

High End Computing Capability @
NASA Advanced Supercomputing (NAS) Division

Supercomputing Systems
•  Pleiades: 56,320-core SGI Altix ICE (Xeon)

-  11,776 quad-core Intel Harpertown (47104 cores)
-  2,304 quad-core Intel Nehalem (9216 cores)

•  Columbia: 13,312-processor SGI Altix (Itanium2)
•  RTJones: 4,096-core SGI Altix ICE (Xeon Clovertown)
•  Schirra: 640-processor IBM Power5+
•  hyperwall2: 1,024-cores, 128-node GPU cluster
•  Multiple secure front ends, metadata servers,

object storage servers

Balanced Environment
•  6 PB disk filesystem; 20 PB tape archive
•  Archiving 500TB – 1PB every month
•  High-bandwidth WAN to other Centers, external peering
•  Large-scale rendering, concurrent visualization

Resources Enable Broad Mission Impact
•  Mission Directorates select projects, determine allocations
•  More than 450 science & engineering projects
•  Approximately 1,200 user accounts
•  Typically 400-500 jobs running 24x7

Recent HECC Support for NASA Projects

3

SOMD: Shuttle Aerodynamics

ARMD: Jet Aircraft Wake Vortices

SOMD: Shuttle Damage Analysis

ARMD: Jet Engine
Noise Emissions

ESMD: Orion Launch Abort

SMD: Hurricane Prediction

ESMD: Ares I
Aerodynamic Database

SMD: Spinning Black Holes

ARMD: V22 Tiltrotor

ESMD: Flame Trench

SMD: Solar Surface Convection

Code Diversity: Application Landscape

4

Programming Paradigm

MPI most codes

OpenMP Radhydro (SMD), MAGIC (SMD), IRFS (ARMD)

Serial NEQAIR (ARMD), Matlab (multiple), LCROSS (ESMD)

MPI+OpenMP fvGCM (SMD), GISS (SMD), OVERFLOW (ARMD, ESMD, SOMD)

Programming Language

Fortran77/90/95 most codes / FUN3D (ARMD) / R-WENO(ARMD)

C Cart3D (ARMD, SOMD)

C++ Cosmos (SMD), NAMD (ESMD), MHDAM (SMD)

Mixed C/Fortran DAKOTA (ARMD, ESMD), PARK (SMD), RAMS (SMD)

Origin of Code

Community most CFD codes, most climate codes, VASP (SMD)

Home-Grown Radhydro (SMD), MoSST (SMD), ART_MPI (SMD)

ISV Matlab (multiple), LS_Dyna (NESC), Gaussian (ARMD, ESMD, SMD)

Use of Code

Time-Sensitive Runs LAURA (ESMD), DPLR (ESMD), Cart3D (SOMD)

Production PHANTOM (ESMD, SOMD), LOCI_CHEM (ESMD, SOMD), USM3D (ESMD), NCC (ARMD)

Research Dynamo (SMD), Hahndol (SMD)

Performance Characteristics

Embarrassingly Parallel fms_Ensemble (SMD)

Communication Bound Cart3D - in MG mode (ARMD, ESMD), TASS (ARMD)

I/O Bound ECCO (SMD), fvGCM (SMD)

CPU Bound NAMD (ESMD), LCROSS (ESMD)

Memory Bandwidth Intensive OVERFLOW (ARMD, ESMD, SOMD), Cart3D (ARMD, ESMD)

Number of distinct applications run on NAS HEC resources: > 150
High End Computing Capability October 27, 2009

Performance of CFD code Overflow
on a GPU Workstation

5

•  Code uses structured grids - overset zones around subdomains
•  Adaptations for GPU implementation

–  Substituted Jacobi for SSOR
–  Replaced 64 bit with 32 bit arithmetic where possible
–  Changes had little effect on convergence rate or accuracy for problems tested

