

Maryland Department of Natural Resources

Green Infrastructure and GreenPrint

Targeting and Conserving Maryland's Most Ecologically Important Lands

Christine Conn Office for a Sustainable Future

What is Infrastructure?

Infrastructure – "the substructure or underlying foundation on which the <u>continuance and growth</u> of a community depends"

- Webster's New World Dictionary

- A **necessity**, not an amenity
- A primary public investment
- Must be constantly maintained
- Must be developed as a system, not as isolated parts

What is Green Infrastructure?

"Strategically planned and managed networks of natural lands, working landscapes and other open spaces that conserve ecosystem functions, and provide associated benefits to human populations"

Our #1 Conservation Challenge

Accelerated Consumption and Fragmentation of Natural and Working Lands

Source: Audubon Magazine, March/April 2000

Green Infrastructure Assessment

The Land Plan Science

What is it?

- A GIS analysis developed to help identify and prioritize areas for
 - Conservation,
 - Restoration, and
 - Smart Growth

The Benefit:

 Provides a consistent, objective and defensible approach to land management decisions

Design Principles

• Conservation Biology

• Landscape Ecology

Forest Interior Dependent Species (FIDS)

The Network Concept

Geographic Information Systems (GIS) Analysis

Selection of Ecological Components

Strive to include full range of ecosystem elements vs single species focus

Consultation with

- MD Biological Stream Survey
- Wildlife and Heritage
- Forest Service
- Scientific Community

Limited to features with GIS data available statewide

Green Infrastructure Assessment

Hubs

MARYLAND Smart, Green & Growing

> 250 acres or Important habitat > 100 acres

Corridors

1100 feet or FEMA floodplain

Gaps

Restoration opportunities

A Statewide Network

Ecological Importance of Hubs

Hubs ranked using multiple ecological factors

Parameter	Weight
Proportion of internal gaps	4
Area of upland Natural Heritage Areas	5
Area of WSSC and wetland or aquatic NHA	5
Area of upland interior forest	4
Area of wetland interior forest	4
Area of other wetlands	3
Length of streams within interior forest	4
Number of stream nodes (sources and junctions)	2
Fish IBI score	1
Benthic invertebrate IBI score	1
Aquatic species of concern	2
Presence of br <u>ook trout</u>	1
Anadromous fi Corridors were ranked in a	1
Area of SSPRA similar manner, only using	2
Presence of Standar manner, only using	2
Percent upland different factors	4
Standard deviation of elevation	1
Number of different NVVI wetland types	1
Number of different natural soil groups	1
Number of different physiographic regions	1
Mean distance to the nearest primary or secondary road	3
Density of interstate, state, and county roads	3
Area of highly erodible soils	2
Area of proximity zone outside hub	2
Nearest neighboring hub distance	3
Shape index	1
Surrounding buffer suitability (within 300' of hub)	1
Interior forest within 10 km of hub periphery	1
Marsh within 10 km of hub periphery	1

Targeting Actions

Ecological Importance of Hubs

Maryland Department of Natural Resources

Maryland's GreenPrint A Mapping Tool for Land Conservation Planning

GreenPrint...

- Is an interactive mapping tool
- Sets ecological targets and goals
- Tracks success
- Measures accountability
- Encourages public and private partnership

Targeted Ecological Areas are...

- The most ecologically valuable areas in the State: the "Best of the Best"
- Identified by Maryland Department of Natural Resources ecologists
- Designated as conservation targets for Program Open Space

Targeted Ecological Areas

Maryland's Green Infrastructure Assessment

 An ecological network of the State's most important large blocks of forests and wetlands and the habitat corridors needed to connect them

• Aquatic Life Hotspots

 Watersheds that support areas of high aquatic biodiversity and fish species sensitive to increases in impervious surfaces

• Rare Species Habitat

 Areas that support Rare, Threatened and Endangered species and other unique plant and animal communities

- Water Quality
 Protection
 - Sensitive watershed lands, such as forests, wetlands, and steep slopes that are important for providing water quality services

