
Convex Relaxation Approach to the Identification of the
Wiener-Hammerstein Model

Kin Cheong Sou, Alexandre Megretski and Luca Daniel

Abstract— In this paper, an input/output system identification
technique for the Wiener-Hammerstein model and its feedback
extension is proposed. In the proposed framework, the identifi-
cation of the nonlinearity is non-parametric. The identification
problem can be formulated as a non-convex quadratic program
(QP). A convex semidefinite programming (SDP) relaxation is
then formulated and solved to obtain a sub-optimal solution to
the original non-convex QP. The convex relaxation turns out to
be tight in most cases. Combined with the use of local search,
high quality solutions to the Wiener-Hammerstein identification
can frequently be found. As an application example, randomly
generated Wiener-Hammerstein models are identified.1

I. I NTRODUCTION

Classical treatments of the Wiener-Hammerstein system
identification problem can be found, for example, in [1],
[2], [3]. Many more recent treatments of the problem can
be found, for example, in [4], [5], [6]. In those references,
however, the identification of the nonlinearity is parametric
(i.e. the nonlinearity is assumed to be of some form such
as piecewise linear or polynomial functions). Therefore,
those previous results can be restrictive in application. Non-
parametric identification of block oriented models, on the
other hand, are more flexible in terms of modeling power.
Reference [7] proposed an algorithm for the non-parametric
identification of the Wiener system under the assumption that
the input is Gaussian noise. The authors of [8], assuming that
the LTI block is known, reduced the identification problem of
the Wiener system to a least squares problem. [9] proposed
an unbiased identification algorithm based on maximum
likelihood estimation.

In a sense, the idea of the system identification scheme
proposed in this paper has been explored under the banner
of model validation [10], [11], [12], [13], [14], [15], [16].
In this problem, a model with a given block diagram is to
be invalidated by proving that it is inconsistent with some
input/output measurement obtained from experiment. The in-
validation is typically performed through the finding of some
infeasibility certificate of some constraint set. Conversely, the
finding of a feasibility certificate will prove the consistency
of a model with the given input/output measurement data.
This forms the basis of the block diagram oriented system
identification schemes such as [17], [18], [19]. In particular,
[19] proposed a very general approach for the identification
of the Wiener system assuming only the monotonicity of the
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nonlinearity. [19] sets up a convex QP based on the idea
of enforcing an input/output functional relationship of the
nonlinearity. The algorithm proposed in this paper can be
considered as an extension of the idea in [19]. In fact, the
formulation of the optimization problem in this paper also
centers around some sector bound property of the nonlin-
earity. However, because of the more complicated Wiener-
Hammerstein structure, the resultant optimization problem is
more involved. In fact, it is a non-convex QP. Nevertheless,
with the proposed SDP relaxation, it will be demonstrated
that the non-convex QP formulated in this paper is not
necessarily hard to solve.

A. Feedback Wiener-Hammerstein system

In this paper, the unknown system in the input/output
system identification problem is assumed to be from a
specific class – either of the Wiener-Hammerstein form, or
the Wiener-Hammerstein with feedback in Figure 1.
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Fig. 1. The Wiener-Hammerstein system with feedback.S∗ denotes the
unknown system.K ≡ 0 corresponds to the Wiener-Hammerstein system
without feedback. The output measurementy is assumed to be corrupted
by some noisen∗.

The following assumptions are made in Figure 1.

1) The signalsu, y, y0 and n∗ are causal and of finite
lengthN .

2) G∗, H∗ andK∗ are assumed to be single-input-single-
output (SISO) FIR systems. In addition,H∗ and K∗

are assumed to be positive-real passive. That is,

Re
{
H∗ (

ejω
)}

> 0, ∀ω ∈ [0, 2π)
Re

{
K∗ (

ejω
)}

> 0, ∀ω ∈ [0, 2π) (1)

3) Nonlinearity φ∗ is assumed to be scalar valued and
memoryless, and it is assumed to satisfy a certain
sector bound criterion in incremental sense. That is,
there exists a scalar0 < β < ∞ such that for all
a, b ∈ R,
(
φ∗(b)−φ∗(a)

)(
φ∗(b)−φ∗(a)−βb+βa

)
≤ 0. (2)



Condition (2) means that the nonlinearityφ∗ is mono-
tonically non-decreasing and its derivative has an upper
bound. Further details can be found in [20].

