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Abstract

The machine implementation of a Bessel function package, which was

outlined in mathematical form in two previous documents, is described
(2)(2), I (z), J (z), K (z), Y (z) and
v Vv AY) \Y) AY

Airy Functions Ai(z), Ai'(z), Bi(z), Bi'(z) with v 2 0 and -w < arg z £

for Bessel functions Hi1)(z), H

w. The less obvious aspects of the implementation are the main toplcs
of interest. These topics include estimation of function magnitudes for
underflow and overflow tests, scaling near underflow and overflow
limits, the use of recurrence in connection with scaling, the use of

machine constant routines and an error package for portability.



1. Introduction

In [2] and {3], the analytic basis for the construction of a Bessel
function package for non-negative orders and complex arguments was
outlined. The implementation of these schemes in a portable fashion
poses some machine oriented problems. This document explains the less
obvious problems and their solutions. These include (1) estimation of
function magnitudes for the determination of underflow and overflow, (2)
scaling near underflow and overflow limits, (3) the use of recurrence in
connection with scaling, (4) the influence of small exponent ranges on
the package, (5) the use of machine constant routines, and (6) the use
of an error package for printing error messages.

More precisely, the outline in [2] and [3] sets forth the
mathematical basis for evaluating Bessel functions Hi1)(z), HiZ)(z),
Iv(z)’ Jv(Z)’ Kv(z), Yv(z) and Airy functions Ai(z), Ai'(z), Bi(z),
Bi'(z) for v 2 0 and -7 < arg z £ 7. The basic idea is to compute Iv(z)
and Kv(z) in the right half plane and relate all other functions,
including their analytic continuations, to these two functions. Figures
1 and 2 show the regions where different formulae are applied. The

callable routines in the package are listed below.

Function Single Precision Double Precision Quick Check
Name Name Drivers

(1) (2)
Hv (z), Hv (z) CBESH ZBESH CQCBH, ZQCBH
Iv(z) CBESI ZBESI CQCBI, ZQCBI
Jv(z) CBESJ ZBESJ CQCBJ, ZQCBJ
Kv(Z) CBESK ZBESK CQCBK, ZQCBK
Yv(z) CBESY ZBESY CQCBY, ZQCBY
Ai(z), Ai'(2) CAIRY ZAIRY

CQCAI, ZQCAI

Bi(z), Bi'(z) CBIRY ZBIRY
In I'(x), x> 0 GAMLN DGAMLN

The quick check drivers are executable programs which evaluate a

variety of relations. These results are checked against known values or



values computed from the package. These drivers are provided to give
first—-time users confidence that the package has been installed prop-

All routines, except the Airy function routines and the quick

erly.
check drivers, can return N member sequences for orders v,v+1l,...,vtN-1.

The package also allows for exponential scaling to increase the argument
range of each function. A list of lower level routines and their pur-

pose is shown in Section 8.
Since there is no standard type DOUBLE PRECISION COMPLEX, the

double precision routines carry complex numbers as ordered pairs.

Section 8 also lists the common mathematical functions needed to

manipulate double precision ordered pairs in calling programs.
The package was written according to FORTRAN 66 standards and

passed the PFORT analyzer. Except possibly for hollerith types, which

occur only in error messages from calls to SUBROUTINE XERROR, the

package should compile on many FORTRAN 77 compilers.
The sections to follow detail some of the more important

considerations for implementation of basic formulae.
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2. Estimation of Magnitudes of I (z) and Kv(z), Re(z) 2 O

The magnitudes of the I and K functions are needed for overflow and

underflow tests. These tests are made in logarithmic form so that the
That is,

computations themselves will remain on scale.

|1n Iv(z)l < ELIM or |1n Kv(z)| < ELIM

must be satisfied in order to proceed, where ELIM is the package

exponential overflow or underflow limit,

largest (positive) package number

eiELIM _
smallest (positive) package number.

