Breast Cancer: Brain Mets

Thank you: Susan Komen Foundation NIH-NCI RTOG All Participants

Why Are We Here? Long-term Goals

Determine the population at risk
Develop preventive strategies
Is there a role for surveillance?
Develop effective therapies
Understand the biology better

Why Are We Here? Immediate Goals

We need one or more trials for patients with Her2+ Ca and brain mets. \diamond We need to refine our end-points, e.g. neurological PFS. XRT is the current standard of care for these patients, who offer opportunities for testing combinations of XRT + targeted agents. There is particularly strong interest in triple-negative cancer because DNA-repair pathways are perturbed and offers attractive targets.

Meeting Structure

Please respect your time & allow for Qs.
Edit your slides to eliminate repetition.
D1: 9 speakers: overview; preclinical data; lessons from completed trials; targeted agents.

D2: 11 speakers: clinical trial designs & resources; imaging; surgery; radiosurgery; PCI; surrogate endpoints; cognition.
 D2: Roundtable & ? Publication.

Motexafin Gadolinium Trial (9801) Lessons Learned

Minesh Mehta, MD, University of Wisconsin

COI: None at the time of the trial & publication; as of 2009, PCYC Board Member

Lessons Learned

 It is difficult, but possible to do large randomized brain met trials, but it requires a very motivated organization

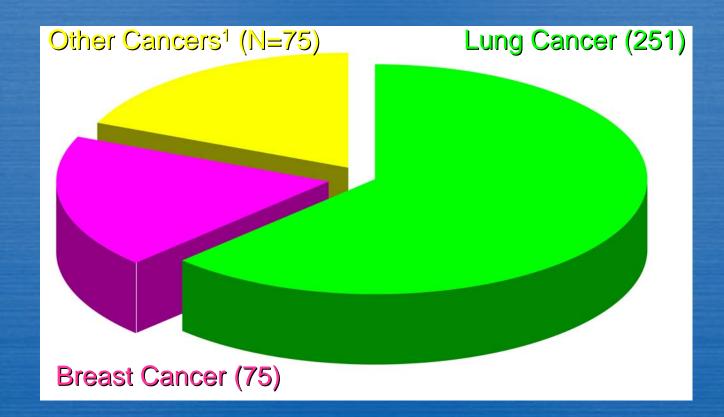
- In terms of clinical history, breast cancer patients are very different from NSCLC
- In terms of survival, breast cancer patients are not all that different from NSCLC
- Neurologic and cognitive endpoints can be tested and are relevant

Lessons Learned

Neurologic and cognitive endpoints are not readily acceptable to the FDA: *discussion*Centralized imaging and volumetric assessment is very feasible, but expensive
Individual lesions display considerable response heterogenity

Study Design

- International, randomized phase III trial
 - XRT alone (30 Gy/10 fx) vs.
 - XRT plus MGd, 10 doses (5 mg/kg, IV)
- Stratification by
 - Tumor type (Lung/breast/others)
 - Recursive Partitioning Analysis Class (1 vs 2)
 - Study center
- Co-Primary endpoints:
 - Survival
 - Time to Neurologic Progression
- Secondary endpoints
 - Neurocognitive progression
 - Loss of functional independence
 - Radiologic response and progression

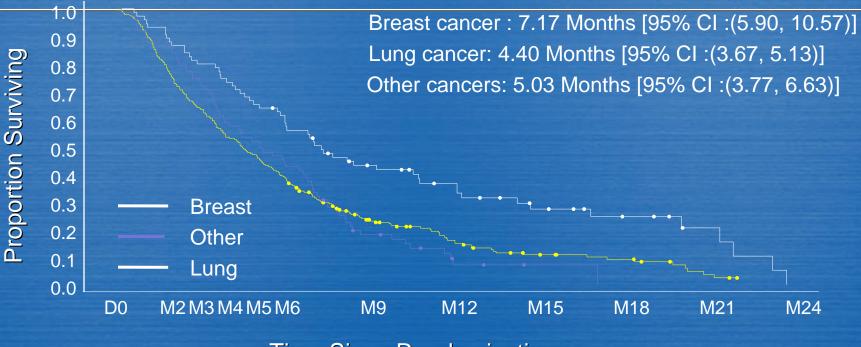


• Neurocognitive testing: monthly x 6, then q 3 mo

- Hopkins Verbal Learning Test (HVLT)
- Controlled Oral Word Association (COWA)
- Trailmaking Tests A & B
- Grooved Pegboard
- Neurologic symptoms: monthly x 6, then q 3 mo
- Neurologic exam: monthly x 6, then q 3 mo
- Barthel Index: monthly x 6, then q 3 mo
- Neurologic progression: monthly x 6, then q 3 mo
- FACT-BR: monthly x 6, then q 3 mo
- MRI: 0. 2, 4 and 6 months, then q 3 mo

Enrollment by Primary Cancer

N=401 (208 Control, 193 MGd)


¹ Other tumors were melanoma (24), primary of unknown origin (11), renal (11), colorectal (7), esophageal (7), bladder (3), ovarian (3), thyroid (2), sarcoma (2), gastric (1), pancreatic (1), ureteral (1), endometrial (1), and prostate cancer (1)

Lung Cancer Patients Differ from Breast Cancers

Lung accrual = x3 breast accrual	Lung n=251	Breast n=75	Other n=75
Presenting with brain metastases (%)	46.6	2.7	28.0
Brain only site of metastasis (%)	61.4	22.7	43.2
≥2 extracranial organs with metastatic involvement (%)	0.0	38.7	2.7
Median sum of indicator lesion volume (mL)	7.0	11.0	15.0
Median time, primary cancer D_x to brain met R_x (months)	3.8	38.3	12.5
Median number of prior chemotherapy cycles	0.0	9.0	0.0

Breast Patients Have Slightly Better Survival

Median Survival

Time Since Randomization

Sample si	ze							
Lung	251	188159133115 94	47	27	15	11	2	0
Breast	75	65 60 55 49 41	28	19	13	8	4	0
Other	75	63 55 43 39 32	12	3	1	0	0	0

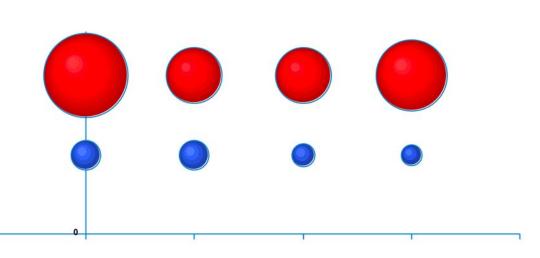
Protocol PCI-P120-9801 Phase III Trial of Motexafin Gadolinium for Brain Metastases

Neurocognitive Function and Progression in Patients With Brain Metastases Treated With Whole-Brain Radiation and Motexafin Gadolinium: Results of a Randomized Phase III Trial

Christina A. Meyers, Jennifer A. Smith, Andrea Bezjak, Minesh P. Mehta, James Liebmann, Tim Illidge, Ian Kunkler, Jean-Michel Caudrelier, Peter D. Eisenberg, Jacobus Meerwaldt, Ross Siemers, Christian Carrie, Laurie E. Gaspar, Walter Curran, See-Chun Phan, Richard A. Miller, and Markus F. Renschler

Table 6. Cimiliant Multivariate Decidiators of Cumin						
Table 6. Significant Multivariate Predictors of Surviv	al					
Factor at Baseline	Р					
Sex	< .0001					
Brain metastases, 1-2 $v > 2$.0001					
KPS, 70-80 v 90-100	.0044					
High serum LDH	< .0001					
Low serum LDH	.0292					
Low serum albumin	.0014					
Breast cancer	.0071					
Time from diagonatic to enrollment	.0344					
Motor speed and dexterity, pegboard dominant hand	.0233					
NOTE. Multivariate analysis of clinical data and neurocognitive tests by multivariate Cox models. Abbreviations: KPS, Karnofsky performance score; LDH, lactate dehy- drogenase.						

