

Microwave Integrated Retrieval System (MIRS) Performances of Surface Properties

(NOAA-18 and METOP-A AMSU/MHS Configuration)

NOAA/NESDIS

Development Team

S-A. Boukabara (Lead), C. Kongoli, W. Chen, S. Hong, Q. Liu, B. Yan, N. Sun and T. Kleespies

MIRS Oversight Board F. Weng (Chair), R. Ferraro, L. Zhao and T. Schott

Microwave Integrated Retrieval System (MIRS) Performances of Sea Ice Concentration

(NOAA-18 and METOP-A AMSU/MHS Configuration)

NOAA/NESDIS

Development Team

S-A. Boukabara (Lead), C. Kongoli, W. Chen, S. Hong, Q. Liu, B. Yan, N. Sun and T. Kleespies

MIRS Oversight Board F. Weng (Chair), R. Ferraro, L. Zhao and T. Schott

Validation of Sea-Ice for NOAA-18 AMSU-MHS

Reference Data

MSPPS

nne

- High-resolution IMS
- MIRS On-line Monitoring Tool

Inter-Comparison of MIRS and MSPPS Sea Ice Concentration

ND ATMOST

nnac

MIRS N18 Sea Ice

- Only MIRS converged points used $\mathbf{\mathbf{v}}$
- MSPPS and MIRS are generally consistent over the * Northern and the Southern Hemispheric Ice

Inter-comparisons with 4-km IMS

- 4-km Surface Type IMS footprint-matched over AMSU FOV using accurate FP matching techniques (Tom Kleespies's code and algorithms)
- IMS Sea Ice Concentration computed at the AMSU-FOV and used as "ground truth"
- Only MIRS convergence points used
- Statistics shown for December 3, 2007: Bias, RMSE, correlation, Std. and slope
- Comparable stats between MIRS and MSPPS, underestimation of sea ice concentration as indicated by negative bias versus IMS

	Product	Bias (%)	RMSE (%)	Correlation Factor	Std. (%)	Slope
Compared to IMS	MIRS	-7.2	11.5	0.63	7.3	0.85
	MSPPS	-6.2	11.0	0.59	7.6	0.77

Comparable statistics of MIRS and MSPPS with respect to IMS
Further examination is expected to improve bias and RMSE

- Consistent MIRS Sea Ice Retrievals
- Low detection threshold of MIRS (at 5%) with no apparent false alarm

Validation of Sea-Ice for METOP-A AMSU-MHS

Reference Data

MSPPS

nne

MIRS On-line Monitoring Tool

Inter-Comparison of MIRS and MSPPS Sea Ice Concentration

ND ATINOSO

nnac

MIRS METOP-A Sea Ice

MIRS METOPA EDR Sea Ice Concentration (%) 2007-12-22 Des (V846)

-75 -90 -180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180 NoData QC fail Land 0 10 20 30 40 50 60 70 80 90 100

Future Work/Improvements

- Investigate METOP-A surface type pre-classification algorithm over ocean
- Stratification of sea ice retrievals by Scan Angle
- Stratification of sea ice retrievals by Season and Hemisphere
- Expand sea ice emissivity catalog to include other major sea ice type emissivity spectra

Microwave Integrated Retrieval System (MIRS) Performances of SWE

(NOAA-18 and METOP-A AMSU/MHS Configuration)

NOAA/NESDIS

Development Team

S-A. Boukabara (Lead), C. Kongoli, W. Chen, S. Hong, Q. Liu, B. Yan, N. Sun and T. Kleespies

MIRS Oversight Board F. Weng (Chair), R. Ferraro, L. Zhao and T. Schott

Validation of SWE for NOAA-18 AMSU-MHS

Reference Data

- MSPPS
- Ground-based measurements
- MIRS On-line Monitoring Tool

MIRS Retrievals of Snow Properties

MIRS SWE Product

- MIRS retrieves snow properties based on the interpretation of retrieved emissivity spectra and the skin temperature
- The interpretation of emissivities is physically-based, i.e., from a catalog of snow physical and radiometric parameters derived from a 1-layer snow emissivity model

MIRS Effective Grain Size product

MIRS SWE

NO ATINOSS

MSPPS SWE

MIRS vs. measured SWE

MSPPS vs. measured SWE

- SWE measurements taken over a 5-year period between 2001-2005 in US and Canadian Prairie regions
- SWE measurements were collocated with NOAA-16 AMSU data
- Only convergent points were compared
- MIRS displays higher correlation and lower RMSE than MSPPS

Comparison Statistics of MIRS and MSPPS Measured SWE as Reference

	Product	Bias (cm)	RMSE (cm)	Correlation Factor	Std. (cm)	Slope
Compared to measured SWE	MIRS	1.0	3.4	0.53	2.8	0.52
	MSPPS	0.9	4.0	0.36	3.1	0.36

- Improved performance for MIRS
- RMSE of 3.4 cm or 40% relative to the mean SWE of the dataset is still high

MIRS and MSPPS SWE error dependence on retrieved Tskin

ND ATINOSO

ШŪ

VEW O

✤ MIRS SWE error increases as grain size increases, so deterioration of performance for larger grain sizes

Future Work/Improvements

- Investigate SWE error sources/extend evaluation work
- Stratification of SWE retrievals by Scan Angle
- Incorporation of forest effects
- Extend evaluation of snow extent and grain size retrievals