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Application to cloud property retrieval from imagers (MODIS)
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OSS Review and Status
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Review of the Basic OSS MethodReview of the Basic OSS Method

OSS channel transmittances/radiances modeled as weighted average 
of monochromatic transmittances/radiances (e.g. Moncet et al. 2001, 
2003  2008):2003, 2008):

( ) ( ) ( ) ννννννφ Δ∈≅= ∑∫ ii
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i XwdXX              ;
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Wavenumbers νi (nodes) and weights wi are optimally selected to fit 
l l i  f   f  li b li  d l f   l b ll  

ν =Δ i 1

calculations from a reference line-by-line model for a globally 
representative set of profiles (training set)
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Relationship between OSS and 
ESFT/correlated-k methods

Relationship between OSS and 
ESFT/correlated-k methods

ESFT (Wiscombe and Evans, 1977) for single 
layer, single absorber case:
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Extension to multiple absorbers along 
inhomogeneous path (e.g. Armbruster 
and Fisher, 1996)
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problem to a single (wavenumber) dimension and ensures that the solution is physical



Training considerationsTraining considerations

Like TPTR methods (e.g. RTTOV, OPTRAN), necessitates line-by-line 
calculations for a set of globally representative profiles (training set)
Search method for single channel (localized) approach is described in Search method for single channel (localized) approach is described in 
details in Moncet et al. 2008

Idea is to add nodes (chosen among initial set of monochromatic 
frequencies generated by lbl model)  sequentially until 
differences between reference line-by-line calculations and OSS d fferences between reference l ne by l ne calculat ons and OSS 
model are below some user-defined threshold
Weights recomputed for each new candidate by linear regression

Radiance training preferred for modeling a specific instrument
Radiance training naturally puts more emphasis (weight) on layers Radiance training naturally puts more emphasis (weight) on layers 
that contribute most to outgoing radiances.
Takes smoothly varying spectral functions (Planck, surface 
emissivity and cloud properties) into account

Transmittance training usedTransmittance training used
for generic multi-purpose band models (e.g. MODTRAN, 
ONERA/MATISSE) – instrument function, viewing geometry not 
known in advance
As pre processing step for speeding up training in scattering 
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As pre-processing step for speeding up training in scattering 
environments (e.g. UV/VIS instruments, limb scattering)



OSS forward model

RTM structure
Main loop is the node loop
Monochromatic RT
Inner channel loop to update channel radiances and 
Jacobians

Uses LUT of absorption coefficients for fixed and 
variable gases (specified on a node-by-node basis) given 
as a function of pressure and temperatureas a function of pressure and temperature

Self-broadening included for water vapor
Computation of                inexpensivem

ll u∂∂ 0τ

Pressure and 
temperature 
entries for 101-
level model
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Profile data sourcesProfile data sources

1 H2O ECMWF with noise added; same as standard training set
2 O3 ECMWF with noise added; same as standard training set
3 CO2 GMI ±10°lat, ±1 month match, plus 2002-2012 secular trend, noise added on primary 

and secondary levels and interpolated
4 CH GMI ±10°lat  ±1 month match  plus 2002-2012 secular trend  noise added on primary 

4 fixed gases (source 
AFGL standard 
atmospheres):

4 CH4 GMI ±10 lat, ±1 month match, plus 2002-2012 secular trend, noise added on primary 
and secondary levels and interpolated

5 N2O GMI ±10°lat, ±1 month match, noise added on primary and secondary levels and 
interpolated

6 CO GMI ±10°lat, ±1 month match, noise added on primary and secondary levels and 
interpolated

7 F11 GMI ±10°lat, ±1 month match, noise added on primary and secondary levels and 

O2, NO, NO2, N2

Number of 
variable trace 
species can be p y y

interpolated
8 F12 single profile from Matricardi w/ ±10% random scaling
9 CCl4 single profile from Matricardi w/ ±10% random scaling
10 HNO3 single profile from Matricardi  scaled to get 0.4 DU, then randomly varied by 

ln(q')=ln(q)±ln(5) (varied by factor of 5)
11 SO2 single US Standard Atmosphere profile scaled to get 0.1 DU, then randomly scaled (on 

a log scale) to get random range of 0 09 to 900 DU   The scale factor is a two piece 

species can be 
decided at run 

time. Non-
selected species 

a log scale) to get random range of 0.09 to 900 DU.  The scale factor is a two-piece 
hyperbolas of log(p), with the maximum factor D (and zero vertical derivative) at 235 
mb tapering to D/1000 at the top and D/100 at the bottom.  The rate of tapering was 
arbitrary.