Murray, et al; first showed the impact of baseline MMSE on survival Significant factors for survival were pretreatment MMSE (p = 0.0002), and KPS (p = 0.02). RTOG 9104, n = 445


Meyers C, et al, JCO 22: Jan 2004; Murray, et al, 48: 2000, IJROBP,

Time to Neurologic Progression: Lung Cancer (By Events Review Committee): Feasibility Demonstrated

Median Time to Neurologic Progression 1.0 MGd, Not reached [95% CI: (8.63, NR)] 0.9 WBRT, 7.4 months [95% CI: (5.43, 9.73)] Proportion Progression Free 0.8 0.7 0.6 0.5 0.4 0.3 0.2 p= 0.048 (log-rank) MGd 0.1 WBRT D0 D28 M2 M3 M4 M5 M6 M9 M12 M15 M18 M21 M24 **Time Since Randomization** Sample size MGd 123 113 -53 <u>4</u>9 -37 88 66 WBRT 128 119 91 53 35 27 11 71

> Protocol PCI-P120-9801 Phase III Trial of Motexafin Gadolinium for Brain Metastases

Interlesional Response Variability

247 brain mets: 30 Gy/10fx

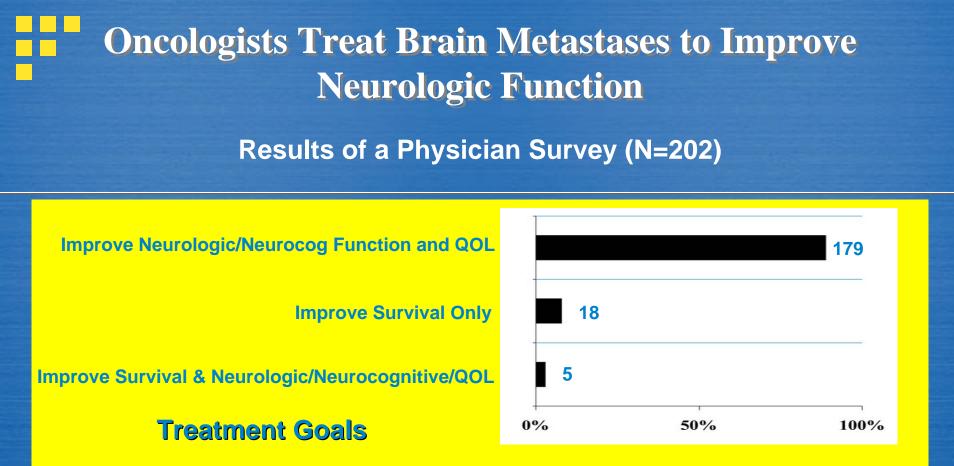
MR Tumor volume over 4 mo

Maximum likelihood variance component analysis: Between patients: 57% Between lesions: 43%

Bentzen, Li, Mehta (submitted)

Lessons Learned

 It is difficult, but possible to do large randomized brain met trials, but it requires a very motivated organization


- In terms of clinical history, breast cancer patients are very different from NSCLC
- In terms of survival, breast cancer patients are not all that different from NSCLC
- Neurologic and cognitive endpoints can be tested and are relevant: *tomorrow*

Lessons Learned

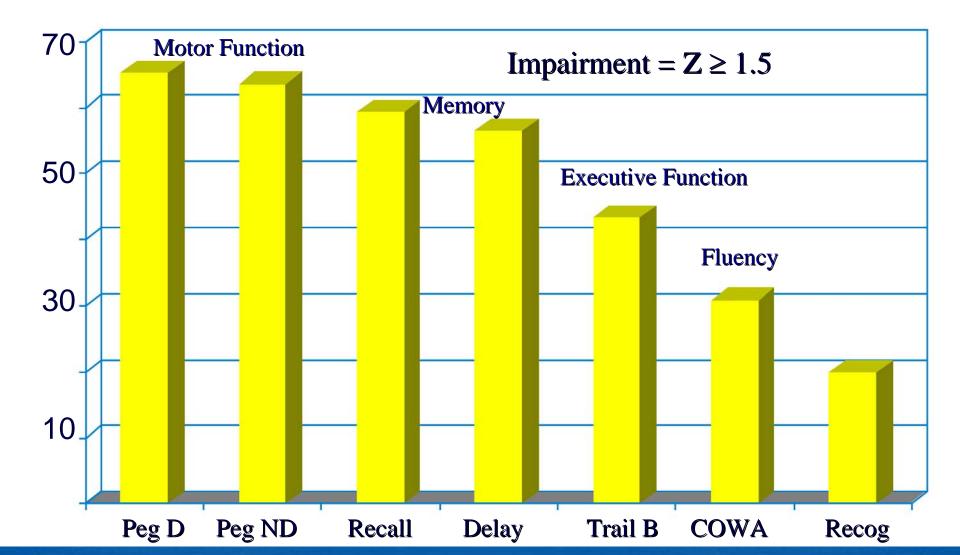
Neurologic and cognitive endpoints are not readily acceptable to the FDA: *discussion*Centralized imaging and volumetric assessment is very feasible, but expensive
Individual lesions display considerable response heterogenity

