Programming Models

Facilitators

Paul Henning (LANL) Sadaf Alam (CSCS) Jonathan Carter (LBL)

Technical Committee Report to the Hybrid Multicore Consortium

First HMC Roadmap Workshop January 19-22, San Francisco

BREAKOUT PARTICIPANTS

- Sadaf Alam, CSCS, (alam@cscs.ch)
- Jonathan Carter, LBL, (<u>itcarter@lbl.gov</u>)
- Alan Coppola, OptNgn, (ajjc@optngn.com)
- Richard Graham, ORNL, (rlgraham@ornl.gov)
- Paul Henning, LANL (<u>phenning@lanl.gov</u>)
- Wen-mei Hwu, UIUC (hwu@crhc.uiuc.edu)
- John Levesque, ORNL, (<u>levesque@ornl.gov</u>)
- Al McPherson, LANL (mcpherson@lanl.gov)
- Piyush Mehrota, NASA Ames (piyush.mehrota@nasa.gov)
- Dave Norton, PGI, (dave.norton@pgroup.com)
- Philip Roth, ORNL, (<u>rothpc@ornl.gov</u>)
- Sonia Sachs (soniasachs@gmail.com)
- John Shalf, LBL, (jshalf@lbl.gov)
- Aniruddha Shet, ORNL, (<u>shetag@ornl.gov</u>)
- John Thorp, LANL (thorp@lanl.gov)
- Kathy Yelick, LBL, (<u>yelick@eecs.berkeley.edu</u>)
- Shujia Zhou, NASA, (shujia.zhou@nasa.gov)

CHARGE TO BREAKOUT SESSIONS

- Goal of Roadmap:
 - Identify technologies that need to be developed to make next generation, large-scale, accelerator-based systems "production ready"
 - Provide community input needed to prioritize and support activities
- Focus is near term, while keeping an eye toward to long term (avoid box canyons)
- Work with the other TCs to support the overall co-design of applications, architectures, programming, and performance and to build ties with and provide feedback to vendors.
- Develop strategies for early and broader access to these accelerator-based or future hybrid multicore systems.

CHARGE TO PROGRAMMING MODELS

- Identify and report on programming models for developing applications on large-scale (accelerator-based) hybrid computer systems in the near term and in the future.
- Identify the types and degrees of parallelism provided by hybrid cores and to define key architectural metrics of this class of hybrid machine.

SUMMARY OF PROGRAMMING MODELS TC

- Areas of interest:
 - Code and performance portability
 - Developer productivity: tools, programming for "mere mortals"
 - Data layout & motion, multiple disjoint address spaces, SIMD length, etc.
- Relation to other TCs
 - Relation to applications: algorithm design/selection
 - Relation to architectures: design roadmaps
 - Relation to performance: data motion costs, system modeling

Review of Grading Criteria

Urgency	Duration	Responsive	Applicability	Timeline
Critical Needed as soon as possible	Long Applicable for the foreseeable future	High Additional funding would enable significant progress	Broad Applicable beyond HPC	Immediate Results within 1-2 years
Important Needs to be done within 3 years	Medium Will be applicable for Exascale	Moderate Additional funding would enable progress	HPC Applicable to all of HPC	Soon Results within 2-5 years
Useful Needed after 3 years	Near Only applicable for immediate systems	Low Additional funding will not help very much	Narrow Only applicable to Hybrid Multicore systems	Eventually Results after 5 years

HMC Programming: Best Practices and Knowledge Transfer

- Description
 - Provide independent assessment of technologies.
 - Match algorithms to hardware.
 - Influence future investments
- Notes from Discussion
 - Reference implementations
 - Best practices
 - White papers & books
 - Benchmark suites
 - Illustrate range of available technology options

- Relations to other TCs
 - Applications: collaborate on design of architectureaware algorithms
 - Libraries: preserve best practices, but algorithms should be revisited!
 - Architecture: co-design
- Related Projects
 - CUDA Zone, motifs, MAGMA project

Urgency	Duration	Responsive	Applicability	Timeline
Important	Medium	High	Narrow (a plus!)	Immediate
	CAK Ribor National Labo	Ratory BERKELEY LAB	• Los Alamos	

