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Outline
• Data assimilation works by using model-data

misfits to correct the model state of the system
• The causes of some of the observed variability

are not reflected in the model, and that portion of
the observed variability cannot be usefully
assimilated

• We propose a method for constructing statistical
error estimates that account for representation
error explicitly

• We describe progress toward implementing our
methods within the framework of the operational
climate forecast system.
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Representation Error
• Data assimilation makes use of data misfits, aka

innovations: z − Hx
(f)

• x
(f) is the forecast state

• Let x̃(t) be the “true” ocean, as the instruments
measure it.
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Representation Error
Write the innovation:

z − Hx
(f) = z − z

(t) + z
(t)

− Hx
(f)

= ǫ0 + H(x̃(t)
− x

(t)) + H(x(t)
− x

(f))

• ǫ0 = z − z
(t),theinstrument error

• H(x̃(t) − x
(t)) is representation error, whose

statistics must appear in the terms reserved for
instrument error

• x
(t) − x

(f) is theforecast error
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Estimating Representation Er-
ror

1. Compute multivariate EOFs of a long model run

2. Estimate number of significant degrees of
freedom (DOF) by the Preisendorfer test. The
span of the significant DOF is the "model space"

3. Project a series of innovations into the model
space. Assume: innovations - their projections on
the model space = instrument error +
representation error.

4. The significant EOFs of the the innovations -
their projections into model space are assumed to
span the space of representation errors.
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Summary of Previous Results
• EOFs of model, observations and SST

innovations were calculated for a 23 year run of
POP, implemented at1o for the north Pacific.

• The model space hadO(35) dimensions, by the
Preisendorfer test.

• Representation error accounted for much of the
variability in the innovation sequence.

• An OI scheme was devised, based on projections
of innovations into the model space.

• Statistics of estimated model SST variability + an
ensemble of simulated representation errors were
identical to statistics of the SST data.
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Error for the NCEP CFS
Analyze output of 16 year run of ocean component of
NCEP CFS:

• MOM4, 0.5o driven by NCEP reanalysis
• 5 day averages of 16 year run, 1993-2008 incl.
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Getting Started
Restrict attention to:

• 60oS - 60oN

• Consider only upper1500m and points where
depth≥ 1500m

• Remove the seasonal cycle

...still an enormous calculation:
• ≈ 150K points horizontal, 33 vertical levels
• 3D T,S,U,V and 2D H
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EOFs: Surface Variablity

Temperature maps from multivariate EOF
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EOFs: Surface Variablity

Salinity maps from multivariate EOF
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EOFs: Surface Variablity

Height anomaly maps from multivariate EOF
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PCs: Surface Variablity
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Blue curves: PCs. Red curves: SOI

Representation Error in Ocean Data Assimilation – p. 12/24



Characteristic Values: 3D Tem-
perature Variability
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PCs: 3D Temperature Variabil-
ity
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Model Sea Surface Height
...somewhere in the north Atlantic
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Was there a trend in the data?
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...nope. No trend in 23 year SST time series either.
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Representation Error EOF

Upper left: Preisendorfer test; upper right and bottom
row: EOF loadings.
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SST Representation Error PC
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So where did a trend come
from?
...probably an internal adjustment process.

• Initial condition is the result of CFS data
assimilation; initial state unbalanced

• Model is adjusting according to its own internal
physics

• Is it “right?” No way to know, given available
data

• How long will adjustment take?
• What do we do about it?

• For now, remove a least-squares trend
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Model Sea Surface Height PC
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The Plan
• Assimilate data by 3DVAR:

J =
1

2
(x − x

(b))TE−1(x − x
(b)) +

1

2
(z − Hx)TF−1(z − Hx)

δJ = δxT
(

E−1(x − x
(b)) − HTF−1(z − Hx)

)

∇J = E−1(x − x
(b)) − HTF−1(z − Hx)

• Obs error covarianceF appears only in the term
HTF−1(z − Hx)

• Write F = D + uuT whereD is diagonal and
columns ofu span representation error space.
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Effect of Augmentation of F
• Calculation ofF−1 will be inexpensive.

• Let F = σ2I + uuT , σ2 the obs error variance
andu a vector withuTu = r2 > σ2. The
Sherman-Morrison formula:

(σ2I + uuT )−1 =
1

σ2

(

I −
uuT

σ2 + uTu

)

• Multiplying the innovation byF−1 will thus have
the effect of damping the component parallel tou
by a factor ofσ2/(r2 + σ2) << 1
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The Way Forward
1. Implement CFS data assimilation system with

augmentedF

2. Does this help? Greatest effect should be less
shock to the system by assimilation, and smaller
initialization transients

3. Construct model error covariance from projection
of innovations on full 3D model space.

4. Use the result to construct an OI scheme, an
ensemble scheme or both.
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The Way Forward ...
1. Augment the ocean state with an ensemble of

simulated representation error time series and
study the effect on the model atmosphere

2. Construct an ensemble of coupled model outputs
and study its properties

...but for now we’ll be happy to see the results from
the augmented obs error covariance in the next few
weeks.
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