14.29 Generalizations14.31 Other Applications

§14.30 Spherical and Spheroidal Harmonics

Contents

§14.30(i) Definitions

With l and m integers such that 0\leq m\leq l, and \theta and \phi angles such that 0\leq\theta\leq\pi, 0\leq\phi\leq 2\pi,

14.30.1\mathop{Y_{{{l},{m}}}\/}\nolimits\!\left(\theta,\phi\right)=\left(\frac{(l-m)!(2l+1)}{4\pi(l+m)!}\right)^{{1/2}}e^{{im\phi}}\mathop{\mathsf{P}^{{m}}_{{l}}\/}\nolimits\!\left(\mathop{\cos\/}\nolimits\theta\right),
14.30.2\mathop{Y_{{l}}^{{m}}\/}\nolimits\!\left(\theta,\phi\right)=\mathop{\cos\/}\nolimits\!\left(m\phi\right)\mathop{\mathsf{P}^{{m}}_{{l}}\/}\nolimits\!\left(\mathop{\cos\/}\nolimits\theta\right)\text{ or }\mathop{\sin\/}\nolimits\!\left(m\phi\right)\mathop{\mathsf{P}^{{m}}_{{l}}\/}\nolimits\!\left(\mathop{\cos\/}\nolimits\theta\right).

\mathop{Y_{{{l},{m}}}\/}\nolimits\!\left(\theta,\phi\right) are known as spherical harmonics. \mathop{Y_{{l}}^{{m}}\/}\nolimits\!\left(\theta,\phi\right) are known as surface harmonics of the first kind: tesseral for m<l and sectorial for m=l. Sometimes \mathop{Y_{{{l},{m}}}\/}\nolimits\!\left(\theta,\phi\right) is denoted by i^{{-l}}\mathfrak{D}_{{lm}}(\theta,\phi); also the definition of \mathop{Y_{{{l},{m}}}\/}\nolimits\!\left(\theta,\phi\right) can differ from (14.30.1), for example, by inclusion of a factor (-1)^{m}.

\mathop{P^{{m}}_{{n}}\/}\nolimits\!\left(x\right) and \mathop{Q^{{m}}_{{n}}\/}\nolimits\!\left(x\right) (x>1) are often referred to as the prolate spheroidal harmonics of the first and second kinds, respectively. \mathop{P^{{m}}_{{n}}\/}\nolimits\!\left(ix\right) and \mathop{Q^{{m}}_{{n}}\/}\nolimits\!\left(ix\right) (x>0) are known as oblate spheroidal harmonics of the first and second kinds, respectively. Segura and Gil (1999) introduced the scaled oblate spheroidal harmonics R_{n}^{m}(x)=e^{{-i\pi n/2}}\mathop{P^{{m}}_{{n}}\/}\nolimits\!\left(ix\right) and T_{n}^{m}(x)=ie^{{i\pi n/2}}\mathop{Q^{{m}}_{{n}}\/}\nolimits\!\left(ix\right) which are real when x>0 and n=0,1,2,\dots.

§14.30(ii) Basic Properties

Most mathematical properties of \mathop{Y_{{{l},{m}}}\/}\nolimits\!\left(\theta,\phi\right) can be derived directly from (14.30.1) and the properties of the Ferrers function of the first kind given earlier in this chapter.

Symmetry

Parity Operation

Orthogonality

14.30.8\int _{{0}}^{{2\pi}}\!\!\int _{{0}}^{{\pi}}{\mathop{Y_{{{l_{1}},{m_{1}}}}\/}\nolimits^{{*}}}\!\left(\theta,\phi\right)\mathop{Y_{{{l_{2}},{m_{2}}}}\/}\nolimits\!\left(\theta,\phi\right)\mathop{\sin\/}\nolimits\theta d\theta d\phi=\delta _{{l_{1},l_{2}}}\delta _{{m_{1},m_{2}}};

here and elsewhere in this section the asterisk (*) denotes complex conjugate.

See also (34.3.22), and for further related integrals see Askey et al. (1986).

§14.30(iii) Sums

Distributional Completeness

For a series representation of the product of two Dirac deltas in terms of products of spherical harmonics see §1.17(iii).

§14.30(iv) Applications

In general, spherical harmonics are defined as the class of homogeneous harmonic polynomials. See Andrews et al. (1999, Chapter 9). The special class of spherical harmonics \mathop{Y_{{{l},{m}}}\/}\nolimits\!\left(\theta,\phi\right), defined by (14.30.1), appear in many physical applications. As an example, Laplace’s equation \nabla^{2}W=0 in spherical coordinates (§1.5(ii)):

14.30.10{\frac{1}{\rho^{2}}\frac{\partial}{\partial\rho}\left(\rho^{2}\frac{\partial W}{\partial\rho}\right)+\frac{1}{\rho^{2}\mathop{\sin\/}\nolimits\theta}\frac{\partial}{\partial\theta}\left(\mathop{\sin\/}\nolimits\theta\frac{\partial W}{\partial\theta}\right)}+\frac{1}{\rho^{2}{\mathop{\sin\/}\nolimits^{{2}}}\theta}\frac{{\partial}^{2}W}{{\partial\phi}^{2}}=0,

has solutions W(\rho,\theta,\phi)=\rho^{l}\mathop{Y_{{{l},{m}}}\/}\nolimits\!\left(\theta,\phi\right), which are everywhere one-valued and continuous.

In the quantization of angular momentum the spherical harmonics \mathop{Y_{{{l},{m}}}\/}\nolimits\!\left(\theta,\phi\right) are normalized solutions of the eigenvalue equation

14.30.11\mathrm{L}^{2}\mathop{Y_{{{l},{m}}}\/}\nolimits=\hbar^{2}l(l+1)\mathop{Y_{{{l},{m}}}\/}\nolimits,

where \hbar is the reduced Planck’s constant, and \mathrm{L}^{2} is the angular momentum operator in spherical coordinates:

14.30.12\mathrm{L}^{2}=-\hbar^{2}\left(\frac{1}{\mathop{\sin\/}\nolimits\theta}\frac{\partial}{\partial\theta}\left(\mathop{\sin\/}\nolimits\theta\frac{\partial}{\partial\theta}\right)+\frac{1}{{\mathop{\sin\/}\nolimits^{{2}}}\theta}\frac{{\partial}^{2}}{{\partial\phi}^{2}}\right);

see Edmonds (1974, §2.5).

For applications in geophysics see Stacey (1977, §§4.2, 6.3, and 8.1).