•  Approach
–  Hand-translate one subroutine for GPU (Fortran to CUDA)
–  Compute matrices on CPU, transfer to GPU
–  Multiple ways to map grid points to threads and utilize the memory hierarchy

•  Two datasets:
–  Turbulent 3D flat plate case: 121x41x81 grid
–  Turbulent 3D duct case: 166x31x49 grid

•  Two execution environments:
–  One 2.1 GHz quad-core AMD Opteron 2352 processor 1.35 GHz NVIDIA GeForce

8800 GTX, 128 cores, 768 MB of global memory
–  Two dual-core 2.8 GHz AMD Opteron 2220 processors 1.30 GHz NVIDIA Tesla

C1060, 240 cores, 4 GB of global memory

Dennis Jespersen: dennis.c.jespersen@nasa.gov

Performance of Overflow on a GPU

Time for
LHS in sec/
step (lower
is better)

6

GTX 8800 Tesla
Algorithm Plate Duct Plate Duct

SSOR 64 bit CPU 3.51 2.14 3.83 2.33

Jacobi 32 bit GPU 1.43 0.91 1.35 0.76

GPU/CPU 0.41 0.43 0.35 0.49

GPU Time
in sec/step
(lower is
better)

GTX 8800 Tesla
Plate Duct Plate Duct

GPU Total 0.904 0.576 0.314 0.193
GPU Kernel 0.784 0.499 0.142 0.082
Overhead 0.124 0.077 0.172 0.111

•  Same work: SSOR 10 forward + 10 reverse sweeps; Jacobi 20 sweeps
•  Matrix elements computed on front end – transferred to GPU
•  GPU time: 2.5–3 times faster than original 64 bit SSOR

•  Overhead including data transfer time ranges from 15% to 135%
Results published in ParCFD 2009

7

Performance of a DNS code on a GPU Cluster

•  Specialized DNS turbulence solver using spectral and high-
order central derivatives
–  Co-process (expensive) spectral operators on GPU (cuFFT)

concurrently w/ central operators on multiple CPU cores
–  Hybrid programming model - shared memory for GPU access using

OpenMP w/ MPI distributed layer
•  Experiments on hyperwall

–  128 nodes, 2x4 AMD Opteron 2.2GHz
–  Each node w/ NVIDIA GeForce 8800 GTX
–  Fat-tree IB network

Scott Murman: scott.murman@nasa.gov

8

DNS Solver - Preliminary Results

•  Strong Scaling within a node
•  Spectral operator on GPU – central

differencing on CPU
•  Best performance @ 4 cores

•  Weak Scaling across nodes (8 cores per node)
- Total problem size of 2.2B DoF on 128

nodes
•  Scalability using GPUs tracks CPU only

GPU Effort conclusions

•  Code acceleration is possible for CFD codes – may require
algorithmic rethinking

•  32-bit arithmetic need not be a stumbling block
•  Issues:

–  Libraries may still be immature
•  CUDA FFT library - performance bottleneck for DNS

solver
–  Requires efficient management of memory hierarchy

•  Need support for “automatic” mapping
–  Portability/maintainability is still a major issue

9

10

Hybrid Programming on MultiCores:
Multi-Zone NAS Parallel Benchmarks

  BT-MZ: zones with uneven sizes, SP-MZ: zones with same size
  Hybrid parallelization: MPI exploits coarse grained parallelism among zones, while OpenMP

applies to loop level parallelism within each zone
  MPI is limited by the number of zones and load imbalance, while OpenMP improves load

balance (at large CPU counts) and cache utilization (in SP-MZ)

better

Henry Jin: Henry.Jin@nasa.gov

11

Hybrid Programming on MultiCores:
OVERFLOW2 - DLRF6 Case

36 M grid points, 23 zones, DLRF6 benchmark configuration

  MPI+OpenMP version: numerically explicit scheme + implicit scheme. Implicit scheme has
faster convergence rate and reduces the total number of grid points

