Approximate Solution of Large-scale Linear Inverse Problems with Monte Carlo Simulation

Nick Polydorides¹ D.P. Bertsekas² M. Wang²

¹The Cyprus Institute,

²Massachusetts Institute of Technology.

August 15, 2010

Introduction & Motivation Inverse problems

The New Framework for Large-Scale Problems

Approximation – Simulation – Regularization Everything but the simulation

Simulated Matrix Algebra

Design of sampling distributions

Results & Conclusions

III-posed Inverse Problems

 $\mathsf{Input} \to [\mathsf{Model}(p)] \to `\mathsf{Observation'}$

- From indirect observations infer model parameters.
- Models are linear/nonlinear in differential/integral form.
- Impact of noise on solution existence, uniqueness, stability.
- Applied in geosciences, biomedical imaging, industrial NDT.
- Bayesian inference: Find the posterior density of the unknown conditioned on the observations. MC Simulation/Integration

Integral equations of the first kind

- Classical ill-posed problem: Fredholm integral equation of the first kind. (Books by P.C. Hansen, G.M. Wing & J. D. Zahrt, C.W. Groetsch ,...)
- In continuum,

$$b(t) = \int_0^1 \mathrm{d}s \ A(s,t) x(s) + \epsilon,$$

with integral operator compact.

▶ In discrete, approximated on a uniform 1d grid of resolution $n^{-1} \rightarrow 0$

$$b = Ax + \epsilon.$$

 $A \in \Re^{n \times n}$ dense, ill-conditioned, of smooth structure.

Main phases of methodology

Initial hd problem

$$x^* = \arg\min_{x} \left\{ \|Ax - b\|^2 \right\}$$

Approximate unknown in Id subspace

 $x \approx \Phi r$

• Use simulation to estimate $G = \Phi' A' A \Phi$ and $c = \Phi' A' b$ in

 $\hat{c} = \hat{G} r + \text{simul. error} + \text{approx. error} + \epsilon$

 Final Id regularization problem (MAP – Gaussian model assumption)

$$r^* = \arg\min_{r} \left\{ \|\hat{G}r - \hat{c}\|_{\Sigma^{-1}}^2 + \|r - \bar{r}\|_{\Sigma^{-1}_r}^2 \right\}$$

What to expect: Probing the solution error

Figure: The approximation (e_1) , simulation (e_2) and numerical (e_3) errors affecting the solution. Π is the projection mapping from \Re^n to S, and $r^*(G, c)$ is the calculated and $\hat{r}(\hat{G}, \hat{c})$ the simulation-based Id solution.

The target of simulation

Notice that the elements of the symmetric G and the vector c are 3d sums

$$\mathbf{G}_{\mathbf{k},\mathbf{w}} = \phi_{\mathbf{k}}' \mathbf{A}' \mathbf{A} \phi_{\mathbf{w}} = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \mathbf{A}_{i,j} \Phi_{j,k} \right) \left(\sum_{\bar{j}=1}^{n} \mathbf{A}_{i,\bar{j}} \Phi_{\bar{j},w} \right),$$

$$\boldsymbol{c_k} = \phi'_{\boldsymbol{k}} \boldsymbol{A}' \boldsymbol{b} = \sum_{i=1}^n \left(\sum_{j=1}^n \boldsymbol{A}_{i,j} \boldsymbol{\Phi}_{j,k} \right) \boldsymbol{b}_i$$

needing n^3 and n^2 additions respectively. If $n \sim O(10^9)$???

Proposed simulation-based algorithm has numerical complexity independent of n!

Simulation instead of Calculation

Suppose Ĝ and ĉ are estimators of G and c respectively, simulated element-by-element independently,

► Let
$$v_{G_{kw}} = \operatorname{var}(\hat{G}_{kw})$$
 and $v_{c_k} = \operatorname{var}(\hat{c}_k)$ sample-based, then
 $\Sigma(r) = \operatorname{diag}(v_G r^2) + \operatorname{diag}(v_c)$

- Case is suitable for Bayesian inference under Gaussian model and data uncertainty.

Ill-posed integral eqs. have smooth kernels

Implication: Matrix A has smooth structure.

Figure: The kernels of some classical Fredholm integral eqs. of the first kind: heat, gravity, 2nd derivative and the Fox-Goodwin equation, discretized on a grid of dimension 1000.