ELIM is computed in terms of machine constants and is described in

Section 6.
It was determined experimentally that the correct order of

magnitude for both the I and K functions could be obtained from the
z 1 with

leading terms of the uniform expansions for v + « for orders v
= 1. Recall [3, pp.

surprising accuracy, even for orders as low as v
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Here 21, 22, S1 and 82 are sums in reciprocal powers of v. At this

point, we are interested in only the leading terms and we simplify to

obtain
-t Ve ~ [mt _-vE
Iv(z) Sy C i Kv(Z) 2v ©
(2.3)
3/2
- 3/2 s -(2/3)8,7"
~ Q(Z) e (2/3)(1 (1) _ 2e l'ﬂ'/3¢(z)e 1
J\)(Z) 770 ' H (z) — 1704
e a v 2/m 81
3/2
) -(2/3)8
H(2)(Z) _ 2e+l“/3¢(z)e 2
/T 621/4
using
_ 3/2
ai(z) ~ —— & (2?jzz
2/ z

The component parts of (2.1) and (2.2) are programmed in
subroutines CUNIK and CUNHJ and the magnitudes according to (2.3) are
programmed in CUOIK. The parameter IKFLG chooses the I or K function in
CUNIK while IPMTR in the call to CUNIK or CUNHJ selects the quantities
needed for (2.3) or the quantities needed for (2.1) and (2.2).

In routines for small |z| where power series are used, different
tests are made. For the I function in CSERI where (]z|/2)2 £v+ 1, the
exponential in

I (2) - (z/2)” _ vin(z/2) = 1n T(v + 1)

r(1 + v)
is tested for underflow. For Kv(z), - 1/2 £ v < 1/2, the exponential in
K (z) -~ —T (z72)"° (z/2)Y
v 2 sinwv [ T(1 - V) r(t + v)



remains on scale. However, when sequences of K functions are needed,

, =1/2 £ v < 1/2, and

the recurrence is started with Kv and K\)+1

~ 1 2 v+1
Ko (2) 73 (D77 T+ v,
Thus, K\)+1 can overflow when |z| is small since v + 1 can be as
much as 3/2. This test is made on (v + 1)|1n(2/z)| in CBESH and CBESK

. 2
when appropriate. In ranges where |z| is large (|z| > max(RL(e),g—)),

the expansion for 2z + « is applied for Iv(z). For Kv(z) in |z| > 2
1 1

- = < —

and 5 SV < 5

cally correct (Figures 1 and 2) and one has

the leading terms of the Miller algorithm is asymptoti-

-~ _e - -z
I(2) ~ — , K,(2) %E e , |z] » =
2nz
or
- 1 -~ 1
[1n Iv(z)] x - = In(2r|z|) |1n Kv(z)| -x -3 ln(2lz|/n)

When N member sequences are involved, underflow tests are made on
the last member of the I sequence and the first member of the K
sequence; while the reverse is true for overflow tests. In the event
that the last member of a K sequence underflows, then the whole sequence
has underflowed and NZ is set to N. However if the first member has
underflowed and the last member is on scale, then recurrence is carried
forward scaled by eX until two members come on scale. Then recurrence
is continued in a normal fashion. (Here "normal fashion" means the
procedure described in Section 3.) NZ is set to the number of the
underflowed members whose values are set to zero before leaving the
subroutine. Scaled recurrence is carried out in subroutine CKSCL.
Similarly for I sequences. Recurrence is carried in a backward fashion
from the last member. If a member underflows, it is set to zero and
succeeding members are tried until two members come on scale. Then
backward recurrence is used to finish the sequence (as described in

Section 3.) NZ is set to the number of zero entries in the sequence.



3. Scaling Near Underflow and Overflow Limits

The Iv(z) function underflows when v is large compared with |z|.
This may occur in subroutines CSERI, CUNI1, and CUNI2 where the power
series and the two uniform expansions (2.1) and (2.2) for v » « are
used. The Kv(z) function underflows (exponentially) when |z| is large
compared to v. This may occur in CBKNU, CUNK?1 or CUNK2. The problem
with computation near underflow and overflow limits can be illustrated
by examples. An expansion typically has the form c(1 + ) where c

displays the dominant behavior. Consider

(107270 4 107290y (1 4 107505y = (107290 - 107295 4 1(107%90 4+ 107295
. . -294 . . -14

on a CDC machine where underflow is 10 and unit round off is 10 .
Here 10-295 is an underflow and the result is in error in the 5th digit.

