The Development of a New Ocean Circulation Model in the Sigma Coordinate System and its Application to North Atlantic Ocean

> Gary A. Zarillo, Ph.D., PG Department of Marine and Environmental Systems Florida Institute of Technology and Melbourne, FL USA

Current Problems of Models in the Sigma-coordinate System

Over Steep Bottom Topography

Numerical Instability
 Diapycnal Mixing Process
 Baroclinic Forces
 Unusual Oscillations

The Sigma-Coordinate System

 \mathbf{z}^{-} $\sigma(x,y,z,t)$ = $\mathbf{x} \mathbf{v} \mathbf{t}$

Formulation of the Florida Ocean Model

Goals Reduce numerical truncation error Long-term stable runs over high relief topography Utilize full values of scalar ocean properties Prevent diapycnal processes in scalar properties arising from bottom slope

Formulation of the Florida Ocean Model *Primitive Equation Formulation*

$$\frac{\partial}{\partial t} \frac{u}{t} + \frac{\partial}{\partial x} \frac{uu}{x} + \frac{\partial}{\partial y} \frac{uv}{y} + \frac{\partial}{D\partial \sigma} \frac{\omega u}{\sigma} - u(\frac{\partial}{\partial x} \frac{u}{x} + \frac{\partial}{\partial y} \frac{v}{y} + \frac{\partial}{D\partial \sigma}) - fv + g\frac{\partial\eta}{\partial x} = \frac{\partial}{D^2 \partial \sigma} \frac{d}{\sigma} \frac{d}{\sigma} \frac{u}{\sigma} + \frac{\partial}{\partial \sigma} + \frac{\partial}{\partial \sigma$$

$$\frac{\partial}{\partial t} \frac{\partial}{t} + \frac{\partial}{\partial x} \frac{\partial u}{x} + \frac{\partial}{\partial y} \frac{\partial v}{y} + \frac{\partial}{D\partial \sigma} \frac{\partial w}{\sigma} - \theta \left(\frac{\partial}{\partial x} \frac{u}{x} + \frac{\partial}{\partial y} \frac{v}{y} + \frac{\partial}{D\partial \sigma} \frac{w}{\sigma}\right) = -\frac{\partial}{D\partial \sigma} \frac{R}{\sigma}$$
$$+ Sflux \Big|_{\sigma=0} + \frac{\partial}{D^2 \partial \sigma} K_v \left(\frac{\partial}{\partial \sigma} \frac{\theta}{\sigma}\right) + \frac{\partial}{\partial x} \left(K_h \frac{\partial}{\partial x} \frac{\theta}{x}\right) + \frac{\partial}{\partial y} \left(K_h \frac{\partial}{\partial y} \frac{\theta}{y}\right)$$

Formulation of the Princeton Ocean Model

 $\frac{\partial \eta}{\partial t} + \frac{\partial uD}{\partial x} + \frac{\partial vD}{\partial y} + \frac{\partial \omega}{\partial \sigma} = 0 \qquad (continuity)$

$$\frac{\partial}{\partial t} \frac{uD}{t} + \frac{\partial}{\partial x} \frac{uuD}{t} + \frac{\partial}{\partial y} \frac{uvD}{t} + \frac{\partial}{\partial \sigma} \frac{u\omega}{t} - fvD = \frac{\partial}{\partial \sigma} \frac{A_v}{\sigma} \frac{\partial}{\sigma} \frac{u}{\sigma} + \frac{\partial}{\partial \sigma} \frac{uvD}{\tau} + \frac{\partial}{\partial \tau} \frac{u}{\tau} \frac{\partial}{\sigma} \frac{u}{\tau} + \frac{\partial}{\sigma} \frac{u}{\tau} \frac{$$

$$\frac{\partial}{\partial t} \frac{\partial D}{\partial t} + \frac{\partial}{\partial x} \frac{u \partial D}{x} + \frac{\partial}{\partial y} \frac{v \partial D}{y} + \frac{\partial \omega \theta}{\partial \sigma} = -\frac{\partial}{D\partial \sigma} \frac{R}{\sigma} - Sflux_{\sigma=0}$$

$$\frac{\partial}{D\partial \sigma} (K_v \frac{\partial}{\partial \sigma} + \frac{\partial}{\partial x}) + \frac{\partial}{\partial x} (K_h D \frac{\partial(\theta - \overline{\theta})}{\partial x}) + \frac{\partial}{\partial y} K_h D (\frac{\partial(\theta - \overline{\theta})}{\partial y})$$
(Tracer)