Cognitive Evaluation & Neuroprotective Strategies

Minesh Mehta, MD, University of Wisconsin

Delaying WBRT, with increased brain failure (rapidly), is associated with non-salvagable neurocognitive decline: This is not consonant with treatment objectives

Renschler, MF et al Proc ASCO 2003 Responses from Market Research conducted by McKesson Health at ASCO 2001 (N=92) and ASTRO (N=110) with Medical and Radiation Oncologists


Neurocognitive Tests Completion Rates

Myth: Brain met patients have low compliance with neurocog testing

Months After Randomization									Total	Total			
	0	1	2	3	4	5	6	9	12	15	18	N	%
Patient Visits	401	327	269	205	178	138	127	66	33	23	13	1783	100
HVLT Recall * Completed (%)	98	90	86	83	84	81	87	89	85	78	62	1577	88
Trail B Completed (%)^	87	82	75	74	74	72	77	86	76	78	62	1409	79

Fact: Brain met patients have high compliance with neurocog testing * Highest and ^ lowest completion tests Many Patients Are Impaired at Presentation

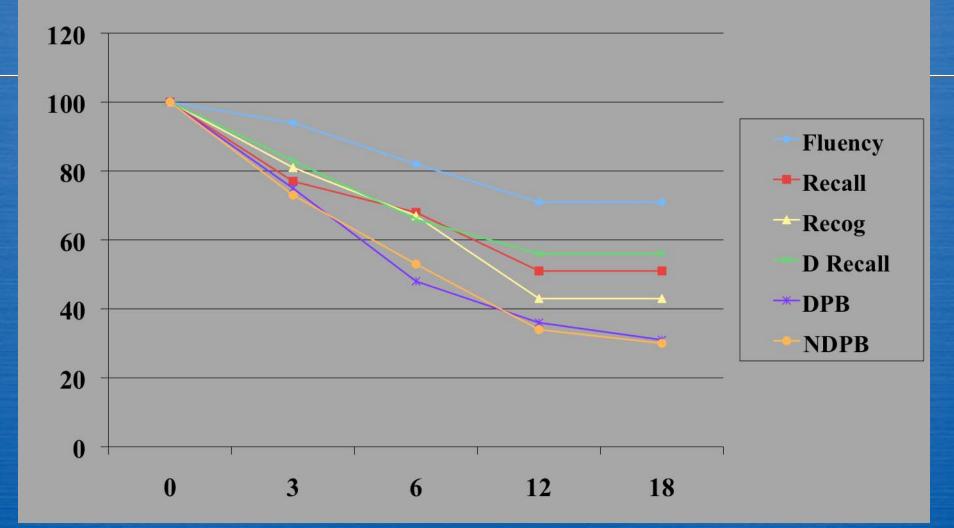
Fact: Brain met patients have high rates of baseline neurocog deficits

Neurocognitive Function Correlates with Indicator Lesion Volume at Presentation

	Memory Recall	Memory Recog	Memory Delayed Recall	Verbal Fluency COWA	Pegboard: Dominant Hand	Pegboard: Non- Dominant Hand	Exec Function Trail B
r ¹	0.211	0.147	0.207	0.187	0.221	0.237	0.086
P	0.0001	0.0036	0.0001	0.0001	0.0001	0.0001	0.0001
N	390	392	370	388	370	361	346

