
National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign

Lincoln/AC Experience

Wen-mei Hwu

University of Illinois, Urbana Champaign

With contributions from

Mike Showerman, Jeremy Enos, Guochun Shi, Volodymyr

Kindratenko, Nacho Navarro, John Stone, Jim Phillips, Chris

Rodrigues, Issac Gelado, I-Jui Song, and Sara Baghsorkhi

GPU Clusters at NCSA

• Lincoln

• Production system available via

the standard NCSA/TeraGrid

HPC allocation

• AC

• Experimental system available

for exploring GPU computing

LincolnLincoln vs. ACAC: Configuration

• Lincoln (Production)

• Compute cores

• CPU cores: 1536

• GPU units: 384

• CPU/GPU ratio: 4

• Memory

• Host memory: 16 GB

• GPU Memory: 8 GB/host

• Host mem/GPU: 8 GB

• I/O

• PCI-E 2.0 (x8)

• GPU/host bandwidth: 4 GB/s

• IB bandwidth/host: 8 Gbit/s

• AC (Experimental)

• Compute cores

• CPU cores: 128

• GPU units: 128

• CPU/GPU ratio: 1

• Memory

• Host memory: 8 GB

• GPU Memory: 16 GB/host

• Host mem/GPU: 2 GB

• I/O

• PCI-E 1.0 (x16)

• GPU/host bandwidth: 4 GB/s

• IB bandwidth/host: 16 Gbit/s

HPC Application Acceleration Work at UIUC

• Collaborative efforts across campus

• IACAT/NCSA, CUDA Center of Excellence, Coordinated
Science Lab, Physics, Chemistry, Mechanical, Material,
Bioengineering, ECE, CS, …

• Broad range of applications

• Molecular dynamics, CFD, Lattice QCD/MILC, Quantum
Chemistry, Weather/Climate, Cosmology, Biomedical
Imaging, Genomics…

• New Programming Tools and Utilities

• Performance models and tools, memory optimizations,
domain specific code generators, CPU/GPU data
comunication

NAMD: Overlapping GPU and CPU
with Communication

Remote Force Local ForceGPU

CPU

Other Nodes/Processes

LocalRemote

x

f f

f

f

Local
x

x

Update

One Timestep

x

Actual Timelines from NAMD
Generated using Charm++ tool “Projections”

Remote Force Local Force

x

f f

x

GPU

CPU

f

f

x

x

NAMD on Lincoln Cluster Performance
(8 cores and 2 GPUs per node, very early results)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

4 8 16 32 64 128

CPU (8ppn)

CPU (4ppn)

CPU (2ppn)

GPU (4:1)

GPU (2:1)

GPU (1:1)

2 GPUs = 24 cores

4 GPUs

8 GPUs

16 GPUs

CPU cores

S
T

M
V

 s
/s

te
p

8 GPUs =

96 CPU cores

~5.6 ~2.8

Courtesy of James Phillips, UIUC

Power:

CPU - 320 W

GPU Tesla – 520W

Lattice QCD

• Solving the quantum chromodynamics

theory of quarks and gluons in 4-D

lattice of space and time

• A typical computation involves

collecting neighboring links/spinors in

4-D lattice and update the local

spinor/momentum.

1/20/2010

Courtesy of K. Z. Ibrahim

CPU time in MILC program for

one typical data set

1/20/2010

CPU spinor

even site starts odd site starts

… …

6*V floats

CPU parity

spinor

…

6 *Vh floats

Vh *float2

… … …GPU parity

spinor

float2

One spinor

GPU kernel code

to read spinor

Y/Z/T link

…Intermediate

data format

… …… …
… …
… …

…

… … … …

+X links

Y/Z/T link
float4Vh *float4

CPU links

layout

GPU links

layout

12-construct

One link

GPU kernel code

to read link

Spinor data layout Link data layout

Data layout in CPU and GPU

• All the four major components (CG, FF, GF, Fat) of MILC

program are bandwidth bound

• Data layout in GPU is arranged so that we can do coalesce

read and write

Preliminary results

1/20/2010

description status Results*

(Gflops)