B. Organization of the paper

The rest of the paper is organized as follows: in The
main ideas of the problem formulation and solution pro-
cedure will be explained in Section II and Section III
respectively, through a special setup in which there is no
output measurement noise or feedback. Then in Section
IV the identification setup with output measurement noise
is considered. Differences in the analysis and algorithm
due to the noise will be highlighted. After that, the full
feedback Wiener-Hammerstein system identification problem
will be considered in Section V. Application examples will
be presented in Section VI.

II. I DENTIFICATION OF THE WIENER-HAMMERSTEIN

SYSTEM – NO MEASUREMENTNOISE

The first problem to be considered in this paper is the
identification of the Wiener-Hammerstein system without the
feedback or the output measurement noise. The identification
problem will be formulated as two equivalent optimization
problems in Subsections II-A and II-C respectively. The
solution technique for the optimization problems will be
described in Section III.

A. System identification problem formulation

Problem data. The problem data is the input signalu and
the output measurement signaly of the true (but unknown)
systemS∗ in Figure 1. For ease of exposition, a signal will
also be denoted as the vector of its non-zero values (e.g.
vectoru for the signalv).

System identification model and decision variables.It is
natural to choose a model with the same structure as the true
but unknown system (i.e. the Wiener-Hammerstein structure
in Figure 2). In Figure 2 theG and H are FIR systems,
and φ is a scalar memoryless nonlinearity (i.e. a nonlinear
function). Obviously, the model is specified whenG, H and
φ are specified.

FIR systemsG and H in Figure 2 are characterized by
their impulse responses of lengthNg and Nh respectively.
That is,

g :=
[
g0 g1 . . . gNg−1

]′
,

h :=
[
h0 h1 . . . hNh−1

]′
.

(3)

The identification of the nonlinearityφ is non-parametric.
That is, φ is specified only by some samples of its in-
put/output pair. The values ofφ other than those given by
the samples can be obtained using an interpolation scheme
(e.g. linear interpolation). In addition, the samples will be
restricted to those computable by the FIR impulse responseg
andh. Therefore,g andh are the decision variables sufficient
to specifyφ as well as the full model in Figure 2.

Treatment of the passivity constraint.A sufficient con-
dition for the stability of the identified model is that the
FIR systemH in Figure 2 is positive real passive (see [21],
Chapter 3). Ideally the positive real constraint should be

enforced. However, it turns out to be inconsistent with the
solution technique proposed. Therefore, in all subsequent
sections the stability requirement will not be dealt with
explicitly. In Subsection III-C this issue will be revisited,
and a post-processing algorithm will be given to enforce the
passivity ofH (and hence the stable of the final model).

System identification problem formulation – a feasi-
bility problem. Consider the Wiener-Hammerstein model in
Figure 2 in which the output and the input are constrained
to be the given data(u,y). Let’s investigate the possible
choices of the decision variablesg andh so that there exist
signalsv ∈ RN andw ∈ RN with the property that(u,v),
(v,w), (y,w) are valid input/output pairs of the blocksG,
φ andH respectively.
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Fig. 2. A feasibility problem to determine the impulse responses of the
FIR systemsG and H. Here u and y are the given input and output
measurements generated by the true (but unknown) system. The signals
v andw are the outputs ofG andH, respectively.v andw are chosen so
that they define a functionφ satisfying sector bound constraint eq. (6).

The pairs(u,v) and (y,w) satisfy the following convo-
lution relationship.

v = Ug,
w = Yh,

(4)

whereU ∈ RN×Ng andY ∈ RN×Nh are defined as

U :=




u[0] 0 . . . 0

u[1] u[0]
.. .

...
.. . 0

...
... u[0]

...
u[N − 1] u[N − 2] . . . u[N −Ng]




N×Ng

,

(5)
andY is defined in a fashion analogous to eq. (5).