Identifying "Targeted Ecological Areas" Best of the Best

Targeted Ecological Areas

2.1 Million Acres (1.5 million acres unprotected)

Ranking Parcel Opportunities

- 1. Ecological Value
 - A. Landscape score
 - B. Parcel score

2. Special Adjustments for Multiple Benefits

- A. Recreational, historic, or cultural value
- B. In-holding or adjacency
- 3. Habitat Maintenance or Restoration Value
 - A. Active management needed to prevent degradation of unique natural resources
 - B. Opportunities for habitat and water quality restoration
- 4. Management and Operations
 - A. Responsibility for management has been identified
- 5. Consistency with Local Land Use
 - A. Fragmentation due to development
 - B. Vulnerability to additional development
 - C. Level of threat
 - D. Relevance of adjacent development

Conservation Scorecards created for each project

- Project scorecards and maps provided to the Board of Public Works
- Provides transparency and accountability
- Decisions based on ecologically defensible criteria

Denveryer of National Personnels	Ranking Protocol	
Property:	County Woscester	Inal
Foster	Map/Parcel: M45,P4	kore
In Focus Area? Yes	In Priority Conservation Area? Yes 1	33
Step #1: Ecological Value Rani	king (100 points possible)	331
A. Landscape Score 1. Overall Landscape Score 4. Green Infrastrue b. Rare Species	(10 points possible for each of the following categories - total 4 tage	0 points
c. Aquatic Life Ho	tapota	1
d. Water Quality P:	rotection	- 8
II. Priority Conservation Are	Subtitul (Overall Landscape Value Score):	38
(20 points if more than 2 B. Parcel Ecological Characteri	0 acresisin a HPCA or 25% isin a HPCA): atic Scree	2
a. Green Infrastruc	mbre for each of the following categories - total 40 points): fure	9
b. Rare Species		
c. Aquatic Life Ho	tspots	1
d. Water Quality P	rotection	9
	Subtotal (Overall Parcel Value Score): See, 41 Total - Fachadral Value Score):	37
Same and Consist & American Fr	A the le Deserte Congeni value score:	
Step #2: Special Adjustment to	r Multiple Denent Kanking (20 points possible)	111.00
A. Recreation Score (0, 5, or 10	(points)	-
C. In bilding or Adaptory (I)	a S pointé	
	Step #2 Total - Multip le Benefit Score:	
Stan #3. Habitat Maintenance	r Restoration Values Ranking (0) 2 x Step II exerts no	(ald ma
A Deed americanine and	a residential values reasoning (jos rosp il points po	omcare)
to prevent the habitat's degr B. Is an exertional restoration	a detion - Multiply Step #1 tool by 0.2, OR target, and such restoration would allow the parcel to b	en en
proactively managed for eco	dogical purposes to restore it Multiply Step #1 total by 0.1	
Siles 1	Subtotal of Steps #1, #2, and #3:	106
Step #4: Management and Open	rations Ranking (Yes, No, or Undetermined)	1
A. Parcel deared by DNR parc B. No known or reliable comm	el m anagement is possible - Proceed with acquisition	Y
Step #5: Consistency with Loca	al Land Use Ranking	
A. Land Use Context B. Area-Wide Protection		- 26
100 100 Car	Total of Steps 1 to 5 - FINAL SCORE	132

Ecological

Additional Targeting Criteria

• Blue Infrastructure

- Coastal and Tidal Habitats
- Critical Natural Resources and
- Associated Human Resources

Climate Change Adaptation Benefits

 Sea level rise and other climate change impacts

Figure 14, As sea level rises, wedands may migrate 💃 into open spaces such as forests 🧌 and fields 🌧 However, wedands cannot migrate 😥 into areas with man-made barriers such as hardened shorelines 🦛 and heavy development such as urban 🕽, commercial , and residencial areas 🏠.

Blue Infrastructure & Sea Level Rise

Catherine McCall

Maryland Department of Natural Resources Chesapeake & Coastal Program

A "Blue" Infrastructure

A detailed, systematic spatial assessment of coastal habitat, critical natural resources, and associated human uses in the tidal waters and near-shore area of Maryland's coastal zone. The link between our terrestrial-aquatic systems that helps target conservation and management.

