

Operational Implementation of 4D-VAR Assimilation for the U.S. Navy

L. Xu, N. Baker, B. Ruston, T. Hogan, P. Pauley, R. Langland, and S. Swadley NRL, Monterey, CA

T. Rosmond (NRL, retired) and B. Chua SAIC, Monterey, CA

R. Pauley and L. Lyjak FNMOC, Monterey, CA

Joint Center for Satellite Data Assimilation 1 October 2009, Washington, DC

With acknowledgments to Roger Daley, Andrew Bennett, Ed Barker, and Jim Goerss

Outline

- Background
- NAVDAS-AR¹ (AR) Design
- Basic Components of AR
- AR Validation Test (VT)
- AR Observation Impact
- Additional Capabilities
- Planned New Capabilities
- References

¹ NRL Atmospheric Variational Data Assimilation System – Accelerated Representer

- •NAVDAS-AR (observation-space 4D-Var) replaced NAVDAS¹ (observation-space 3D-Var) to provide the analysis for the Navy Operational Global Atmospheric Prediction System (NOGAPS) on 12Z September 23, 2009 at FNMOC².
- •As part of this transition, a NOGAPS/T239L42 (42 vertical levels) model replaced NOGAPS/T239L30, increasing the model top to 0.04 hPa, for better assimilation of satellite radiances.
- •An adjoint-based observation impact monitoring system, NAVOBS³, became operational to monitor the impact of assimilated individual observations (or satellite channels) and observation types on short term global forecast error at the same time.

¹ NRL Atmospheric Variational Data Assimilation System

- ² Fleet Numerical Meteorology and Oceanography Center
- ³ NAVDAS-AR adjoint OBservation monitoring System

NRL Var Data Assimilation Timeline

 $J=J^{\mathrm{b}}_{0}+J^{\mathrm{q}}+J^{\mathrm{r}}$

$$\begin{aligned} \mathbf{J}_{0}^{\mathrm{b}} &= \frac{1}{2} \begin{bmatrix} \mathbf{x}_{0}^{\mathrm{b}} - \mathbf{x}_{0} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \mathbf{P}_{0}^{\mathrm{b}} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{x}_{0}^{\mathrm{b}} - \mathbf{x}_{0} \end{bmatrix}, \\ \mathbf{J}^{\mathrm{q}} &= \frac{1}{2} \sum_{n=1}^{\mathrm{N}} \sum_{n'=1}^{\mathrm{N}} \begin{bmatrix} \mathbf{x}_{n} - \mathcal{M}(\mathbf{x}_{n-1}) \end{bmatrix}^{\mathrm{T}} \mathbf{Q}_{nn'}^{-1} \begin{bmatrix} \mathbf{x}_{n'} - \mathcal{M}(\mathbf{x}_{n'-1}) \end{bmatrix}, \\ \mathbf{J}^{\mathrm{r}} &= \frac{1}{2} \begin{bmatrix} \mathbf{y} - \mathcal{H}(\mathbf{x}) \end{bmatrix}^{\mathrm{T}} \mathbf{R}^{-1} \begin{bmatrix} \mathbf{y} - \mathcal{H}(\mathbf{x}) \end{bmatrix}. \end{aligned}$$
(1)

Euler-Lagrange Equations,

$$\begin{split} \left\{ \vec{\lambda}_{n} - \mathbf{M}_{n}^{T} \vec{\lambda}_{n-1} &= \left\{ \mathbf{H}^{T} \mathbf{R}^{-1} \left[\mathbf{y} - \mathcal{H} \left(\mathbf{x}^{a} \right) \right] \right\}_{n}, \text{ subject to } \vec{\lambda}_{N+1} = 0, \\ \mathbf{x}_{n}^{a} - \mathcal{H} \left(\mathbf{x}_{n-1}^{a} \right) &= \sum_{n=1}^{N} \mathbf{Q}_{nn} \cdot \vec{\lambda}_{n}, \text{ subject to } \mathbf{x}_{0}^{a} = \mathbf{x}_{0}^{b} + \mathbf{P}_{0}^{b} \mathbf{M}_{0}^{T} \vec{\lambda}_{0}. \end{split}$$
(2)

In both the solver and post-multiplication, we need to evaluate the following matrix/vector multiply operation many times during each inner loop,

$$\mathbf{g} = \left[\mathbf{P}^{\mathrm{b}} \mathbf{H}^{\mathrm{T}} \right] \mathbf{z},\tag{4}$$

where z is a known vector of length K in observation space and g is a vector of length $N \cdot I$ in model space, which is the result of the matrix/vector multiply. Following are the steps to obtain g through the use of tangent linear and adjoint models.