12 OCS constant with height at 500 pptv from surface up to 20 km an then linearly decrease 
to 0 at 50 km; the suggested dynamic range (randomized) is ±10% (per S. Tjemkes)

13 CF4 dynamic range (randomized) of 50 to 70 pptv, constant profile (per S. Tjemkes)

are assigned 
user-supplied 
profile and 

merged with F4 y m g ( m z ) f pp , p f (p . j m )
14 NH3 Derived from profiles over Australian fires and sugar cane fields provided by Guergana 

Guerova, University of Wollongong
15 HCOOH ATMOS profile
16 CH3OH GEOS-CHEM profile provided by Dylan Millet. Harvard University
17 C2H2 Remedios [MIPAS team]: mean profile and 1-STD variability.  For the training we use 

N-STD
18 C H ATMOS fil

merged with 
fixed gases

(no retraining 
required)
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18 C2H4 ATMOS profile
19 HCN Remedios [MIPAS team]: mean profile and 1-STD variability.  For the training we use 

N-STD
20 CHClF2

(F22) 
Remedios [MIPAS team]: mean profile and 1-STD variability.  For the training we use 
N-STD

**Newly added 
variable species 
for Aura-TES



Trace gasesTrace gases

Number of gas species active 

Where trace gases are active IASI results
g p

g y p p
After filtering to retain only the species that 

significantly affect optical depth

# of 
variable Filter

Avg. # 
of 

i  

Timing (s)

Fwd+ variable 
species

Filter species 
/node

Fwd only Fwd+ 
Jacobians

2
No 1.89 0.20s 0.36s

Yes 1.31 0.18s 0.28s
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Yes .3 . 8s . 8s

13
No 5.97 0.29s 0.67s

Yes 2.30 0.22s 0.39s

Timing not much affected by 
adding species

Timing not much affected by 
adding species



AIRS ApplicationAIRS Application

AIRS (2378 channels):
Local training results

AIRS (2378 channels):
Average: 11 
nodes weighted 
per channel

nodes weighted 
per channel

per channel
Average: 1.3 
nodes/channel 
overall overall 
(accounts for 
sharing) nodes weighted, adjusted for sharing

for this case  only variable gases were  H2O and O3
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for this case, only variable gases were  H2O and O3



OPTRAN/OSS comparisons for
AIRS Channels (by NOAA, 2005)
OPTRAN/OSS comparisons for

AIRS Channels (by NOAA, 2005)y

0 3

0.35

0.4

)

0.40
0.35
0 30 OSS

0.1

0.15

0.2

0.25

0.3

R
M

S 
di

ffe
re

nc
e 

(K
)

ce
 (K

)

0.30
0.25
0.20
0.15
0.10

Trained with ECMWF set
(local training)

Tested with UMBC set
(Training accuracy = 0 05K)

0

0.05

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201
AIRS channel number

0.35

0.4

S 
D

if
fe

re
nc 0.05

0

0.40
0.35

(Training accuracy = 0.05K)

0 1

0.15

0.2

0.25

0.3

rm
s(

K
)RM

S 0.30
0.25
0.20
0.15
0 10

OPTRAN
Trained with UMBC set
Tested with ECMWF set

AIRS Channel Number

0

0.05

0.1

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201

AIRS channel numberAIRS Channel Number
1 201 401 601 801 1001 1201 1401 1601 1801 2001 22012401

0.10
0.05

0

- 12 -

OSS (local training) is ~ 1 order of magnitude faster
than OPTRAN for full AIRS channel set



Application to IASI (from Tjemkes et 
al., 2008)

Application to IASI (from Tjemkes et 
al., 2008), ), )

OSS selected by EUMETSAT 
for the MTG-IRS L2 concept 

 d l t processor development 
Among candidate FRTMs for 
MTG operational ground segment
OSS and RTIASI provide similar OSS and RTIASI provide similar 
accuracy (limited by knowledge 
of spectroscopy) when compared 
to real IASI data 
OSS significantly faster than 
RTIASI Temperature Jacobians for all IASI channels obtained 

for single atmospheric profile with LBLRTM, OSS and 
RTIASI*. Wavenumber increases from blue to red.RTIASI . Wavenumber increases from blue to red.

