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Atmosphere Land Exchange Inverse (ALEXI) Model
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The main advantages of ALEXI include:

i) the minimization of ancillary meteorological inputs

i) two-source approximation (Norman, Kustas et al. 1995)
iii) treats soil/canopy-atmosphere coupling differently

iv) accommodates off-nadir thermal sensor view angles

v) time-differential ABL closure

vi) provides information of soil/canopy fluxes and stress (i.e. soil moisture)
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ALEXd validation sites
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Clear-sky fluxes using Landsat 'R (100m)
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ALEXI Soil Moisture Methodology

The rate of temperature increase of either a soil or canopy component is related to an increase
or decrease in ET, which in turn is related to soil moisture. In general, dry soil or stressed
vegetation heats up more rapidly than wet soil or unstressed vegetation.

This relationship can be exploited to retrieve current soil moisture conditions using thermal
infrared observation from remote sensing platforms.

Anderson et al. (2007b) and Hain et al. (2009) describe a technique for simulating the effects of
soil moisture on ET estimates from ALEXI using a soil moisture stress function:

In this study, we choose to focus on using a multi-year (2000-2009) climatology to compute
ALEXI f,z; anomalies which will be related to soil moisture through the following weighting
function based on a partitioning of surface and root-zone soil moisture with the fraction of
green vegetation cover.

fper = (1—1)0,
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Passive Microwave Surface Soil Moisture Retrievals

Algorithms that retrieve estimates of surface soil moisture from microwave brightness
temperatures exploit the large differences in the dielectric constant of dry soil and wet soil and
their effect on the natural microwave emission from the soil.

Microwave soil moisture retrievals suffer from substantial retrieval errors over moderate to
dense vegetation (i.e. C-band sensitivity has been shown to cease at a vegetation water content
of 1.5 kg m2).

Longer wavelengths (L-band; 1.4 GHz; SMOS; SMAP) have a greater potential for penetration
through vegetation.

VUA/NASA AMSR-E Surface Soil Moisture Product (Owe et al. 2008)

e derived using the Land Surface Parameter Model (LPRM; Owe et al. 2001; 2007), which is a three
parameter retrieval for T, observations, using one dual polarized channel (either C-band or X-band)
for the retrieval of soil moisture and vegetation water content, while effective soil temperature is
derived from the vertically polarized 36.5 GHz channel

e vegetation optical depth is parameterized as a function of the Microwave Polarization Difference
Index (MPDI; Meesters et al. 2005)

e Main advantages over the NSIDC is the use of a higher frequency band for retrieval of T, and the
parameterization of vegetation optical depth, leaving only soil moisture to be retrieved



Observation Overview

ALEXI AMSR-E
Observed Variable Uit/ e Volumetric Soil Moisture
(%) (m3 m3)
Spatia| Resolution 10 km ~56 km (at 6.925 GHz)

~40 km (at 10.65 GHz)

Temporal Resolution Daily (Clear sky constraint) 2x Daily

Domain Coverage ~ 5-10 days (function of ~ 2 days
cloud climatology)

Sensing Depth Variable as function of f_ ~toplcm



Intercomparison Study Methodology

The main motivation of the multi-year (2003-2008) intercomparison is to attempt to quantify
the relative skill of ALEXI soil moisture retrievals when compared to soil moisture
retrievals/model estimates from AMSR-E and Noah across the CONUS.

As stated above, it is assumed that ALEXI f,; is @ composite view of surface and root-zone soil
moisture partitioned by f.. Thus, f ¢ consistent values from AMSR-E and Noah must be
computed for a direct comparison.

(1) fop; formulation
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Additionally, findings from this type of analysis will likely prove to be useful with regards to any
attempt at assimilating ALEXI soil moisture retrievals in the future.

It should be noted that the goal of the study is not to attempt to quantify the skill of AMSR-E soil
moisture retrievals, yet the use of AMSR-E in the analysis provides an additional independent
source of soil moisture information.



Land Information System

The Land Information System (LIS) is a software framework that integrates the use of
satellite and ground-based observations along with advanced land surface models
(LSMs) and computing tools to accurately characterize land surface states and fluxes

(Kumar et al. 2004).

