

Forward Modeling for Microwave and Infrared Remote Sensing: Spectroscopic Issues and Line-by-Line Modeling

Tony Clough

and a host of colleagues

Joint Center, Camp Springs, MD 15 Sep 2010

LBL Heritage and Presentation Outline

Outline

- Emphasis on Physics
- Background and Intellectual Underpinnings
- Line Shape
- Line Coupling
- Validation Issues
- Validation Cases
 - AERI
 - IASI
- To Do List
- Summary

Related Models

LBLxxx		Clough et. al.		
CHARTS	Multiple scattering Adding Doubling Method	Moncet and Clough		
• MonoRTM	MonochromRTM for limited # of frequencies e.g. microwave	Boukabara, Cady-Pereira and Clough		
DISORT Multiple Scattering Discrete Ordinate Method		Stamnes and Wiscombe		
• RRTM*	Rapid RTM General Circulation Models	Mlawer and Clough		
• OSS	Optimal Spectral Sampling	Moncet		
• MT_CKD	Continuum	Mlawer, Payne and Clough		

* adjoint easily developed due to coding attributes (next slide)

Physics consistent with LBLxxx in these models !

Example of Code Utilization

Acceptance of RRTM by the GCM community is a direct consequence of the acknowledged accuracy of LBLRTM

Main features of the McRad radiation package

The main features of the McRad radiation package are summarised in the table

	RRTM _{LW}	RRTM _{SW}		
Solution of Radiation Transfer Equation	Two-stream method	Two-stream method		
Number of spectral intervals	16 (140 g-points)	14 (112 g-points)		
Absorbers	H ₂ O, CO ₂ , O ₃ , CH ₄ , N ₂ O, CFC ₁₁ , CFC ₁₂ , aerosols	$\begin{array}{c} {\rm H_20,\ CO_2,\ O_3,\ CH_4,} \\ {\rm N_20,\ CFC_{11},\ CFC_{12},} \\ {\rm aerosols} \end{array}$		
Spectroscopic database	HITRAN, 1996	HITRAN, 1996		
Absorption coefficients	From LBLRTM line- by-line model	From LBLRTM line- by-line model		
Cloud handling	True cloud fraction	True cloud fraction		
Cloud optical properties method	16-band spectral emissivity	14-band τ, g, ω		
Data: ice clouds	Ebert & Curry, 1992 Fu et al., 1998*	Ebert & Curry, 1992 Fu, 1996*		
Data: water clouds	Smith & Shi, 1992 Lindner & Li, 2000*	Fouquart, 1987 Slingo, 1989*		
Cloud overlap assumption set up in cloud generator	Maximum-random or generalised* Maximum-ran or generalise			
References	Mlawer et al., 1997 Morcrette et al., 2001	Mlawer & Clough, 1997		

LBL Model Attributes

Computational Accuracy

Voigt Line Shape	Planck Fn	Layer Merging	Optical Depth	Radiance
0.1%	0.05%	0.1%	0.1%	0.1%

Computational Gain

Optimal Sampling	Voigt Line Shape	Line Coupling ^{2nd}	Planck Fn
10x	10x	10x	2x

Computational gain can be utilized to do more complicated problems in the same amount of time

• Attributes

- Linear Algebra wherever possible
- Piecewise continuous wherever possible
- Planck Fn 'linear in tau' across inhomogeneous layer
- Voigt Fn obtained as a linear combination of precalculated functions
- Units: cgs
- Line Coupling (second order)
- NonLTE
- Analytic Derivatives
- Logical structure of high order
- Modular and proven very flexible
- Coding: Horrendous

Formalism for LBL Calculations

- Validity from Microwave through Solar UV
- Detail Balance across entire extent of the line
 - Radiance = Planck_Fn * [1 Transmittance]

A Bit of History: With a nod to heroes of the profession!

Problem:Incoherent understanding of line shape associated with binary collisions(~1972)What is the validity of the impact line shape ?What is the line shape far from line center that satisfies the physical constraints?

Development of a Water Vapor Continuum Model (Clough and Kneizys 1975)

- Phillip Anderson thesis (student of Van Vleck) (1950)
- Huber and Van Vleck I (1966)
- Huber and Van Vleck II (1972)
- John Van Vleck (Rev Mod Phys; 1978)

Formalism for LBL Calculations II

$$k(v) = v \left\{ \frac{1 - e^{-hcv/kT}}{1 + e^{-hcv/kT}} \right\} \qquad \text{Im} < \phi(v) + \phi(-v) >$$

$$k(v) = v \tanh(hcv/2kT) \qquad \text{Im} < \phi(v) + \phi(-v) >$$

$$radiation field \qquad \text{molecular system} \Leftrightarrow radiation interaction}$$

$$(\text{line shape})$$

$$< \text{symmetrized spectral density function} >$$

- Radiation balance is satisfied over the full extent of the spectral line irrespective of accuracy of $\phi(v)$!
- F-sum rule rigorously satisfied: integral over v ? value of the band strength
- Led to the development of the CKD continuum model