For the pair (v,w), in principle, the only constraint
imposed is that there exists some functionφ such that
wi = φ (vi) , ∀ i = 0, 1, . . . , N − 1. However, to maximally
reduce the redundancy of the possible choices of(v,w), an
additional constraint is enforced:φ should satisfy the sector
bound of the form of eq. (2). That is,

(φ(b)− φ(a)) (φ(b)− φ(a)− βb + βa) ≤ 0, ∀ a, b ∈ R.
(6)

Constraint eq. (6) imposed on the functionφ : R 7→ R is
equivalent to a constraint on the generating pair(v,w) as

(wi −wj) (wi −wj − βvi + βvj) ≤ 0, ∀ i > j. (7)

The equivalence of eq. (6) and eq. (7) is shown in [20].
In summary, the Wiener-Hammerstein system identifica-

tion problem in the noiseless case can be defined as
Definition 2.1: [Wiener-Hammerstein system identifi-

cation problem – noiseless case]



Given the input/output measurement(u,y) ∈ RN × RN

of an unknown Wiener-Hammerstein system and positive
integersNg and Nh, find decision vectorsg ∈ RNg and
h ∈ RNh such that there exist signalsv ∈ RN andw ∈ RN

satisfying eq. (4), eq. (7).¥
Typically there are infinitely many solutions of the prob-

lem in Definition 2.1, the corresponding normalization issue
will be discussed in Subsection II-B.

Comparison with the model validation techniques.The
principles of the identification problem in Definition 2.1 and
that of the problem of model validation (e.g. [10]) are very
similar. Both problems call for satisfiability certificate of
the input/output relationships of the blocks in the model
structures. Definition 2.1 seeks a feasibility certificate while
model validation seeks an infeasibility certificate. However,
there are two major distinctions between the proposed
identification setup and the model validation setup. First,
for the model validation problem, proving theexistence
of the infeasibility certificate is sufficient. For example, in
[10], [15] the question of whether an infeasibility certificate
exists is answered by a structured singular value bounding
problem. The Wiener-Hammerstein identification problem in
Definition 2.1, on the other hand, requires the computation
of all signals presented in the model. This computation
can potentially be expensive. The second distinction of
the proposed identification setup from the model validation
setup is that the feasibility problem in Definition 2.1 will
lead to anon-convexquadratic program, while most of the
previously considered model validation setups lead to the
formulation of convex problems. The convexity properties
of the optimization problems also lead to a distinction in the
solution approaches. The published model validation results
are mostly based on rigorous analysis, while the approach
adopted in this paper will be more experimental – some
observations will be substantiated by numerical experiments
only.

B. Non-uniqueness of solutions and normalization

The system identification problem in Definition 2.1 is
feasible with decision vectorsg∗ and h∗ (i.e. the impulse
responses of the FIR systems in Figure 1). However, there are
actually infinitely many solutions. It can be verified that for
an infinite set of choices ofc1 6= 1 andc2 6= 1, the impulse
responsesg = g∗/c1 andh = h∗/c2 are also solutions of the
problem in Definition 2.1. The non-uniqueness of solutions
requires the normalization ofg and h, and the details of
the normalization can be found in [20]. Here only the main
observations are summarized.
• Normalization of bothg and h will generally lead to

excessive restriction. Therefore, onlyh will be normal-
ized in this paper. The particular choice of normalization
will be assumed:

h0 ≡ 1. (8)

While the choice of normalization in eq. (8) is
somewhat arbitrary, it is not unjustified because

h0 =
2π∫
0

Re
{
H

(
ejω

)}
dω > 0.

• With the normalization, the constantβ in sector bound
(7) can always be assumed to be one, otherwise it can
be absorbed in the part of the decision vector which
is not normalized. Therefore, throughout this paper, all
sector bound constraints assume values ofβ = 1.

C. Formulation of the system ID optimization problem

In this subsection the system identification problem de-
fined in Definition 2.1 will be simplified and put in a format
that would facilitate the study of its solution strategy. Some
properties of the optimization problem will also be discussed
in Subsection II-D.