¹Spearman correlation coefficients for sum of indicator lesion volume and z-scores of neurologic tests

Impaired Neurocognitive Function is Associated with Poor Quality of Life


Mean QOL score as a function of degree of neurocognitive impairment

#Impaired	FACT-	FACT-	BR	TOI ²	PWB	SWB	EWB	FWB
	BR	G						
\leq 3 Tests	133.0	77.9	55.0	93.6	21.6	23.1	16.3	16.9
> 3 Tests	121.9	73.6	48.2	83.7	20.6	22.4	15.8	14.9
P-value ¹	0.0001	0.0018	0.0001	0.0001	0.0468	0.1334	0.275	0.0003

¹T-test comparing QOL score in patients with high or low neurocognitive impairment

²Treatment Outcome Index (Physical and Functional Well-Being, Brain-Related Additional Concerns)

WBRT: Neurocog time course

208 patients on WBRT alone arm, PCYC Ph III trial

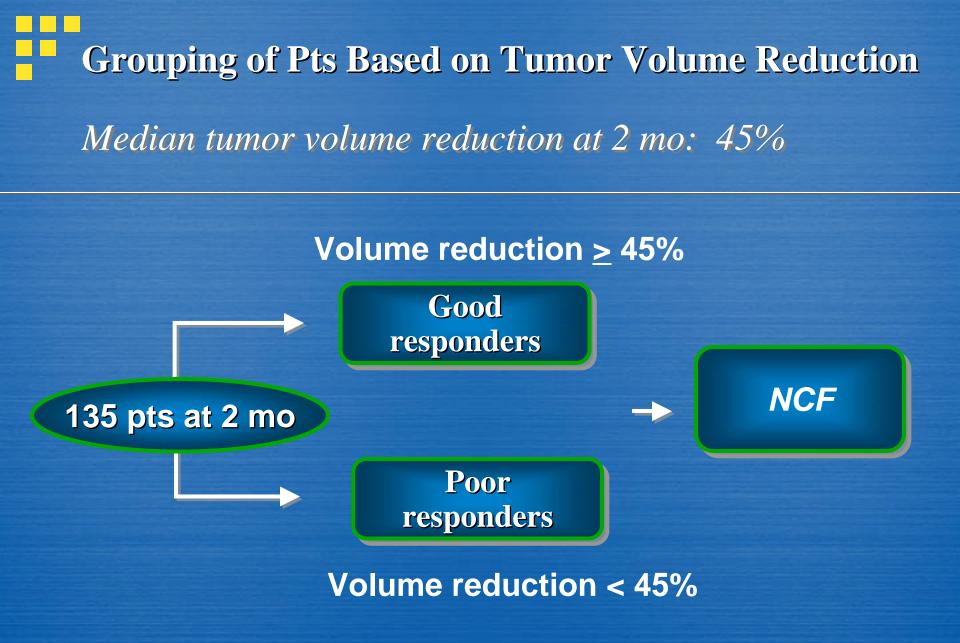
Tumor Remission at Different Time Points

Months	2	4	6	9	12	15
% pts with CR	4.6	5.9	13	15	35	2 1
% pts with PR	25	33	29	27	35	50
% pts with remission	30	38	41	42	71	71
# of pts	131	85	55	33	17	14

Relationship b/t NCF and Tumor Volume Reduction

 Goal - Correlate changes in NCF and MRI-measured tumor volume following WBRT in BM pts

Approaches


- Do Pts with greater tumor volume reduction have slower progression of NCF?
 - Subgroup analysis