Impact Result:

$$\approx v \left\{ \frac{1 - e^{-hcv/kT}}{1 + e^{-hcv/kT}} \right\} < \mathscr{Y}_{i}(T) \frac{1}{\pi} \left[\frac{\alpha_{i}P}{\left(v_{i} + v\right)^{2} + \left(\alpha_{i}P\right)^{2}} + \frac{\alpha_{i}P}{\left(v_{i} - v\right)^{2} + \left(\alpha_{i}P\right)^{2}} \right] >$$

Microwave:

$$\approx \frac{hcv^2}{2kT} < \mathscr{Y}_i(T) \frac{1}{\pi} \left[\frac{\alpha_i P}{\left(v_i + v\right)^2 + \left(\alpha_i P\right)^2} + \frac{\alpha_i P}{\left(v_i - v\right)^2 + \left(\alpha_i P\right)^2} \right] >$$

Van Vleck - Weisskopf Gross, etc. xxx

Infrared:

$$\approx \nu < \frac{\aleph}{i}(T) \frac{1}{\pi} \left[\frac{\alpha_i P}{\left(\nu_i - \nu\right)^2 + \left(\alpha_i P\right)^2} \right] >$$
 Lorentz

LBL Model

Formalism for LBL Calculations III

Impact Approximation »» Duration of Collision »» $\chi(v_i - v)$ factor

$$k(v) \approx v \left\{ \frac{1 - e^{-hcv/kT}}{1 + e^{-hcv/kT}} \right\} \quad < \$_{i}^{o}(T) \frac{1}{\pi} \left[\frac{\alpha_{i}P}{\left(v_{i} + v\right)^{2} + \left(\alpha_{i}P\right)^{2}} \chi\left(v_{i} + v\right) + \frac{\alpha_{i}P}{\left(v_{i} - v\right)^{2} + \left(\alpha_{i}P\right)^{2}} \chi\left(v_{i} - v\right) \right] >$$

Line Coupling

The task is to evaluate the collision operator in Liouville (line) space: $\begin{bmatrix} v - v_0 - i \mathbf{P} \cdot \mathbf{W} \end{bmatrix}^1$

$$k(v) = v \tanh(\beta v/2) \operatorname{Im}\left[\phi(v) + \phi(-v)\right]$$

$$\phi(v) = \frac{1}{\Pi} \sum_{jk} \mu_j < j \left| \frac{1}{(v-v_0) - iPW} \right| k > \mu_k \rho_k$$

$$\mu_k \rho_k$$

$$\rho_k$$
transition for the transition for th

transition rate operator

Line Shape

Line Shape including widths, shifts and line coupling coefficients is the dominant source of error in current radiance calculations

 Doppler 	Gaussian		
 Collisional 	Lorentzian	frequency of collision: (P/T)	
• Voigt	Convolution of Gaussian with Lorentzia	ו	
 Duration of collision 	Impact approximation is just that:	line wings must decay exponentially	
Speed Dependent Voigt	Doppler and Collisional processes are not independent		
Line Coupling	Collisional relaxation matrix between lines required		

Thoughts on Forward Model Validation and Spectroscopy

- The atmospheric conditions for which spectroscopic parameters are required are difficult to obtain in the laboratory- for water vapor, essentially impossible (long paths-cold temperatures)
- Spectroscopy error, though small, is the dominant error in most retrievals
- Spectroscopists have been making significant progress
- The OCO experiment has been a great motivator
- A strong commitment to study line shapes was articulated at the HITRAN meeting June 2010
- Nevertheless, improved spectroscopy is needed now!

In situ measurements are simply not adequate

- Spatial and temporal sampling issues
- Accuracy of the measurements themselves is not adequate
- In situ measurements are useful: e.g. vertical structure

My perspective is that the atmosphere will have to function as our laboratory

- Focus on a small number of cases (10) spanning a range of atmospheric conditions
- Initial cases: night time over ocean quiet atmosphere

Progressing to day time cases, land cases always with as quiet an atmosphere as possible

- Spectral residuals to follow are based on *ad hoc* changes in line parameters

Progressing to retrieval of line parameters from atmospheric spectra (tuning?)

What is Truth?

