

TRACKING LIFE ON THE REEF Monitoring Benthic Communities in FKNMS No-Take Management Zones

Steven Miller¹, Mark Chiappone¹, Leanne Rutten¹ Jerry Ault², Steve Smith²

¹Nova Southeastern University Oceanographic Center ² University of Miami, RSMAS, Division of Marine Biology and Fisheries

Florida Keys National Marine Sanctuary

eated by Kevin Kirsch 11/13/01

Gardner et al. 2003

Gardner et al. 2003

Factors Affecting Coral Reefs in Florida

- Geography (winter cold fronts)
- Hurricanes
- Coral Disease*
- Coral Bleaching*
- Ocean Acidification*

- Pollution (especially nutrients)
- Loss of herbivores (over-fishing and urchin die-off)
- Marine Zoning if fishing pressure is a major driver of change for the benthos in the FKNMS

White plague (I and II) Black-band disease White-band disease Yellow blotch Dark spot syndrome

Human Disease Prevalence Statistics

- Corals in the Keys: 0.2 1.9%
 - AIDS in North America: 0.45% (2006)
 - Breast Cancer: 0.8% (2007) [12% will be diagnosed lifetime]
 - Prostate Cancer: 0.8% (45-64) [16% will be diagnosed lifetime]
 - Heart Disease: 6.5% woman, 8.2% men (2005)
 - Bubonic Plague (Black Death): 1/3 of Europe's population killed (25 million deaths) 1347-1352

What do we measure?

- 15-m transects for benthic cover
 - point-intercept
 - photo archives for general site descriptions
- 15-m belt transects surveyed for:
 - Species richness (coral, sponge, gorgonian)
 - Gorgonian abundance and height (8-m x 1-m)
 - Juvenile coral abundance and size $(20 \times 0.312 \text{ m}^2)$
 - Adult coral abundance, size and condition (10-m x 1-m)
 - Urchin density and size (15-m x 1-m)
 - Marine ornamental species density (15-m x 1-m)
 - Substratum topography (vertical relief, slope, depth)
 - Debris: density, length and impacts of fishing gear (15-m x 2-m)

http://people.uncw.edu/millers

How do We Sample?

1. A two-stage stratified random sampling design is used to allocate effort according to habitat type and depth, along-shelf position, and management zone

2. Sample Design Statistics – what's important in not how intensely we sample individual sites, but how many sites we can sample while achieving CVs that are acceptable. From density numbers we calculate abundances at the population level.

