DEVELOPING THE ROADMAP

Roughly based on the HEC FSIO roadmap

http://institutes.lanl.gov/hec-fsio/

12

THE ROADMAP

- What it isn't:
 - A timeline, documenting when technologies will become available
 - A priority ordered list of technologies that need to be developed
 - Frankly, we'd never come to any kind of consensus if we try to do either of these
- What it is:
 - Technologies we believe need to be developed to make large-scale, accelerator based systems production ready
 - Document relevant projects
 - Identify gaps and provide grades
 - Dashboard might be a better name

GRADING CRITERIA

Urgency How soon is it needed?	Duration How long will it be useful?	Responsive How much will money help?	Applicability How broadly can it be used?	Timeline How soon can we expect it?
Critical Needed now	Long Useful for the foreseeable future	High Funding enables significant progress	Broad Applicable beyond HPC	Immediate Results within 1-2 years
Important Needed within 3 years	Medium Useful for Exascale	Moderate Funding enables progress	HPC Applicable to all of HPC	Soon Results within 2-5 years
Useful Needed after 3 years	Near Only useful for immediate systems	Low Funding has little affect on progress	Narrow Only applicable to immediate systems	Eventually Results after 5 years
	Second National Labor		• Los Alamos	143

TECHNICAL COMMITTEES (TC)

Pick you poison

Co-

Design

Applications and Libraries

Define migration processes and libraries Application Communities

Programming Models

Programmer productivity and Application performance portability

Architecture and Metrics

Track and influence industrial development

Performance and Analysis

Predictable application performance Design feedback

<< TOPIC AREA - AT MOST 5 OF THESE>>

- Description
 - <
chief description of the topic area>>
 - Sub areas (if any)
- Notes from Discussion

- Relations to other TCs
 - Fill this in
- Related Projects
 - <<that are relevant to this topic>>

	Timeline	Applicability	Responsive	Duration	Urgency
	ł				
16				OAK	
		Los Alamos NATIONAL LABORATORY	$\underline{\mathbf{E}}$	RIDG	

THIS IS A COMMUNITY EFFORT

- We'd like to keep the grading criteria
 - The criteria and the grades are somewhat arbitrary
 - So is every grading system
 - We'll change it if it really doesn't work
- The breakout sessions will start with "strawmen" roadmaps
 - These are intended to facilitate, not stifle discussion
 - Tell us what we're missing: both related projects and needed technologies
 - Tell us how things ought to be graded
- We'd like consensus.....
 - Make sure that minority views are captured when there are significant differences of opinion

AFTER THE WORKSHOP

- Goal is to give everyone an opportunity get their input into the document
- Draft 0.01 (slides from Thursday outbrief) will be on the web site next week
- Draft 0.1 available on consortium website mid-February
- Final version
 - Target: March 15
 - Drop dead: March 30
- Web site and roadmap will have section contact points
- Schedule will be posted and updated on HMC Website
- Announcements sent to hybrid-announce

APPLICATIONS AND LIBRARIES TOPICS

- Critical Libraries
 - BLAS, LAPACK, FFT(W), Sparse MV, C++/STL)
- Early access to systems
 - cluster systems or desktops? will desktops prove viable?
- Workflow for porting/re-factoring applications
 - Is porting sufficient or is rewritting required? Coders need to understand algorithms. Are alternate algorithms better?
- Application Communities
 - Motifs 13 still?
- Approaches to co-design
 - Apps & Arch are the two legs, but Prog. Model also affect design; Perf. efforts provide input to the process; is 64-bit F.P. always required?

ARCHITECTURES AND METRICS TOPICS

- Components
 - ???
- Accelerator/CPU Coexistance
 - Disjoint/attached or on-die accelerators; accelerator devices per CPU; separate or shared memory; threaded vs. instruction level acceleration
- Accelerator Design
 - SIMD width, threads, ganged vs. separate thread progress, SIMD shuffle/masks, memory latency hiding, memory gather/scatter
- Simulation and Modeling
 - connectivity BW & latency, memory performance; flops
- Node Operations
 - power efficiency, W/flop, packaging, RAS, error detection/ correction; accelerators per CPU

PERFORMANCE AND ANALYSIS TOPICS

- Monitoring, observation and Analysis Tools for systems and applications
 - Memory, node, interconnect, apps
- Code optimization
 - Autotuning, compilation
- Predictive modeling
 - Optimal application-architecture mapping for hybrid
 - Application/architecture co-design
 - Methodology development (modeling of many flavors, simulation)
 - Dynamic (runtime) model-driven system/application optimization

PROGRAMMING MODELS TOPICS

- Data layout
 - application data patterns, memory placement, SIMD considerations
- Desktops to clusters
 - adds internode communication layers; MPI is the defacto standard for clusters; PGAS may be possible but languages slow to develop; easy to bring cluster code back to desktop
- Backward and forward (performance) portability
 - runs on multi-core as well as on hybrid; runs well on both; runs on existing and future
- Existing and emerging language standards
 - compilers, MPI + something else, remote node data access (MPI, PGAS), exposing threads & SIMD
- Low level (OS) APIs for accessing different cores
 - attaching, releasing, & controlling accelerator devices; OS initialization, RAS reporting, resource reporting/selection
- Debuggers & Tools
 - PRINTF