- Spectral Residuals are Key!
- Consistency within a band system
 - v₂ band to investigate consistency for H₂O
- Consistency between bands
 - v₂ and v₃ bands to investigate consistency for CO₂
- Consistency between species
 - TES: temperature from O_3 and H_2O consistent with CO_2 ; N_2O
- Consistency between instruments
 - IASI

- AIRS

- TES

- NAST-I

- MIPAS

- AERI

- ACE - SHIS

Collaborators for IASI Case

• Collaborators:

- M. Shephard, V. Payne, K. Cady-Pereira and J. Delamere
- W. Smith and S. Kireev
- Extension of

Performance of the line-by-line radiative transfer model (LBLRTM) for temperature and species retrievals: IASI case studies from JAIVEx: M. W. Shephard, S. A. Clough, V. H. Payne, W. L. Smith, S. Kireev, and K. E. Cady-Pereira, Atmos. Chem. Phys., 9, 7397-7417, 2009

IASI Cases from JAIVEx

- 2007_04_19

- » Over SGP site (surface emissivity retrieved)
- » Atmosphere
 - Clear and Homogeneous (h2o)
 - 'Well Characterized'

- 2007_04_20

- » Over Gulf of Mexico "
- » Atmosphere
 - Broken Clouds and Highly Inhomogeneous (h2o)
 - Not So Well Characterized

Hampton U.

AER, Inc.

'Control'

Case Study

•

Topics / Issues

• Temperature

- Carbon Dioxide

- » Line Parameters: CDDB (2008), Tashkun et al. JQSRT, 2009
- » Line Coupling: Niro et al., JQSRT, 2005 J.M.Hartmann
- $\checkmark\,$ Agreement between CO $_2\,\nu_2$ and CO $_2\,\nu_3$
- ✓ Q-Branch 667 cm-1
- ✓ Band Head 2385 cm-1

- Nitrous Oxide

- ? Agreement between $CO_2 v_2$ and $N_2O v_3$
- » N_2O profile scaling required: 19 April case: 1.04
 - 20 April case: 1.02

Methane

✓ Line Coupling: Tran et al., JQSRT, 2006 J.M.Hartmann

Water Vapor

- Deserves a slide of its own
- Significant improvements but ...

Introduction

IASI

•	Scan Rate	8 secs
•	Scan Type	Step and dwell
•	Pixel IFOV	0.8225°
•	IFOV size at Nadir	12 km
•	Sampling at Nadir	18 km
•	Earth View Pixels / Scan	2 rows of 60 pixels each
•	Swath	± 48.98°
•	Swath	± 1066 km
•	Spectral Range	645 to 2760 cm-1
•	Resolution (hw/hh)	0.25 cm-1
•	Lifetime	5 years
•	Power	210 W
•	Size	1.2 m x 1.1 m x 1.3 m
•	Mass	236 kg
•	Data rate	1.5 Mbps
•	Radiometric Calibration	< 0.1 K

- The IASI programme is led by
- Centre National d'Études Spatiales (CNES) in association with EUMETSAT.
- Alcatel Alenia Space is the instrument Prime Contractor.

Joint Airborne IASI Validation Experiment

JAIVEx 19 Apr 2007 CART-site (03:35 UTC)

IASI/LBLRTM Validation

Strategy: to analyze the spectroscopy in the context of these red residuals

Temperature

IASI 19 Apr 2007 CO₂ Q-Branch Sensitivity to Upper Stratosphere

Voigt Parameter and Q Branch Monochromatic Spectrum

Effect of Line Coupling on CO₂ Continuum

CO₂ Line Coupling

• Line Parameters:

- P, Q, & R line coupling for bands of importance
- Niro, F., K. Jucks, J.-M. Hartmann, Spectra calculations in central and wing regions of CO2 IR bands. IV : Software and database for the computation of atmospheric spectra: J Quant Spectrosc Radiat Transfer., 95, 469-481.
- Niro et al. code modified to generate first order line coupling coefficients, y_i .
- Works in regular line by line mode with LBLRTM
- Temperatures: 4

Chi Factor

• Line Shape:

- Impact Approximation
- Duration of collision effects under study

Continuum:

- Band head: 2385 cm-1

Line Coupling in Methane

Tran et al., JQSRT, 2006

Water Vapor: 'The Most Important Greenhouse Gas' Critical for NWP and Climate

- Line Strengths
 - Laurent Coudert
 - » Strong Lines: Intensities increased by ~ 5 %
- Line Widths and Shifts / Temperature Dependence
 - Bob Gamache &
 - this paper

Line Coupling

- Linda Brown (accidental two line resonances)
- Revised relaxation rates
- First Order
- Continuum
 - Inextricably linked to the width
 - mt_ckd_2.4 >> 2.5 (water only)
 - Scaled in selected regions of the water band by ~5%