Symbol	Infains	Comparational Formula	item best	Techning	Comparison of Fernals
4	Service Alexange			The states inducer up -	
6	Petitiary sample with education		1	Pressary sample with calcoring	
i -	Stemat etage mangle ant anterrar		1	Survey of any single with other spi-	
T_{ki}	Area of jik second stage only to primary well / in straton &		T_{ni}	After of /th second-stage cost is primary out i is attants &	
M_{he}	Total possible comber of incosed stage built to primary part ()s statum it		AF4.	Tanal possible another of bound stage onto its pressure out ℓ to examine \hbar	
a _{ke}	Area all the primery and in certains it	$a_{ke} = \sum_{i=1}^{M_{ke}} T_{ke}$	$a_{\rm be}$	Area of the privacy and as discuss A	$\kappa_{kr} = \sum_{s=1}^{M_{kr}} T_{sq}$
N.	Total possible analyses of personery notifs in stratums it		N _x	Field goodfile conditional primary wells to Monteverit	
4	Actia of streams 6	$A_{g} = \sum_{i=1}^{n} d_{g_{i}}$	4	Area of strates ($A_0 = \sum_{i=1}^{2n} \alpha_{ii}$
4	Area of petitic servey domain	$A = \sum_{i=1}^{n} A_{i}$	d.	non a calle carrie manale	$\mathcal{A} = \sum_{n} \mathcal{A}_{n}$
N.M.	Total possible another of presid-array axis is straten a		$N_{\pm}M_{\pm}$	Total possible baselor of second-stage balls in second 9	2000
5	Status 4 weighting Salar	$w_h = \frac{N_x M_z}{\sum N_x M_h}$	۰.	maxime 4 weighting filame.	$w_{\eta} = \frac{N_{\eta}M_{\eta}}{\sum_{\tau} N_{\eta}M_{\eta}}$
r.	interfer of both shade (source symmetry photos) is second stage and (in general and		$c_{\rm sc}$. Storebury of traditional specific minimized primery and in second stage well (in primery and (in primery and	
D.	The anyones a Beauty (balls alook) or ") is accord-stage and / to primery part / in structure &	$D_{ac} = \frac{C_{ac}}{C_{ac}}$	$D_{i\pm}$. Resultly the Definition is $\alpha^{(2)}$ in assumed strage part j is primitivy and j in diverses E_j	$D_{hq} \approx \frac{c_{hq}}{T_{hq}}$
C.		- T _{bi}	mai	Number of second stage easis campled in primery and 1 is streams it:	
Ni _{ll}	Youther of second-stage white campled in primery dami (in stratum A	a chaire	D.	Man doubly in primary and (in elliption &	$\overline{D}_{k_1} = \frac{1}{m} \sum D_{k_2}$
$\widetilde{D}_{\mathrm{R}}$	Moun density is primary sulf / in strains. A	$\overline{D}_{bi} = \frac{1}{m_{bi}} \sum_{i} D_{bij}$	n.,	Simpler of primery sense complete to strateme to	
п.	Disaster of primary path complete is strates &		D.	Mean density in strains 4	$\overline{D}_{n} = \frac{1}{2} \sum \overline{D}_{n}$
\overline{D}_k	Mean density to constant &	$\overline{D}_{b} = \frac{1}{n} \sum \overline{D}_{b}$			5/5-51
#24	Sample verifiate second primary with (in atruma a	$\sum_{i=1}^{n_{y}} \left(\overline{D}_{iy} - \overline{D}_{x} \right)$	14	. Unsingly reviewed passing primary and in J is resultion Λ	$s_{10}^{+} = \frac{\sum_{i=1}^{n} (is_{i0} - is_{i0})}{m_{i0} - l}$
2	Sandy reviser user small day with / it shows it	$n_n \rightarrow 1$ $n_n \rightarrow 1$ $\sum_{n=1}^{n_n \rightarrow 1} \sum_{n=1}^{n_n \rightarrow 1} \sum_{n=1$	ela.	. Simple version simply round using usin (in virtue δ	$s_{1k}^{2} = \frac{1}{\mu_{k}}\sum_{i} \frac{\sum_{i} (D_{kk} - D_{w})^{i}}{m_{kk} - 1}$
1.04		······································	Ξų,	Average matchine of manufoldings while using left per permany with in metros \boldsymbol{k}	$\overline{m}_{\mu} = \frac{1}{n_{\mu}} \sum_{i} m_{\mu_{i}}$
m	A strage number of sound-stops anticepagind per primary suil in Marian A	$\overline{m}_{k} = \frac{1}{n_{k}} \sum_{\mu} m_{\mu}$	és:	Upresent number of second energy field antipies per primary soft in element it	$m^{*}_{*} = \frac{\sqrt{a_{1s}^{2}}}{\sqrt{a_{1s}^{2}}}$
			$v[\overline{D}_{\sigma}]$	The part vertices of the distance with some density	$\nu[\overline{D}_{\alpha}] + (C\nu[\overline{D}_{\alpha}], \overline{D}_{\alpha})$
				Newley of preserv said samples represent to achieve a specified variance	$n^{\mathbf{x}} = \frac{\sum_{s} w_{s} v_{ss} \left[\sum_{s} w_{s} x_{ss} + \sum_{\sigma} \frac{w_{\sigma}}{m^{\mathbf{x}}_{s}}\right]}{\nu \left[\widetilde{D}_{\sigma}\right] + \sum_{s} \frac{w_{\sigma}^{2} x_{ss}^{2}}{N}}$
					1

Structural Classification of Florida Keys Hard-bottom Habitats

Population summaries and NTZ comparisons

- Diadema
- Marine Debris
- Anemones and Corallimorphs
- NTZs vs Reference sites
- Status update on *Acropora palmata* and *A. cervicornis*
- Future of reefs in Florida
- Ranking of best remaining sites (GIS)

Population trends for Diadema

Mean test diameter

Maximum density

Version 1: historical Version Version 1: h

Algal abundance

Coral recruitment

Version 2: No-Take zones Fish **1 Urchin abundance** Algal abundance Coral recruitment

Florida Keys Marine Debris: Non-compliance is an ongoing challenge

Wire leader

Marine Debris: NTZs vs Reference Sites

Ref (8) NTZ (10) Ref (33) NTZ (8)

SHB

BRR

Ref (22) NTZ (19)

HSG

Ref (36) NTZ (13)

DFR

NTZs

Refs

1.0

0.0

Ref (50) NTZ (4)

MPR

Ref (73) NTZ (4)

OPR

Anemones and Corallimorpharians

 Bartholomea annulata (corkscrew anemone) Increasing Keys-wide, both inside and outside zones

Condylactis gigantea (pink-tipped anemone) Low abundance, little change, but MPR Upper Keys↓

Ricordea florida (Florida corallimorph) Decreasing Keys-wide, both inside and outside of zones

Species Richness (1999-2009) by cross-shelf habitat type by management zone

Coral

Sponge

Gorgonian

Florida Keys Acropora Coral Populations

Acropora Coral Populations by Region and Habitat Type

Distribution and Abundance of Acropora corals in the Upper FKNMS

<u>Upper Keys</u>

Acropora palmata	39.1%
Acropora cerviconis	1.5%

Protected Keys-wide

Acropora palmata	33.3%
Acropora cervicornis	4.3%

The Future of Coral Reefs in the FKNMS

Is this the future of coral reefs in the Florida Keys?