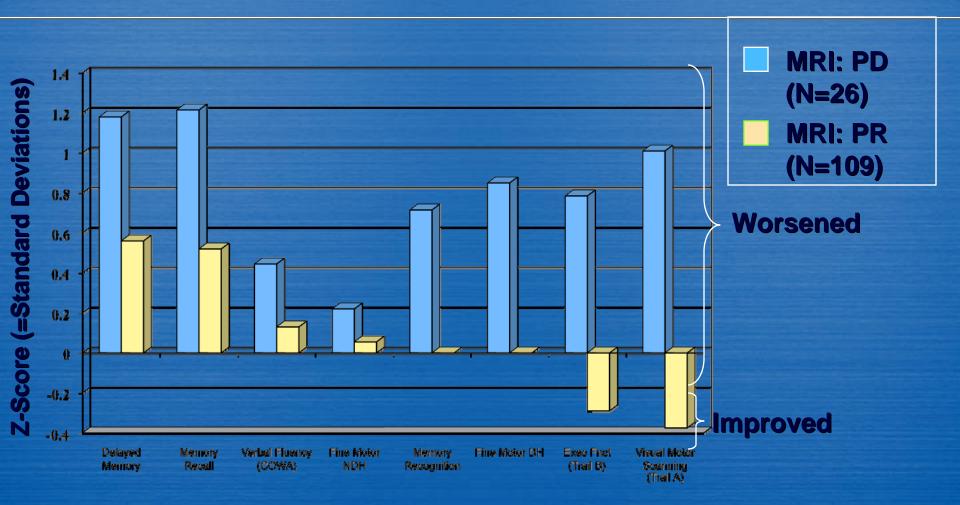
Are tumor reduction and NCF deterioration correlated?

Spearman's rank correlation in long-term survivors

What is the time course of NCF and tumor volume?

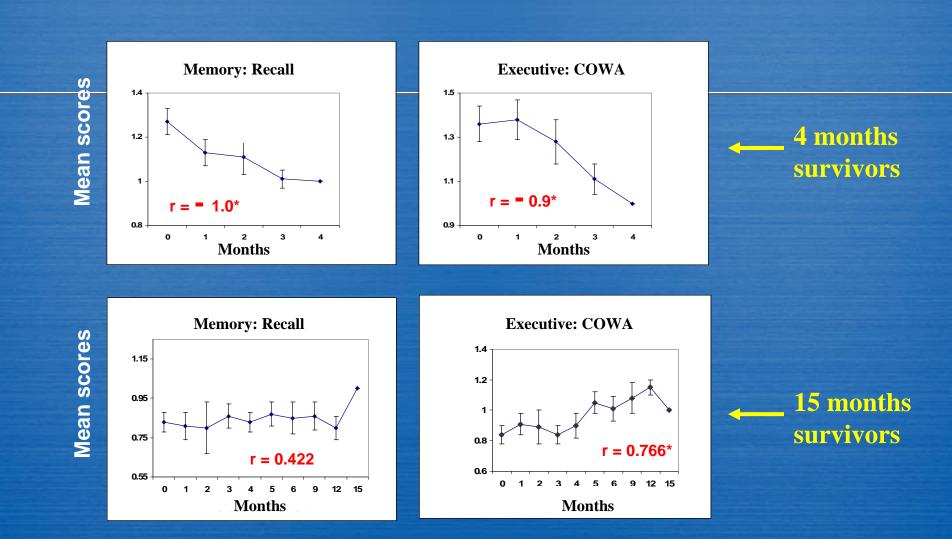
Mean NCF and tumor volume in long vs short-term survivors

Median Time to NCF Deterioration


Median time to NCF decline (days)	Memory Recall	Memory Recognitio n	Memory Delayed Recall	Verbal Fluency: COWA	Pegboard DH	Pegboard NDH	Executive Function: Trail A	Executive Function: Trail B
Good responders	416	374	431	512	380	401	391	462
Poor responders	355	322	372	441	287	291	386	331
Net gain (days)	61	52	59	71	93	110	5	131
P values	0.205	0.478	0.315	0.243	0.049	0.021	0.237	0.017
No of Pts	131	131	131	131	132	132	132	131

NCF deterioration: ≥ 2 SD from baseline on 2 consecutive measurements or on the last follow-up visit before death

* All values in yellow are statistically significant


Tumor Growth Correlates with Neurocognitive Decline

Median Change in Neurocognitive Test Performance (Z-score) at 4 Months in Patients with MRI Data

