National Aeronautics and Space Administration

Measuring salinity from space: The NASA Aquarius mission

Eric Lindstrom, NASA Aquarius Program Scientist

nasa dov

<u>Gary Lagerloef</u> *Aquarius* **Principal Investigator** Understanding the Interaction Between Ocean Circulation, the Water Cycle, and Climate by Measuring Ocean Salinity

NOAA JCSDA Seminar 23 March 2009 Silver Spring, MD

1 S luariu

AQUARIUS/SAC-D Salinity is Missing from the Satellite Measurement Salinity Satellite Mission "Toolkit"

• Satellites measure sea level, surface wind, SST, insolation, rain rate, evaporation, ocean color, etc...

Surface salinity is needed to link the hydrologic cycle to ocean dynamics and circulation.

E. Lindstrom and G. Lagerloef Salinity Remote Sensing

- Science Why satellite SSS is required
- SSS remote sensing How it works
- The Aquarius/SAC-D Mission
- Calibration and Validation
- Algorithms and simulators
- Ground System, data access

AQUARIUS/SAC-D

Salinity Satellite Mission Temperature and Salinity determines water density

CONAE

"Nothing yet. ... How about you, Newton?"

It is gravity that drives the ocean circulation

Waten masses JCDSA Seminar 23 March 2009

5

AQUARIUS/SAC-D Salinity Satelling Mission: An effective tracer of interior ocean circulation

E. Lindstrom and G. Lagerloef Salinity Remote Sensing

NOAA JCDSA Seminar 23 March 2009

6

6

Aquarius Mission Science

Understanding the Interactions Between the Ocean Circulation, Global Water Cycle and Climate by Measuring Sea Surface Salinity

Evaporation Minus Precipitation 1981--2002 $50^{\circ}N$ $25^{\circ}N$ 0° $25^{\circ}S$ $50^{\circ}S$ $50^{\circ}S$ $60^{\circ}E$ $120^{\circ}E$ $180^{\circ}W$ $120^{\circ}W$ $60^{\circ}W$ 0° 0° 0°

Global salinity patterns are linked to rainfall and evaporation

Salinity affects seawater density, which in turn governs ocean circulation and climate

The higher salinity of the Atlantic sustains the oceanic deep overturning circulation

Salinity variations are driven by precipitation, evaporation, runoff and ice freezing and melting

E. Lindstrom and G. Lagerloef Salinity Remote Sensing

Dynamic Range and Accuracy

- Climatology maps based on the available historical data are interpolated over ~1000 km scales due to data sparseness.
- Aquarius' 150 km resolution will provide almost an order of magnitude improvement

E. Lindstrom and G. Lagerloef Salinity Remote Sensing

Mean Ocean SSS Dynamic Range is ~5 psu (32.5 to 37.5 open ocean)

0.2 psu accuracy yields ~25:1 signal/error relative to mean field

Accuracy and signal/error improves with averaging interval (Table)

	Random Error Reduction with Averaging Interval								
		Instantaneous	7 Days	28 Days	90 Days	1 Year	3 Years		
5.5	Global RMS (psu)	0.87	0.33	0.20	0.09	0.05	0.03		
	Mean Signal/Error	6	15	25	55	110	190		

- Interannual SSS variability range is ~2 psu in the western tropical Pacific
- 0.2 psu monthly accuracy is at the detection limit of short time scales, and easily resolves the interannual signals related to El Niño

Marine freshwater budget out of balance

The mean net freshwater flux fields to/from the atmosphere as they result from the ECCO ocean model optimization over the period 1992 through 2001 (m/year).

Mean difference between the net freshwater flux as determined from the ocean optimization relative to the NCEP fields estimated over the same period.

Mean fresh water flux difference between NCAR and NCEP for the period 1991–2000, illustrating the uncertainty range of different atmosphere analyses.