Good  overall agreement between temperature and 
moisture Jacobians generated by LBLRTM, OSS and 
RTIASI. Near the surface, RTIASI Jacobians 
appear to be stronger.
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pp g

* Negative spikes in the RTIASI temperature jacobians are the results of the particular coefficient file used. 
New file prepared by M. Matricardi removes the spikes



Application to IASI (from Tjemkes et 
al., 2008)

Application to IASI (from Tjemkes et 
al., 2008), ), )

Summary of Retrieval Experiments
• Moisture and Temperature 
retrievals based upon OSS

have similar rms compared to similar 

Summary of Retrieval Experiments
• Moisture and Temperature 
retrievals based upon OSS

have similar rms compared to similar have similar rms compared to similar 
retrievals based
upon RTIASI.

• Retrievals are more efficient using 

have similar rms compared to similar 
retrievals based
upon RTIASI.

• Retrievals are more efficient using 
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g
OSS than RTIASI.

g
OSS than RTIASI.



Multi-channel (global) training
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ConceptConcept

OSS formalism (described previously for single channel) can 
conceptually be extended to problem of minimizing model p y p
errors in many channels simultaneously
Goal: minimize total number nodes (Ntot) needed to represent 
an entire band (at the cost of increasing the number of nodes –
Nav - used to describe any single channel within the group).
Direct application of single channel formalism to multiple 
channels not feasible in practice: initial set of candidates nodes 
(and average number of nodes needed to represent a single 
channel) too large!
Current approach: use radiance clustering to exploit inter-nodal 
correlations to reduce up front number of candidate nodes
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Methodology tradeMethodology trade

Two approaches considered:

Method 1: Reduce initial number 

1200-2000 cm-1 – IASI resolution
Method 1: Reduce initial number 
of nodes by clustering below 
minimum required to model the 
spectral domain and add back 
nodes on a channel per channel 

Clustering 
results

p
basis until all channels meet 
accuracy threshold.

Method 2: Apply clustering to 
d  i i i l b  f d  reduce initial number of nodes 

to N > Nmin. Apply extended 
(vector) search for final 
selection.

Look for fastest implementation 
and capability of providing 
continuous trade off between 
minimizing Nav (local training) 

Nmin

g g
and Ntot (global training).
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Handling of cloudsHandling of clouds

When working over extended spectral domains, need to take 
into consideration variations in cloud optical properties (as well p p p
as surface emissivity and Planck function across the domain)
It has been shown that OSS nodes and weights act as spectral 
interpolators for the smooth spectral functions
Training strategy: train with clear and cloudy radiance sets and 
simultaneously minimize modeling errors in the two sets

( ) ( ) ( ) ( )1cld cld cldR R R( ) ( ) ( ) ( )1 21cld cld cld
i k ik i ik iR a R a Rν ν ν= + −

( )2
cld
iR ν

( )1
cld
iR ν clr

iR

- 18 -
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Application to IASI Application to IASI 

Number of nodes

IASI Spectral range 
Number 

of 
Global 
nodes/

Global and local
training results

IASI 
band

Spectral range 
(cm−1)

of 
channels Local Global

nodes/
channels

1 645–1210 2261 1855 185 0.082

2 1210–2000 3160 2927 231 0.079

3 2000 2760 3040 2639 203 0 067

Training conditions:

3 2000–2760 3040 2639 203 0.067

Total 8461 7421 619

Global training reduces #nodes by ~order of magnitude
Training conditions:
• Accuracy < 0.05 K (all channels)
• 13 variable gases: H2O, O3, CO2, CO, CH4, N2O, F11, F12, CCl4, HNO3, SO2, OCS, CF4

• 5  fixed gases: O2, NO, NO2, NH3, N2
• Sources: ECMWF for H2O, O3; Global Modeling Initiative chem model for CO2, CO, CH4, N2O, F11, 

M. Matricardi for F12, CCl4, HNO3

• 2002-2012 secular trends added for CO2 and CH4

• Randomization was applied to all species for robust training
• Emissivity spectra for global training is random walk, with 20-cm−1 steps
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m y p f g g m , m p

Reduction in # of nodes translates in a factor ~10 speed up of the RT model, when not doing Jacobians
(w/ Jacobians, get speed up only if PC or node-based retrieval/assimilation is adopted)