Notice, however, that scaling by the reciprocal of unit round off (1O1u)

can Keep the multiplication on scale and yield correct results:

107107278 4 1072705y (1 4+ 107°1)
=107 ML107276 - 10728Yy L 1107276 4 407281y
276 276

i

107 "%(.99999 x 10~ + 1.00001 x 10 “'°1)

290 290

.99999 x 10 + 1.00001 x 10 “7°1

Thus, 10-5 could be replaced by anything smaller and still obtain
answers accurate to within unit round off.
This example shows the case where the real and imaginary parts

remain on scale. However, consider the final scaling operation

-14 -276 10—281

107" (10 . =290 , 457295,

i) =10 +

In this example the imaginary part underflows leaving both the
magnitude and phase in error in the 5th digits. The only reasonable
recourse is to declare this an underflow and return a value of zero with
an error flag indicator. Thus, in order to be successful at scaling

with a potential underflow in one of the components we must have the



larger component at least one precision = 1/TOL larger than the smaller
component. This will give a magnitude with relative accuracy and a
phase angle with absolute accuracy. These requirements are consistent
with what is obtainable with complex arithmetic in general. That is,
relative accuracy in the phase angle is not always possible when one
component dominates because of subtractions in a complex multiply.
These underflow tests on components are made in CUCHK before the final
scaling by TOL is done. CUCHK returns a non-zero error flag on an
underflow which is processed by the calling routine to return a zero
value for the function.

For overflow, these problems are mitigated somewhat because of the

inequalities
zZ = X + iy
lz| 2 [x| , 2] 2 |v],

That is, a magnitude which does not overflow ensures that the real
and imaginary parts do not overflow. This does not mean that a result
which is on scale can be computed; intermediate results could overflow.

To cope with three kinds of problems, a scaling factor which can
take on three different values is introduced. The first, 1/TOL =
reciprocal of unit round off, is applied when the magnitude of the I or
K function is within 1/TOL of the underflow limit. The second value,
equal to 1, is applied in the intermediate range of values, while the
third value, TOL = unit round off, is applied when the magnitude is
within TOL of the overflow limit., Scaled values are carried during
recurrence with multiplication by the reciprocal of the scale factor
being the last step (we know from Section 2 that the magnitude will be
on scale and subroutine CUCHK guarantees that the phase can be computed

accurately near underflow limits.)



4, Analytic Continuation of K (z), Re(z) > 0
V

The analytic continuation of Kv(z) from the right to the left half
plane is carried out by the formula

~

Kv<zeii“) . i K (2) ¥ 1aT (2) , Re (z) 2 0 (4.1)

in subroutine CACON except when v > FNUL where the uniform expansions is
used. The package allows exponential scaling for most of the functions

and (4.1) applies for KODE = 1. The scaled version for KODE = 2 is

ﬂ) +inmv -2z

e K (zeii = e e “2{e%K (z)} + iwe—iy{e—xl (z)} (4.2)
v Vv AV

In (4.1) the I and K functions are of different orders of magnitude
and no problem is encountered with addition. In particular, underflow
cannot occur. On the other hand, the terms on the right of (4.2) can be
of similar magnitude and are generally smaller than those in the
unscaled version (4.1). Provision is made for one or both terms to
underflow. To avoid the problems outlined in Section 3, each term must
be larger (in magnitude) than the underflow limit scaled by 1/TOL in
order to be added together. This test is done in CS1S2.

One can see from (4.1) that neither forward nor backward recurrence
is appropriate for the left half plane. For large z, Iv(z) dominates
and one would use backward recurrence for stability. On the other hand,
for large v, Kv dominates and one would use forward recurrence for
stability. Consequently, the sequences for the right side of (4.1) are
generated for Re(z) 2 0 and (4.1) or (4.2) is applied to each member of

the sequence.

5. Avoiding Recursive Calls

The analytic continuation of Iv(z) from the right to the left half

Z plane is carried out by the formula

10



Iv(zeii“) = eii“vlv(z) , Re (z) 2 0 (5.1)

in subroutine CBESI. However Iv(Z) for Re(z) 2 0 is computed in CBINU.
Now, CBINU calls routines CBUNI, CUNI1, and CUNI2 which in turn call
CAIRY for the Airy functions Ai and Ai' when the order is large. Now Ai
and Ai' are computed from K1/3 and K2/3 in CBKNU when arguments are in
the right half plane and possbily by (4.1) or (4.2) when the arguments
are in the left half plane. Recall that CACON evaluates (4.1) or (4.2)
which needs Iv(z) for Re(z) 2 0. Thus, the construction establishes a
path which expresses Iv in the right half plane in terms of Iv in the
right half plane, a situation which would naturally result in a
recursive call to CBINU.

