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1. Assimilation for contaminant transport
a. Meandering puff
b. Technique comparison for a Shallow Water Model
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DTRA Motivation: CBRN Defense

Chemical, biological, radiological, or nuclear (CBRN) release

Predict transport and Dispersion 
Plan Appropriate Response

Goal: Minimize effects on Humans, Infrastructure, and Equipment
PSU ARL projects funded by DTRA:

• Applied meteorology – estimate model uncertainty
• Meteorology for Dispersion – construct best methods
• Sensor Data Fusion – assimilate data into models
• Estimate unknown source terms via assimilation
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1. Assimilation for Dispersion

Instantaneous 
Realization

Ensemble Average

Data Assimilation
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Sensor Data Fusion / Data Assimilation

Transport and Dispersion Model

Source
Information

Meteorological
Information

Sensor 
Data
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Assimilation Theory

Dynamical Prediction System:

Assimilation Process:

Objectives:
1. Determine realization characteristics
2. Assimilate data into forecast

Can separate into wind and concentration equations
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GA-Var Assimilation Procedure

Concentration Assimilation

1. Use “guessed” wind and 
source data to predict 
concentration.

2. Compute difference 
(innovation) between 
concentration prediction and 
observation.

3. Use GA-Var to update wind 
and source variables.

Repeat until converged

dynamically assimilate one 
time before going on to next 
time
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1 a.  Meandering Puff

We wish to assimilate a puff in a meandering wind field 
to reconstruct time dependent wind by assimilating 

observations of dispersed contaminant concentrations
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a.  Assimilate Puffs in 
Meandering Wind Field

Exact Solution

FEWN

GA-Var
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b. The Shallow Water Assimilation: 
TusseyPuf

Wind Direction Puff Centroid
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Sensitivity to Resolution

FEWN GA-Var
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1 b. TusseyPuff Assimilation

Anke Beyer-Lout

Shallow Water Model

Puff Dispersion

Wind Field

Concentration Field
+ TusseyPUFF

TusseyPUFF
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Experimental Setup

])()[(1 2

1

2 ft
T

ft yyxx
T

RP ττ
τ

ττ −+−= ∑
=

• Assess performance via RMSE:

• Puff trajectories:

• Resulting wind field:
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Anke Beyer-Lout
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Truth
With ensemble Kalman 
Filter data assimilation
observations

Truth
No data assimilation
observations

Sensor Data Fusion/Data Assimilation

Assimilate field sensor data to improve 
transport and dispersion estimate in real time

Much better prediction with assimilation Anke Beyer-Lout
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Results
R

M
S

E
 o

f P
uf

f T
ra

je
ct

or
y 

[m
]

Number of Observation Stations

Newtonian Relaxation

Anke Beyer-Lout

Sensor data fusion improves dispersion prediction



ARL
Penn State
COMPUTATIONAL MECHANICS

2. Source and Meteorology Inversion

• May not have required 
source information in 
the case of a terrorist 
release

• Can reconstruct that 
information (and 
unknown met. data) 
using Genetic Algorithm

• Characterize source and 
meteorological data 
given field sensor 
measurements              
(6 journal articles)
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Parameters Estimated

Parameters required to Predict 
Transport and Dispersion:

• Source parameters
– 2D location (x,y)
– Height
– Strength
– Time of Release

• Meteorological modeling 
parameters
– Wind direction
– Wind speed
– Stability class
– Boundary Layer Depth

• Sensor Characteristics
Andrew Annunzio
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Grid Size Grid Spacing

2 x 2 8000 m
4 x 4 4000 m
6 x 6 2667 m
8 x 8 2000 m

16 x 16 1000 m
32 x 32 500 m
64 x 64 250 m

Given these puff locations,                     
where is the source?

What meteorological conditions exist?

Use time varying measurements

Kerrie Long
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Noiseless Model Results

Skill Score vs. Resolution for the 180° Wind Direction
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Sensor Constraints

Detection Levels Saturation Levels

Luna Rodriguez
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Gaussian Puff with Thresholds

Luna Rodriguez
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Skill Score Results

Detection Level at 1e-16 Detection Level at 1e-12

Detection Level at 1e-4

Luna Rodriguez

Detection Level at 1e-8
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FUSION Field Trial 2007 (FFT 2007)

Currently modeling actual DTRA field data –
reconstruct source information Luna Rodriguez
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3.  Modeling Contaminant Transport

PSU/ARL Computational 
Mechanics Division has 
high fidelity tools for CFD 
modeling and dispersion 
computation

• Unsteady Reynolds 
averaged Navier Stokes

• Detached Eddy Simulation
• Large Eddy Simulation
• Particle Trajectory Models

Flow 
streamlines 
about PSU 

West 
Campus 
Buildings

Predicted 
dispersion 
about cube 
agrees well 

with 
measure-

ments

Joel Peltier

Robert Wilson
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Application of CFD –
Hypothetical Chlorine Release

• Model chlorine gas source 
as exhaust at ground level

• Exhaust port modeled as .3 
m x .3 m fan

• Exhaust fan flow rate is ~60 
m/s.