Montastraea cavernosa Colony Density by Habitat

■ 1999-2001 ■ 2005 ■ 2009

Montastraea cavernosa Juvenile Density by Habitat

Montastraea faveolata Colony Density by Habitat

■ 1999-2001 ■ 2005 ■ 2009

No juvenile observations for Montastraea faveolata

Next Steps

- Field work this summer, Keys-wide for Acropora, corals and urchins, expanding into Dade and Broward.
- Sample allocations for USVI/PR
- Integration of our data with NOAA/FWC Geographical Information System (GIS)
- Spatial Analyses and GIS development to contribute to the FKNMS Management Plan Review
- Publications related to distribution and abundance of corals, gorgonians, and sponges throughout the FKNMS

Conclusions

- System-wide, related to some of the iconic species found in the sanctuary, such as *Diadema* and the *Acroporids*, populations are increasing or stable the ten years. This is good news.
- Substantial decline has occurred over several decades related to coral cover.
 Some species that were resistant previously are now in decline too. This is bad news.
- Related to NTZs, it's a mixed bag. We've seen some interesting results, but community-level effects are likely to take a long time, if they occur at all.
- Results should help inform discussions about NTZ design factors in the FKNMS, especially related to their location and enforcement. Size and connectivity are also important.

Management Relevance

- NOAA/National Marine Sanctuary Program
 - Abundance estimates as they relate to coral collecting permits
 - FKNMS Condition Report
- NOAA/Office of Protected Species
 - Status of *Acropora* coral populations
 - Status of other stony coral populations (upcoming workshop)
- State of Florida/FWC/FWRI
 - Population status of Condylactis gigantea and Ricordea florida
 - Population status and trends in *Diadema antillarum*
 - GIS Development (NOAA too)
- Mote Marine Laboratory
 - Status and trends in sea urchin populations
- Florida Sea Grant/RSMAS-University of Miami
 - Status and trends in subtidal marine debris
- IUCN
 - Caribbean-wide assessment of marine protected areas (upcoming workshop)
- Program Development
 - Florida Reef Resiliency Program, USVI/PR Acropora Program

No-Take-Zones in the Sanctuary

- No-take zones were not randomly selected
 - Encompass many of the best-developed reefs
 - Most were designed to separate incompatible uses and to protect well-developed fore reef areas and some patch reefs
 - Large areas of patch reefs, low-profile hard-bottom, and deeper fore-reef not protected
 - Some zones include more than one habitat type
 - High intra- and inter-site variability
 - Different disturbance histories
 - Regional variations due to continental influence

	Keys-wide	
Coral Species	Protection	Abundance
M faveolata	10.68%	27,705,353
M annularis	16.97%	4,397,919
M franksi	12.39%	3,016,993
A cervicornis	4.29%	8,593,852
A palmata	33.27%	605,808
D stokesii	4.15%	49,735,917
D cylindrus	11.80%	151,452

Preliminary Draft

Coral Species Richness: Regional Summary

Species Richness	Upper Keys			Middle Keys			Lower Keys		
	1999	2005	2009	1999	2005	2009	1999	2005	2009
Total Richness	29	37	34	40	38	35	50	45	39
Abundant Species	14	15	15	15	15	15	15	15	15
Scarce Species	15	22	19	25	23	20	35	30	24

Coral Species Richness: Keys-wide and No-Take Zone Summaries

Species Richness	1999-2001 (198)	2005 (133)	2009 (156)
Total Richness	50	47	41
Abundant Species	15	15	15
Scarce Species	35	32	26
Added		MYCT	PHYL
Lost		AGRA, ALAM,	AHUM, IRIG, ISIN,
		MCAR, PCOL	MFOR, MSEN, PBRA
Previously Lost in			AGRA, ALAM,
2005			MCAR, PCOL

Species Richness	Reference Sites			No-Take Zones		
	1999	2005	2009	1999	2005	2009
Total Richness	50	46	39	48	38	38
Abundant Species	15	15	15	15	15	15
Scarce Species	35	31	24	33	23	23