PERFORMANCE

Facilitators Adolfy Hoisie

Committee members: A. Hoisie, C. Iancu, J. Vetter Technical Committee Report to the Hybrid Multicore Consortium

First HMC Roadmap Workshop January 19-22, San Francisco

BREAKOUT PARTICIPANTS

- AdolfyHoisie LANL <u>hoisie@lanl.gov</u>
- Osni Marques DOE <u>oamarques@ascr.doe.gov</u>
- Sudhakar Yalamanchilei GIT <u>sudha@ece.gatech.edu</u>
- Jeffrey Vetter ORNL/GT <u>vetter@computer.org</u>
- Nick Wright LBNL <u>nwright@lbl.gov</u>
- Roger Golliver Intel <u>roger.a.golliver@intel.com</u>
- Karen Karavanic PSU <u>karavan@cs.pdx.edu</u>
- Costin Iancu LBL <u>Cciancu@lbl.gov</u>
- Rich Lethin Reservoir <u>lethin@reservoir.com</u>
- Doug Doerfler Sandia <u>dwdoerf@sandia.gov</u>
- Subhash Saini NASA subhash.saini@nasa.gov
- AGK <u>agk@multicorewareinc.com</u>

CHARGE TO BREAKOUT SESSIONS

- Goal of Roadmap:
 - Identify technologies that need to be developed to make next generation, large-scale, accelerator-based systems "production ready"
 - Provide community input needed to prioritize and support activities
- Focus is near term, while keeping an eye toward to long term (avoid box canyons)
- Work with the other TCs to support the overall co-design of applications, architectures, programming, and performance and to build ties with and provide feedback to vendors.
- Develop strategies for early and broader access to these accelerator-based or future hybrid multicore systems.

SUMMARY OF TC

- Areas of interest to this TC
 - Tools
 - Modeling
 - Code optimization
- Relation to other TCs
 - Architecture
 - Programming models
 - Apps

Performance is at the boundaries of all these areas, and spans the lifecycle/spectrum from R&D to design to implementation to optimization

PERFORMANCE AND ANALYSIS TOPICS

- Monitoring, observation and Analysis Tools for systems and applications
 - Memory, node, interconnect, apps
- Code optimization
 - Autotuning, compilation
- Predictive modeling
 - Optimal application-architecture mapping for hybrid
 - Application/architecture co-design
 - Methodology development (modeling of many flavors, simulation)
 - Dynamic (runtime) model-driven system/application optimization

GRADING CRITERIA

Urgency How soon is it needed?	Duration How long will it be useful?	Responsive How much will money help?	Applicabili ty How broadly can it be used?	Timeline How soon can we expect it?
Critical Needed now	Long Useful for the foreseeable future	High Funding enables significant progress	Broad Applicable beyond HPC	Immediate Results within 1-2 years
Important Needed within 3 years	Medium Useful for Exascale	Moderate Funding enables progress	HPC Applicable to all of HPC	Soon Results within 2-5 years
Useful Needed after 3 years	Near Only useful for immediate systems	Low Funding has little affect on progress	Narrow Only applicable to immediate systems	Eventually Results after 5 years

PREDICTIVE MODELING

- Optimal app-arch mapping, app/arch co-design, methodology development, dynamic model-driven sys/ app optimization.
- Modeling power, reliability, performance in concert rather than independently
- Power modeling for software
- Methodology development (modeling, simulation)
- "Should I port my code to hybrid? Is it worth it?"
- Representation for hybrid codes programming. model;
- Modeling hybrid applications multiphysics
- Statistical techniques?

X7 1· 1 /·

- Predict very large scale performance based on small scale measurements
- What is the measure of success for a model? (eg how precise to be useful? don't always need more than coarse grained answer –"yes, porting is worthwhile")
- Simulation: interoperability of simulators
- Fault modeling, prediction and detection; reliability modeling; error propagation. Focus on tools for this – what do we need, specific to accelerator based systems? How do accelerators influence reliability?

- Architecture, runtime SW, programming environment, apps
- **Related Projects**
 - LANL/PAL
 - ORNL
 - PMAC/SDSC
 - LBL/Roofline
 - P-Bound (ANL)
 - Rice
 - Sandia/SST

Urgency	Duration	Responsive	Applicability	Timeline	
Critical	Long	High	HPC	Immediate	7 2
	National Labor		NATIONAL LABORATORY		75

INSTRUMENTATION

- Description: performance
 Relations to other TCs
 instrumentation for accelerators
 Hooks into architecture
- Binary / dynamic and runtime system
 instrumentation for mixed codesRelated Projects
- Measuring buses
- HW (counters) & SW (system, application)
- Common interface for counters
- Memory subsystem analysis/ diagnosis
- MPI profile-like feedback at different levels (whole system, node level) about data movement
- Event tracing (clock; buffer)
- UrgencyDurationResponsiveApplicabilityTimelineImportantMediumModerateBroadSoon

- NVIDIA
- PGI/TAU
- UIUC
- MIT
- UC Berkeley

INTEGRATED MEASUREMENTS

- Infrastructure for migrating applications (performance portability)
- Tool perturbation
- $\cdot \quad {\rm Power \ consumption-sensors}$
- Diagnosis and attribution of root cause
- Resource contention and allocation / partitioning
- Mapping measurements to instructions or source code
- Performance variation / Noise for heterogeneous systems
- Comparison-based performance analysis
- Data management & representation & volume
- Tool interoperability/composition/frameworks: hierarchy (intra- vs inter-node performance) and heterogeneity
- Scalability

- Relations to other TCs
 - Hooks into architecture and runtime system
- Related Projects
 - TAU
 - PGI
 - Dimemas

Urgency	Duration	Responsive	Applicability	Timeline	99
Important	Medium	High	HPC	Immediate	5

TOOLS FOR CODE OPTIMIZATION

- Auto-tuning
- Dynamic Compilation
- "rules of thumb" "lessons

 learned" "Design Patterns" for
 hybrid devt, porting decisions
 ("should I port my code to GPU
 cluster?")
- Mixed precision: interactions with dynamic compilation; specifications for precision?
- Implications for correctness debugging – performance debugging interface

- Relations to other TCs
 - Fill this in
 - **Related Projects**
 - Atlas/Magma
 - R-stream (Reservoir)
 - Ocelot
 - Parlab (Berkeley)
 - SCOUT
 - Rich Vuduc/GTech

Urgency	Duration	Responsive	Applicability	Timeline	
Important	Long	Moderate	Broad	Soon	10,
	National Labor		NATIONAL LABORATORY		75

BREAKOUT SUMMARY

Topic	Urgency	Duration	Responsive	Applicabil ity	Timeline
Performance Instrumentatio n	Important	Medium	Moderate	Broad	Soon
Integrated measurements	Important	Medium	High	HPC	Immediate
Tools for code optimization	Important	Long	Moderate	Broad	Soon
Predictive modeling	Critical	Long	High	HPC	Immediate
	3	RIDGE National Laboratory	BERKELEY LAB	Los Alamos NATIONAL LABORATORY	The second se

NOTES AND RECOMMENDATIONS

 Contact Adolfy Hoisie <u>hoisie@lanl.gov</u> with any comments/ recommendations