Definition 2.1 defines a system identification feasibility
problem with three constraints given in eq. (4) and eq. (7).
The discussion in Subsection II-B concludes that a partial
normalization ofh (i.e. eq. (8)) can be assumed. In addition,
with the partial normalization,β in eq. (7) can be assumed
to be one. Substituting the variablesv andw using eq. (4),
the constraint set eq. (4) and eq. (7) reduces to

(∆Yijh)2 − (∆Yijh) (∆Uijg) ≤ 0, ∀ i > j, (9)

where
∆Uij := Ui −Uj ,
∆Yij := Yi −Yj ,

(10)

and

Ui ∈ R1×Ng , Ui :=
[

U (i, 1) · · · U (i,Ng)
]
,

Yi ∈ R1×Nh , Yi :=
[

Y (i, 1) · · · Y (i,Nh)
]
,

with U andY defined in eq. (5).
Conforming to the standard notation in the field of op-

timization, define the vector of decision variablesx ∈
RNg+Nh as

x :=
[

g
h

]
, (11)

then corresponding to eq. (8), the partial normalization
constraint set will be denoted as

X :=
{

x =
[

g
h

]
∈ RNg+Nh h0 = 1

}
. (12)

In addition, define matricesAij ∈ R(Ng+Nh)×(Ng+Nh) as

Aij :=
[

(∆Yij)
′ (∆Yij) − 1

2 (∆Yij)
′ (∆Uij)

− 1
2 (∆Uij)

′ (∆Yij) 0

]
.

(13)
Then eq. (9) is the same as

x′Aijx ≤ 0, ∀N − 1 ≥ i > j ≥ 0. (14)

Using the notationAij defined in eq. (13), the system
identification optimization problem can be formulated as
follows.

minimize
x∈X ,r∈R

r

subject to x′Aijx ≤ r, ∀ i > j
r ≥ 0,

(15)

whereX is defined in eq. (12) andAij are defined in eq. (13).
Program (15) and the feasibility problem in Definition 2.1 are
equivalent in the following sense:̂x is an optimal of program



(15) if and only if the correspondinĝg and ĥ (see eq. (11))
is a feasible solution of the problem in Definition 2.1. The
equivalence can be explained in the following schematics
(with x̂ and ĝ and ĥ related by eq. (11)).

ĝ and ĥ is a solution according to Definition 2.1.

⇐⇒ ĝ and ĥ satisfies eq. (9).
⇐⇒ x̂ satisfies eq. (14)
⇐⇒ x̂ is an optimal solution of program (15).

(16)
All but the last equivalence have already been discussed. The
last equivalence is true only in the noiseless identification
case – the normalized FIR system coefficientsg∗ andh∗ is
an optimal solution of program (15) with an optimal objec-
tive value of zero, hence any optimal solution of program
(15) satisfies eq. (14).

D. Properties of the system ID optimization problem

The matricesAij in (13) can be written as

Aij = pij (pij)
′ − qij (qij)

′
,

where

pij =
[

(∆Yij)
′

− 1
2 (∆Uij)

′

]
and qij =

[
0

− 1
2 (∆Uij)

′

]

(17)
From (17), it can be seen thatAij are rank two matrices
with one positive and one negative eigenvalues. Therefore,
program (15) is a non-convex QP, which isNP hard.

On the other hand, it can be seen that the absolute value
of the positive eigenvalue is (much) greater than that of the
negative eigenvalue. This fact suggests that program (15)
might be an “easy”NP hard problem. This hypothesis
is indeed justified by the following numerical experiment.
Define a proximity functionR : RNg+Nh 7→ R+ as

R(x) := max
N−1≥i>j≥0

{0, x′Aijx} . (18)

Then letd̃ ∈ RNg+Nh be such that̃d (i) is a zero mean unit
variance Gaussian random variable for alli, and letx∗ be
the vector corresponding tog∗ andh∗. Then normalizẽd to
d such thatx∗ + sd ∈ X for all s ∈ R and ‖d‖ = 1.
Consider one dimensional functioñR : R 7→ R+ such that
R̃ (s) := R (x∗ + sd). Plot this function for a range ofs (e.g.
s ∈ [−0.1, 0.1]). Repeat the process with another randomly
generatedd for many times and check the shape of the
function R̃ (for different d) arounds = 0. The outcome of
the numerical experiment is shown in Figure 3. Such figure
suggests that program (15) is almost convex, substantiating
the previous notion that program (15) should not be a too
difficult problem to solve.

