Applications & Libraries

Facilitators John Turner Sriram Swaminarayan

Technical Committee Report to the Hybrid Multicore Consortium

First HMC Roadmap Workshop January 19-22, San Francisco

BREAKOUT PARTICIPANTS

- John Turner, ORNL
- Sriram Swaminarayan, LANL
- Erich Strohmaier, LBL
- Thomas Schulthess, ETH
- Milton Halem, UM Baltimore
- Johnny Chang, NASA Ames
- Hatem Ltaief, UT(ennessee)
- Stephen Lee, LANL

- Hemant Shukla, LBL
- Vasily Volkov, UCB
- Jamal Moh'd Yusof, LANL
- Ann Johnson, Reservoir Labs
- Kalyan Kumaran , ANL
- Wen-Mei Hwu
- Pieter Swart, LANL
- Peter Messmer, Tech-X
- Dan Hitchcock, DoE

CHARGE TO BREAKOUT SESSIONS

- Goal of Roadmap:
 - Identify technologies that need to be developed to make next generation, large-scale, accelerator-based systems "production ready"
 - Provide community input needed to prioritize and support activities
- Focus is near term, while keeping an eye toward to long term (avoid box canyons)
- Work with the other TCs to support the overall co-design of applications, architectures, programming, and performance and to build ties with and provide feedback to vendors.
- Develop strategies for early and broader access to these accelerator-based or future hybrid multicore systems.

REVIEW OF GRADING CRITERIA

Urgency	Duration	Responsive	Applicability	Timeline
Critical Needed as soon as possible	Long Applicable for the foreseeable future	High Additional funding would enable significant progress	Broad Applicable beyond HPC	Immediate Results within 1-2 years
Important Needs to be done within 3 years	Medium Will be applicable for Exascale	Moderate Additional funding would enable progress	HPC Applicable to all of HPC	Soon Results within 2-5 years
Useful Needed after 3 years	Near Only applicable for immediate systems	Low Additional funding will not help very much	Narrow Only applicable to Hybrid Multicore systems	Eventually Results after 5 years

BREAKOUT SUMMARY

Торіс	Urgency	Duration	Responsive	Applicability	Timeline
Math & I/O Libraries	Critical	Medium	Moderate	Broad	Immediate
Novel algorithm research	Critical	Long	High	Broad	Soon
Intra-node Data motion Libs	Critical	Medium	High	HPC	Immediate
profiling tools	Important	Long	High	HPC	Eventually
Generic Scientific Toolkits	Useful	Long	High	Broad	Eventually
Architecture- aware Compiler / build systems	Important	Long	Moderate	Broad	Soon
Debugging	Important	Long	Moderate	HPC	Soon
Fault tolerance tools	Important	Long	High	HPC	Eventually
		RIDGE		S Alamos	R CO

Libraries

- Description
 - numerical libraries
 - BLAS, LAPACK, Trilinos, FFTW, BGL, grid operators, AMR
 - I/O libraries
- Notes from Discussion
 - building-blocks of apps
 - scalable from desktop to HPC
 - diffusion of knowledge beyond specific libs
 - portability critical

- Relations to other TCs
 - Performance
 - Programming models
 - Architecture
- Related Projects
 - MAGMA
 - cuBLAS
 - Trilinos
 - PETSc
 - Adios
 - PVFS, PLFS, GPFS, etc.

Urgency	Duration	Responsive	Applicability	Timeline
Critical	Medium	Moderate	Broad	Immediate
		F	• Los Alamos	

Novel Algorithm Research

- Description
 - Methods development
 - Algorithm is some version of above method that we can implement
 - Implementation is a specific instantiation of that method
- Notes from Discussion
 - Implementations need to be architecture aware
 - Spatial and temporal locality is key
 - Time to solution should be kept in mind in addition to complexity and flops.