Another potential for a recursive call exists in the analytic
continuation of the K function by (4.1) in CACON. For large orders,
CACON calls CBINU which, farther down the line, can call CUNIZ2. Now,
CUNI2 computes by (2.2) which calls the Airy Functions Ai and Ai' from
CAIRY. These in turn require K functions of orders 1/3 and 2/3 and
their analytic continuations, which would naturally be computed by calls
to CACON. Hence a recursive call is possible.

' Notice that the problem in both situations occurs because of calls
to the Airy routine. Both problems are solved if the Airy routine has
its own continuation subroutine. Thus, we construct a continuation
subroutine CACAI from CACON by retaining only those parts which apply to
orders v £ 1 and deleting all other parts (see Figures 1 and 2 for the
formulae when v £ 1.) This leads CACAI to call CSERI, CMLRI, and CASYI
for I and I in the right half z plane so that (4.1) and (4.2) can

173 2/3
be applied.

6. Machine Related Parameters and the Error Package

Included in the package are function subroutines which define the
machine environment in which the package is to operate [5]. This helps
make the package portable by relegating all machine dependent parameters
to these function subroutines. These routines (5] are called ITMACH,
R1MACH and D1MACH.

I1MACH defines integer constants associated with the environment.

For example, standard input, output, punch and error message units are

11



defined by ITMACH(I), I = 1, 4., The number of bits per storage unit
(word) and number of alpha-numeric characters in a storage unit are
defined in I1TMACH(5) and ITMACH(6). The constants associated with
integer, single precision and double precision arithmetic are defined in
I1MACH(7) through I1MACH(16). These lnclude the base of the arithmetic
B, maximum and minimum exponents and the number of base B digits.

RIMACH(I), I = 1, 5 returns the smallest and largest (positive)
floating (single precision) numbers, the smallest relative spacing, the
largest relative spacing (unit round off) and log base 10 of the single
precision arithmetic base. Similarly for DIMACH(I), I = 1,5 for double
precision arithmetic.

To make the usage easier, these quantities are defined on comment
cards for a wide variety of systems. To define one of these systems,
one has only to replace C's in column 1 by spaces to make a particular
set of FORTRAN statements active.

In the main routines, which are called by the user, package
parameters TOL, ELIM, and ALIM are computed from machine constants and
passed to lower level routines. These package parameters are slightly
different from those which could be computed directly from I1MACH;

R1MACH and D1MACH because we wish to impose further limitations. Thus,
TOL = AMAX1(RIMACH(4), 1.0E-18)

defines the package unit round off limited to 18 digits because
constants are stored to only 18 digits (UNIVAC double precision.) The

statements

K = MINO(IABS(ITMACH(12)), IABS(ITMACH(13))
ELIM = 2.303E0 * (FLOAT(K) * RIMACH(5) - 3.0E0)
AA = 2.303E0 * RIMACH(5) * FLOAT(ITMACH(11)-1)
ALIM = ELIM + AMAX1(-AA, -U1,45E0)

define the package exponential overflow or underflow limit ELIM

3

cushioned by 10- to allow for some impreciseness in tests using first

term approximations. Also, one is not always sure that the ALOG (or

12



DLOG) function would perform correctly on the largest or smallest

machine numbers. Thus,

ELIM = AMIN1(-ALOG(R1MACH(1)), ALOG(RIMACH(2)))
may be desirable, but not prudent. ALIM is a near-underflow or near-
overflow quantity which triggers a non-unit scaling option described in
Section 3. More precisely, these computations express the relations

ELIM K 3 ALIM
e e

- g .07 , eELIM

¥ TOL

-ELIM -K 3 ~-ALIM
e e

- B . 10 , e—ELIM

/TOL

where ITMACH(12) and I1TMACH(13) are the minimum and maximum exponents
possible for a floating number, i.e. RIMACH(1) = BI1MACH(12)-1, where
B = ITMACH(10) = floating point base, etc. Notice that the computation
of ELIM is accomplished without complicated function evaluations. For
double precision arithmetic, indicies 11, 12, and 13 are replaced by 14,
15 and 16 respectively, and RIMACH() is replaced by DIMACH().