- 1. Define $\mathbf{z}^{\mathsf{T}} = \left(\mathbf{z}_{1}^{\mathsf{T}}...\mathbf{z}_{n}^{\mathsf{T}}...\mathbf{z}_{N}^{\mathsf{T}}\right)^{\mathsf{T}}$ and $\mathbf{g}^{\mathsf{T}} = \left(\mathbf{g}_{1}^{\mathsf{T}}...\mathbf{g}_{n}^{\mathsf{T}}...\mathbf{g}_{N}^{\mathsf{T}}\right)^{\mathsf{T}}$, where $\mathbf{z}_{n}^{\mathsf{T}}$ and $\mathbf{g}_{n}^{\mathsf{T}}$ are vectors of length \mathbf{k}_{n} and I, respectively.
- 2. $\mathbf{H}^{\mathsf{T}} = \left(\mathbf{H}_{1}^{\mathsf{T}}...\mathbf{H}_{n}^{\mathsf{T}}...\mathbf{H}_{N}^{\mathsf{T}}\right)$ is a K×N·I block diagonal matrix with N blocks, each of size $k_{n} \times 1$.

Assuming $\boldsymbol{\mathcal{M}}$ and $\boldsymbol{\mathcal{H}}$ are linear, we can then formally write the analysis as,

$$\mathbf{x}^{a} = \mathbf{x}^{b} + \mathbf{P}^{b} \mathbf{H}^{T} \left[\mathbf{H} \mathbf{P}^{b} \mathbf{H}^{T} + \mathbf{R} \right]^{1} \left[\mathbf{y} - \mathbf{H} \mathbf{x}^{b} \right].$$
(3)

- 1. We first solve $\beta = \left[\mathbf{H}\mathbf{P}^{b}\mathbf{H}^{T} + \mathbf{R}\right]^{-1}\left[\mathbf{y} \mathbf{H}\mathbf{x}^{b}\right]$, the solver.
- 2. We then post-multiply the solution by **P**^b**H**^T, the postmultiplication.
- 3. **P^bH^T** is the background error covariance between errors in model and observation spaces.
- 4. **HP**^b**H**^T is the background error covariance in observation-space, is also known as the *Representer Matrix*.

(from Xu, Rosmond, and Daley, 2005)

3. Introduce a vector of length I, \mathbf{f}_n , which is defined for each time \mathbf{t}_n . Let \mathbf{f}_n be the output from the backward adjoint model, \mathbf{M}_n^T , starting at time \mathbf{t}_N and with forcing $\mathbf{H}_n^T \mathbf{z}_n$,

$$\mathbf{f}_{n} = \mathbf{M}_{n}^{\mathrm{T}} \mathbf{f}_{n+1} + \mathbf{H}_{n}^{\mathrm{T}} \mathbf{z}_{n}, \text{ subject to } \mathbf{f}_{N+1} = \mathbf{0}.$$
 (5)

We refer to (5) as the backward sweep.

4. The matrix/vector multiplication at time t_n , and g_n is simply the output from the forward tangent linear model, M_{n-1} , starting at time t_0 ,

$$\mathbf{g}_{n} = \mathbf{M}_{n-1}\mathbf{g}_{n-1} + \sum_{n'=1}^{N} \mathbf{Q}_{nn'}\mathbf{f}_{n'}, \text{ subject to } \mathbf{g}_{0} = \mathbf{P}_{0}^{b}\mathbf{f}_{0}.$$
 (6)

We refer to (6) as the forward sweep.

5. It requires one single backward and forward sweep to calculate $P^{b}H^{T}z$.

- The 4D-Var cost function is not explicitly calculated in the system.
- It searches for the minimum in the observation space.
- The strong constraint (perfect model assumption) is only a special case, where model error variance is set to zero, of the weak constraint (allows for model errors).
- A linearized (instead of a nonlinear) full resolution prediction model is used in the additional outer loops.
- The size of the control variables of the minimization problem equals the number of observations to be assimilated.
- The coding of the adjoint of NAVDAS-AR is very simple.