(Stammer et al, JGR-Oceans, 2004)

U.S. CLIVAR Salinity Working Group Proposed Control Volume Experiment

Constrain the complete surface atmosphere/ocean hydrologic [seasonal] cycle based on observations

Test and improve coupled climate models

Alternative regimes

evaporative subtropical gyre

high precipitation tropical regime

Oceanography, Vol. 21, 2007

E. Lindstrom and G. Lagerloef Salinity Remote Sensing

NOAA JCDSA Seminar 23 March 2009

Potential Process Study in 2011

11

Air-Sea Freshwater Budget Study

<u>Discussion group meeting at WHOI 9-10 July 2008:</u> Ray Schmitt, Eric Lindstrom, Steve Riser, Arnold Gordon, Bill Large, Jim Carton, Fred Bingham, Gary Lagerloef, Lisan Yu, David Fratantoni

Location advantages:

- •Weak horizontal divergence -
- Low precipitation

1D physics

- Modest eddy activity
- •Source of water for northern tropical thermocline
- •Stable SSS for satellite Cal-Val
- •Warm SST (better for Aquarius accuracy)
- •Leverages other resources: RAPID/MOC sections, Pirata Array, ESTOC time series (Canary Islands)
- Logistically tractable

Planning workshop in early 2009

NOAA JCDSA Seminar

23 March 2009

Physical Principles

Salinity is Derived by Measuring Brightness Temperature at L-Band (1.413 GHz)

```
Microwave radiometers measure the emitted power of a surface in terms of a parameter called the radiometric brightness temperature (T_B), which is proportional to the ideal black body radiation.
```

 T_{B} is the product of emissivity (e) and absolute surface temperature (T) in Kelvins

```
T_B=eT, where e\leq 1
```

e is a function of dielectric coefficient ϵ , incidence angle $\theta,$ polarization H or V, and sea state

 ε is the complex dielectric coefficient and depends on **S**, T, and radio frequency (f)

For sea water at S=35, T=288K(15C), θ =0, flat sea and f=1.413 GHz, the emissivity e \approx 0.3

E. Lindstrom and G. Lagerloef Salinity Remote Sensing

NOAA JCDSA Seminar

23 March 2009

12

The Aquarius team has validated Klein and Swift theory with controlled experiments over a wide range of temperature & salinity.

E. Lindstrom and G. Lagerloef Salinity Remote Sensing

NOAA Jeanna 23 March 2009

Why 1.413 GHz?

• It is a protected band (radio astronomy)

 Antenna size is manageable.
 Aquarius will have a 2.5 m antenna to yield a footprint ~100km.

• There is enough sensitivity to detect SSS signatures

(~0.1K \approx 0.2 psu)

• To achieve the required accuracy, the Aquarius radiometers are the most accurate ever developed for satellite.

Instrument Requirements

Aquarius Will Carry a 1.26 GHz Radar Scatterometer to Correct for Surface Roughness

E. Lindstrom and G. Lagerloef Salinity Remote Sensing

Aquarius/SAC-D Observatory

International Partnership between United States – Argentina

- Aquarius Salinity Microwave
 Instrument
- Launch Vehicle
- E. Lindstrom and G. Lagerloef Salinity Remote Sensing

• Service Platform and SAC-D Science Instruments

 Mission Operations & Ground System

Observatory Configuration

Instrument	Objectives for each instrument	Specifications	Resolution	Agency	
Aquarius	Sea Surface Salinity and	Integrated L- Band radiometer	Three beams:76 x 94,	NASA	
radiometer	Soil Moisture Meassurements	(1.413 Ghz) and	84 x 120, 96 x 156 km		
and Scaterometer		scaterometer (1.26 Ghz)			
		swath: 380 km			
MWR	Precipitation rate, winds speed,	Bands: 23.8 Ghz V Pol. and	Eight beams per frequency	Agency NASA CONAE CONAE CONAE CONAE ASI CNES CONAE	
Microwave Radiometer	sea ice concentration,	36.5 Ghz H and V Pol.	< 54 km		
	water vapour, clouds	Band widht: 0.5 and 1 Ghz			
		swath: 380 km			
NIRST New Technology	Hot spot events(fires, volcanoes),	Bands:3,8, 10,85 y 11,85 um	Space resolution: 350 m	CONAE	
Infrared	sea surface temperature	Instantaneous swath 182 Km	in temperature: 0.5°C	CSA	
Camera	measurements	extended swath 1000Km	less burned area detectable:		
		Pointing: ±30°	200 m²		
нѕс	Urban lights, electric storms,	Pancromatic: 450-610 nm	200-300 meters	CONAE	
Hight Sensitivity Camera	a polar regions vessel detection,	Swath: 700 Km			
<u> </u>	snow cover				
DCS	Data Collection System of	401.55 Mhz uplink	2 contacts per day	CONAE	
Data Collection System	Environmental and meteorological		with 200 platforms		
ROSA Radio Occultation	Determination of Atmospheric	GPS Occultation Techniques	Horiz: 300 Km Vert: 300m	ASI	
Sounder	temperature, pressure, humidity				
For Atmosphere					
CARMEN I	Effects of cosmic radiation	I: three Si detectors,	I: 256 channels spectra	CNES	
ICARE & SODAD	in electronic devices,	Si/Li	S: Sensitivity: 0.5 u part.		
	distribution of micro-particles	S: four MOS sensors	at 10Kkm/sec		
	and space debris				
TDP					
Technological	Position, velocity and time	GPS receiver	Position: 20m, velocity:1m/sec	CONAE	
Demostration	inertial angular velocity	Inertial Unit Reference	Angular Random Walk:		
Package	determination		0.008 deg/sqrt h		

