11.13 Methods of Computation11.15 Approximations

§11.14 Tables

Contents

§11.14(i) Introduction

For tables before 1961 see Fletcher et al. (1962) and Lebedev and Fedorova (1960). Tables listed in these Indices are omitted from the subsections that follow.

§11.14(ii) Struve Functions

  • Abramowitz and Stegun (1964, Chapter 12) tabulates \mathop{\mathbf{H}_{{n}}\/}\nolimits\!\left(x\right), \mathop{\mathbf{H}_{{n}}\/}\nolimits\!\left(x\right)-\mathop{Y_{{n}}\/}\nolimits\!\left(x\right), and \mathop{I_{{n}}\/}\nolimits\!\left(x\right)-\mathop{\mathbf{L}_{{n}}\/}\nolimits\!\left(x\right) for n=0,1 and x=0(.1)5, x^{{-1}}=0(.01)0.2 to 6D or 7D.

  • Agrest et al. (1982) tabulates \mathop{\mathbf{H}_{{n}}\/}\nolimits\!\left(x\right) and e^{{-x}}\mathop{\mathbf{L}_{{n}}\/}\nolimits\!\left(x\right) for n=0,1 and x=0(.001)5(.005)15(.01)100 to 11D.

  • Barrett (1964) tabulates \mathop{\mathbf{L}_{{n}}\/}\nolimits\!\left(x\right) for n=0,1 and x=0.2(.005)4(.05)10(.1)19.2 to 5 or 6S, x=6(.25)59.5(.5)100 to 2S.

  • Zanovello (1975) tabulates \mathop{\mathbf{H}_{{n}}\/}\nolimits\!\left(x\right) for n=-4(1)15 and x=0.5(.5)26 to 8D or 9S.

  • Zhang and Jin (1996) tabulates \mathop{\mathbf{H}_{{n}}\/}\nolimits\!\left(x\right) and \mathop{\mathbf{L}_{{n}}\/}\nolimits\!\left(x\right) for n=-4(1)3 and x=0(1)20 to 8D or 7S.

§11.14(iii) Integrals

  • Abramowitz and Stegun (1964, Chapter 12) tabulates \int _{0}^{x}(\mathop{I_{{0}}\/}\nolimits\!\left(t\right)-\mathop{\mathbf{L}_{{0}}\/}\nolimits\!\left(t\right))dt and (2/\pi)\int _{x}^{\infty}t^{{-1}}\mathop{\mathbf{H}_{{0}}\/}\nolimits\!\left(t\right)dt for x=0(.1)5 to 5D or 7D; \int _{0}^{x}(\mathop{\mathbf{H}_{{0}}\/}\nolimits\!\left(t\right)-\mathop{Y_{{0}}\/}\nolimits\!\left(t\right))dt-(2/\pi)\mathop{\ln\/}\nolimits x, \int _{0}^{x}(\mathop{I_{{0}}\/}\nolimits\!\left(t\right)-\mathop{\mathbf{L}_{{0}}\/}\nolimits\!\left(t\right))dt-(2/\pi)\mathop{\ln\/}\nolimits x, and \int _{x}^{\infty}t^{{-1}}(\mathop{\mathbf{H}_{{0}}\/}\nolimits\!\left(t\right)-\mathop{Y_{{0}}\/}\nolimits\!\left(t\right))dt for x^{{-1}}=0(.01)0.2 to 6D.

  • Agrest et al. (1982) tabulates \int _{0}^{x}\mathop{\mathbf{H}_{{0}}\/}\nolimits\!\left(t\right)dt and e^{{-x}}\int _{0}^{x}\mathop{\mathbf{L}_{{0}}\/}\nolimits\!\left(t\right)dt for x=0(.001)5(.005)15(.01)100 to 11D.

§11.14(iv) Anger–Weber Functions

  • Bernard and Ishimaru (1962) tabulates \mathop{\mathbf{J}_{{\nu}}\/}\nolimits\!\left(x\right) and \mathop{\mathbf{E}_{{\nu}}\/}\nolimits\!\left(x\right) for \nu=-10(.1)10 and x=0(.1)10 to 5D.

  • Jahnke and Emde (1945) tabulates \mathop{\mathbf{E}_{{n}}\/}\nolimits\!\left(x\right) for n=1,2 and x=0(.01)14.99 to 4D.

§11.14(v) Incomplete Functions

  • Agrest and Maksimov (1971, Chapter 11) defines incomplete Struve, Anger, and Weber functions and includes tables of an incomplete Struve function \mathop{\mathbf{H}_{{n}}\/}\nolimits\!\left(x,\alpha\right) for n=0,1, x=0(.2)10, and \alpha=0(.2)1.4,\tfrac{1}{2}\pi, together with surface plots.