- •Nonlinear NOGAPS (T239/L42):
 - Calculate innovation and low resolution basic state trajectory required in TLM/Adjoint models.
- •Observation pre-process:
 - Provide quality-controlled and bias-corrected observations to be used in the Solver (differs from NAVDAS).
- •Adjoint and tangent linear models of NOGAPS (T119/L30):
 - Calculate special Matrix/Vector multiplication in both the Solver & Post-multiplier.
- •Observation operators and associated Jacobians (CRTM):
 - Calculate innovation vector and to provide gradient information in both the Solver and Post-multiplier.
- •A Flexible Conjugate Gradient (FCG) Solver:
 - Find iterative solution to the Solver.
- •Error covariance model:
 - Specify background error covariance.

Convergence Behavior of NAVDAS-AR

Both cost functions are converged ~ 23 iterations!

Standard CG vs. Flexible CG (FCG)

FCG is a "must have" in finding z accurately and efficiently!

Flow Chart of NAVDAS-AR

 $\boldsymbol{x}^{a} - \boldsymbol{x}^{b} = \mathsf{P}^{b}\mathsf{H}^{\mathsf{T}} (\mathsf{H}\mathsf{P}^{b}\mathsf{H}^{\mathsf{T}} + \mathsf{R})^{-1} [\boldsymbol{y} - \mathcal{H}(\boldsymbol{x}^{b})]$

NAVDAS/L30, AR/L30, and AR/L42

Comparison of NAVDAS (OPS/L30), NAVDAS-AR with 30 vertical levels (AR/L30) and NAVDAS-AR with 42 vertical levels (AR/L42) and model top of 0.04 hPa. AR/L42 allows for better radiance assimilation.

- Run a 6-h update cycle for both NAVDAS-AR/NOGAPS (alpha test) and NAVDAS/NOGAPS (OPS) data assimilation systems on FNMOC's operational Linux cluster since October 2008.
- Initiated each run from the same set of NOGAPS initial conditions and allowed them to "spin-up" using its respective data assimilation system for 6-7 days before any test forecasts were made.
- Run five-day NOGAPS forecasts at 00Z for each data assimilation system from August-September 30, 2008 and from February–March, 2009.
- Verified the resulting NOGAPS one-day to five-day forecasts against their respective 00Z analyses and against 00Z rawinsonde observations from August-September 2008 and February-March 2009.

NAVDAS-AR VT Results - Summer 08

TC Track Errors - Summer 08

Homogeneous comparison of Tropical Cyclone (TC) forecast track error (nm) for 4D-Var/L42 NAVDAS-AR (red) and 3D-Var/L30 NAVDAS (blue). Number of verifying forecasts is given below each forecast length (hour), August 1 - September 30, 2008.

NAVDAS-AR VT Results - Winter 09

(from Hogan)

TC Track Errors - Winter 09

Homogeneous comparison of Tropical Cyclone (TC) forecast track error (nm) for 4D-Var/L42 NAVDAS-AR (red) and 3D-Var/L30 NAVDAS (blue). Number of verifying forecasts is given below each forecast length (hour), February 1 - March 31, 2009.

- NAVDAS-AR/L42, assimilating ~ 800,000 obs, runtime is about 25 min on 90 processors (NAVDAS/L30, assimilating ~ 500,000 obs, is about 15 min on 60 processors) on FNMOC's Linux cluster.
- NAVDAS-AR outer loop resolution is T239L42, while inner loop resolution is T119/L42.
- The iterative Solver (FCG) stops when the residue is less than 5% of the original innovation (~ 42 inner loop iterations). This stopping criteria is very conservative since the 4D-Var cost function converges at about 23 iterations.
- The number of inner loop iterations appears not very sensitive to the number of additional observations being assimilated so far.
- The matrix/vector multiplication of initial background error covariance with the adjoint sensitivity field at initial time uses about 35% of the total CPU during the minimization.

Observations Being Assimilated in AR

Satellite observations

- AMSU-A (4 NOAA satellites)
- AQUA AIRS/AMSU
- MetOp IASI*/AMSU
- Geostationary satellite winds vis, IR and WV
- MODIS and AVHRR polar winds (including direct broadcast winds)
- DMSP SSMI and SSMIS wind speed and TPW
- QuikScat, ERS, and ASCAT scatterometer wind vectors
- DMSP F16 and F17 SSMIS sounder radiances (UPP)
- GOES Rapid Scan Atmospheric Motion Vectors
- WindSat ocean surface wind vectors and total precipitable water

* temporarily in monitoring status for OPS; due to FNMOC OPS runtime environment issues