Transition Tools

- Description
 - Tools to facilitate refactoring existing code bases to new programming paradigms.
 - Tools for identifying acceleration opportunities.
 - Choosing the right hardware for the application.
- Notes from Discussion
 - Language interoperability is crucial

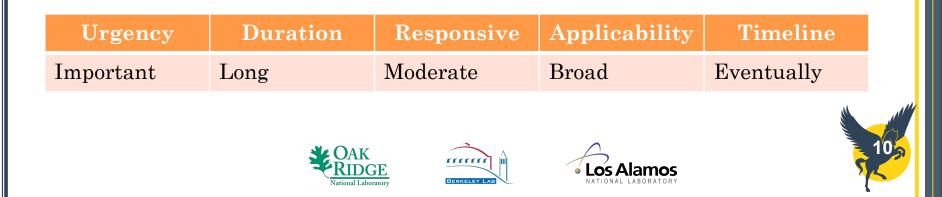
- Relations to other TCs
 - Applications: requirements
 - Performance: modeling of systems
- **Related Projects**
 - Compiler directives (e.g. OpenMP)
 - Language translation (e.g. C-to-CUDA, C-to-FPGA)
 - Performance analysis & modeling tool extensions (e.g. ROSE, TAU)

10 01 00	141			
Urgency	Duration	Responsive	Applicability	Timeline
Critical	Medium	High	HPC	Soon
			2	

Debugging and Performance Support

- Description
 - Capability to access debugging and performance data on HMC hardware and runtime
 - Correlating data from heterogeneous hardware components
 - Bridging the semantic gap between low-level data and high-level programming models
- Notes from Discussion
 - Goal: Uniform interface between tools and architectural features for portability

- Relations to other TCs
 - Architecture: collaboration on two-way exchange of information on debugging and performance
 - Performance: analysis tools
- Related Projects
 - Consumers: NVIDIA Nexus, vampir, oprofile, TAU, TotalView, Allinea DDT, Charm++


• PAPI

HMC and Non-HMC Performance Portability

- Description
 - Single code base for performance on multiple architectures.
 - Addressing explicitlymanaged memory hierarchies
- Notes from Discussion
 - What are the implications of maintaining multiple code bases (V&V, feature creep, etc)
 - What breadth of application space?

- Relations to other TCs
 - Applications: what is "acceptable" performance, when needed?
 - Architecture: compatibility or general-purpose feature additions
- **Related Projects**
 - MCUDA, OpenCL, CUDA-Fortran
 - Autotuning

Expressive Programming Environments

- Description
 - Reduce effort to utilize accelerator hardware
 - Capture developer's <u>intent</u> in a more declarative way, ' develop back-ends for HMC
- Notes from Discussion

- Relations to other TCs
 - Applications: co-design of declarative programming environments
 - **Related Projects**
 - Thrust
 - MATLAB
 - Python (Copperhead, SciPy)
 - Domain specific languages
 - HPCS Languages
 - FPGA Workflow (LabVIEW, C2H, MATLAB-to-FPGA)

Urgency	Duration	Responsive	Applicability	Timeline
Useful	Long	Moderate	Broad	Eventually
	VALUATIONAL LABO		• Los Alamos	

BREAKOUT SUMMARY

Торіс	Urgency	Duration	Responsive	Applicability	Timeline
HMC Programming: Best Practices	Important	Medium	High	Narrow	Immediate
Transition Tools	Critical	Medium	High	HPC	Soon
Debugging and Performance Support	Important	Long	High	Broad	Soon
HMC & non- HMC Performance Portability	Important	Long	Moderate	Broad	Eventually
Expressive Programming Environments	Useful	Long	Moderate	Broad	Eventually

• Los Alamos

NOTES AND RECOMMENDATIONS

- Testbeds: a large variety of small systems to test crossplatform applicability
- Clusters: useful to evaluate programming models (e.g. PGAS), but only up to a point
- Stability of development and execution environments
- Cross-cutting collaboration is critical

