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Abstract— A nonlinear system identification setup is
formulated as a task of finding a stable feedback system
of fixed complexity providing the best robust fit for a
given set of input-output data. New techniques, based
on incremental passivity, are proposed for casting such
problems in a format which allows application of efficient
convex optimization engines. Case studies of specific
implementations of the approach are provided.

I. INTRODUCTION

This paper is concerned with a specific aspect of
system identification: finding stable discrete time dy-
namical nonlinear models of limited complexity to fit
given sets of input-output data while minimizing certain
robust macthing error criteria.

For example, in the case of a system with scalar input
v = v[t] and scalar output y = y[t], the data may come
in the form of a finite collection input-output pairs
(vi, yi) of finite length n(i), and the reduced complexity
model may be sought in the implicit form

F (y[t], y[t−1], . . . , y[t−d], v[t−1], . . . , v[t−d]) = 0,
(1)

where F is to be selected from a given class F = {F}
of functions F : R2d+1 7→ R to minimize the i/o
mismatch measure

E = E(F ) =
∑
i

n(i)∑
t=0

|yi[t]− ỹi[t])|2,

where y = ỹi[t] satisfy equations (1) for t =
0, 1, . . . , n(i), with v = vi and with initial condi-
tions ỹi[−t] = yi[−t] for t = 1, . . . , n. The original
data set {vi, yi)} can represent either actual physical
measurements (the classical system identification setup)
or, alternatively, computer simulations (which makes it
possible to apply the framework to the task of model
reduction).

In the classical optimization-based approach to sys-
tem identification (see, for example, [1]) it would
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be typical to seek F ∈ F minimizing the equation
mismatch measure

J = J(F ) = lim
T→∞

1
T

∑
i

T∑
t=1

|ei[t])|2,

where ei[t] =

= F (yi[t], . . . , yi[t−m], vi[t− 1], . . . , vi[t−m]).

In the most common setup, the class F of admissible
models is linear (affine), in which case the minimiza-
tion of J(F ) becomes a least squares optimization
routine. However, unlike the i/o mismatch measure
E = E(F ), the quantity J(F ) in general is not a
valid measure of system identification performance, as
it does not incorporate the degree of sensitivity of of
the output y of the error model

F (y[t], . . . , y[t−m], v[t−1], . . . , v[t−m]) = e[t] (2)

to its input e.
When the error model (2) has finite incremental L2

gain, smallness of J(F ) implies smallness of E(F ).
However, incorporating robust stability of (2) as a
constraint in the optimization of J = J(F ) can be
tricky, unless

F (Y0, Y1, . . . , Ym, V1, . . . , Vm) = F̃ (Y0, V1, . . . , Vm)
(3)

is not a function of all but one of its “y” arguments.
Note that condition (3) means, essentially, that (1) is
a (nonlinear) moving average model (for example, a
Volterra series model). Since moving average models
are remarkably inefficient in matching resonant behav-
ior of dynamical systems, imposing the constraint (3)
is not a viable option in many applications.

A major point of this paper is to enable optimization
of a meaningful i/o mismatch measure by reducing the
task of minimizing an upper bound of E = E(F ),
subject to the condition of incremental stability of
model (2), to an efficient convex optimization routine.
The approach of this paper calls for limiting attention
to passive feedback loops, and using robustess analysis



in bounding the error. It is a natural extension of
the relaxation-based LTI model reduction techniques
[4] and [3], but also shares the positivity and non-
parametric identification aspects with [2].