Meyers JCO 2004

Mean NCF Scores in Short vs Long-term Survivors

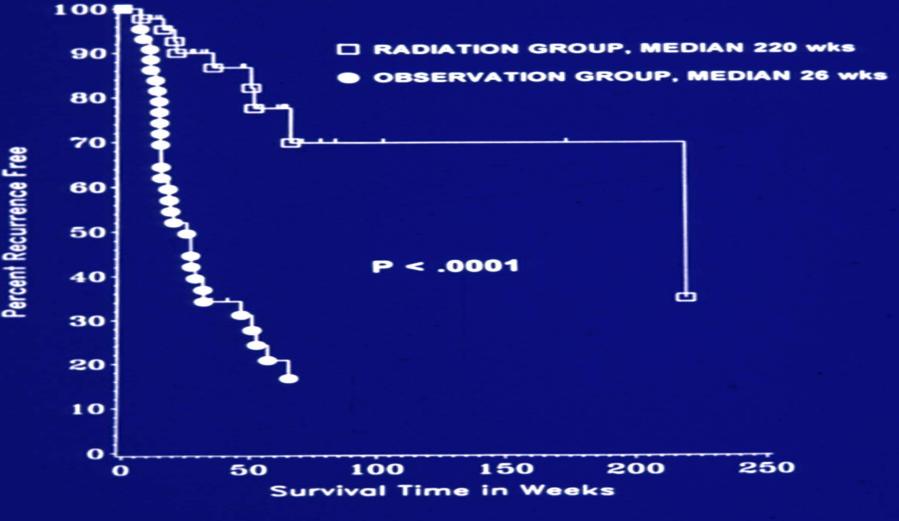
r - Spearman's correlation between mean scores and time, * statistical significance

