at Forest Products Laboratory
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Publication

Title: High-Performance Cellulose Nanofibril Composite Films

Source: BioResources Volume 7, number 3, 3064-3075; 2012

Author(s)Qing, Yan; Sabo, Ronald; Wu, Yiqiang; Cai, Zhiyong

Publication Year: 2012  View PDF » Mail this web page's link »

Publication Series: Journal Articles
Associated Research Project(s):   FPL-4706-2A

Abstract: Cellulose nanofibril/phenol formaldehyde (CNF/PF) composite films with high work of fracture were prepared by filtering a mixture of 2,2,6,6tetramethylpiperidine-1-oxyl (TEMPO) oxidized wood nanofibers and water-soluble phenol formaldehyde with resin contents ranging from 5 to 20 wt%, followed by hot pressing. The composites were characterized by tensile testing, dynamic mechanical analysis, scanning electron microscopy, atomic force microscopy, thermo-gravimetric analysis, and moisture/water absorption. Neat CNF films had tensile stress and Young's modulus of 232 MPa and 4.79 GPa, respectively. PF resin was found to be well dispersed in the composites, although the resin increased the roughness of the film surfaces. Hygroscopic capacities of the composites were dramatically reduced, as compared to neat films, in both high humidity environments and when soaked in water. The composites exhibited slightly reduced tensile strength with modestly increased storage modulus compared to neat CNF films. Remarkably, the work of fracture ranged from 20 to 27 MJ/m3, making these films among the toughest reported for cellulose nanocomposites.

Keywords: Cellulose nanofibril; Phenol formaldehyde; Mechanical properties; Electron microscopy, thermaldegradation, hygroscopic capacity

Publication Review Process: Formally Refereed

File size: 1,291 kb(s)

Date posted: 09/17/2012

This publication is also viewable on Treesearch:  view
RITS Product ID: 61373
Current FPL Scientists associated with this publication (listed alphabetically)
Cai, Zhiyong
Supervisory Research Materials Engineer
Sabo, Ronald C.
Research Materials Engineer
 

Additional items that might interest you


2011 Research Highlights from FPL....view



2010 Research Highlights from FPL....view



Termite Eradication: A search for the Holy Grail.... view



Moisture Management in Residential Construction Series videos...view


Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »