Preclinical Data Overview

Patricia S. Steeg, Ph.D. Laboratory of Molecular Pharmacology National Cancer Institute

The Problem of Brain Metastases

- Incidence estimated at 170,000 / year in USA, ten fold higher than incidence of primary malignant brain tumors.
- Most commonly arise from metastatic tumors of the lung (50-60%), breast (15-20%), skin (melanoma) (5-10%), and GI tract (4-6%).
- Incidence is thought to be increasing. May be a function of an aging population, better treatment of systemic disease, and improved imaging.
- In breast cancer, most prevalent in triple negative and Her-2+ subpopulations.
- Prognosis poor. Significant quality of life issues.
- Considered a "sanctuary site" due to blood-brain barrier limited permeability.

J. Clin. Pathol. 58: 237, 2005 *Clin. Cancer Res.* 13: 1675, 2007 *Am. J. Pathol.* 167: 913, 2005

Vision

Therapeutic Trials:

- Drugs that synergize with radiation
- Or drugs that will hold micromets in check after gamma knife radiation or surgery

Prevention Trials:

- Must identify patients at high risk (Metastatic setting? Gene signature?)
- Brain permeable drugs with some breast cancer efficacy
- Tolerable side effect profile

Validation of a Quantitative Brain Metastasis Model System

Histology

Drug Uptake

• Derivation of 231-BR Cells: MDA-MB-231 human breast cancer cell line. Brain metastases serially passaged (UTSA).

- EGFP labeled.
- Injected into left cardiac ventricle. Endpoints are imaging, and histological analysis of sections through one hemisphere.
- As compared to the parental cells, 231-BR is less proliferative but more motile.
- Compared to a panel of 16 resected human brain metastases to determine relevance to human disease.
- 231-BR cell line model has now been sent out to 20 labs.

231-BR Model Similar to Human Brain Metastases in **Proliferation, Apoptosis and Neuro-inflammatory response.**

Tumor Cells with DAPI and immunoflourescent markers

Ki 67

Μ

0

U

S

Ε

Η

U

Μ

Α

Ν

Cleaved Cas 3

Microglia

Clin. Exp. Met., 2008

Astrocytes

Special Problem of Drug Delivery To Brain Metastases

Blood-Brain and Blood-Tumor Barriers

Blood-Tumor Barrier Passive Permeability is Variably Increased in Some Brain Metastases

Intracardiac MDA-MB-231BR- 4 wk; 1.5 mg Texas Red 3kD Dextran, 25 µCi ¹⁴C-AIB iv – 10 min circulation

Many Anticancer Drugs Do Not Cross the Blood-Brain Barrier Well

K_{in} = Blood-to-Brain Transfer Constant

Critical Limiting Factors:

- 1. Large M W (>500) Avoid proteins, peptides, large MW drugs
- 2. Polar or Charged Drug

LogD 0-2 recommended; Need appreciable neutral fraction

- 3. High Plasma Protein Binding Free fraction >0.10 recommended
- 4. Active Efflux Transport Avoid drugs with affinity for P-gp, MRP, BCRP, etc...

Her-2 Status and the Development of Brain Metastases

Of 122 women receiving Herceptin[™] +/- chemotherapy, symptomatic CNS metastases were identified in 34%.
Fifty percent of the patients were responding to therapy, or had stable disease when they developed CNS metastases.

Cancer 97: 2972, 2003

Of 93 metastatic patients receiving Herceptin, brain metastases occurred in 25% over a median followup time of 10.8 months. 78% of patients with brain metastases had stable disease at other sites. The CNS was the first site of symptomatic progression in 82% of patients, and the only site of disease progression at that time in 69% of patients. 50% of patients died from their CNS disease.

Br. J. Cancer 91:639, 2004

CNS Events in Trastuzumab Adjuvant Trials

	NSABP B-31	N9831	HERA
Median follow-up (yr)	2.4	1.5	1.0
Any distant metastasis as first event: No (%)			
1 year trastuzumab	60 (6.9%)	30 (3.7%)	85 (5.0%)
No trastuzumab	111 (12.7%)	63 (7.8%)	154 (9.1%)
CNS mets as a first event:			
No events			
1 year trastuzumab	21	12	21
No trastuzumab	11	4	15
CNS mets at any time:			
No. events			
1 year trastuzumab No trastuzumab	28 35 (P=0.35)	Not Reported	Not Reported

Clin. Cancer Res. 13:1648, 2007

Her-2 Overexpression Promotes the Metastatic Colonization of the Brain by Breast Cancer

Mean (95% Confidence Interval) Metastases:

Clone:	N:	Micromets:	Large:	P:
Vector 1	8	250.5 (207 - 293)	5.1 (3.7 - 6.6)	
Vector 2	5	80.5 (92 – 267)	2.9 (2.0 - 3.8)	
Low Her-2 1	7	145.5 (102 – 286)	11.3 (8.3 – 14.4)	0.0001
Low Her-2 2	11	194.5 (159– 230)	16.6 (15.1 – 18.1)	
High Her-2 1	9	182.9 (141–226)	10.9 (8.9 – 12.9)	0.0001
High Her-2 2	5	254.0 (175–336)	14.0 (11.6 – 16.4)	

Cancer Res. 67:4190, 2007

Lapatinib

•Dual tyrosine kinase receptor, Her2 and EGFR1 inhibitor.