Application to GOMEApplication to GOME

Band 2 Band 4
Ocean – no clouds
Variable gases: H2O, O3
Aerosols Optical Thickness: 

Band 2 Band 4

O2(γ)

H2O

(m
w/

m
2 /

st
er

)

O3 (Huggins)

p
0-0.4
Global training (accuracy: 
0.25%)

O2(A)

O2(B)

O2(γ)

Ra
di

an
ce

 (

Band 2 Band 4
Spectral 
range

290-
370nm

580-
770nm

Re
la

ti
ve

 e
rr

or

#Channels 910 828
# Nodes 22 44
Nav 3.47 3.36 Wavenumber (cm-1)

R

Wavenumber (cm-1)
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LOA (Univ. Lille)/GAME
OSS



Hi h t l l ti  t l di  High spectral resolution spectral radiance 
compression in retrieval/assimilation
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OSS with Principal Components
of Radiance Spectrum

OSS with Principal Components
of Radiance Spectrum

Variational retrieval/assimilation methods:
Average channel uses ~150 nodes
Mapping Jacobians from node to channel space 

NH3 and CH3OH spectral signatures in the TES 
observations over Beijing (Beer et al., 2008, JGR)

pp g p
partially offsets forward model speed gain

PC option may be useful (for radiance compression 
and reducing algebra in inversion) when some 
information loss is accepted as trade-off for speed

When eigenvector truncation goes beyond 
l  d d TES LBLRTM (I iti l G )eliminating redundancy

Can be done without significant revision to OSS 
training

1. Filter training-profile radiances with 
truncated eigenvectors

TES - LBLRTM (Initial Guess)

TES - LBLRTM (Retrieved)

o Convert to PCs, then use reverse 
transformation to recover channel 
radiances

2. OSS radiance training achieves required 
accuracy for every channel (PC filtered)

Beijing Latitude (deg)

3. OSS coefficients project only on retained 
PCs (within training accuracy)

Forward model output in terms of PCs efficiently 
done by combining eigenvectors with OSS 
coefficients in advance:
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yAy ~= yUPC m=
yAyAUPC ~~

mm == mm AAU ≡where

with m retained PCs

San Diego Latitude (deg)



Retrieval/Assimilation in Node SpaceRetrieval/Assimilation in Node Space

Exploring alternative to PC 
Project observations in node spacej n n n p

Perform retrieval in node space (mathematically equivalent to replacing 
observation vector      by           in original inversion equation)AHyy

ASAS 1
ε

T1
ε

−− =
~

(associated  inverse error covariance matrix                           )
obsobs Hyy =~ ( ) 111 −−−= εε SAASAH TTwhere

observation vector      by           in original inversion equation)
Avoids Jacobian transformation from nodes to channels, and reduce K-
matrix size (inversion speed up): for AIRS, 2378 channels -> ~250 nodes
Directly applicable to cloudy observations, minimum loss of information
When radiometric noise can be assumed independent of scene temperature             

obsAHyobsy

When radiometric noise can be assumed independent of scene temperature,            
matrices       and      can be computed once off-line otherwise need strategy 
to avoid frequent updates

Example of AIRS retrieval performance

H1~−
εS

Channel space retrieval
Node space retrieval
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Spectroscopy Improvementsp py p
(MonoRTM/LBLRTM)

- 24 -



Water vapor: Line widthsWater vapor: Line widths
Payne et al., IEEE TGRS (2008)

MonoRTM width
(scaled sondes)

Rosenkranz width
(scaled sondes)

22 GHz: 
MonoRTM  5% lower than RK

183 GHz: 
MonoRTM  ~ same as RK

RK

RK

MonoRTM 22.24 GHz

5 cm
3 cm
1 cm

Incorrect specification of the 22 GHz 

MonoRTM

Additional evidence for lower 22GHz width value 
f  ll  d

23.8   GHz
24.5   GHz

width will lead to inconsistency between 
e.g. AMSU/AMSR-E and SSM/I -SSMIS

from upwelling radiation:
»UK Met Office (W. Bell and P. J. Rayer - lower 

width improves SSMI biases)
»Tom Wilheit (Texas A&M) - TMI and SSMI- 25 -



Water vapor: 
Self and foreign continuum

Water vapor: 
Self and foreign continuum

Cost function for window 
channels for different self and 

foreign continuum scaling 
combinations

RK
MonoRTM v4.1

31.4 GHz MonoRTM v4.0

23.8 GHz
No scaling of sondes

Retrieve PWV scaling factor using 23.8 GHz MWR channel.