CG Update spinors using the neighboring

links and spinors through Conjugate

Gradient process

Fully implemented

(12 and 8-reconstruct,

SP, DP and half

precision, mixed

precisions)

28.7 (DP)

86.1 (SP)

120 (HP)

Fat Update fatlink using the neighboring links Implemented the 12-

reconstruct, single

precision case

156 (SP)

GF Update the momentum using the

neighoring links

Work in process x

FF Update the momenum using the

neighboring links and spinors

Not started yet x

* The results is obtained in a single gtx280

CPU DP

0.53 GFLOPS

New CUDA (OpenCL) CG and Sparse package/framework from UIUC.

Bovine pancreatic

trypsin inhibitor (BPTI)

3-21G, 875 atoms, 4893

basis functions

MPI timings and scalability

TeraChem

Courtesy of Ivan Ufimtsev, Stanford

GPU (computed with SP): K-matrix, J-matrix

CPU (computed with DP): the rest

Performance in Lincoln cluster

1/20/2010

(a) Execution time of CspA molecule (1732 atoms) as a

function of the number of GPU cluster nodes used to

perform the calculations.

(b) Linear algebra execution time breakdown CspA molecule

as a function of the number of GPU cluster nodes used

• J and K scales well as node number increases

• Linear Algebra (LA) can only scale to 16 nodes

• Among LA, the diagonalization has the worst scalability

• CPU and communications are the bottleneck

New Programming Tools from UIUC

• ADAPT (PPoPP 2010, Baghsorkhi, et al)

• Where and how CUDA kernels spend there cycles through

source code analysis

• MCUDA (CGO 2010, Stratton, et al)

• Generating efficient CPU SSE friendly code from CUDA

• CUDA-to-OpenCL (Nandakumar, et al)

• Automatic conversion of CUDA to OpenCL GPU code

(soon CPU code)

• Upcoming

• Gluon/Pyon, automatic memory optimization for gridded

applications, automatic conversion from scatter to gather

LBM: The best layout is neither SoA nor AoS

• Tiled Array of Structure, using lower bits in x and y

indices, i.e. x3:0 and y3:0 as lowest dimensions:

[z][y31:4][x31:4][e][y3:0][x3:0]

• F(z, y, x, e) = z * |Y|/24 * |X|/24 * |E| * 24 * 24 +

y31:4 * |X|/24 * |E| * 24 * 24 + x31:4 * |E| * 24 * 24 + e * 2 4 * 24+ y3:0 * 24 + x3:0

• 6.4X faster than AoS, 1.6X faster than SoA on GTX280:

• Better utilization of data by neighboring cells

• This is a scalable layout: same layout works for very large objects.
y=0 y=1 y=0 y=1 y=0 y=1 y=0

New Runtime Utilities from UIUC

• GMAC (ASPLOS 2010, Gelado, et al, UIUC/UPC)

• Asymmetric Distributed Shared Memory for CPU/GPU,

legacy code and I/O library support, multi GPU and peer

I/O (with Fermi)

• CUDA memtest

• For both hard and soft memory errors

• CUDA/OpenCL wrapper

• NUMA affinity mapping, GPU device virtualization,

device rotation, memory scrubber

• GPU-aware Cluster management utilities

• Virtual School of Computational Science

and Engineering
• Enhanced existing graduate courses, new courses to lay

foundations for petascale computing

• Summer schools, workshops and seminars to introduce

students to opportunities and challenges in petascale

computing

• “Best practices” for certificate programs in computational

science and engineering

• Textbook, Morgan Kaufman publisher,

January 2010 release

Blue Waters

Educational Program

GPUComputing .org
• An international, virtual

community for researchers

interested in CUDA

• Collaborative resources include

discussion boards and Wikis

• Catalog of available research

software resources

Conclusions

• GPU acceleration producing real results

• System tools becoming GPU aware, but still some

gaps to fill

• Heterogeneous parallel programming hard, but

better HPC programming tools coming.

• GPUComputing.org will help accelerate research

progress

Wen-mei Hwu w-hwu@uiuc.edu

Thank you.

