Recent Arctic climate change: Observations, drivers and impacts

John Walsh

Cooperative Institute for Alaska Research University of Alaska, Fairbanks

Outline

- Recent Arctic changes
 - -- focus on sea ice, ocean, hydrology
- Drivers of recent Arctic changes
 - -- global linkages
- Impacts on Alaska
 - -- from: Global Climate Change Impacts in the U.S. (2009)

Arctic sea ice concentrations

Sep. 15, 1980

Sep. 15, 2007

Arctic sea ice concentrations

Sep. 15, 2007

Sep. 15, 2008

Northern Hemisphere Sea Ice Area

Data provided by NSIDC: NASA SMMR and SSMI

 annual * winter (JFM) spring (AMJ) summer (JAS) autumn (OND) n

sea ice extent (million km^2)

Northern Hemisphere Sea Ice Extent

Northern Hemisphere Sea Ice Anomaly

Anomaly from 1978-2000 mean

Why the extreme retreat of sea ice in 2007 and 2008?

- Preconditioning
 - -- warmer intermediate-level ocean water
 - -- export of older, thicker ice in previous years
- Favorable winds
- Solar heating (albedo-temperature feedback)

Three sources of Arctic Ocean water temperatures

- Historical records (esp. Russian measurements)
 -- decadal climatologies
- IARC cruises, 2002-2008
 -- Nansen-Amundsen Basin Observing System, NABOS)
- IPY intensive observations, 2007-2008

Temperature change of Arctic Ocean intermediate water [from Polyakov et al., 2004]

) 0.5 0.75 1 1.25 1.5 <2.5

2008 NABOS cruise results: Cross-sections of Arctic Ocean temperature

Arctic Ocean stations during 2007 (IPY)

2007 Arctic Ocean heat anomalies: AW = Atlantic Water, OL = Overlying Layer [Polyakov et al., 2009]

2007 anomalies of vertical heat flux, stability [Polyakov et al., 2009]

2007 Arctic Ocean temperatures vs. depth – longitudes [from Polyakov et al., 2009]

Conclusion

- Atlantic Water warming, reduced stratification have increased upward heat flux by ~ 0.5 W/m2
- Corresponding ice thickness reduction: 24-35 cm [vs. ~30 cm loss due to surface melt]

Shifts in center of distribution for 45 taxa in SE Bering Sea, 1982-2006

Rate similar to North Sea (Perry et al. 2005)

2-3 times faster than terrestrial mean (Parmesan and Yohe 2003)

RUSALCA (Russian-American Long-term Census of the Arctic) Major cruises: 2004, 2009

RUSALCA (Russian-American Long-term Census of the Arctic) Major cruises: 2004, 2009

RUSALCA 2004: Sampling of hydrothermal vents (undersea volcanoes)

RUSALCA 2004 cruise

RUSALCA 2004

RUSALCA 2004: Methane concentrations in water

A. Savvichev, I. Rusanov and K. Crane, 2004

RUSALCA 2004: Methane concentrations in sediments

Siberian Shelf Study: (2003-08)

The overall goal of the project is to provide a quantitative, observationallybased assessment of the dynamics of different components of the East Siberian Arctic Shelf (ESAS) carbon cycle under conditions of changing climatic and environmental conditions

Key Objective is to quantify the area-scaled ESAS contribution of CH4 and CO2 to the atmosphere.

Semiletov, Shakhova

Significant release of methane from seabed deposits (Fig. 2a,b) to the water column -atmosphere was obtained. Bubble clouds of methane were discovered over large areas of venting fields. At few locations such clouds were associated with geophysical gas-chimney (CH) structures (Fig. 2b). It is likely that the ESAS may contribute to atmospheric CH4.