II. SETUP AND OBJECTIVES

In this paper, a system identification task is defined
by integers d ≥ 0, m > 0, k > 0, a convex set F =
{F} of continuous functions

F : Rdk+k+m 7→ Rk,

and a collection Xi = {ξ1, . . . , ξN} of pairs ξi =
(yi, ui) of finite sequences

yi = {yi[t]}n(i)
t=−d, ui = {ui[t]}n(i)

t=0

(where n(i) ≥ d) of vectors yi[t] ∈ Rk, ui[t] ∈ Rm.
The set F = {F} defines a family of low complex-
ity dynamical models governed by implicit recursive
equations

F (y[t], y[t− 1], . . . , y[t− d], u[t]) = 0, (4)

Ξ represents the available discrete time input-output
data, and a system identification algorithm is to find
F ∈ F such that (4) is a well-posed and stable model
minimizing a fitting error functional.
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Specifically, model (4) is called well - posed when
for every v1, . . . , vd ∈ Rk and w ∈ Rm the equation
F (y, v1, . . . , vd, w) = 0 has a solution y ∈ Rk (not
necessarily a unique one). This condition guarantees
that for every set of initial conditions

y[−1] = v1, . . . , y[−d] = vd

and every input sequence u = {u[t]}nt=0, equations (4)
with t = 0, 1, . . . , n have at least one solution y =
{y[t]}nt=0.

Furthermore, system (4) is called (incrementally)
stable if it is well-posed, and

∞∑
t=0

|ȳ[t]− ŷ[t]|2 <∞ (5)

for every two solutions y = {ȳ[t]}, y = {ŷ[t]} of
(4) with the same u = {u[t]}. The stability condition
guarantees fading memory for model (4).

Finally, for a given data set Ξ = {(yi, ui)}Ni=1, the
error of the fit produced by (4) is defined as

E = E(F ) = E(Ξ, F )

=
N∑
i=1

n(i)∑
t=0

|yi[t]− ỹi[t]|2,

where the sequences ỹi = {ỹi[t]}n(i)
t=0 satisfy

F (ỹi[t], . . . , ỹi[t− d], ui[t]) = 0 (0 ≤ t ≤ n(i)) (6)

with initial conditions

ỹi[−t] = yi[−t] for t ∈ {1, . . . , n}. (7)

Note that the evolution equation (4) is written in
terms of several samples (y[t], y[t − 1], . . . , y[t − d])
of the output signal y, but only one sample (u[t])
of the input signal u. This is done for the sake of
convenience, but does not really limit the applicability
of the framework in other situations, since a dynamical
equation

F0(y[t], . . . , y[t− d], v[t], . . . , v[t− r]) = 0

can always be re-written in the form (4) with

F (v0, . . . , vd, x) = F0(v0, . . . , vd, w0, . . . , wr), (8)

u[t] =

 v[t]
...

v[t− r]

 , x =

 w0
...
wr

 .
This paper does not offer a solution to the task of

finding the exact minimizer of the fit error over all
stable models (4). Instead, it restricts F to satisfy a
generalized passivity condition (which implies stabil-
ity), and introduces an upper bound of E which can be
minimized via convex optimization.

III. FITTING WITH PASSIVE MODELS

Let us call a functon F : Rdk+k+m 7→ Rk (as well as
the correspoinding system (4)) strictly passive if there
exist ε > 0 and a function V : R2kd 7→ [0,∞) such
that

(z0 − q0)′[F (z0, . . . , zd, v)− F (q0, . . . , qd, v)]

≥ ε|z0 − q0|2 − V (z1, . . . , zd, q1, . . . , qd)

+V (z0, . . . , zd−1, q0, . . . , qd−1), (9)



and V (z1, . . . , zd, z1, . . . , zd) = 0 for all zi, qi ∈ Rk,
v ∈ Rm. Note that condition (9), as a family of linear
inequalities, defines a convex set of pairs of functions
(F, V ).

One reason to impose the passivity requirement in
(9) is that it guarantees well posedness and stability of
system (4), and guarantees that

Ẽε(F ) = ε−2
N∑
i=1

n(i)∑
t=0

|F (yi[t], . . . , yi[t− d], u[t])|2

(10)
is an upper bound of E(F ).

Theorem 1. A strictly passive system (4) is well-posed
and stable. Moreover, the inequality E(F ) ≤ Ẽε(F ), is
satisfied for the coefficient ε > 0 from condition (9) in
the definition of passivity.