Conventional observations

- Raobs, pibals, dropsondes
- Surface ship, fixed and drifting buoys, land stations
- Aircraft obs, including Predator UAV capability
- Australian synthetic SLP obs, tropical cyclone synthetics obs (based on warning messages)
- Number of assimilated observations ~ 800,000 at FNMOC
- Number of assimilated observations ~ 1, 200,000 at NRL
- Number of iterations required in the "Solver" is not sensitive to the increase of number of observations to be assimilated

Observation Sensitivity Equation

NAVDAS(-AR) adjoint

$$\frac{\partial J}{\partial \mathbf{y}} = [\mathbf{H}\mathbf{P}_{\mathbf{b}}\mathbf{H}^{\mathrm{T}} + \mathbf{R}]^{-1}\mathbf{H}\mathbf{P}_{\mathbf{b}}\frac{\partial J}{\partial \mathbf{x}_{\mathbf{a}}}$$

$$\frac{\partial \mathbf{x}^{\mathrm{a}}}{\partial \mathbf{y}} = \mathbf{K}^{\mathrm{T}} = \left(\mathbf{H}\mathbf{P}^{\mathrm{b}}\mathbf{H}^{\mathrm{T}} + \mathbf{R}\right)^{-1}\mathbf{H}\mathbf{P}^{\mathrm{b}}$$

The results of targeted observing field programs can be interpreted by extending the adjoint sensitivity vector into observation space --- Roger Daley

AR & NAVDAS Observation Impact

NAVDAS

NAVDAS-AR New satellites: SSMIS, AIRS, IASI

http://www.nrlmry.navy.mil/obsens/

Impact of Advanced Sounders

Observation Sensitivity

Hyperspectral sounders contribute:

- large volume of data

-0.750

- large reduction in forecast error norm

AQUA AIRS

0.0

0.2

0.450

0.150

0.750

-0.2

-0.150

-0.450

Complex channel interactions; obsensitivity powerful tool discriminating impacts of additional channels

Impact of Advanced Sounders ...

Satellite Data Impact (JCSDA)

Improved impact of IASI radiance data from channel selection diagnostics and other changes

Reduction of 24h forecast error

www.nrlmry.navy.mil/obsens/dev/obsens_main_od.html

Operational Observation Impact

- Ob impact for all amsu-a, channel 7 (mid trop), current **FNMOC AR Shows later** arriving data has more impact per ob.
- Total impact, shows same trend up to the point where the ob count decreases (obs haven't arrived at FNMOC yet).

http://www.nrlmry.navy.mil/obsens/fnmoc/obsens_main_od.html

Operational Observation Impact ...

U+V-comp Observation Impact / Ob [*1000] ALL MODIS ALL Sfc-10 hPa

20 of 30-Days ending 28 SEP 2009

- Ob impact for all MODIS winds, current FNMOC AR Shows later arriving data has more impact per ob.
- Total impact, shows same trend up to the point where the ob count decreases (obs haven't arrived at FNMOC yet).

http://www.nrlmry.navy.mil/obsens/fnmoc/obsens_main_od.html 26

- Weak constraint option: allows us to treat not only the spatially correlated model errors but also the temporally correlated model errors.
- Two additional outer loop options: allow us to account for the non-linearity in both the NWP model and the observation operators.
- Adaptive observation error variance adjustment: provides us an efficient way to dynamically adjust the observation error variance (Desroziers and Ivanov, 2001).
- A multi-purpose preconditioner: allows us to efficiently calculate: the adjoint of NAVDAS-AR; adaptive observation error variance adjustment; and the additional outerloop(s) of the minimization.
- Variational bias correction of radiances.
- Large scale precipitation and cumulus parameterization: provides us more accurate TLM/ADJ models.
- Chemistry component: allows us to assimilate ozone.

Example of Recent AR Development

Sept 2009

- Calculation of impact of initial background error variance specified in NAVDAS-AR on NOGAPS short term forecasts.
- Calculation of impact of observation error variance specified in NAVDAS-AR on NOGAPS short term forecasts.
- Estimation of state-dependent background error covariance.
- Estimation of model error variance needed in the weak constraint option.
- Estimation of analysis error variance/covariance using ensemble of NAVDAS-AR.
- Assimilation of new sensors.

NAVDAS-AR Related Publications ...