Fig. 2. Distribution of aqueous methane in the surface water on the ESAS (**a**, Shakhova et al. 2008); clouds of methane bubbles within the water column in the East Siberian Sea (**b**, Shakhova et al., 2009, in preparation

Shakhova, Semiletov

Change in surface air temperature (°C), 1957-2006 [from NASA GISS]

Temperature change in Alaska, 1949-2007 [from Alaska Climate Research Center]

Total Change in Mean Annual Temperature (°F), 1949 - 2007

Changes of annual and seasonal temperatures in Alaska: 1949-2006

	Total change, °F (1949 - 2006)				
Location	Annual Spring Summer Autumn Winter				
Arctic					
Barrow	3.8	4.2	2.5	2.1	6.1
Interior					
Bettles	4.0	4.8	1.8	0.9	8.5
Big Delta	3.7	3.9	1.3	0	9.7
Fairbanks	3.6	4.2	2.2	-0.2	8.1
Gulkana	3.0	2.7	1.0	-0.3	8.3
McGrath	4.0	5.0	2.8	0.6	7.6
West Coast					
Bethel	3.7	5.3	2.4	0.3	6.9
Cold Bay	1.9	2.6	2.1	1.1	2.0
King Salmon	4.3	5.5	2.0	0.7	9.2
Kotzebue	3.2	2.1	2.4	1.4	6.8
Nome	3.0	4.0	2.5	0.7	4.9
St. Paul	2.3	3.3	3.2	1.5	1.5
Southcentral					
and					
Southeast					
Anchorage	3.4	4.1	2.0	1.0	7.2
Annette	2.4	2.9	1.9	0.3	4.1
Homer	4.3	4.6	3.7	1.8	7.0
Kodiak	1.5	3.1	2	-0.1	1.5
Juneau	3.6	3.5	2.4	1.4	6.8
Talkeetna	5.3	5.7	3.3	2.2	9.3
Yakutat	2.8	3.5	2.0	0.2	5.1
Average	3.4	3.9	2.3	0.8	6.3
Color -1 - 0 0 - 1 1 - 3 3 - 5 5 - 7 7 - 9 > 9					

code:

Alaska statewide temperature anomalies: 1949-2008

Alaska Climate Research Center

Geophysical Institute, UAF

The Pacific Decadal Oscillation

[from JISAO, Univ. Of Washington]

Alaska warm phase Alaska cold phase 0.8 0.4 0.2 0.0 -0.2 -0.6 monthly values for the PDO index: 1900-January 2008 4 2 -2_4 ____ 1900 2000 1920 1940 1960 1980

Arctic Oscillation's contribution to recent winter temperature changes (from D. Thompson)

.2 .5 1 2 4 8 8-4-2-1-.5 8-4-2-1-.5 .2.51248

Change in *annual* surface air temperature, 1957-2006

observed

IPCC models(actual GHG)

Alaska coastal communities' response to changing ice conditions: Resilience and adaptation -Barrow subsistence whaling

Data: Craig George, North Slope Borough Dept. of Wildlife Management

Photos: ©Bill Hess

IMPACTS OF A WARMING ARCTIC

Fairbanks frost-free season

year

Trends of Alaska tundra travel season length: BLM permit days

Seasonal frequency of weather conducive to sightseeing (King Salmon, AK)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

From NOAA Arctic Report Card 2008 [updated from Peterson et al., 2002, Science]

Drying of Arctic lakes [from L. Hinzman et al.]

1950 1981 2000

Permafrost in Alaska is warming [from V. Romanovsky, 2008]

TIME (years)

Permafrost degradation (Fairbanks) 2005-2025 Hadley model forcing [from V. Romanovsky, UAF]

When surface temperatures increase, the active layer does not freeze up during the winter, and permafrost degradation starts.

Projected changes of temperature: 2070-2090

Projected changes of precipitation for 2070-2090 (models used by IPCC, 2007)

winter

summer

IPCC, 2007: projected hydrologic changes, 2080-2099: In Arctic: Precip. ↑, Runoff ↑ (10-30%), Evap. ↑, Soil moisture ↓

Conclusions

- Over the past 50-60 years, temperatures in the Arctic, particularly Alaska, have warmed; summer sea ice has diminished
 - -- Regional changes are shaped by variations of the atmospheric circulation (PDO, AO)

-- Sea ice retreat appears to have been influenced by Atlantic (and Pacific) water inflows

- Ecosystem impacts have been detected in the Bering, emerging in the Arctic seas?
- Trace gas fluxes (especially methane) are locally large; spatially integrated estimates are a priority
- Projections: warmer, more precipitation, drier land surfaces