Finally, the following property of the proximity functionR
defined in eq. (18) will be assumed but not formally proved.

∃K ∈ R+ : ∀x ∈ X , ∃x̂ ∈ argmin
x̃∈X

R(x̃) : ‖x− x̂‖ ≤ KR(x),

(19)
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Fig. 3. Plot ofR̃ (s) in 200 (normalized) randomly generated directions.
Note thatR̃ (s) is not a convex function, but it is almost convex.

III. SOLVING THE OPTIMIZATION PROBLEM

Subsection II-C concludes with the formulation of pro-
gram (15), which is aNP hard non-convex QP. The solution
procedure for solving optimization problem (15) can be
divided into three steps, which will be discussed in detail
in three subsections.

A. Semidefinite programming relaxation

SDP relaxation is a standard attempt to solve non-convex
QP’s (e.g. [22]). To understand the relaxation, it is noted that
in optimization problem (15) the following is true

x′Aijx = Tr (AijX) , X = X ′ ≥ 0, rank (X) = 1.
(20)

A standard procedure to obtain a SDP relaxation is to drop
the rank constraint in (20), which leads to

minimize
X∈Xs,r∈R

r

subject to Tr (AijX) ≤ r, ∀ i > j
r ≥ 0
X = X ′ ≥ 0,

(21)

whereXs is the normalization constraint set forX corre-
sponding toX for x. Once the relaxation (21) is solved, the
singular vector corresponding to the largest singular value of
the matrix solution is returned as the best suboptimal solution
to (15). It is obvious that the lower the rank ofX is, the better
the quality of the suboptimal solution will be.

For the noiseless setup in this section, the minimum value
of r is actually zero, attainable by, for example,x∗ :=[
(g∗)′ (h∗)′

]′
. Hence, the matrix solutionX∗ ≡ x∗x∗′ is

an optimal solution to relaxation (21). Then by setting the
minimum value ofr to be zero and instead minimizing the
trace ofX (to obtain a low rank matrix solution, e.g. [23]),
the relaxation of (21) is reformulated as

minimize
X∈Xs

Tr (X)

Subject to Tr (AijX) ≤ 0
X = X ′ ≥ 0

(22)



The tightness of the relaxation depends upon the nonlin-
earity in Figure 2, but not too much on the FIR systemsG
andH. The above observation is made through the following
numerical experiment: 300 instances of program (22) were
solved. The input/output data was produced by driving
300 randomly generated Wiener-Hammerstein systems with
the block diagram in Figure 2.G and H were randomly
generated, but the nonlinearityφ were fixed. For the first
one hundred cases,φ was a hyperbolic tangent (i.e.φ(v) =
tanh (v)). For the next one hundred cases,φ was a saturated
linearity (i.e.φ(v) = sgn (v)max {| v| , 1}). For the last one
hundred cases,φ was a cubic nonlinearity (i.e.φ(v) = v3). It
is clear that the cubic nonlinearity does not have a derivative
bound, whereas the former two nonlinearities do have such
a bound. The results of the tests are shown in Table I. It can
be seen that for nonlinearities with strong saturation (i.e.
derivative bounds) the SDP relaxation is much tighter.

TABLE I

STATISTICS OF THE RATIO(%) BETWEEN THE SECOND AND THE FIRST

LARGEST SINGULAR VALUES OF THE SOLUTION MATRICES FOR THE

TEST CASES WITH THREE DIFFERENT PRE-SPECIFIED NONLINEARITIES.

hyperbolic tangent saturated linearity cubic
mean (%) 0.1860 5.842× 10−10 1.526
std (%) 0.3223 2.844× 10−9 3.501

While the relaxation (22) provides a reasonably good ap-
proximation to the true optimal solution of the original non-
convex problem (15), the approximation should always be
refined by some inexpensive procedure such as a linearized
local search described in the next subsection.