- Relations to other TCs
 - Programming models
 - **Related Projects**
 - CFDNS on Cell
 - FEAST-GPU

Urgency	Duration	Responsive	Applicability	Timeline
Critical	Long	High	Broad	Soon
	VALUATIONAL LABO		• Los Alamos	

ERASED: Intra-node Data Motion Libraries

- Description
 - libs to facilitate data motion across platforms
- Notes from Discussion
 - analysis & performance feedback
 - expose memory model
 - low-level access to memory hardware

- Relations to other TCs
 - Programming models
 - Architecture
- Related Projects
 - OpenCL
 - Sequoia
 - Thrust
 - DaCS

Urgency	Duration	Responsive	Applicability	Timeline
Critical	Medium	High	HPC	Immediate
	VALUATIONAL LABO		• Los Alamos	

Profiling tools

- ${\boldsymbol{\cdot}} \, Description$
 - data motion feedback
 - data location
 - Time to solution is critical
 - Energy to solution is critical
- Notes from Discussion
 - Equal ownership with performance
 - cache hits/misses
 - retired operations
 - dual-issue
 - bus contention
 - latency
 - packet size.
 - Ops/load can be useful

- Relations to other TCs
 - Performance
 - Architecture
- Related Projects
 - OpenSpeedshop

Los Alamos

- VTUNE
- VAMPIR
- Oprofile
- gprof
- Tau

Urgency	Duration	Responsive	Applicability	Timeline
Important	Long	High	HPC	Eventually
	ОАК		A	

Abstract Scientific Toolkits

- Description
 - high-level expression of math / physics
 - Physics resides in Applications, CS resides in Programming models
- Notes from Discussion
 - Grid operation libraries
 - PDE libraries
 - Graph libraries
 - Success requires strong interaction between CS and Physics experts

- Relations to other TCs
 - Programming models
- Related Projects
 - SCOUT
 - libMesh
 - netCDF
 - Toolkits within matlab
 - BGL / PBGL

Useful Long High Broad Eventually	Urgency	Duration	Responsive	Applicability	Timeline
	Useful	Long	High	Broad	Eventually
RIDGE Los Alamos		Se Oak		A	

ERASED: Architecture-aware compilers

- Description
 - optimizing compilers with knowledge of underlying architecture
 - build system / tools
- Notes from Discussion
 - assume basic compiler available
 - assume MPD compiler will never exist
 - desire something in between (e.g. directives)
 - feedback, auto-tuning

- Relations to other TCs
 - Programming models
 - Architecture
- Related Projects
 - PGI
 - CAPS / HMPP

Los Alamos

- CUDA
- R-Stream
- GPUSS
- CellSs
- Scout

ERASED: Debugging

- Description
 - something better than printf (and write)
- Notes from Discussion
 - luxury, not necessity
 - have survived with printf, but would love better
 - thread-awareness
 - non-intrusive
 - heterogeneous
 - aware of memory hierarchy

- Relations to other TCs
 - Architecture
 - Programming models

os Alamos

- Related Projects
 - compilers
 - PGI (pgdbg)
 - Totalview
 - gdb
 - Allinea
 - nvcc

Urgency	Duration	Responsive	Applicability	Timeline
Important	Long	Moderate	HPC	Soon

Resilience / Fault tolerance

- Description
 - system reports failures so app can continue
- Notes from Discussion
 - must move beyond checkpoint / restart
 - minimal impact on resources
 - Generic interaction with system

- Relations to other TCs
 - Architecture
 - Programming models
- Related Projects
 - compilers
 - Erlang
 - OpenMPI

Urgency	Duration	Responsive	Applicability	Timeline
Critical	Long	High	HPC	Eventually
	VALUATIONAL LABO	SE ratory	• LOS Alamos	