  Hybrid version outperformed pure MPI version on the IBM p575+
  The benefit of OpenMP in the hybrid mode on IBM p575+ does not show on the SGI Altix,

although the pure MPI version performed better on the Altix

better

Dennis Jespersen: dennis.c.jespersen@nasa.gov

Locality-Aware Computation in OpenMP

•  Joint NSF project with B. Chapman and L. Huang (University of
Houston)

•  Current OpenMP assumes a flat memory space, but in reality it
is often not

•  Introduce locality aware into OpenMP
–  Define logical locations for OpenMP tasks

  Derived from the HPCS languages
–  Distribute shared data among locations
–  Tie OpenMP tasks with locations through the use of clause

“onloc” to omp parallel or omp task
•  Prototype implementation using the research compiler

(OpenUH)

Henry Jin: Henry.Jin@nasa.gov

13

Differential Performance Analysis for
Multicore systems

•  Contention for resources on multi-core nodes
•  Performance of Overflow across architectures (dataset DLFR6):

13

Hood, Jin, Mehrotra, Biswas, Chang, Djohmehri, Gavali, Jespersen, Taylor

•  Superlinear behavior?: cache, memory bandwidth effect
•  Also note: some 4ppn on Pleiades > twice as fast as 8ppn
•  Differential performance analysis:

•  A methodology to isolate performance impact of resource sharing
-  Allow users to identify effect of resource contention without modification or

instrumentation of code

# of  
Processes 

C24 
(Itanium2) 

Pleiades (Harpertown)  Pleiades (Nehalem) 
8 GB/node  24 GB/node 

8ppn  4ppn  8ppn  4ppn 
16  6.87  16.24  7.29  6.81  4.84 
32  3.74  6.96  3.40  3.24  2.41 
64  1.93  3.09  1.75  1.58  1.28 
128  1.01  1.49  0.91  0.80  0.70 
256  0.51  0.74  0.47  0.42  0.38 

14

Sharing in Multicore Node Architectures

14

UMA Based
Harpertown / Clovertown
•  L2
•  FSB
•  Memory Controller

NUMA Based

Opteron / Nehalem
•  L3
•  Memory Controller
•  HT3 / QPI

15

Isolating Resource Contention

•  Evaluate performance of code on
configurations with specified mappings
of processes to cores

•  Compare two configurations (e.g., C1
& C2) of MPI processes assigned to
cores
–  Both use 4 cores per node
–  Communication patterns the same
–  Equal loads on: FSB & MC
–  Difference is in sharing of L2

•  Compare timings of runs using these
two configurations
–  Performance penalty to identify impact of

sharing L2

•  Other pattern pairs can isolate FSB,
memory controller

15

c1

c2

Impact of Resource Sharing on Performance
Penalty for Sharing Resource Cart3D OVERFLOW MITgcmuv
Harpertown

o  L2 cache 2 – 4% 40% 24%
o  Front-side bus 22 – 41% 24 – 54% 50-71%
o  Memory controller 0 – 5% 1 – 3% 5-6%

Nehalem
o  L3 cache + memory controller 2 – 5% 8 – 34% 27-72%
o  QPI 2 – 23% 0 – 4% 1-4%

16

• Each penalty calculated using 2 or 4 pairs of related configurations giving rise to
ranges

• Cart3D optimized for cache, however is a scarce resource for Overflow and
MITgcmuv

• FSB is an issue with each of the codes whereas the memory controller (shared
by both sockets) is not

• On the Nehalem, the L3 cache and MC is a bottleneck for MITgcmuv and also
for Overflow whereas the QPI is not

To be published in IPDPS 2010

Future Plans

•  Continue investigating optimal mapping of CFD and other codes
on GPUs and other accelrators

•  Evaluate “many”” core systems from Intel, AMD, IBM including
SGI’s UltraViolet

•  Evaluate mixed programming models
•  Locality aware extensions of OpenMP
•  Extend differential performance analysis to isolate

communication effects

piyush.mehrotra@nasa.gov
17