In addition, the passivity condition from (9) guaran-
tees finiteness of a tighter (though usually more difficult
to calculate) upper bound of E(F ). More specifically
for a given data set Ξ = {(yi, ui)}, a real number ε > 0,
and a function F ∈ F let Ê = Ê[F ] = Êε(Ξ, F ) be
defined as the minimal upper bound of the sum

N∑
i=1

n(i)∑
t=0

δi[t]′[δi[t] + 2ε−1F (zi[t], . . . , zi[t− d], ui[t])],

(11)
where zi[t] = yi[t] − δi[t], over all possible δi[t] ∈
Rk such that δ[t] = 0 for t < 0. Note that Ê, as a
minimal upper bound of a family of linear functionals,
is a convex function of its argument F .

Theorem 2. Assume that system (4) is passive, i.e.
condition (9) holds for some ε > 0. Then

E(F ) ≤ Êε(F ) ≤ Ẽε(F ).

Essentially, Theorem 1 provides a rather general
set of conditions under which stability of a feedback
system is linked to a convex constraint imposed on
the set of its coefficients. It also establishes a nicely
optimizable upper bound for the i/o mismatch. In turn,
Theorem 2 establishes a more accurate upper bound for
the i/o mismatch, which is still amenable to efficient
minimization.

To use Theorems 1,2 in a practical application, one
has to select a workable description of a convex set
Ω = {(F, V )}, to contain all model/certificate pairs of
potential interest, complete with efficient algorithms for
verifying, given a pair F, V ∈ Ω, the validity of (9),
and computing an upper bound of E(F ).

A proof of Theorems 1 and 2 is given in the
Appendix.

IV. CASE STUDIES

This section presents examples in which the general
framework is applied to relatively simple sets F = {F}
and Ω = {(F, V )}.

A. The SISO LTI Case

Consider the situation when the input-output data
is given in the form of harmonic response of an LTI
system with scalar input w and scalar output y, i.e.
N samples gi = G(θi) of a stable transfer function G
(possibly non-rational) are given at θi = exp(jωi), to
be fitted by a stable rational transfer function

Ĝ(z) =
b(z)
a(z)

=
b0 + b1z

−1 + · · ·+ bdz
−d

a0 + a1z−1 + · · ·+ adz−d

of order not larger than d. The desired quantity to
minimize in this case is the cumulative transfer function
fitting error

E0 =
N∑
i=1

∣∣∣∣gi − b(θi)
a(θi)

∣∣∣∣2 . (12)

However, there is no known polynomial time algo-
rithms for minimizing E0.

In time domain terms, the setup means that the input-
output data contains long sequences (n(i) → +∞) of
pure sinusoids

ui[t] =

 cos(ωit)
...

cos(ωit− ωid)

 , yi[t] = ri cos(ωit+ φi),

where gi = rie
jφi , and the set F = {F} consists of

linear functions

F (q0, . . . , qd, v) = a0q0 + · · ·+ adqd − b̃v, (13)

where b̃ = [b0, . . . , bd]. Consider a class V = {V } of
quadratic storage functions of the form

V (z1, . . . , zd, q1, . . . , qd) = σ(z1 − q1, . . . , zd − qd),

where σ ranges over the set of all positive semidefinite
quadratic forms. Note that the convex set Ω = {(F, V )}
has a finite dimension in this case, which reflects the
fact that the models under consideration are defined by
a finite set of scalar parameters (the coefficients of the
polynomials a, b).

According to the Kalman - Yakubovich - Popov
Lemma, strict passivity of system (4) defined by a



function F from (13) is equivalent to the positive real
condition:

Re(a(θ)) > 0 for all |θ| = 1, (14)

and can always be certified by a quadratic storage
function V ∈ V . Moreover, the maximal lower bound
for the coefficient ε > 0 from (9) is

ε0 = min{Re(a(θ)) : |θ| = 1}. (15)

For large values of n(i)→∞, the normalized upper
bound Ẽ(F ) of E(F ) approaches

Ẽ0 =
∑N

i=1 |a(θi)gi − b(θi)|2

min{|Re(a(θ))|2 : |θ| = 1}
.