Sampling with Monte Carlo

Instead of computing

$$G_{k,w} = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} A_{i,j} \Phi_{j,k} \right) \left(\sum_{\overline{j}=1}^{n} A_{i,\overline{j}} \Phi_{\overline{j},w} \right),$$

estimate

$$\hat{G}_{k,w} = \frac{1}{T} \sum_{t=1}^{T} \frac{A_{i_t,j_t} A_{i_t,\overline{j_t}} \Phi_{j_t,k} \Phi_{\overline{j_t},w}}{n^{-1}}, k = 1, \dots, s \quad w = k, \dots, s$$

and the variance statistic $v_{G_{kw}}$, where $(i_t, j_t, \overline{j}_t) \in \mathbb{N}^3$ are uniformly sampled indices from $[1, \ldots, n]^3$.

• Repeat as appropriate for \hat{c}_k , $k = 1, \ldots, s$.

Variance Reduction with Importance Sampling

Instead design an optimal importance sampling distribution customized for G_{k,w}, or c_k,

• The optimal $\xi^* : \Re^n \times \Re^n \times \Re^n \to \Re_+$ is hd !

$$\xi^*_{G_{k,w}}(i,j,\bar{j}) \propto (\Phi_{j,k} \|A_j\|_1) (\Phi_{\bar{j},w} \|A_{\bar{j}}\|_1) \frac{A_{i,j}A_{i,\bar{j}}}{\|A_j\|_1 \|A_{\bar{j}}\|_1}$$

where A_j is the j'th column of A and $||A_j||_1 = \sum_{i=1}^n |A_{i,j}|$.

Variance Reduction with Importance Sampling

How to sample a 3D distribution:

 $\xi^*(i,j,\bar{j}) = \xi(\bar{j}|i,j)\xi(i,j) = \xi(\bar{j}|i,j)\xi(j|i)\xi(i) \propto G_{w,k}(i,j,\bar{j})$

where $\xi(i,j) = \sum_{j=1}^{n} \xi(i,j,\overline{j})$, and $\xi(i) = \sum_{j=1}^{n} \xi(i,j)$.

- Evaluate $G_{w,k}(i,j,\overline{j})$ on a coarse grid in $[1,\ldots,n]^3$,
- Approximate G_{w,k} over ld polynomial bases,
- Compute approximate sums analytically,
- Scale to make sampling distributions.

IS distribution approximation in pictures.

Figure: Top row an approximation of ξ^* in dimension 8, below at 20.

MC Vs IS scheme comparison: estimators.

Figure: Estimators of $G = \Phi' A' A \Phi$ with $n = 10^6$, s = 50, and Φ piecewise constant basis functions. Top row results with IS and below MC. A is derived from the second derivative kernel.

MC Vs IS scheme comparison: estimator variances

Figure: Variances of the elements of $G = \Phi' A' A \Phi$ with $n = 10^6$, s = 50, and Φ piecewise constant basis functions. Top row results with IS and below MC. A is derived from the second derivative kernel.

One test example: Inverse heat conduction

Starting from the familiar elliptic pde, for u(y, t) the temperature at point y at time t.

$$\begin{aligned} &\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial y}, \quad y \ge 0, t \ge 0\\ &u(y,0) = 0, \quad u(0,t) = x(t) \end{aligned}$$

using the Green's function method

$$b(t) = \int_0^T \mathrm{d}\tau A(\tau, t) x(\tau),$$

measured at point y_m away from the source y = 0, where

$$\mathcal{A}(\tau,t) = egin{cases} rac{y_m/lpha}{\sqrt{4\pi(au-t)^3}} \expigg(-rac{(y_m/lpha)^2}{4(au-t)}igg) & ext{if } 0 \leq t < au \leq T, \ 0 & ext{otherwise.} \end{cases}$$

One test example: Solution plot

Figure: Results with 50 and 100 piecewise constant basis function. Large problem dimension is 10^9 . The optimal ξ^* was approximated on a linear basis. Results with 5×10^4 samples per simulated entry, and zero additive noise!

One test example: Inverse heat conduction

Figure: Simulation error metric: Trace of the covariance of \hat{G} and \hat{c} . Results with different number of samples, matrix partitions and polynomial approximation of ξ^* . Tests with inverse heat problem at $n = 10^9$ and s = 50 piecewise constant Φ . MC, $\hat{\xi}$ in pwc basis, and $\hat{\xi}$ in pwl.

Conclusion

- Simulation timings: 50-80 μs per sample for pwc pwq $\hat{\xi}$.
- Method robust for 'applied' ill-posed inverse problems
- Simulation scheme is suitable for multi-thread or parallel processing
- Can be utilized in the context of model reduction
- More analysis, error bounds and results at web.mit.edu/dimitrib/www/publ.html
- Thank you .- Questions?