Assess the quality of the fit in the “window” channel

RK
MonoRTM v4.1

M RTM 4 0No scaling of sondes Assess the quality of the fit in the window  channel.
150 GHz

RK

MonoRTM v4.0

31.4 GHz
No scaling of sondes

170 GHz

MonoRTM v4.1

MonoRTM v4.0
MonoRTM v4.0

(MT_CKD 2.1)
“Rosenkranz-like”
continuum scaling

MonoRTM v4.1
(MT_CKD 2.4) Consistent information from 

different 
instruments/frequencies!
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Brightness temperature differencesBrightness temperature differences

Note that RSS has recently readjusted their water Note that RSS has recently readjusted their water 
vapor continuum to remove bias in CLW retrieval 
(Meissner and Wentz, personal communication). RSS 
and AER continua are now close together at 37 and 
89 GH  (RSS d l t lid b  89 GH )89 GHz (RSS model not valid above 89 GHz)
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Consistency across Mid-infrared 
Spectral Regions

Consistency across Mid-infrared 
Spectral Regionsp gp g

Mean residuals from 36 ARM TWP cases using Tobin et al. best estimate sonde 
profiles.

LBLRTM Profile inputs from AIRS Phase I val. supplied by L. Strow and S. Hannon (UMBC).

CO2 line coupling
Application of Niro et al. 

(2005)
H2O line positions 

nd st n ths Example AIRS spectrumand strengths
Coudert et al. (2008)

CO2 line positions 
and strengths

Older lblrtm version

p p

and strengths
Tashkun et al., (1999)

Already in use by MIPAS 
team (Flaud et  al., 2003)

H2O shifts, T-dep. 
f d h

v11.6 lblrtm release

Of widths
Gamache (personal comm.)

CO2/H2O continuum
(see final LBLRTM v11.7 

release)

V11.7 beta version

release)

Significant improvements to consistency between spectral regions!- 28 -



Carbon dioxide: consistency between ν2 and 
ν3 regions

Carbon dioxide: consistency between ν2 and 
ν3 regions

 d l  f  6 R  R  P   b   l  b   d  f lMean residuals from 36 AIRS ARM TWP cases using Tobin et al. best estimate sonde profiles
(Input profiles supplied by L. Strow and S. Hannon).

9 4v9.4
v11.6
v11.7_beta
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Carbon dioxide: consistency between ν2 and 
ν3 regions

Carbon dioxide: consistency between ν2 and 
ν3 regions

 d l  f  6 R  R  P   b   l  b   d  f lMean residuals from 36 AIRS ARM TWP cases using Tobin et al. best estimate sonde profiles
(Input profiles supplied by L. Strow and S. Hannon).

9 4v9.4
v11.6
v11.7_beta
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Carbon dioxide: consistency between ν2 and 
ν3 regions

Carbon dioxide: consistency between ν2 and 
ν3 regions

 d l  f  6 R  R  P   b   l  b   d  f lMean residuals from 36 AIRS ARM TWP cases using Tobin et al. best estimate sonde profiles
(Input profiles supplied by L. Strow and S. Hannon).

9 4v9.4
v11.6
v11.7_beta
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Water Vapor ν2 Region : Impact of Coudert
Intensities 

Water Vapor ν2 Region : Impact of Coudert
Intensities 

50

HITRAN06
Coudert

IASI measurement from JAIVEx campaign

100

ss
ur

e 
 (m

b)
P

re
s

1000
-20 -10 0 10 20 30 40 50

% Difference from Sonde% Difference from Sonde

Tony Clough and Mark Shephard (Shephard et al., ACP, 2009)
~10 % diff in upper 

troposphere- 32 -



ν3-CO2 band head (v11.7 release)ν3-CO2 band head (v11.7 release)

CO2 continuum scaled to improve agreement with IASI 
observations in dry conditions (PW < 0.65 cm)y
Both IASI and AERI comparisons show significant dependence 
of residuals on temperature/water vapor (after CO2 continuum 
adjustment):

Introduction of temperature dependence of CO2 continuum 
based on line coupling coefficients at 200K, 250K and 340K 
in addition to 296K improves residual around 2395 cm-1