B. Local search

A local search is the following optimization procedure:
given an initial guessx0 ∈ RNg+Nh , generate a sequence
{x1, x2, . . . , xm} using the formula

xk+1 = xk + sk∆xk, k = 0, 1, . . . ,m− 1

where∆xk ∈ RNg+Nh is the search direction andsk ∈ R is
the step length defined to minimize some objective function.
Given the current iteratexk, a search direction∆xk should
also be admissible. That is,

∆xk ∈ X∆ (xk) :=
{
y ∈ RNg+Nh xk + sy ∈ X , ∀ s ∈ R}

Then this paper seeks to find∆xk ∈ X∆ (xk) such that

max
i>j

{
0, (xk + ∆xk)′Aij (xk + ∆xk)

} → min. (23)

Problem (23), however, is as difficult as (15). Nevertheless,
if the term (∆xk)′Aij∆xk is ignored, then it leads to

minimize
∆xk,r∈R

r

subject to x′kAijxk + 2x′kAij∆xk ≤ r, ∀ i > j
r ≥ 0
∆xk ∈ X∆ (xk) .

(24)

Optimization problem (24) is a linear program (LP) with
respect to decision variablesr and∆xk.

The treatment of the line search in this paper is standard,
see [24] for details.

C. Final optimizations

The main reason for the final optimization is the positive
real passivity enforcement of the final model ofh. Recall
the definition of positive real passivity

Re
{
H

(
ejω

)}
= h0 + . . . + hNh−1 cos ((Nh − 1)ω) > 0.

(25)
It can be verified (see [25], for example) that eq. (25) is true
if and only if there existsQ = Q′ ∈ R(Nh−1)×(Nh−1) such
that [

Q 1
2 ȟ

1
2 ȟ

′ h0

]
−

[
0 0
0 Q

]
> 0, (26)

where

ȟ :=
[

hNh−1 hNh−2 · · · h1

]′ ∈ RNh−1,

and inequality (26) means that the left side is a positive
definite matrix. Note that (26) is a linear matrix inequality
with variablesQ, h0 and ȟ.

Now supposêh is the identified FIR system impulse re-
sponse coefficients by the relaxation/local search procedure.
Then the passive refinement ofĥ can be found by solving

minimize
h

∥∥∥h− ĥ
∥∥∥

2

subject to (26).
(27)

IV. I DENTIFICATION OF WIENER-HAMMERSTEIN

SYSTEM – WITH MEASUREMENTNOISE

The development of this section will be parallel to the
combination of Section II and Section III. Differences be-
tween the noiseless and the noisy cases will be highlighted.

A. System identification problem formulation

The model to be identified is still of the Wiener-
Hammerstein structure in Figure 2 with decision variablesg
andh andφ being specified by a lookup table. Because of the
output measurement noise, however, the system identification
feasibility problem will be different. It is shown in Figure 4.
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Fig. 4. A feasibility problem to determine the impulse responses of the FIR
systemsG andH. Hereu andy are the given input and output measurement
generated by the true (but unknown) system. The signalsv andw are the
outputs ofG and H, respectively. The signaln is the noise corrupting
the output measurement. In the feasibility problem,v, w andn are extra
variables chosen so that, together withg andh, they define a functionφ
satisfying sector bound constraint eq. (6).

There is an extra signaln ∈ RN to be determined in the
feasibility problem in Figure 4. Define the Toeplitz matrix



N ∈ RN×Nh : similar to U in eq. (5). Then the constraint
set defined in Figure 4 can be given as follows.

v = Ug, (28a)

w = (Y −N)h, (28b)

(wi −wj) (wi −wj − vi + vj) ≤ 0, ∀ i > j. (28c)

Then the Wiener-Hammerstein system identification problem
with output measurement noise can be defined as

Definition 4.1: [Wiener-Hammerstein system identifi-
cation problem – noisy case]
Given the input/output measurement(u,y) ∈ RN × RN

of an unknown Wiener-Hammerstein system and positive
integersNg and Nh, find decision vectorsg ∈ RNg and
h ∈ RNh such that there exist signalsv ∈ RN , w ∈ RN

andn ∈ RN satisfying eq. (28a, 28b, 28c).¥

B. Formulation of the system ID optimization problem

Parallel to the development in Subsection II-C, the feasi-
bility problem in Definition 4.1 will be simplified. However,
instead of formulating and solving an equivalent optimization
problem as it was in Subsection II-C, arelaxation will be
formulated due to computation considerations.