, ELIM and ALIM are carried this way because all tests for overflow
or underflow are made on the magnitude of the logarithm of a Bessel
function. +ALIM are exponent boundaries above or below which scaling is
applied as described in Section 3,

Portability is also enhanced by the use of work arrays in call
lists. Since a complete restoration of all variables to their former
values is not always assured in successive calls, work arrays will pass
those to be saved to the calling routine and restore them on the next
call. This is used in subroutine CUNIK where the coefficients of (2.1)
in 21 and 22 are computed for either I or K and saved (the terms differ
only in sign) for a subsequent call to compute the analytic continuation

by formula (4.1).

13



TABLE I

IFLAG value (defined by calls to XSETF() or by
librarian as default)

~

LEVEL 0 +1 +2
2 = FATAL PA P(T) A P(T)A
1 = RECOVERABLE R P(T)R P(T)A
0 = WARNING R P(T)R P(T)R
-1 = ONCE R P-once(T)R P-once(T)R

Note: P = print error message; P-once = print first occurrence of error
message; R = RETURN from XERROR(); A = abort; (T) = trace-back if IFLAG
is positive and subroutine FDUMP() is coded for a trace-back.

The SLATEC error package [7] is used to print messages. This
package is an enhanced version of that in [6] which has many
capabilities for printing messages, printing variables, turning off
fatal diagnostics, etc. The typical call to process messages without

numeric output is

CALL XERROR(THMESSAGE, 7, NER, LEVEL)

where the message and the number of characters in the message are first.
NER is an error number assigned by the author. LEVEL is used to
indicate the seriousness of the message. 1In calls to XERROR(), we use
NER = 2 and LEVEL = 1 since the message gives the pertinent information
and is normally fatal (A), though the user can reset IFLAG and do
something else.

The variable IFLAG in a call to subroutine XSETF(IFLAG) decides
how the message will be printed when the default option (IFLAG = 2) is
not used. The current value can be obtained by a call to subroutine
XGETF(IFLAG). Table I [7] gives the essential information.

The sign of IFLAG determines the form of the print, if it occurs.
A positive sign leads to calls to FDUMP(), which in this version simply
returns, but can be programmed to give trace-back information., The
abort routine XERABT() simply stops the execution with a STOP statement.

The default, IFLAG = 2, will print, abort, and give an error message

14



summary. (The default parameter IPARAM(2) = 2 is contained in a DATA
statement in function JU4SAVE().)

Similar usage applies to subroutines XGETUN(LUN) and XSETUN{LUN)
where LUN is the unit number on which error messages are to appear. The
default is LUN = I1MACH(Y4), the standard error message unit defined by
the machine integer function I1MACH() described above. XGETUA(IUNIT, N)
and XSETUA(IUNIT,N) serve the same purpose when error messages are to
appear on multiple units IUNIT(1),..., IUNIT(N), N 2 5.

In an institutional setting the package can be tailored to the
system by the librarian to provide trace back information or appropriate

diagnostic information for the user from FDUMP() or XERABT().

7. Performance With High Accuracy on Low Exponent Machines

The main consideration in all routines is to achieve the accuracy
specified by TOL (unit round off.) This is not always possible because
of argument reduction in elementary functions when variables are large.
However, we can program to ensure that unnecessary losses do not occur
and maximum use is made of the full exponent range of the machine.

Asymptotic expansions require a variable to be large.
Specifically, v must be large to apply the uniform expansions (2.1) and
(2.2). This makes Iv(z) small when |z| is only moderately smaller than

v. In the case of the VAX, where unit round off is approximately 10_16

in double precision arithmetic and the arithmetic range is only 1Oi38,
the lower bound on v for (2.1) and (2.2), called FNUL, is approximately
88. 1In this case, Iv(z) can underflow easily for v > FNUL. This
happens in CBUNI on a call from CBINU. CBINU sets all members of a
sequence to zero whose orders exceed FNUL and returns the last index,
NLAST, whose value was not set. At this point CUOIK gets a chance to

examine the corresponding order, v, + NLAST-1, to see whether or not

IvO+NLAST-1(Z) is on scale. If not? then CUOIK sets more values to zero
until either the sequence is exhausted or a member comes on scale., If a
member is deemed to be on scale by CUQOIK, then other routines get to
compute it. In the case v £ FNUL, CUOIK also gets a chance to set