Calculating Numerical Truncation Errore

$$POMError(t,\ell) = \frac{1}{48} \{ \frac{\partial^3 FVD}{\partial \ell^3} \Delta \ell^2 + \frac{\partial^3 F\omega}{\partial \sigma^3} \Delta \sigma^2 + \frac{\partial^3 FD}{\partial t^3} \Delta t^2 \}$$
$$= O(\Delta \ell^2, F, D, V) + O(\Delta t^2, F, D)$$

$$FOMError(t,l) = \frac{1}{48} \{ (\frac{\partial^3 FV}{\partial \ell^3} - F \frac{\partial^3 V}{\partial \ell^3}) \Delta \ell^2 + \frac{1}{D} (\frac{\partial^3 F\omega}{\partial \sigma^3} - F \frac{\partial^3 \omega}{\partial \sigma^3}) \Delta \sigma^2 + \frac{\partial^3 F}{\partial t^3} \Delta t^2 \}$$
$$= O(\Delta \ell^2, F, V) + O(\Delta t^2, F)$$

Numerical Scheme using FDM

- Leap-Frog Scheme in Time
- Centered Scheme in Space
- -Weak Numerical Filter
- Implicit Scheme for Vertical Diffusion and Surface Flux

Schematic Flow Chart of Model

Split Method Between 2-D and 3-D

Model Tests Comparing POM and FOM

Bottom contours & O.B.C. of Model

Grid (I=65,J=48)

Mean Vel.@O.B.C. =4.0 cm/s

Initial Conditions

Salinity=35.0 constant

T₀=25.0 °C; Surface T_b=1.0 °C; Bottom

There is theoretically no baroclinic force by density gradient.

Comparison of Results Between FOM and POM

Case 1: Typical Experiment Case 2: Climatology Case 3: Large Viscosity(Clim.=0. & Horcon=1) Case 4: Diagnostic Experiment in Closed Basin

Case 1: Typical Experiment

Time Series of SSH, Temperature (33,22,9) and Max. Dev. Temp

Case 1: Typical Experiment:SST

Case 1: Typical Experiment: Velocity(20m)

Case 2: Time series at atoll

Case 2: Surface elevation after 60 days

Case 2: Surface Velocity after 60 days

Case 2: Temperature at 300m after 60 days

Case 2: Velocity at 300m after 60 days

Case 2: Surface Temperature after 60 days

Case 2: Surface Velocity after 60 days

Case 2: Temperature at 300m after 60 days

Case 2: Velocity at 300m after 60 days

Comparison of Major Forces - Case 2

V-Compoment

Comparison of Major Forces - Case 2 *U-Compoment*

Case 3: Large viscosity(HORCON=1.0)

Case 3: Surface Temperature after 60 days

Case 3: Velocity at surface after 60 days

Case 3: Velocity at 300m after 60 days

Case 4: Diagnostic run in closed basin

Curvilinear Orthogonal Gird

Topography

Model Grid

Initial Data

Initial Input Data of Model

-.Temperature and Salinity: World Ocean Atlas $(WOA 98) 1^{\circ} \times 1^{\circ}$ Grid data

-. Bottom Bathymetry: ETOP5 5min.

Surface Boundary Condition

Surface Wind Stress:Hellerman, S. and M.
Rosenstein(1983)1°× 1° Grid data

Surface Heat Flux:Comprehensive Ocean-Atmosphere Data Set (COADS) analyzed by Oberhuber (1988) $2^{\circ} \times 2^{\circ}$

One-Year Mean SST

Winter

Model Surface Velocity

Deep Water Current

Zonal Volume Transport – 65 W

Zonal Volume Transport – 65 W

Zonal Volume Transports by Thompson & Schmitz Jr.

Along 55W

SST Comparison In Summer.

SST Comparison Winter

Climatology

SST Comparison Winter

Vertical Temperatrue Time Series Off Cape Hatteras 75.08 W 35.50N 62 W 38.5N

Temp. Time Series at Selected Depths

62 W 38.5M

EOF Analysis for SST Along 61° W

EOF Analysis for N-S Velocity Along 61° W

Summary and Conclusion

- The numerical integration over steep bottom topography shows that FOM is numerically more stable than POM.

- The POM simulation over the steep bottom may misrepresent ocean physics without using climatology due to diapycnal mixing along sigma levels, which causes strong velocity fields due to overestimation of pressure forces. The POM simulated an unrecognizable prediction of temperature, over predicting at the in surface under no heat flux condition - The FOM is much less sensitive to the bottom slope than the POM because the FOM is free from excessive numerical truncation error over

steep bottom topography.

Summary and Conclusion

Application to the Gulf Stream

- The FOM resolved Major Currents, FC, SW,GS,RCCS, and DWBC.

-The Maximum Volume Transport at 65° W was simulated by the FOM at about 134 Sv in the summer and 112 Sv in the winter,

-Surface Temperatures were predicted to be comparable with the AVHRR temperatures in the summer and in the winter, even when using surface heat fluxes having low resolution.

- The EOF analysis of model outputs provided information about interaction among current regimes.

Model Setup for the Gulf of Mexico and Caribbean Basin

•Grid Generation - Curvilinear Orthogonal

Model Setup for the Gulf of Mexico and Caribbean Basin

• Bottom Topography- ETOP 5'

Model Setup for the Gulf of Mexico

• Boundary Conditions - Applied Flows

55 Sv

Visualization of Model Hindcast

Visualization of Model Hindcast

Visualization of Model Hindcast