Substituting eq. (28a) and eq. (28b) into eq. (28c) yields

(∆Yijh)2 − (∆Yijh) (∆Uijg)
≤ (∆Nijh) (2∆Yijh−∆Uijg)− (∆Nijh)2 , ∀ i, j,

(29)
where

∆Nij := Ni −Nj (30)

and

Ni ∈ R1×Nh , Ni :=
[

N (i, 1) · · · N (i,Nh)
]
.

Constraint (29) is difficult to handle because of the terms in
the right-hand side with the extra variables ofn. Therefore, it
is proposed in this paper that the followingrelaxedconstraint
should be imposed instead. That is,

(∆Yijh)2 − (∆Yijh) (∆Uijg) ≤ rij , ∀ i > j, (31)

with variablesg, h and r ∈ RN(N−1)/2
+ . Constraint eq.

(31) is linear with respect tor, and therefore it is no
more difficult to handle than eq. (9) in Subsection II-C.
Based on the “robustness principle” that eq. (29) should be
satisfied by a noise vectorn (and alsor) with the minimum
norm (e.g. the infinity norm). Then, using the notationsx
defined in eq. (11),X defined in eq. (12) andAij in eq.
(13) in Subsection II-C. The relaxed system identification
optimization problems can be given as

minimize
x∈X ,r∈R

r

subject to x′Aijx ≤ r, ∀ i > j
r ≥ 0.

(32)

Note that program (32) has exactly the same form as program
(15), the noiseless case in Subsection II-C. However, in
general, the minimum objective value of program (32) will
not be zero. Accordingly, the solution procedure described

in Section III should be modified. This will be explained in
Subsection IV-C.

A question of great concern is how good the relaxed
optimization problem (32) is. The following statement, from
[20], gives a theoretical solution guideline.

Lemma 4.2:Denoten∗ as the vector of output measure-
ment noise. Let̂g andĥ be a solution of program (32) when
the matricesAij are defined with input/output measurement
(u,y) with noisen∗. Letg∗ andh∗ be a solution of program
(15) when the matricesAij are defined with input/output
measurement(u,y) without noisen∗. Then if the proximity
function property in eq. (19) (whenAij are defined with
noise) is satisfied, then for‖n∗‖ small enough,

∥∥∥
(
ĝ, ĥ

)
− (g∗,h∗)

∥∥∥
2

= O (‖n∗‖2) . (33)

C. Reformulation of SDP relaxation

The relaxation of the feasibility problem in Definition 4.1
leads to the optimization problem (32), which has exactly
the same form as program (15) with only one exception –
the minimum of program (32) is not necessarily zero in the
presence of output measurement noise. Therefore, all of the
solution steps described in Section III apply to the noisy
problem (32) with the exception that the feasibility problem
(22) is infeasible, and hence it cannot be part of the solution
procedure. The following SDP will be solved in place of
program (22).

minimize
X∈Xs,r∈R

Tr (X) + λr

Subject to Tr (AijX) ≤ r
X = X ′ ≥ 0
r ≥ 0

(34)

In program (34)Xs is defined in (22), andAij are defined
in eq. (13).λ > 0 is a tuning parameter. It turns out that
λ = 100 works pretty well in general.