underflow values before any computation is attempted. The point here is

15



that the small exponent range forces the underflow boundary for Iv(z)
(overflow boundary for Kv(z)).to be superimposed over formula boundaries
to exclude the use of the uniform expansions in some range of z. A
similar situation can occur if a sequence for Iv+k(z), k + N-1,..., O
crosses the boundary (|z|/2)2 < v + 1. The last NZ members are set to
zero in CSERI, the index is modified to N - NZ and the new (sub)
sequence 1s examined for underflow by calls to CUOIK or CBUNI.

This illustrates that underflow on a VAX may be very likely because
the orders v do not have to be very large for this to happen. 'It is
especially important that the scaling described in Section 3 be used to
keep as much of the exponent range as possible; otherwise, the underflow
and overflow limits (in double precision arithmetic) would have to be

modified by 10i16, making the effective exponent range (where accurate

results can be obtained) only 10122'

8. Subroutine Names and Purpose

The main callable routines of the package are listed in Section 1.
This séction lists lower level routines, their purpose and the
possibility of a call if one wishes to by-pass argument checking and
overflow or underflow checking. Unless one has complete information on
the range of variables, calls to lower level routines are not
recommended.

The names of double precision versions are preceeded by a Z in
place of a C. Since a type DOUBLE PRECISION COMPLEX is not available as
a standard FORTRAN type, complex numbers are carried as ordered pairs.
This necessitates FORTRAN subroutines or functions for a variety of the
common mathematical functions. These are listed at the bottom of Table

II.
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SUBROUTINE

GAMLN
CBINU
CBKNU
CRATI
CSHCH

CSERI
CMLRI
CASYTI
CWRSK

VCBUNI
CUNI1
CUNIZ2
CBUNK
CUNK1
CUNK2

CACON
CACAI
CUNIK
CUNHJ

CUOIK

TABLE II

COMPUTATION
In I'(x), x > 0 ’
Iv(Z)’ Re(z) 2 0
20

K (z), Re(z)
v

I (z)/1 (z), Re(z) Zz O for CMLRI, CWRSK
v+1 v

sinh z, cosh z for CBKNU

I (z) by power series (|z|/2)2 < v+,
R&(z) 2 0

I (z) by Miller algorithm normalized by a
S¥ries, Re(z) 2 0

I (z) by asymptotic expansion for z » o,
RE(z) 2 O

I (z) by Miller algorithm normalized by
Wronskian, Re(z) 2 0

Driver for CUNI1 and CUNIZ2
I,(z) by (2.1)

Iv(Z) by (2.2)

Driver for CUNK1 and CUNK2
Kv(z) by (2.1), (4.1), (4.2)
Kv(Z) by (2.2), (4.1), (4.2)

Analytic continuation of K (z) to left
half plane v

Analytic continuation of Ai, Ai' to
left half plane

Parameters for (2.1) for use in CUNI1,
CUNK1, CUOIK

Parameters for (2.2) for use in CUNIZ2
CUNK2, CUOIK

Set underflow or overflow indictators and
set underflow values for I sequences

CALLABLE

YES
YES
YES
YES
YES

NO
NO
NO
NO

NO
NO
NO
NO
NO
NO

NO
NO
NO
NO

NO
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CUCHK azcks for component underflow when NO
magnitude £ exp(~ALIM) = 1.0E+3 *
R1MACH(1)/TOL

CKSCL Scaled recurrence on underflow for CBKNU, NO
CUNK1, CUNK2

C3182 Addition of I and K functions for (4.2) NO
on KODE = 2

Additional Double Precision Routines

* =
ZMLT z1 22 23 YES
ZDIV z1/z2 = z3 YES
ZSQRT /z, -7 < arg z S 7 YES
yA
ZEXP e YES
ZLOG ln z, -1 < arg z £ 7 YES
ZSHCH sinh z, cosh z YES

9. Package Accuracy

The approximate relative error in the magnitude of a complex Bessel
function can be expressed by P*1,0E + S where P = max{unit round off,
1.0E - 18) is the nominal precision and 1.0E + S represents the increase
in error due to argument reduction in the elementary functions. Here, S
= max(1, |L0OG10(]|z|)| , |LOG10(v)|) approximately (i.e. S = max(1,
| exponent of |z||, |exponent of v|). However, the phase angle may have
only absolute accuracy. This is most likely to occur when one component
(in absolute value) is larger than the other by several orders of
magnitude, If one component is 1.0E + K larger than the other, then one
can expect only max(|LOG10(P)| =K, 0) significant digits; or, stated
another way, when K exceeds the exponent of P, no significant digits
remain in the smaller component. However, the phase angle retains
absolute accuracy because, in complex arithmetic with precision P, the
smaller component will not (as a rule) decrease below P times the
magnitude of the larger component. In these extreme cases, the

principal phase angle is on the order of + P or + 7/2 + P.
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10. Quick Check Routines

The SLATEC library standards [5] require that driver routines, which
exercise major loops in each subroutine, be written. These are
generally not definitive tests, but give the first-time user of the
package some confidence that the package is operating correctly on his
machine. A check of the Wronskian is made in many of these routines.
Where recurrence is used, sequences which cross formula boundaries are
checked by different formulae. These checks are made in driver routines
CQCAI, CQCBH, CQCBI, CQCBJ, CQCBK, CQCBY and their corresponding double
precision versions.

A technical detail arose during the evaluation of the Wronskian

a1 (ze?™73) ai1(2) - ™3 pi1(2e21"3) pi(2) - :E:Zi/6
using the scaled version (KODE = 2)
e.-C1—Cz[ec11-\i(26321ri/3)] [eCzAi'(z)]—
e 12 2mi/3 [ P (02T 3] [0 ()] - :E:;;if

because the scale factors are not analytic in the whole z plane and

introduce a discontinuity along the line 6 = w/3:

Case I, -w< 8 £ 7/3.

r3/2 e361/2
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since 8 is in the proper range for the principal square root. Now,

W = r,eie . e21Ti/3 _ re1(0+2'rr/3)



and
Jao p ei(e/2+n/3)

~

since 6 + %1 is in a proper domain for the principal square root. Thus,
_ 2 .3/2 2 3/2 |i(38/2+w) _ _
g, = 3 W =3 r e =",
LI
Therefore e = e = 1 and no scaling is necessary.
w
Case 11, 3 <8 =2

In this case,

2 .3/2 _38i/2
L, = 3T e

and the principal square root can be used. On the other hand,

W=r ei(6 +2n/3) mT< o+ 2r s 21
3 3
_i(e - 4m/3) - LAl
=r e m< 8 3 3

and 6 - 4n/3 is the proper argument for the principal square root.
Then,

£, = % r3/2 ei(e - 4n/3) ei(9/2 - 2n/3)
_ 2 .3/2 38i/2
=3r e =z,
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Thus, the scaling factor for use with KODE = 2 in the argument

range n/3 < 8 £ w is

LTty T2t - 3/2
e V2 _ o ~(W3)2

-~ .

11. Errata for Reference [1] and Reference [4]

The roots of Yo(z) and Y1(z) from CBESY and ZBESY were checked
against the roots published in [1, p. 373]. All values checked except
the evaluation of Yo(z) at the third root of Y1(z). The entry is in
error in the 7th digit of the imaginary part. The correct entries are

Zero of Y1 Y
-7.015903683 + 0.5533930461 -0.020126949 + 0.5186422331.
In [4, p. 220], the Uth zero of Yu(z) should be

-3.4307435178 + 1.39457035621

where the error in [4] is in the first decimal place of the real part.
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1000
1241
1541
1600

1601
1640
1641
1642
1642
1651
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2322
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2343
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2644
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6240
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7553
7553
8024
8235
8311
3141
3151
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. Jde
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DO

Brinkman
Quintenz

. Hardee

Clem
1601
1620
1630
1650

Dean

Simmons

Thompson

Shampine

Amos (35)

liams

Yu

Gurrola

Kuswa
. Andreas
. Maydew
. Rigali

O o> O
OO =

. Riley

Brock
Moyer
Koontz

. Vandevender (5)

Hanson
Bartel

Damrau
Johnson

Pound
Jefferson (5)
Baskis
Ostrander (5)
Garner (3)

E/TIC (Unlim. Release)

3154-3 C. H. Dalin (28)
For DOE/TIC

23