• Wall-functions are used at 
solid boundaries

• Wedge elements are used 
for z<40 m to control mesh 
resolution near surface

• Tetrahedral elements are 
used for >40m to minimize 
grid overhead in the outer 
flow

Site of chlorine 
gas exhaust

Natatorium

Frank Zajakowski
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Natatorium Footprint

Idealized Chlorine Tank

Duct

Exhaust Fan

Open Door

High Fidelity Model of Chlorine Release

Frank Zajakowski
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Chlorine release from container

Frank Zajakowski
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Hypothetical Chlorine Release 

Used flow solver AcuSolveTM

Surface 
contours of 
streamwise 
velocity at 5 
m above the 
ground

Isosurfaces 
of Q-
Criterion 
colored by 
streamwise 
velocity 
showing 
turbulence 
structures

Frank Zajakowski
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Chlorine Dispersion – CFD

Frank Zajakowski
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Chlorine Spread through campus

Frank Zajaczkowski
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Hypothetical Chlorine Release

Cross-Sectional Concentration (ppm)
Time ~ 6 min from release

Predicted levels of chlorine exposure in the stadium small  

Frank Zajakowski
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Hypothetical Chlorine Release

H
PA
C

C
FD

Frank Zajakowski Kerrie Long
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Chlorine Dispersion - HPAC 

Kerrie Long
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Regional Chlorine Dispersion - HPAC 

Kerrie Long
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4.  Assimilation for Downscaling

• Need for fine-scale 
modeling for a locale 
with specific 
characteristics of the 
realization
– Defense applications
– Wind energy 
– FAA

• Use data from 
mesoscale model 
(and/or observations) to 
initialize a CFD Model 
simulation
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Site Description
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WRF-ARW Setup

• Five grid nests
– 36 km
– 12 km
– 4 km
– 1.33 km
– 444 m

• One-way interface 
from coarse to fine
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WRF-ARW Setup

• 43 Vertical layers
• 5 layers in lowest 10 

m with 2 m spacing
• FDDA
• http://www.meteo.ps

u.edu/~wrfrt/

Brian Gaudet

http://www.meteo.psu.edu/~wrfrt/
http://www.meteo.psu.edu/~wrfrt/
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1 Km

• Domain: 2.7Km x 2Km by 1Km 
• Mesh size: 200x200x100 = 4e6 nodes
• Spatial resolution: 1.5 m in the transverse directions

1 m near wall spacing

Computational Mesh Elevation (m)

Acusolve Setup
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Case Description 

• 01 January 2009
1600 EST for data 
assimilation

• Cold snap in eastern 
US over PA

• Flow from SSW in 
western PA to W in 
central and eastern PA

• Gusty
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Effect of Including Mesoscale Model Data

Constant Inflow Mesoscale Inflow

Frank Zajaczkowski & Kerrie Long



ARL
Penn State
COMPUTATIONAL MECHANICS

Plans
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5. Smoke Plume Visualization
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6. Modeling Volcano Emissions

• FAA must understand 
volcano paths for 
routing airplanes

• Modeling ash plumes 
requires good estimate 
of source term as well 
as upper level winds

• Can our GA-Var 
technique provide 
better modeling 
parameters?

http://www.boston.com/bigpicture/2009/04/alaskas_mount_redoubt.html
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Data Sources

Ash cloud from Mt. Redoubt seen by the 
geostationary MTSAT satellite, courtesy of the 
National Weather Service, processed by the 
Cooperative Institute for Meteorological Satellite 
Studies at the University of Wisconsin-Madison. 
Picture Date: March 26, 2009. (Jonathan Dehn / 
National Weather Service) #

Landsat 5 image of the Mt. Redoubt area on March 
26,2009 at 1:07 PM AKDT. The false color image 
shows the large brown ash cloud extending over the 
Cook Inlet and the western Kenai peninsula (right side 
of image). The image also shows a whiter steam and 
gas plume rising from the summit of Redoubt Volcano 
(upper left). Dark lahar deposits extend north from the 
summit over the Drift Glacier an into the Drift River. 
(Ron Beck, EROS / Alaska Volcano Observatory / 
U.S. Geological Survey) #

From NSF Daily Briefings

http://www.boston.com/bigpicture/2009/04/alaskas_mount_redoubt.html
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Plan of Action

Use satellite data to identify, 
quantify, and track plume

Estimate Source Term and 
modeling parameters

http://www.boston.com/bigpicture/2009/04/alaskas_mount_redoubt.html

Apply GA-Var
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Impact

• Supply better 
source term 
information

• Produce better 
transport and 
dispersion 
conditions

• Enable FAA to 
better route aircraft

http://www.boston.com/bigpicture/2009/04/alaskas_mount_redoubt.html
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• PSU/ARL has successfully built 
Dispersion and Assimilation capabilities

– Assimilation for Dispersion
– Source Term Estimation / Back-calculation
– High Fidelity Modeling Scenarios
– Assimilation for Downscaling
– Plume characterization
– Volcano assimilation and ash  cloud 

modeling

Summary
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Directions

Goal:
Advance assimilation 
methods for a wide  
range of problems 
using interesting data

Includes:
• New sources of data
• New applications
• New combinations of 

models and data
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Questions?