V. I DENTIFICATION OF WIENER-HAMMERSTEIN SYSTEM

– WITH FEEDBACK AND NOISE

The setup of the identification feasibility problem is given
in Figure 5. In addition to the decision variablesg ∈ RNg

G φ H
-1u

K*H

-

ywv

n

Fig. 5. A feasibility problem to determine the impulse responses ofG,
H andK ∗H. Hereu andy are the given input and output measurement
generated by the true (but unknown) system. The signalsv andw are the
input and output of the nonlinearityφ. The signaln is the noise corrupting
the output measurement. In the feasibility problem,v, w andn are extra
variables chosen so that, together withg, h andk∗h, they define a function
φ satisfying sector bound constraint eq. (6).

and h ∈ RNh seen in the previous sections, there are
decision variables associated with the FIR systemK, which
is implicitly characterized by the impulse response of the



product ofK and H denoted ask ∗ h ∈ RNk+Nh−1 and
the impulse response ofH denoted ash ∈ RNh . Once the
vectorsk ∗ h andh have been determined, a deconvolution
can be applied to retrieve the impulse response ofK.

The feasibility problem setup in Figure 5 leads to the
following set of constraints.

v = Ug −Y (k ∗ h) , (35a)

w = (Y −N)h, (35b)

(wi −wj) (wi −wj − vi + vj) ≤ 0, ∀ i > j, (35c)

with U, Y and N defined in eq. (5) or in some similar
fashions. Note that if the following notations are defined

Ũ :=
[

U −Y
]

and g̃ :=
[

g
k ∗ h

]
, (36)

then the constraint set eq. (35a,35b,35c) can be written as

v = Ũg̃, (37a)

w = (Y −N)h, (37b)

(wi −wj) (wi −wj − vi + vj) ≤ 0, ∀ i > j. (37c)

As far as the proposed system identification algorithm is
concerned, constraint set eq. (37a,37b,37c) has the same form
and properties as eq. (28a,28b,28c) in the no feedback case.
Therefore, the analysis and algorithm in Section IV can be
applied to the feedback Wiener-Hammerstein system identi-
fication simply by replacing constraint set eq. (28a,28b,28c)
with eq. (37a,37b,37c). Once the optimal values of the deci-
sion vectorsg, h andk∗h have been found, a deconvolution
can be applied to obtain the value ofk.

VI. A PPLICATION EXAMPLES

A. Identification of randomly generated Wiener-
Hammerstein system with feedback

The example given here is the identification of the feed-
back setup. In this test case,G∗, H∗ andK∗ are randomly
generated positive real passive FIR filters of 4th order. The
nonlinearity is φ∗ = sgn (x) {4 |x |, 0.1|x |+ (4− 0.1)} .
The noise is such thatn[t] is uniformly distributed and
n[t] ∈ [−0.01, 0.01] for all t.

For the identification, 86 samples of(u[t], y[t]) were used
to construct the matricesU andY. The identification model
has the same structure as in Figure 5, and the orders of the
FIR filters are also four. Once the identification is completed,
the original test system and the identified model are driven
by some test signals (different from the training signals), and
the corresponding outputs are recorded. Figure 6 shows the
matching of the output of one of the test scenarios. Figure
7 shows the matching of the identified nonlinearity. The
identification took about 5 seconds on a PC with a 3GHz
CPU and 3GB of RAM.

VII. C ONCLUSION

In this paper, the identification problems of the Wiener-
Hammerstein system with and without feedback have been
investigated. In the proposed algorithm, the identification
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Fig. 6. Matching of output signals by the original (unknown) system and
the identified model.y[k] denotes the output by the original system (star).
yi[k] denotes the output by the identified model (line). The plots of two
output signals almost overlap.

−15 −10 −5 0 5 10 15
−6

−4

−2

0

2

4

6

v

φ(
v)

 

 

original
identified

Fig. 7. Matching of the original nonlinearity (star) and the identified
nonlinearity (line).

of the nonlinearity is non-parametric. The paper formu-
lates the system identification problem as a non-convex
QP. Nevertheless, it is demonstrated that the classical SDP
relaxation is able to provide very good suboptimal solution
to the formulated non-convex QP. Using a local search,
high quality solutions of identification problem can often be
found. Finally, a numerical example is given to show that
the proposed relaxation framework provides an interesting
new way to solve the identification problem of the Wiener-
Hammerstein system with feedback.
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