Scaling of H2O self broadened continuum by a factor up to 
5-7 (consistent with laboratory measurements from 
Bicknell et al., 2006 and Fulghum and Tilleman, 1991 in the 
near IR) in 2000-3000 cm-1 region improves fit in window 
region
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V11.7 - IASI comparisonsV11.7 - IASI comparisons

No sonde temperature 
profile correction 

LBLRTM v11.7 

yp
(based on retrieval 
using 15 μm band –
future work)

LBLRTM v11.6 

D
r

Positive impact of 
modifications on 
comparisons with AERI 

d AIRS ( t l)

LBLRTM v11.7 

er
at

e
and AIRS (control). LBLRTM v11.6 

M
od

LBLRTM v11.7 

LBLRTM v11.6 

W
et
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LBLRTM v11.6 



LBLRTM: future plansLBLRTM: future plans

NLTE: 
Added flexibility to accept user specified isotopes and f y p u p f p
NLTE bands (hard coded in current release) in special 
JCSDA release

Future:
Test with larger set of IASI/RAOB match ups and adjust 
atmospheric profiles using the radiometric measurements 
in selected spectral regionsp g
CO2 667 cm-1 Q-branch (treatment of line coupling)
CH4 line coupling
H O ν : H2O ν2: 

Line widths (R. Gamache, U. Mass Lowell)
Local continuum adjustment
HITRAN 2008 evaluati nHITRAN 2008 evaluation
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MW Land surface property 
characterization 

MW Land surface property 
characterization 

Motivation:
Improve characterization of surface emissivity for mp f u f m y f
atmospheric remote sensing
Provide estimates of LST under cloudy conditions (MW is 
only source of global remotely sensed LSTs under cloudy y f g m y y
conditions)

Applications: 
Assimilation of MW sounder data over landAssimilation of MW sounder data over land
Improvement to cloud analysis 

better LST provides potential for improving cloud 
characterizationcharacterization

LSM validation
Climate studies
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Land retrieval problemLand retrieval problem

Build upon NASA funded work 
to provide regularly updated 
s f  missi it  m s surface emissivity maps 
(~40km resolution)
AMSR-E emissivity retrieved 
using MODIS LST product in 

30 days
10 days
5 days

using MODIS LST product in 
the clear-sky (and NCEP 
atmospheric field)

Good consistency 
AMSR-E/MODIS 
derived product

SSMI/ISCCP LST  derived 
between MODIS and 
AMSR measurements 
results in highly stable 
emissivities

SSMI/ISCCP LST  derived 
product (from Prigent)

emissivities
11GHz polarization ratio used 
to monitor changes in physical 
surface characteristics 
during cloudy phases
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Impact of surface penetrationImpact of surface penetration

Subsurface temperature 
gradients at time of Aqua 

overpass give rise to strong overpass give rise to strong 
day/night “swings” in 

retrieved emissivity when IR 
skin temperature is used as 

MODIS NDVI 
(July 2003)

p
an estimate of MW emission 

temperatureMODIS NDVI 
(July 2003)
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11V emissivity standard deviations
(July 2003)

11V emissivity standard deviations
(July 2003)( y )( y )

1a: applies to vegetated surface (penetration effects negligible) Tsfc_MW ~ Tsfc_IR

C: substitute for 1a (from classification algorithm) in areas with persistent 
cloudiness
1b: emissivity derived from  1D thermal diffusion model using IR, AMSR and SSM/I 
measurements*

* Aqua/MODIS 
Tskin Tskin 
measurements 
currently used to 
set amplitude of 
the surface 
diurnal cycle y
(plan to include 
other IR sensors)
89 GHz Tb’s 
from AMSR and 
SSM/I (sample 
diff  i  different times 
of the day) 
provide phase 
reference
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AMSR-E emissivities estimated using 
simple 1D thermal model

AMSR-E emissivities estimated using 
simple 1D thermal model

AMSR-E
Database

(  

SSM/I
Database

(emissivities 
more time-

stable in arid 
and semi arid and semi arid 

areas)
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Validation sitesValidation sites

FLUXNET
ARMM
Special field campaigns: SMEX 05 and 09 (Hornbuckle et al., U. 
Iowa)

FLUXNET sites distribution map

- 41 -
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Santarem FLUXNET site: LST/MW 
emissivity  validation in the tropics
Santarem FLUXNET site: LST/MW 
emissivity  validation in the tropicsy py p

STR-1STR-2

1
3

STR-3 Santarem (STR) site

12

Santarem (STR) site
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Example of validation results (no CLW correction)Example of validation results (no CLW correction)
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Validation results (continued)Validation results (continued)
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Positive day/night emissivity anomaly 
in the Midwest

Positive day/night emissivity anomaly 
in the Midwest

Systematic positive day/night 
differences in our AMSR-
E/MODIS emissivity product are E/MODIS emissivity product are 
observed during the summer 
months in the Midwest

Spatial pattern appears to 
i id  ith /s b  coincide with corn/soybean 

crop
Are these differences real or 
artifacts of our 

/dprocess/data?

