of potential human exposure to nickel and nickel compounds are
ingestion, inhalation, and dermal contact. Possible exposures can occur because nickel is present
in air, water, soil, food, and consumer products. NIOSH estimated that 250,000 workers in the
United States were potentially exposed to nickel (including elemental nickel and inorganic nickel
compounds) (NIOSHb, 1977a). OSHA estimated that 709,000 workers were possibly exposed to
nickel and its compounds. Significant occupational exposure to nickel, through inhalation, at or
near permissible levels may occur in a wide variety of occupations including battery makers,
ceramic makers, electroplaters, enamelers, glass workers, jewelers, meta workers, nickel mine
workers, refiners and smelters, paint-related workers, and welders. Inorganlc nickel
concentrations in workroom atmospheres usually range between 0.1 and 1 mg/m®.” In addition,
exposure may occur to the workforce from dermal contact with cutting oils contaminated with
nickel and nickel-containing or nickel-plated tools (ATSDR, 1995g). The ACGIH has
established threshold limit val ues (TLVS) as 8-hr time-weighted averages (TWAS) of 1 mg/m®
for nlckel metal, 0.1 mg/m® for soluble nickel compounds, as nickel, and 0.05 ppm and 0.35
mg/m® for nickel carbonyl, as nickel (ACGIH, 1986).

The Toxic Chemical Release Inventory (EPA) listed 912 industrial facilities that
produced, processed, or otherwise used nickel in 1988 (TRI, 1990). In compliance with the
Community Right-to-Know Program, the facilities reported releases of nickel to the environment
which were estimated to total 1.5 million Ib. EPA estimated that nearly 720,000 people living
within 12. 5 miles of primary spurces may possibly be exposed to nickel at concentrations up to
15.8 ug/m*® (median 0.2 ug/m®). As many as 160 million people live within 12.5 miles of all
sources of nickel and nlckel compounds, and they may possibly be exposed to median
concentratlons of 0.05 pg/m°. Ambient air concentratlons of nickel in the United States are 6
ng/m in nonurban areas, and about 20 ng/m® in urban areas, with higher values of up to 150
ng/m® in large cities (New York City) and industrial areas (Merian, 1984). Also, the entire U.S.
population may possibly be exposed to low levels of nickel (300-600 pg/day) in food and water.
The following are typical concentrations of nickel found in various food categories. grains,
vegetables, and fruits, 0.02-2.7 ug/g; meats, 0.06-0.4 ng/g; and seafoods, 0.02-20 ug/g. Cow's
milk has been found to contain nickel concentrations of < 100 ug/L, and the typica
concentration of nickel in mother's milk ranges between 20 and 500 ug. Dietary nickel levels
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can increase because of food processing methods that leach nickel from nickel-containing alloys.
Dietary intake of nickel has been estimated to range from 100 to 300 pg/day (ATSDR, 1995g).
Nickel also is an essential micronutrient for plants; thus, eating plant material may be another
potential source of exposure. There is a significant vector of exposure to the general population
such as users of nickel-containing kitchen utensils and tableware (Sax, 1981). In the United
States, nickel levelsin drinking water are estimated to be less than 10 ug/L. Cigarette smoke is
reported to contain up to 3 ug nickel/cigarette (OSH, 1982).

Environmental sources of nickel include emissions from coal- and oil-fired boilers, coke
ovens, diesel-fuel burning, and gray-iron foundries. Total annual emissions from these types of
sources was estimated to be 22.4 million Ib. Crude oil contains on the average about 5 ppm
nickel. In the United States, it was calculated that 60% of the atmospheric nickel emissions
originate from oil-fired vessels. Soils normally contain 5-500 ppm nickel; soils from serpentine
rock may contain as much as 5,000 ppm. The earth's crust and soils contain about 50 ppm of
nickel, mostly in igneous rocks. Fresh and sea waters contain about 0.3 pug/L of nickel, ground
water amost none. Urban effluents may contain 60 pug/L of nickel, of which 40% accumulate in
sewage sludge. It has been determined that sewage sludges contain 20-1,000 ppm nickel with an
average of 150 ppm. U.S. river basins contain 3-17 ug/L of nickel (Merian, 1984).

REGULATIONS

In 1980 CPSC preliminarily determined that nickel carbonyl was not present in consumer
products under its jurisdiction. Subsequently, public comment was solicited to verify the
accuracy of this information; no comments were received. Pending receipt of new information,
CPSC plans no action on this chemical. EPA regulates nickel and nickel compounds under the
Clean Water Act (CWA), Comprehensive Environmental Response, Compensation, and Liability
Act (CERCLA), Resource Conservation and Recovery Act (RCRA), and Superfund
Amendments and Reauthorization Act (SARA). Effluent guidelines have been established for
nickel and nickel compounds under CWA. Reportable quantities (RQs) have been established
for nickel, nickel carbonyl, and nickel hydroxide under CERCLA. RCRA regulates nickel and
nickel compounds as hazardous wastes. RCRA and SARA subject nickel and nickel compounds
to report/recordkeeping requirements. SARA aso establishes threshold planning quantities.
FDA has taken no action on nickel as a carcinogen because the data available are not adequate to
assess its carcinogenicity through dietary exposure. Nickel is a compound generally recognized
as safe (GRAS) when used as a dlrect human food ingredient. OSHA adopted permls@ble
exposure limits (PELs) of 0.007 mg/m® as an 8-hour TWA for nickel carbonyl and 1 mg/m?® as an
8-hour TWA for nickel metal and soluble nickel compounds, OSHA adopted these standards for
toxic effects other than cancer. NIOSH recommended to OSHA that exposure to nickel be
limited to 15 ug/m® (10-hour TWA) because of observed carcinogenicity of nickel metal and all
inorganic nickel compounds. OSHA regulates nickel and certain nickel compounds under the
Hazard Communication Standard and as chemical hazards in laboratories. Regulations are
summarized in Volume ll, Table B-75.
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