- Baker, N. and R. Daley, 2000: Observation and background adjoint sensitivity in the adaptive observationtargeting problem. *Q. J. R. Meteorol. Soc.* 126, 1431-1454.
- Baker, N. and R. Langland, 2009: Diagnostics for evaluating the impact of satellite observations. *Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications* (Eds. by S. Park and L. Xu), Springer-Verlag, 475 pp.
- Bennett, A, F. 2002: Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press, Cambridge, 234pp
- Chua, B. S. and A. F. Bennett, 2001: An inverse ocean modeling system. Ocean Modeling, 3, 137-165.
- Chua, B., L. Xu, T. Rosmond, and E. Zaron, 2009: Preconditioning representer-based variational data assimilation systems: application to NAVDAS-AR. *Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications* (Eds. by S. Park and L. Xu), Springer-Verlag, 475 pp.
- Langland, R. and N. Baker, 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. *Tellus*, 56A, 189-201.
- Rosmond, T. and L. Xu, 2006: Development of NAVDAS-AR: Non-linear formulation and outer loop tests. *Tellus*, 58A, 45-58.
- Xu, L., T. Rosmond, J. Goerss, and B. Chua, 2007: Toward a weak constraint operational 4D-Var system: application to the Burgers' equation. *Meteorologische Zeitschrift*, 16, 767-776.
- Xu, L., R. Langland, N. Baker, and T. Rosmond, 2006: Development of the NRL 4D-Var data assimilation adjoint system. Geophys. Res. Abs., 8, 8773.
- Xu, L., T. Rosmond, and R. Daley, 2005: Development of NAVDAS-AR: Formulation and initial tests of the linear problem. *Tellus*, 57A, 546-559.
- Xu, L. and R. Daley, 2002: Data assimilation with a barotropically unstable shallow water system using representer algorithms. *Tellus*, 54A, 125-137.
- Xu, L. and R. Daley, 2000: Towards a true 4-dimensional data assimilation algorithm: application of a cycling representer algorithm to a simple transport problem. *Tellus*, 52A, 109-128.

- Baker, N., B. Ruston, and T. Rosmond, 2008: Implementing Radiance Assimilation in NAVDAS-AR: Lessons Learned. *International TOVS study conferences (ITSC),* Angra dos Reis, Brazil, 7-13 May 2008.
- Rosmond, T., L. Xu, N. Baker, B. Campbell, C. Blankenship, J. Goerss, B. Ruston, and P. Pauley, 2006: Direct radiance assimilation with NAVDAS-AR. *The Seventh International Workshop on Adjoint Applications in Dynamic Meteorology*, ObergurgI, Austria, 9-13 October 2006.
- Ruston, B., N. Baker, W. Campbell, T. Hogan, and X. Liu, 2008: Use of Hyperspectral IR Data in 4D Assimilation at NRL. *International TOVS study conferences (ITSC)*, Angra dos Reis, Brazil, 7-13 May 2008.
- Xu, L., B. Chua, and T. Rosmond, 2008: Toward a weak constraint operational 4D-Var system: application to the NAVDAS-AR. *The 2nd Yoshi K. Sasaki Symposium on Data Assimilation for Atmospheric, Oceanic, and Hydrologic Applications*, 16 20 June 2008, Busan, Korea
- Xu, L. and B. Chua, 2007: Preconditioning NAVDAS-AR using IOM preconditioners. *The 1st Yoshi K. Sasaki Symposium on Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications,* AOGS 2007, 29 July 3 August 2007, Bangkok.
- Xu, L., R. Langland, N. Baker and T. Rosmond, 2006: Development and testing of the adjoint of NAVDAS-AR. In: *The Seventh International Workshop on Adjoint Applications in Dynamic Meteorology*, 9–13 October, 2006, Obergurgl, Austria.
- Xu, L., T. Rosmond and R. Daley, 2003: Formulation and initial testing of NAVDAS-AR. *Roger Daley Memorial Symposium*, 28 September 1st October 2003, Montreal, Canada.
- Xu, L. and R. Daley, 2001: Data assimilation with an unstable shallow water system using cycling representer algorithms. *The 14th Conference on Numerical Weather Prediction*, Ft. Lauderdale, FL, USA.
- Xu, L. and R. Daley, 1999: Towards a true four-dimensional data assimilation algorithm: Application of a cycling representer algorithm to a simple problem. *The 3rd WMO International Symposium on Assimilation of Observations in Meteorology and Oceanography*, 7-11 June 1999, Quebec City, Quebec, Canada.
- Xu, L. and R. Daley, 1998: Towards a true four-dimensional data assimilation algorithm: Application of a cycling representer algorithm to a simple transport problem. *The international symposium 'Rossby-100'*, 8-12 June 1998, Stockholm, Sweden.

Thank You