JulJun

- 45 -
Monitoring corn growing season at 11 GHz



Comparison of ΔDN>0 & ΔDN≅0 regions
July-August, 2003

Comparison of ΔDN>0 & ΔDN≅0 regions
July-August, 2003

10 GHz ΔDN>0 (Iowa) 10 GHz ΔDN≅0 (Missouri)

ε(day):  0.94 – 0.96 & e(night)<e(day) usually ε(day) ≅ e(night):  0.94 – 0.96ε(day)   0.94 0.96 & e(night) e(day) usually ε(day) ≅ e(night)   0.94 0.96

ΔDN: 0 – 0.04 & v-pol. ≅ h-pol. ΔDN: -0.02 – 0.01 & v-pol. ≅ h-pol.

Polarization ratio (TBH/TBV):  no large differences between regions
- 46 -



Evidence for emissivity reduction by dew 
on large-leaf crops (corn/soybean)

Evidence for emissivity reduction by dew 
on large-leaf crops (corn/soybean)g p ( y )g p ( y )

1. ΔDN>0 occurs most days in July-August
2. Nighttime dew at AMSR-E overpass time (~0130) is also persistent2. Nighttime dew at AMSR E overpass time ( 0130) is also persistent
3. ΔDN>0 region daytime emissivities are consistent with nearby 

ΔDN≅0 regions
ε(night) occasionally rises to level of ε(day)( g ) y ( y)

4. ΔDN is independent of polarization & there is little day–night 
polarization ratio difference

i.e., effect is quasi-polarization-neutral (not due to soil moisture)
5. Effect is strongly associated with mature, large-leaf crops (corn & 

soybeans)
Ground surface is obscured at 10 GHz
Large, dew-covered leaves may induce scatter-darkening (also 
seen at 1.4 GHz, Hornbuckle et al., 2007)
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Preliminary analysis with 2009 (SMEX09) 
Iowa dew field measurements*

Preliminary analysis with 2009 (SMEX09) 
Iowa dew field measurements*

Nighttime AMSR-E overpass 
times without detected dew times without detected dew 

3 automatic dew sensors (mV 
output)

Sensor disagreement suggests 
light dew amount
Ad hoc “no-dew” algorithm:

Any of 3 sensors reporting <280 
mVmV

Reasonably good 
agreement between 
MODIS LST and in 
situ air temperatures 
in the clear-sky 

Bias = -0.3K
Std dev = 0 77K

*Experiment conducted by Brian 
Hornbuckle from U. of Iowa

in the clear sky 
(night time)

Std dev  0.77K
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ResultsResults

Preliminary analysis 
indicate correlation 

AMSR-E emissivities derived using in 
situ air temperatures at night 

between ΔDN anomalies 
and occurrence of dew 
deposition on corn leaves

(a) No dew (see previous slide)

Night time emissivities
X: No dew         X: Dew

- 49 -
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Future plansFuture plans

OSS development
Refine generalized training and explore “node-based” f g g p
compression as an alternative to EOF representation (and 
its impact on retrieval)
Build an OSS specific version of CRTM (?)p f f ( )

LBLRT/MonoRTM
Continue validation and improvement (see slide 33)

MW land emissivity databaseMW land emissivity database
Global monthly emissivities for yr 2003 delivered to 
JCSDA (includes spatially matched MODIS emissivities)
C ti  lid ti   t t d d id i  d Continue validation over vegetated and arid regions and 
propose improvements 
Produce global LST estimates (NASA/NEWS)
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Future plans (continued)Future plans (continued)

4D-VAR Assimilation of cloud 
properties in WRF (AFWA/NCAR) Comparison of 1DVar cirrus cloud 

retrieval product from MODIS with p p

m
) m
)

retrieval product from MODIS with 
Calipso/CloudSat

CT
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m

D
ef
f
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ep
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Calipso Backscatter (in background)