Components of the Blue Infrastructure

Sensitive Species & Habitats

Protected Lands & Stronghold Watersheds

Protected Lands + Impervious surface

Interior Forests & Marsh

Coastal marshes, SAV, oyster bars, beaches, sandy bottom

Sensitive Species + Shoreline-dependent Species, key spawning & nursery areas

Roads & Ditches

Hardened shorelines, fish blockages, point source discharge

Near Shore Terrestrial Assessment

The shoreline is segmented for assessment of habitat, resources, and associated human uses related to:

- -Near-shore land cover type
- Sensitive species, shorelinedependent species
- Waterfowl concentration areas
 - Shoreline stabilization
 - Fish blockage, point-source discharge
 - -BI tidal wetlands

Watershed Assessment

Shoreline segments are assigned watershed values based on characteristics of the 12-digit watershed in which they are located.

- Protected/Undeveloped Lands
 - GI Lands
- Levels of Impervious Surface

Near Shore Aquatic Assessment

A corresponding aquatic unit is assessed for habitat, natural resources, and human uses to a depth of 2m:

- Oyster sanctuaries and bars, other shellfish & closure areas

- Fish spawning/nursery areas
 - Terrapin/Sandy beaches, horseshoe crabs, SAV
 - Access structures

Resulting Assessment

- Designed to incorporate estuarine priorities into targeting and land use planning and complement the Green Infrastructure network
- Represents...

Watersheds and water quality criteria that support high aquatic biodiversity and fish species sensitive to increases in impervious surfaces

Areas that support sensitive and shoreline-dependent species and other unique plant and animal communities

Green + Blue =

An interconnected ecological network depicting the State's sensitive, valuable and economically important natural resources and habitats as well as the corridors needed to connect them.

Maryland's Risk to Sea Level Rise

¹ MD Scientific & Technical Working Group Report, MCCC, 2008

Linking the Green and Blue Infrastructures

Better able to identify critical land-water connections where conservation efforts should be focused to preserve and maintain ecosystem services and conserve valuable coastal habitats and living resources...

Especially when future conditions are considered

Vulnerability & Opportunity

Recognizing Vulnerability as an Inherent Opportunity

Better understanding of sensitive land-aquatic connections and where their vulnerabilities exist will enhance our ability to increase the resiliency of these systems to accommodate or withstand change over time.

Climate Change Adaptation Planning

Recommended Adaptation Strategies

Protect Maryland's People, Property, Natural Resource and Public Investments

- Integrated planning for sea level rise
- Adaptation of vulnerable coastal infrastructure (protect, accommodate, retreat)
 - Health impact assessments
 - Public risk disclosure
 - Forest and wetland protection
 - Sustainable shorelines and buffer area management practices

Natural Resource Protection Policy Recommendation

Priority policy recommendation for the protection of natural resources

 Identify high priority protection areas and strategically and costeffectively direct protection and restoration activities

• Ability to sustain coastal ecosystem structure and function through restoration and protection activities to ensure that ecosystems can migrate and adapt; and/or • Ability to sustain coastal ecosystem services that include maintaining healthy Bay water quality and coastal community protection such as flood control and storm-surge protection

Figure 14. As sea level rises, wetlands may migrate $\langle \!\!\!| \rangle \!\!\!|_{k}$ into open spaces such as forests $\P \!\!\!|_{k}$ and fields $\langle \!\!| \rangle \!\!|_{k}$. However, wetlands cannot migrate $\rangle \!\!\!| \rangle$ into areas with man-made barriers such as hardened shorelines $\P \!\!|_{k}$ and heavy development such as urban $| \!\!| |$, commercial $\langle \!\!| \rangle \!\!|_{k}$, and residential areas $\langle \!\!| \rangle \!\!|_{k}$.

Long-Term Goals & Applications

- Identify adaptation strategies and criteria of coastal lands that would inform a mapping project to evaluate lands and their qualities related to SLR adaptation.
- Incorporate mapped areas into Maryland's prioritization and targeting efforts for conservation, protection and restoration activities
- Reduce the vulnerability of natural and human-systems to anticipated impacts of climate change – Land conservation activities play a unique role.

Christine Conn cconn@dnr.state.md.us

Catherine McCall

cmcall@dnr.state.md.us

Questions?

Coastal Land Conservation & Climate Change

March 8, 2010

Chelsie Papiez

NOAA Coastal Fellow Maryland DNR

Toward a Vision for Maryland

"We must take action now to plan for the impacts of climate change."