LIS also employs advanced data assimilation plug-ins which allow a user to implement
satellite-based retrievals of land surface states using either direct insertion or an

ensemble Kalman filter (EnKF).

LIS Version
Study Domain
Spatial Resolution
Atmospheric Forcing Dataset
Noah Version
Fractional Vegetation Dataset

Soil Texture Dataset

v5.0
CONUS
25 km
NLDAS
v2.7
Climatological AVHRR

FAO/Zobler



AMSR-E Root-zone Soil Moisture Product

e As stated above, it is assumed that ALEXI f,; represents a composite observation of surface

and root-zone soil moisture as a function of f, in an attempt to compare
AMSR-E with ALEXI, an exponential filter is used to compute a root-zone soil moisture product

from AMSR-E surface soil moisture.

e The use of an exponential filter exploits the strong relationship between surface and root-zone
soil moisture and is based on a simple two-layer water balance approach:
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* Wagner (1999) used a similar approach and found statistically significant relationships
between values derived from ERS scatterometer retrievals and 0-100 cm ground-based soil

moisture observations.



Re-scaling Observations with Model Climatology

Soil moisture retrievals and observations from various sources (i.e. LSM predictions,
satellite retrievals, ground measurements) have been shown to provide representative
and useful information with regards to their seasonal cycle and anomaly signals.

Yet, many retrievals and observations typically exhibit very different statistical and
dynamic ranges and these biases can severely limit the effectiveness of retrievals if
they were to be directly assimilated.

In this study, retrievals from ALEXI and AMSR-E are re-scaled to be consistent with the
LSM (Noah) climatology using a CDF matching technique (Reichle and Koster 2004).

CDFyoan (x' " = CDFEqex; l‘]l

Noah (blue)
ALEXI (red)

VolumetricSoil Moisture (m3 m=3)



Seasonal Anomaly Composites (April-October; 2003-2008
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Seasonal Anomaly Composites (April-October; 2003-2008)

Spatial ALEXI/ AMSR-E/
Anomaly Noahr Noahr
Correlation
2000 0.62 -
v 2001 0.54 -
2002 0.66 -
2003 0.69 0.40
2004 0.65 0.27
2005 0.74 0.56
2006 0.78 0.61
2007 0.81 0.67
2008 0.52 0.47
2000-2008
Average 0.67 -
T 0] s g N KR g 2003-2008
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Time Series Anomaly Correlation Analysis (2003-2008)
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This analysis used time series at each
pixel of 14-day composites of each soil
moisture estimate. Anomalies were
computed using a centered 29-day
window to remove the seasonal cycle.

In general, AMSR-E showed higher
anomaly correlations over much of the
central and western US, collocated with
low green vegetation.

However, ALEXI shows statistically
significant skill over a large portion of
the entire US, with the most significant
upgrade in skill over densely vegetated
sections of the eastern US.



Time Series Anomaly Correlation Analysis (2003-2008)

a) ALEXI — NOAH
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c) ALEXI — NOAH minus AMSRE — NOAH
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In general, AMSR-E performs better than ALEXI when f_ is less than 60%, although significant skill
is still evident in ALEXI.

However, as f_increases beyond 60%, AMSR-E skill rapidly drops off, while ALEXI maintains a
statistically significant anomaly correlation over dense vegetation.



Ensemble Kalman Filter (EnKF)

The Kalman filter is a sequential estimator that optimally updates model predictions
with observations based on the relative magnitude of uncertainties present in the model
and observations.

In the ensemble form the of the KF, a Monte Carlo approach is used to create an
ensemble of model vectors that are used to estimate the model error covariance.