Mission Design and Sampling Strategy

Boom & Reflector Installation and Deployment

- Boom and Reflector installation complete & stowed configuration (3 Nov 2008)
- Deployment test complete (10 November 2008)

E. Lindstrom and G. Lagerloef Salinity Remote Sensing

AQUARIUS/SAC-D

Salinity Satellite Mission

Salinity Satellite Mission

CONAE MicroWave Radiometer (MWR)

Basin scale spatial resolution provided by the Aquarius footprint:

•**Top:** Snapshot of a 1/8 degree OGCM SSS field.

•Middle: The same field with a 150 km Gaussian filter applied to simulate the Aquarius spatial resolution, removing much of the eddy scale structure while preserving good spatial resolution of basin and gyre scale structures.

•Bottom: Mean annual SSS from World Ocean Atlas 2005.

E. Lindstrom and G. Lagerloef Salinity Remote Sensing

Single Day Orbit Swath Pattern

The orbit precesses to yield complete coverage in 7 days

E. Lindstrom and G. Lagerloef Salinity Remote Sensing

Arctic Ocean Coverage

Measuring surface SSS conditions during in the summer Arctic ice melt may become an important scientific achievement for Aquarius.

E. Lindstrom and G. Lagerloef Salinity Remote Sensing

Cal/Val Approach

In situ

 Independent calibration of each radiometer – bias and drift

•Algorithm fine-tuning

CONAE

Salinity Remote Sensing

- +Z Nadir Initial maneuver after 30-days of science data are collected
 - Subsequent maneuvers as needed; Maximum frequency 1/month
 - Opportunities vary seasonally depending on galactic plane orientation
 - Objectives:
 - Bias correction
 - Linearity
 - Calibration drift
 - Antenna back lobes

NOAA JCDSASEAn and transition) 23 March 2009

AVDS and ADPS Roles

Aquarius Validation Data System (AVDS) and Aquarius Data Processing System (ADPS)

- AVDS Purpose is to collect all available *in situ* validation data, quality control, format and distribute for Aquarius Cal/Val
 - AVDS ↔ ADPS interface testing with 30-day simulation data: Testing Underway
 - AVDS daily Argo in situ data access: Operational
 - ADPS will access L1C and L2 SMOS data files and run matchups

Initial Operations Phase Science

• "At Launch" algorithm

AQUARIUS/SAC-D

Salinity Satellite Mission

$$S = a_{o} + a_{1}T_{V} + a_{2}T_{H} + a_{3}W + \dots$$

- Coefficients a_i depend on SST and incidence angle and are tuned with the pre launch simulator
- Initial operational ADPS processing will use ancillary wind input (NCEP winds and WISE model)
- As the scatterometer and MWR are calibrated, terms for those data will be added to the retrieval algorithm equation.
- Each beam SSS retrieval will undergo a simple least squares orbital bias correction with *in situ* matchups to release daily "quicklook" maps

Data Product	Description				
Level 1a	Reconstructed Unprocessed Instrument Data				
Level 1b	Calibrated Sensor Units				
Level 2	Derived Geolocated SSS				
Level 3	Time-space averaged SSS on a standard Earth Projection.				