Minimization of Ẽ0 over all b and all positive real a is
equivalent to minimization of

Ẽ∗ =
N∑
i=1

|a(θi)gi − b(θi)|2 (16)

subject to the normalization inequality

Re(a(θ)) ≥ 1 for all |θ| = 1. (17)

Similarly, subject to (17), a normalized version of Ê(F )
can be shown to approach

Ê0 =
N∑
i=1

|a(θi)gi − b(θi)|2

Re(a(θi))
. (18)

The functionals (16) and (18) (which, subject to
(17), serve as upper bounds for (12), and are jointly
convex with respect to the coefficients of a and b)
demonstrate the application of the general approach
of this paper to frequency domain data fitting for LTI
SISO systems. While the gap between (18) and (12) can
be large, minimization of (18) subject to Re(a(θi)) ≥ 1
offers a valuable compromise between accuracy and
computational complexity.

B. Nonlinear SISO Feedback Model

Consider the model shown on Figure 1, where B
is a Volterra series model of depth r (i.e. the output
w = w(t) of B is defined by

w[t] = b(u[t]), u[t] = (v[t]; . . . ; v[t− r]),

where b is a multivariate polynomial), A stands for the
linear FIR transformation with input y and output

e[t] = a0y[t] + · · ·+ adt[t− d],

and φ : R 7→ R is a strictly monotonic function.

φ−1(·)cB- - - -
v y

A �

6-

Fig. 1. Nonlinear System with Dynamical Feedback

The setup can be viewed as a special case of the
general framework, with u = u(t) defined according to
(8), and F = {F} consisting of functions

F (q0, . . . , qd, v) = φ(q0) + a0q0 + · · ·+ adqd − b(v).

Note the non-parametric character (and hence infinite
dimensionality) of the model class F : no specific finite
basis representation of φ is assumed, and the low
complexity of system (4) is assured by the numbers
d and r, a bound on the degree of the polynomial b,
and the monotonicity constraint for φ. The passivity
of system (4) is guaranteed by the frequency domain
inequality Re(a(θ)) > 0 for |θ| = 1. The exact
calculation of the upper bound Ê presents a challenge,
but Ẽ(F ) is easy to optimize, as the maximal lower
bound for ε > 0 given by (15) is still valid. The
identified model is obtained by minimizing (subject to
the normalization inequality (17)) the sum

Ẽ0(a, b, φ) =

=
n(i)∑
i=1

n(i)∑
t=0

|φ(yi[t])+a0yi[t]+· · ·+adyi[t−d]−b(u[t])|2

over the coefficients of a,b, and all monotonic functions
φ(·). Since only the samples of pit = φ(yi[t]) enter the
expression for Ẽ0, the actual number of parameters in
the resulting convex optimization is finite.

V. APPENDIX

This section contains some technical details and
formal proofs of mathematical statements.

A. A Feasibility Lemma

The following simple observation, to be used in the
proof of Theorem 1, is a corollary of the Brouwer’s
fixed point theorem.
Lemma 1. If f : Rn 7→ Rn is a continuous function
such that |u|2 + u′f(u) is bounded over u ∈ Rn then
f(u0) = 0 fr some u0 ∈ Rn.
PROOF. Take R > 0 such that R2 is strictly larger than
the upper bound for |u|2 + u′f(u). Let g : Rn 7→ Rn

be defined by

g(u) = (u+ f(u))/max{1, |u+ f(u)|2/R2}.



Since g is continuous and |g(u)| ≤ R for all u, g maps
the disc |u| ≤ R to itself, it has a fixed point u0, i.e.
g(u0) = u0. Multiplying the equality by (u0 + f(u0))′

on the left and using the inequality u′0(u0 + f(u0)) <
R2 yields |u + f(u)| < R, hence g(u0) = u0 + f(u0)
and f(u0) = 0.