SUPPLEMENTAL

Need to dev	with programming models velo methods that cross domains.		memory capacity issues arise
	evelopment / design Implementation is usually tied to algorithm	Input from Apps about what metrics matter?	- is there a need beyond just 32-bit & 64-bit
0	ms different from libraries ithm research that is architecture aware	- Apps need more BW to memorieS (ultimately comes down to Ops/Load)	
What is a D	SL? ls it just a library?	- Apps need tools to deal with memory heirarchies (abstract & portable	Performance and metrics
	Physics part of DSL belongs to Apps	would be better)	Need to evaluate architecture applicability for specific
	CS part of DSL belongs to Programming models	may be vendor desire to hide some private IP - "shim" like interfaces	application
Memory hie			What is a good metric?
		etcarchitecture features like moving memory on stack or die	ops/W is useless to applications
	use transition tools when available	will help	ops/load is the arithmetic intensity, but is a crude indicator
t	transition tools get subsumed by compilers, etc.	latency which is goods for Apps	of performance expectation.
Dron Intra n	node data libs	- latency hiding would be good; with enough parallelism this	time to solution is better
	Drop architecture aware compilers	is all that	energy to solution is better
		matters	Time to solution:
		most archs don't seem to provide enough hooks for this	make model of application
Discussion	with architectures section	- Cell/RR experience: user controlled local mem was good	
		but with	run 'what if' scenarios
What matter	rs to applications?	issues, but automated (or teaching cache) would help	Leads to predictive modeling
r	memory bandwidth	more exposure from and control of asynch behavior	levels of accuracy / ease
		desire ability to partition cache behavior into pools	user level simple warm fuzzy
Impact of ar	rchitecture changes to memory on apps		professional level more accurate
	aug hohovier	Supervision ve sevener	helps evaluate gains by chnaging to a different architecture
	ous behavior shared address space	Synchronous behavior vs. asynch?	A good lowerbound on expected performance gain is
	what is a good metric: ops/load?		important
	speed of light is not a limiting factor	Applications in the Scientific community are written to	Important
	atency (hiding) is important	accomplish Science	Autotuning:
	atonoy (mang) is important	and not to write an application.	Not always the answer
need to defi	ine a system interaction API		best practices need to be captured
	2	CUDA vs OpenCL (FOR Apps & Programming Models)	optimization can result from this
WE COULD	D deal with fault tolerance by automatic data	- need portability; need/desire performance right away	but also need to explore different algorithms and methods
migration, b			genetic algorithms can help
	HPC specific means higher cost	Fault Tolerance greyed out by Apps!	need to figure out how best to distribute physics across
	not commodity, see above	- what is unique about this area for HMC? (beyond	HMC
	perhaps improve checkpoint performance instead		
	MPI-3 has hooks for knowing that a	- this buck has been passed around so much it is worn out	
	ut to go down system monitoring tools to let us know	 need for architecture to expose faults to Apps to deal with are some of the Apps desired architectural features 	counters
	e is due to die	possible?	latency
	•	s - fault prediction with migration (IBM example); heavy tax	pipeline stalls
A	Automated queing system to shrink / expand jobs	s (performance,	memory hits/misses
	· · · · · · · · · · · · · · · · · · ·	and beyond HPC)	Must be protable, calibrated, and usable
•	extended) precisionimportant		• Los Álamos 🛛 🛛 🕺 🏹
	Verification is next to impossible	"protect" Laboratory BERKELEY LAB	NATIONAL LABORATORY
	ools for determining precision needed FPGAs are a possible fit	some can't be predicted, but many can - flash on nodes for faster local checkpoints	•
г		- "Check Engine" light is a similar issue	
Ken's notes			
		- Is Redundant computation necessary? (more discussion	
	s & Architecture Pairing	- Is Redundant computation necessary? (more discussion suggested)	

NOTES AND RECOMMENDATIONS

- Hardware simulators are useful before hardware is available
- As soon as hardware is available, we need a few prototype nodes per site, preferably one per developer
- Small testbeds of 10-100 nodes within a year
- Leadership platform that is 10x more powerful than today's fastest supercomputers within 2-3 years