Comprehensive Strategy for Reducing Maryland's Vulnerability to Climate Change

August 2008

Maryland's Risk to Sea Level Rise

¹ MD Scientific & Technical Working Group Report, MCCC, 2008

A linked Green and Blue Infrastructure help Maryland to identify the critical land-water connections that need conservation or management action taken to maintain ecosystem services and conserve valuable coastal habitats and living resources.

- Climate change poses an imminent threat to Maryland's low-lying lands and coastal resources.
- We must protect vulnerable lands under future climate change scenarios in order to protect human habitat and create and maintain resilient ecosystems.
- Land conservation can serve as a tool for adapting to sea level rise by reducing vulnerability.
- There is a need for new or enhanced land conservation targeting frameworks to take into account climate change impacts and identify adaptation opportunities.

GIS Based Land Conservation Model

Climate Change Impacts

In order to begin we must know:

- Potential Coastal Impacts
 - Inundation, sea level rise, salt water intrusion, shoreline erosion, species range shifts, increased storm surge events, flooding, changes in precipitation etc.

GIS Based Land Conservation Model

Adaptation Strategies

• Short to long-term actions, policies and/or management practices to reduce the vulnerability of natural and human systems to anticipated impacts of climate change.

Adaptation Strategies

- Short to long-term actions, policies and/or management practices to reduce the vulnerability of natural and human systems to anticipated impacts of climate change.
- The objective of many adaptation strategies is to reduce vulnerability by enhancing or increasing the resiliency of natural or human- systems to accommodate or withstand change over time.

Adaptation Strategies

- Short to long-term actions, policies and/or management practices to reduce the vulnerability of natural and human systems to anticipated impacts of climate change.
- The objective of many adaptation strategies is to reduce vulnerability by enhancing or increasing the resiliency of natural or humansystems to accommodate or withstand change over time.
- In the context of coastal land conservation, adaptation strategies can be implemented through land conservation practices (i.e., preserving wetland or habitat migration corridors).

Identified Adaptation Strategies

- Comprehensive Strategy for Reducing Maryland's Vulnerability to Climate Change: Phase I
- Literature Review
- December 2009 Workshop

Identified Adaptation Strategies

Sector Based Adaptation Strategies

Human Habitat & Health

- 1. Expand, Protect and Enhance Flood Storage Areas
- 2. Increase and Preserve Natural Vegetated and Dune Buffers that Protect Inland Areas from Storm Surge and Shoreline Erosion
- 3. Identify Potential Residential Relocation Areas through Urban Renewal
- 4. Facilitate Site Reclamation in the Face of Immediate Hazards (i.e. removal of septic systems)
- 5. Protect Potable Water Supply

Resource Based Industries

- 1. Sustain Tourism & Outdoor Recreational Opportunities
- 2. Provide Upland Relocation and Access Opportunities
- 3. Maintain Public Access to Waterways for Recreation Resource of Beaches, Tourism, Boating & Open Space
- 4. Promote Aquaculture Development in Suitable Areas
- 5. Protect Spawning & Nursery Habitats and Identify Suitable Areas for Aquaculture Development Under Future Conditions

Agriculture

- 1. Protect Soil Resources
- 2. Maintain Adequate and Appropriate Areas for Agricultural Production
- 3. Reduce Nutrient and Sediment Runoff
- 4. Provide Demonstration Areas to Investigate Food Production Alternatives
- 5. Protect Freshwater Resources

Identified Adaptation Strategies

Sector Based Adaptation Strategies

Aquatic & Terrestrial Ecosystems

- 1. Preserve Terrestrial and Aquatic Habitat Migration Corridors
- 2. Maintain Suitable Habitat for Threatened & Endangered species (i.e. refugia/relocation/replication areas)
- 3. Protect Areas Adjacent to Critical Shoreline Habitats Including Protection from Further Erosion and Loss
- 4. Facilitate Landward and Upstream Movement of Coastal Ecosystems Subject to Dislocation by Sea-level Rise
- 5. Conserve Riparian Corridors to Accommodate Increased Flooding and Maintain Water Temperatures
- 6. Protect Native Biodiversity Hotspots and Representative Habitat Areas

• Transportation & Land Use

- 1. Prevention of Ecosystem Fragmentation to Maintain Connectivity
- 2. Preserve Human Settlements and Other Historic and Cultural Properties
- 3. Maintain Integrity & Connectivity through Corridors
- 4. Facilitate Planned Abandonment/Retreat of Vulnerable Coastal Areas
- 5. Conserve Habitats that Sequester Carbon
- 6. Prevent Development in High Risk Coastal Areas

GIS Based Land Conservation Model

Criteria

- Specific landscape- or site-level characteristics and/or features which can be used to evaluate and target the application of select adaptation strategies on-the-ground.
- The development of criteria will provide land conservation partners a technical framework for assessing climate change adaptation objectives in combination with other land and aquatic conservation priorities.