Very High Brain Relapse After Surgery if WBRT is Omitted

 Recurrence
 No RT (46)
 WBRT (49)
 RR
 p

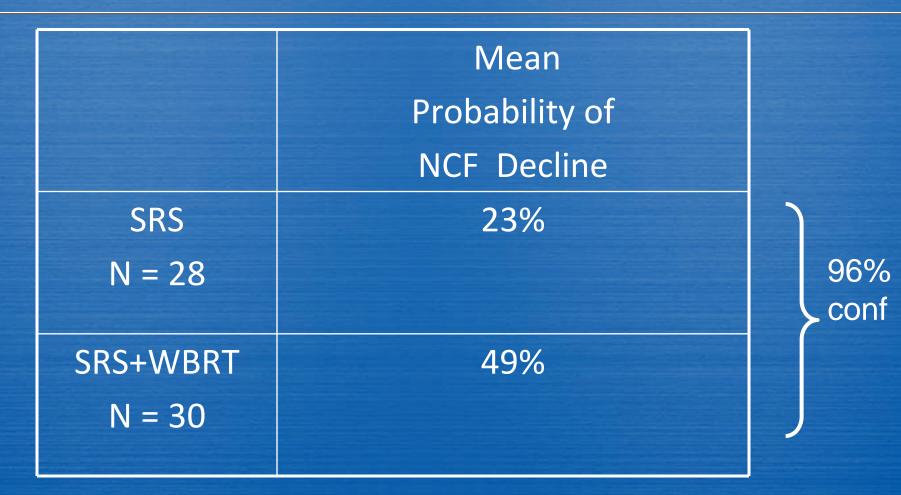
 Any brain
 70%
 18%
 ~3
 <.001</td>

 Original
 46%
 10%
 3.6
 <.001</th>


Complete resection without WBRT leads to (70%) actuarial relapse

This is a relative risk of 3

Patchell, JAMA. 1998:280:1485


Tumor Growth Occurs Rapidly Without WBRT

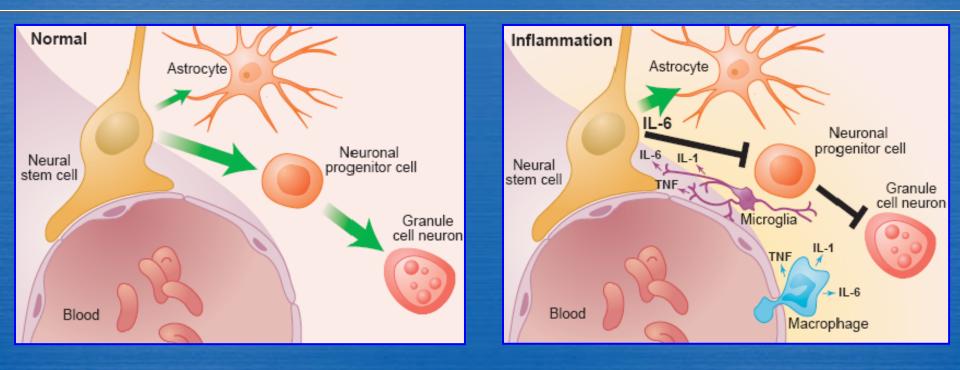
TIME TO ANY BRAIN RECURRENCE

Patchell, JAMA.1998:280:1485

Neurocognitive Decline by HVLT

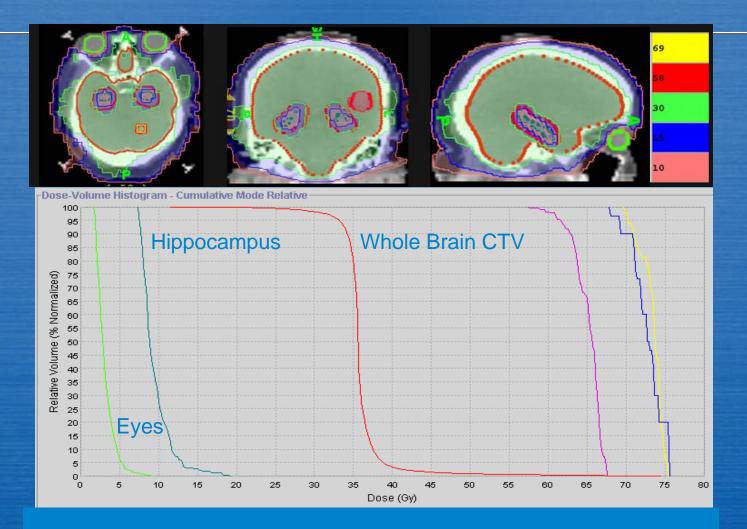
Eric Chang, MDACCC

Where is the Balance?


NCF deterioration occurs early and often.

- We have analyzed the time course of NCF decline employing 8 prospectively measured domains in 208 brain metastases patients treated with 30 Gy WBRT and have found that:
 - Median time to NCF deterioration was longer in good than in poor responders.
 - Memory was most susceptible to early decline, even in patients with non-progressing brain metastases: the role of the hippocampus

Li J, Bentzen SM, Renschler M, et. al. J. Clin. Oncol.



Neural stem cells in the hippocampus

Kempermann & Neumann *Science* <u>302:</u> 1689 (2003)

HA-WBRT in conjunction with selective boosting of brain metastases

Other Strategies

• NMD receptor agonists, e.g. Memantine are beneficial in Alzheimer's RTOG is testing this in a phase III trial, 0614 Renin-Angiotensin (ACE) inhibitors, e.g. Ramipril Intranasal inhaled insulin

Brain Metastases in Breast Cancer Effort TBCRC RTOG P2C NCI-CTEP CORPORATE **BMBCE** VIEW PHILANTHROPIC ADVOCACY **OTHERS**

Major Goals

Understand the biology (biobank) Identify "at-risk" patients Prevention Screening Improve therapeutic choices Identify predictors of outcome

Trial Categories

Prophylaxis in high-risk patients Surgical trials Drug targeting questions Role in >1 met Post-op trials RT +/- test agent Hippocampal sparing WBRT Test agent +/- RT

.....

Trial Categories

Radiosurgery-treated patient
Role of WBRT (NCCTG trial)
Novel therapeutics to prevent brain relapse
WBRT patients
RT +/- test agent (eg PARPI or HDACs)
Hippocampal sparing WBRT

Trial Categories

Untreated Stable Patients

 Novel therapeutics to prevent brain progression

 Post-RT progression

 Test Agent