The representation of model and observation error covariance is crucial for the
optimal performance of the filter.
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Data Denial Assimilation Flowchart

Assimilation Methodology:

e SIM 1: Control (Benchmark)
High-quality precipitation dataset
(NLDAS; gauge-based); No DA

e SIM 2: Open Loop (Degraded); No DA
2005 forced with 2008 precipitation
2006 forced with 2007 precipitation
2007 forced with 2006 precipitation
2008 forced with 2005 precipitation

e SIM 3: ALEXI
En-KF assimilation of ALEXI retrievals with
SIM 2 precipitation

e SIM4: AMSR-E
En-KF Assimilation of AMSR-E retrievals
with SIM 2 precipitation

e SIM5: DUAL
En-KF assimilation of ALEXI and AMSR-E
retrievals with SIM 2 precipitation

Number of
Ensemble
Members

Retrieval Error
Covariance

Model Error
Covariance

Model
Resolution

Study Period

40

0.03m3m3

0.03 m3m?3

(scaled with
respect to layer
thickness)

25 km

1 April 2005 - 31
October 2008



RMSD (m’ m™)
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Open Loop Precipitation (Degraded Precipitation) RMSD
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Constant Q=0.03 m3 m™3

Open Loop
ALEXI
AMSR-E
DUAL

T

0-5 cm RMSD (m’ m™)

40-100 cm RMSD (m’ m™)

ALEXI - DUAL RMSD Difference

R=0.03 m3 m=3 Simulations

Apr 2006 Apr 2007
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AMSRE - DUAL RMSD Difference
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Constant Q=0.03 m3 m=3/ R=0.03 m3 m=3 Simulations

ALEXI - DUAL RMSD Difference
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Constant Q=0.03 m3 m=3/ R=0.03 m3 m=3 Simulations

Assimilation Convergence Index : (RMSD — RMSD,;,,) / RMSD
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Constant Q=0.03 m3 m=3/ R=0.03 m3 m=3 Simulations
40-100 cm

a) ALEX| Improvement (Red); AMSR—E Improvement (Green)

b) ALEX| improvement (Red); DUAL improvement (Biue) b) ALEX| improvement (Red); DUAL improvement (Biue)
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Constant Q=0.03 m3 m=3/ R=0.03 m3 m=3 Simulations

Time Series Open Loop ALEXI AMSR-E DUAL
RMSD
Layer 1 (m3 m3) 0.045 0.031 0.027
0-5cm (-31%) (-40%)
Layer 2 (m3 m3) 0.052 0.039 0.037
5-40 cm (-25%) (-29%)
Layer 3 (m3 m3) 0.053 0.034 0.036
40-100 cm (-36%) (-32%)
Time Series Open Loop ALEXI AMSR-E DUAL
Correlation

Layer 1 (m3 m3) 0.67 0.83 0.85
0-5cm
Layer 2 (m3 m-3) 0.63 0.78 0.81
5-40 cm
Layer 3 (m3 m3) 0.59 0.80 0.75
40-100 cm




Drought Index Intercomparison

INDEX SUITE

® U.S. Drought Monitor
® Evaporative Stress Index (ESI)

® Palmer Indices (1965)
® Z-Index (monthly precip)

% Palmer Drought Severity Index (PDSI)

® Palmer Hydrologic Drought Index (PHDI)

® Standardized Precipitation Indices (SPI)
® 1,2,3 and 6 month

Normalized anomalies
Al = (I - <I>)/c,

(Provided by Martha Anderson)



AUSD | ASPI-SMN APDSI
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Temporal correlation with USIDM class

ALEXI ESI
Z-Index

SPI-2MN

SPI-3MN
<r>=0.55

CORRELATION COEFFICIENT
NEGATIVE H 5_-10' POSITIVE

0.0 0

(Provided by Martha Anderson)



Conclusions

ALEXI (thermal) can provide meaningful and representative estimates of soil moisture over a
wide array of vegetation conditions as shown in a multi-year (2003-2008) intercomparison
study.

ALEXI (thermal) soil moisture has the potential to complement PM retrievals of surface soil
moisture, providing root-zone soil moisture information over densely vegetated pixels where
PM retrievals are not possible.

Single assimilations of either ALEXI or AMSR-E soil moisture retrievals can provide increased
skill over an open-loop simulation (degraded precipitation), yet there appears to be a
potential avenue for additional benefit in a dual assimilation system.

Future work is needed in the area of ALEXI and AMSR-E data assimilation.

ALEXI ESI has been shown to be an effective tool for the monitoring of drought conditions
across the continential United States.
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