B. Proof of Theorem 1

Applying (9) with qi = 0, z0 = 0, and using the
fact that V is non-negative shows that the function
f(y) = −F (y, z1, . . . , zn, v)/2ε satisfies the condi-
tions of Lemma 1 for all zi, v. Hence the equation
F (y, z1, . . . , zn, v) = 0 has a solution for all zi, v, i.e.
system (4) is well posed.

To prove stability, for every two solutions y = {ȳ[t]},
y = {ŷ[t]} of (4) with the same u = {u[t]}, substituting

zi = ȳ[t− i], qi = ŷ[t− i], v = u[t]

into (9) yields

ε|ȳ[t]− ŷ[t]|2 ≤

V (ȳ[t− 1], . . . , ȳ[t− d], ŷ[t− 1], . . . , ŷ[t− d])

−V (ȳ[t], . . . , ȳ[t− d+ 1], ŷ[t], . . . , ŷ[t− d+ 1]).

Summation from t = 0 to t =∞ yields the inequality

ε
∞∑
t=0

|ȳ[t]− ŷ[t]|2

≤ V (ȳ[−1], . . . , ȳ[−d], ŷ[−1], . . . , ŷ[−d]).

Evidently, in this definition of passivity, V plays the
role of a distance-like storage function.

To prove the inequality E[F ] ≤ Ẽε[F ], substitute

zk = ỹi[t− k], qk = yi[t− k], v = ui[t]

into (9) to get the inequalities

ε|δi[t]|2 + δi[t]′F (yi[t], . . . , yi[t− d], ui[t]) ≤

V (ỹi[t− 1], . . . , ỹi[t− d], yi[t− 1], . . . , yi[t− d])

−V (ỹi[t], . . . , ỹi[t− d+ 1], yi[t], . . . , yi[t− d+ 1]).

where δi = ỹi[t] − yi[t]. Since ỹi[t] = yi[t] for t < 0,
it follows that

V (ỹi[−1], . . . , ỹi[−d], yi[−1], . . . , yi[−d]) = 0.

Hence, taking into account that V takes non-negative
values, the summation of the last inequality from t = 0
to t = n yields

ε
∞∑
t=0

|δi[t]|2 ≤ −
∞∑
t=0

δi[t]′F (yi[t], . . . , yi[t− d], ui[t]),

which in turn implies E[F ] ≤ Ẽε[F ].

C. Proof of Theorem 2

Let the sequences ŷi = {ŷi(t)}n(i)
t=0 be defined by

equations (6) with initial conditions (7). Then E(F )
equals the value of the sum (11) for δi(t) = ŷi(t) −
yi(t). Since Ê(F ) is an upper bound for the sum,
E(F ) ≤ Ê(F ).

To show that Ê(F ) ≤ Ẽ(F ), note that, due to (9),

δi[t]′F (zi[t], . . . , zi[t− d], ui[t])

= δi[t]′{F (zi[t], . . . , zi[t− d], ui[t])

−F (yi[t], . . . , yi[t− d], ui[t])}

+δi[t]′F (yi[t], . . . , yi[t− d], ui[t])

≤ −ε|δi[t]|2

+V (zi[t], . . . , zi[t− d+ 1], yi[t], . . . , yi[t− d+ 1])

−V (zi[t− 1], . . . , zi[t− d], yi[t− 1], . . . , yi[t− d])

+δi[t]′F (yi[t], . . . , yi[t− d], ui[t]).

Summation from t = 0 to t = n(i) yields

N∑
i=1

n(i)∑
t=0

δi[t]′[δi[t] + 2ε−1F (zi[t], . . . , zi[t− d], ui[t])]

≤
N∑
i=1

n(i)∑
t=0

{2ε−1δi[t]′F (yi[t], . . . , yi[t− d]− |δi[t]|2}

≤ Ẽε(F ).
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