Aquarius Data Products

Representing both ascending and descending at Aquarius 3 horn footprints

30d Live Ocean, reference SSS, psu

E. Lindstrom and G. Lagerloef Salinity Remote Sensing

E. Lindstrom and G. Lagerloef Salinity Remote Sensing

Breakdown of Simulated Retrieval Errors by Latitude Band

Aquarius will Rely on *In Situ* Observations that are Heavily Supported by NOAA

E. Lindstrom and G. Lagerloef Salinity Remote Sensing

NOAA JCDSA Seminar 23 March 2009

31

Drifters SSS: COSMOS 2005 Field Test,

Bay of Biscay

Reverdin et al., JTech, 2007		Table 2: H the COSM	Estimated sali IOS2 cruise a	nity biases (p nd later encou	ss-78) by co unters with re	mparison with search vessels	in situ data at (© close encou	launch, during unter with R.V:
the second s	9-month drifts <~0.06	(f) far encounter with R.V.; (d) deployment from R.V. for SIO-56365). Estimates based on the intercomparison of nearby drifters are also indicated, as well as date of recovery (and						
		estimated	bias when av	ailable), and p Jun	Aug	estimates. g-Sep	Dec	
			Launch Date/bias	COSMOS2 22-28/06	R.V. TSGs	Other drifters	Recovery/ loss date	Post- recovery
		Drifter			Date/bias	Day thias	bias	bias
		SIO-	2/04		7/09	7/08 13/08	3/12	28/01/2006
	5VP	56362	-0.010	-0.008	-0.030 (f)	-0.030		-0.066
	Drifters	SIO- 56363	2/04 -0.012	-0.029	31/08 -0.030 (c)		29/09	28/01/2006 -0.061
		SIO-	1/05				11/03/2006	
	Ready for	56364	-0.026				(grounded)	
	i teauy ioi	SIO-	2/04		28/08		03/10	
	more	56365	-0.020	-0.0028	-0.090 (d)		(loss)	
a		56266	2/04	0.016			19/08	
	extensive	50500	-0.015	-0.010			grounded	
	SSS trials	SIO-	1/05		6/09	12/12		
		56367	-0.017	-0.027	-0.040 (f)	-0.020		
		SIO-	1/05				7/12	2-4/02/2006
		56368	0.009	-0.009			-0.005	-0.011
		SIO-	2/04				17/09	
	Darallal	56369	-0.020	-0.031	4/00	7/00	grounded	5 7/10
		SIO-	2/04	0.028	4/09	7/08	23/09	5-7/12
	effort at	50570	-0.019	-0.028	-0.010 (1)	-0.050	5/11	5 7/12
		56371	-0.019	-0 020		-0.025	5/11	-0.028
	WHOI	SIO-	1/05	5.020	8/09		16/11	5-7/12
		56372	-0.007	-0.015	-0.025 (c)			-0.051
		SIO-	2/04				8/04	
U		L	_					

E. Lindstrom and G. Lagerloef Salinity Remote Sensing

Purpose: To obtain "skin" salinity and upper 5m gradient statistics

- Argo CTD nominally shuts off at ~5m
- Steve Riser and Gary Lagerloef are assembling experimental Argo floats each with a secondary CTD sensor to profile to the surface. The primary CTD will shut off at ~5 m per normal operations.
- Sea-Bird developed a specialized "Surface Temperature Salinity" (STS) sensor which is programmed to profile the upper ~30 m and is inter-calibrated with the primary CTD
- We deployed the first at the HOT site near Hawaii late summer 2007.
- Others are being deployed in the equatorial Pacific in 2008, including one in the warm pool.
- Development of at least 20 are being funded by NASA during the next 2 years.

Small gradients relative to satellite resolution

Priorities for Aquarius SSS Cal/Val and Ocean Process Studies

Drifters in the N. Atlantic Subtropical gyre by 2011. ~50 Enhanced STS Argo in high rainfall and high evaporation

50-100 SSS

~50 SSS Drifters in the Southern Ocean (large satellite error)

regimes.

E. Lindstrom and G. Lagerloef Salinity Remote Sensing

AQUARIUS/SAC-D

Salinity Satellite Mission

Ground Data System

E. Lindstrom and G. Lagerloef Salinity Remote Sensing

- Ocean Salinity Science Team (OSST) will be one element of the broader Aquarius/SAC-D Science Team.
- Competed in "Research Opportunities in Space and Earth Science 2008." Ocean Salinity Science Team Proposals due March 18 2009.
- Proposals required only for those requesting NASA funding.
- <u>Access to Aquarius data and science meetings will be open to the</u> <u>full science community</u>

National Aeronautics and Space Administration

www.nasa.gov

Understanding the Interaction Between Ocean Circulation, the Water Cycle, and Climate by Measuring Ocean Salinity

Aquarius/SAC