- High selectivity and affinity ($K_d = 10 \text{ nM}$)
- Binds to ATP site of tyrosine kinase domain
- Non-polar lipophilic molecule
 - Log P value > 4.6 MW : 581 Daltons
 - P-GP & BCRP substrate
- IC₅₀ ranging from 0.01 18 μ M against a series of breast cancer cell lines.

Lapatinib Prevents Brain Metastatic Colonization

Cell Line:	Treatment:	Ν	Mean (95% Confidence Inte Micrometastases:	erval) Metastases: Clinical Metastases:
Her-2+	Vehicle	22	138 (102-175)	6.83 (5.9 - 7.8)
	30 mg/kg	25	109 (72-146)	3.21 (2.3 – 4.1)***
	100 mg/kg	26	127 (90-164)	3.44 (2.6 – 4.3)***

*** P < 0.0001

- Only prevented colonization of 231-BR cells (EGFR+) cells at highest dose tested
- No interaction with radiation in Her-2+ cells.

JNCI 100(15):1092, 2008

SAHA – Vorinostat

Histone Deacetylase Inhibitor

- MW: 264 H Bond Donors:
- LogD: 1.09 H Bond Acceptors: 5
- Plasma f_u: 0.29 (71% Bound)

SAHA BBB K_{in} by Brain Perfusion

3

³H-SAHA Uptake in Presence of Efflux Transport Inhibitor

¹⁴C-SAHA Distribution in Brain Metastases

(Brain/Blood = $7.5 \pm 1.1\%$)

Intracardiac MDA-MB-231BR High Her2 – 4 wk; 150 mg/kg (2.5 µCi) ¹⁴C-SAHA iv – 30 min circulation

Vorinostat (SAHA) Prevents the Development of Experimental Brain Metastases When Administered Early

Treatmen	Ν	Micrometastases:		Clinical Metastases:			
t		Mean	95% CI	Ρ	Mean	95% CI	Р
Vehicle	2 0	² 170	146- 193		7.65	6.20-9.10	
SAHA D3 post- injection	1 8	122	98-146	0.017	2.89	1.94-3.84	< 0.0001
SAHA D7 post- injection	1 9	151	127- 176	NS ³	4.94	3.90-5.98	0.008
SAHA D14 post- iniection	1 8	177	153- 201	NS	5.96	4.69-7.22	NS

Studies on the In Vivo Mechanism of Action of Vorinostat

Mechanism:	In Vitro:	In Vivo:
Increased Histone Acetylation	+	No
Reduced Proliferation	+	Trend Only
Apoptosis	+	No
DNA Double Strand Breaks	+	+
Altered Gene Expression	↑↓	Hes1 • Rad52

Vehicle

Vorinostat

Lessons Learned...

• It will be easier to prevent brain metastases than to cure an established lesion. How should these trials be designed?

- Synergy with radiation may be key to therapy trials. (Vorinostat?)
- There are therapeutic targets for brain metastases that we have not yet explored. They may not all be obvious from primary tumor data.
- Brain permeable drugs are needed. These may come in at least two flavors-

Permeable in normal brain (Vorinostat)

Able to get into a subset of permeable mets (Laptinib?) Normal brain permeability may be best for penetration of micrometastases/dormant cells, and to hold them in check?

• New technologies for overcoming the blood-brain barrier should receive high priority.

BrainMetsBC.org

Understanding brain metastases, available treatments and emerging research. A Website for Patients and Families ...

> Musa Mayer Helen Schiff

Acknowledgements

Women's Cancers Section, LMP, NCI : Diane Palmieri, Brunilde Gril, Yong Qian

Kevin Camphausen*, Radiation Oncology Branch, NCI Toshiyuki Yoneda, UTHSC, San Antonio Kenneth Aldape*, MD Anderson Cancer Center Quentin Smith*, Paul Lockman*, Texas Tech University George W. Sledge, Jr.*, Sunil Badve, Indiana University Renata Duchnowska, J Jassem, Poland Edi Brogi*, Memorial-Sloan Kettering Cancer Center

Musa Mayer*, Helen Schiff*, Lilla Romeo*, Advocates

Tona Gilmer, Steve Rubin, Sylvie Laquerre, Mohammed Dar, Tom Lampkin, GlaxoSmithKline Vicky Richon, Merck

* DOD Breast Cancer Research Program Center of Excellence