AERI Downwelling Radiances I

AERI Downwelling Radiances II ARM NSA Site

Line Coupling

AERI Downwelling Radiances III ARM NSA Site PWV: 1.866 mm

Water Vapor v_2 Region : Impact of Coudert Intensities

Water Vapor P-Branch: 1310 -1410 cm-1

Water Vapor P-Branch: 1400 -1500 cm-1

Water Vapor Band Center: 1530 -1630 cm-1

Water Vapor R-Branch: 1640 -1750 cm-1

Overall Comparison of LBL_CRA with IASI

19 Apr 2007 SGP case

Summary - 1

- Temperature
 - Carbon Dioxide
 - » Line Parameters: Tashkun et al. JQSRT, 2009
 - » Line Coupling:
 - Niro et al., JQSRT, 2005 J.M.Hartmann
 - **Q-Branch 667 cm-1:** Niro * 1.2
 - » Band Head 2385 cm-1 Robust for 19 April and 20 April (low water cases)
 - Line Coupling > Continuum
 - » Good agreement between $CO_2 v_2$ and $CO_2 v_3$
 - Nitrous Oxide
 - » Agreement between CO₂ v_2 and N₂O v_3 / CO₂ v_3
 - » N₂O profile scaling required: 19 April case: 1.04 20 April case: 1.02
 - » N₂O shows more variability than expected
- Methane
 - » Residuals significantly reduced with line coupling: Tran * 1.5
 - Tran et al., JQSRT, 2006 J.M.Hartmann

Summary - 2

- Water Vapor
 - » Sondes provide an excellent first guess / structure (nothing more)
 - » Coudert strengths
 - Residuals unchanged; retrieved water in upper trop reduced 10%
 - » Widths are the current major issue
 - Gamache widths: 350 1600 cm-1
 - Widths of a series of weak high J low Ka P-Branch lines reduced by ~50%
 - » Widths and continuum are inextricably linked
 - » Three coupled lines observed so far (accidental line resonances)
 - » P-Branch has much lower residuals than R-Branch. Why ???
 - Gamache Widths ???
 - » 19 April 2007 case is superb for FM improvement
 - » Due to the resolution of IASI there is a limit to the spectroscopic improvements that can be achieved

Summary - 3

- Next Steps
 - Resolve R-Branch Issues for water vapor
 - More Cases
 - Night time with high water
 - Day time cases for impact of NLTE on 720 cm-1 Q-Branch
 - Line Shape issues are the dominant problem
 - Spectroscopy needs greater support to take full advantage of the data
 - Thinking of the real world as our laboratory
 - Implement line parameter retrieval scheme using spectral residuals

Performance of LBL_xxx is generally gratifying

(said in not quite all modesty?)

10 years ago I wouldn't have envisioned that we would be modeling at this level

Line Coupling: Accidental Line Resonances

400 cm-1 Tony Clough

11 398. 976493 5. 556D-20 2. 283E+01. 0360. 3283 1411. 61150. 29-. 000910 1972 8 6 3 5552433 5 1 11 400. 221796 1. 070D-20 4. 643E+00. 0791. 3009 1216. 23130. 710. 004940 1 110 4 6 937 5552433-1 1 1.456529E-01 1.365260E-01 1.30000E-01 1. 248789E-01 - 1 11 400. 481057 1. 071D- 20 1. 636E+01. 0510. 3009 1474. 98080. 30-. 000770 1 110 6 4 9 5 5 5552433-1 1-2.671053E-01 -1.725650E-01 -1.303796E-01 - 1. 064366E- 01 - 1 11 1337. 897589 9. 576D-23 5. 903E+00. 0261. 1905 1806. 67180. 05-. 000970 2 112 012 13 113 3556443 0 296K Y: 200K 250K 340K

1540 cm-1 Linda Brown

1	1 1539.060760	2.255D-19	1.153E+01.1053.4643	79. 49640. 79 004100	2	1 1 0 1	212	3555433-1
1	1.098843E-02		1.048538E-02	1.012000E-02		9.829	722E-03	- 1
1 '	1 1540. 299806	1. 767D- 19	7.175E+00.0971.5173	136. 76170. 79 000020	2	1212	303	3577443- 1
1-	1. 604015E- 02		- 1. 409560E- 02	- 1. 292537E- 02		- 1. 211	058E-02	- 1

1630 cm-1 Linda Brown

11 1539.060760 2.255D-19 1.153E+01.1053.4643 79.49640.79-.004100 2 1 1 0 1 2 1 2 3555433-1 1 1.098843E-02 1.048538E-02 1.012000E-02 9.829722E-03 - 1 11 1540. 299806 1. 767D-19 7. 175E+00. 0971. 5173 136.76170.79-.000020 2 1 2 1 2 3 0 3 3577443-1 1-1.604015E-02 - 1. 409560E- 02 - 1. 292537E- 02 - 1. 211058E- 02 - 1