Impact: Sea Level Rise

Adaptation Strategy: Facilitate Landward and Upstream Movement of Coastal Ecosystems Subject to Dislocation by Sea-level Rise

Figure 14. As sea level rises, wetlands may migrate 🗼 into open spaces such as forests 👫 and fields 🖗. However, wetlands cannot migrate 🏷 into areas with man-made barriers such as hardened shorelines 🕋 and heavy development such as urban 🛢, commercial 🛺, and residential areas 🏠.

MARYLAND

Smart, Green & Growing

Future Landscape Includes:

- High Priority GI & BI
- 0-5' Sea Level Rise

Coastal Land Criteria

- Shoreline Structures
 - Barrier to inland migration of ecosystems

Criteria

1. Coastal lands with little to no hardened shorelines and other barriers

Adaptation Strategy: Facilitate Landward and Upstream Movement of Coastal Ecosystems Subject to Dislocation by Sea-level Rise

Criteria

1. Coastal lands with little to no hardened shorelines and other barriers

Adaptation Strategy: Facilitate Landward and Upstream Movement of Coastal Ecosystems Subject to Dislocation by Sea-level Rise

Coastal Land Criteria

- Developed Land
 - Barrier to inland migration of ecosystems

 Suitable undeveloped uplands under 0-5' sea level rise

Adaptation Strategy: Facilitate Landward and Upstream Movement of Coastal Ecosystems Subject to Dislocation by Sea-level Rise

 Suitable undeveloped uplands under 0-5' sea level rise

Adaptation Strategy: Facilitate Landward and Upstream Movement of Coastal Ecosystems Subject to Dislocation by Sea-level Rise

Coastal Land Criteria

• Intact Coastal Wetlands

Intact coastal wetlands may help facilitate accretion and recruitment inland

3. Intact wetland migration corridors

Adaptation Strategy: Facilitate Landward and Upstream Movement of Coastal Ecosystems Subject to Dislocation by Sea-level Rise

3. Intact wetland migration corridors

Adaptation Strategy: Facilitate Landward and Upstream Movement of Coastal Ecosystems Subject to Dislocation by Sea-level Rise

Criteria

- Coastal lands with little to no hardened shorelines and other barriers
- 2. Suitable undeveloped uplands under 0-5' sea level rise
- 3. Intact wetland migration corridors

04 - 104

DEPARTMENT OF

Adaptation Strategy: Facilitate Landward and Upstream Movement of Coastal Ecosystems Subject to Dislocation by Sea-level Rise

Dorchester County High Blue and Green Infrastructures

Shoreline Barriers:

- Marinas
- Bulkheads
- Rip rap
- Wharf
- Jetty
- Groin Field
- Dilapidated bulkhead
- Debris
- Breakwater

Dorchester County High BI & GI with Shoreline Barriers

Dorchester County High BI & GI; Structures and SLR

Wetland Habitat Migration

Dorchester County

Criteria

- Sensitivity of lands to climate change impact at both spatial and temporal scale
 - Sea Level Rise
 - Storm Surge
 - Shoreline Erosion
- Landscape or Site-level Characteristics that Support Climate Change Resilience
 - Blue and Green Infrastructure High Priority Areas
 - Adjacency to Protected Lands
 - Intact natural shoreline buffers (marsh and dunes)
- Restoration Potential and Management Considerations to Enhance Resiliency
 - Septic Tank and Hazards Removal
 - Structural Barrier Removal
- Mitigation Potential/Opportunity
 - Reforestation to Restore Habitat and Sequester Carbon

Adapting Coastal Land Conservation Practices

GIS Based Land Conservation Model

The Future is Very Near and Real...

We must take action to safe guard key coastal habitats for future generations by adapting land conservation practices