13.17 Continued Fractions13.19 Asymptotic Expansions for Large Argument

§13.18 Relations to Other Functions

Contents

§13.18(ii) Incomplete Gamma Functions

For the notation see §§6.2(i), 7.2(i), and 8.2(i). When \tfrac{1}{2}-\kappa\pm\mu is an integer the Whittaker functions can be expressed as incomplete gamma functions (or generalized exponential integrals). For example,

13.18.4\mathop{M_{{\mu-\frac{1}{2},\mu}}\/}\nolimits\!\left(z\right)=2\mu e^{{\frac{1}{2}z}}z^{{\frac{1}{2}-\mu}}\mathop{\gamma\/}\nolimits\!\left(2\mu,z\right),
13.18.5\mathop{W_{{\mu-\frac{1}{2},\mu}}\/}\nolimits\!\left(z\right)=e^{{\frac{1}{2}z}}z^{{\frac{1}{2}-\mu}}\mathop{\Gamma\/}\nolimits\!\left(2\mu,z\right).

Special cases are the error functions

13.18.6\mathop{M_{{-\frac{1}{4},\frac{1}{4}}}\/}\nolimits\!\left(z^{2}\right)=\tfrac{1}{2}e^{{\frac{1}{2}z^{2}}}\sqrt{\pi z}\mathop{\mathrm{erf}\/}\nolimits\!\left(z\right),
13.18.7\mathop{W_{{-\frac{1}{4},\pm\frac{1}{4}}}\/}\nolimits\!\left(z^{2}\right)=e^{{\frac{1}{2}z^{2}}}\sqrt{\pi z}\mathop{\mathrm{erfc}\/}\nolimits\!\left(z\right).

§13.18(iii) Modified Bessel Functions

When \kappa=0 the Whittaker functions can be expressed as modified Bessel functions. For the notation see §§10.25(ii) and 9.2(i).

13.18.8\mathop{M_{{0,\nu}}\/}\nolimits\!\left(2z\right)=2^{{2\nu+\frac{1}{2}}}\mathop{\Gamma\/}\nolimits\!\left(1+\nu\right)\sqrt{z}\mathop{I_{{\nu}}\/}\nolimits\!\left(z\right),
13.18.9\mathop{W_{{0,\nu}}\/}\nolimits\!\left(2z\right)=\sqrt{\ifrac{2z}{\pi}}\mathop{K_{{\nu}}\/}\nolimits\!\left(z\right),
13.18.10\mathop{W_{{0,\frac{1}{3}}}\/}\nolimits\!\left(\tfrac{4}{3}z^{{\frac{3}{2}}}\right)=2\sqrt{\pi}z^{{\frac{1}{4}}}\mathop{\mathrm{Ai}\/}\nolimits\!\left(z\right).