FILE FOLDER

DESCRIPTION ON TAB:

82-462ф Elec Distr Study, Had not PT
(LD BR: 404) Substo Basewide

Outside/inside of actual folder did not contain hand written information

\square Outside/inside of actual folder did contain hand written information *Scanned as next image

[^0]

DATE
REMARKS
Bapr 82 Contract numher asyd.

PUBLIC WORKS DEPARTMENT

BUILDING 1005, MARINE CORPS BASE CAMP LEJEUNE, NORTH CAROLINA 28542

$$
\begin{aligned}
& \text { PW0:04: ELR:hf } \\
& \text { 82-B- } 4620 \\
& \text { In-House Design } \\
& 8 \text { April } 1982
\end{aligned}
$$

From: Public Works Officer
To: Base Accounting Officer
Subj: Assignment of Job Order Numbers
Ref: (a) BO P7000.1H

1. In accordance with the reference, it is requested that the following Job Order Numbers be established for FY-82, all having CAC 9120:

Job Order Number
Description
AM2 1002304620 U
(Engineering Design)
ELEC DISTR STUDY HADNOT PT SUBSTN

AM2 100235 " U
(Reproduction)
AM2 100237 " U
(Update Records \& Drawings)
AM2 100241 " U
"
(Post Award Efforts)
AM2 100245 " U
(Rework)

n/a

2. Funds chargeable (if other than MCB):
3. The following JON's are cancelled and no further time will be charged to them: n / a
E. L. ROUSE

By direction
Copy to:
Proj Folder
JON Book

FROM Code 04

то Code 02
subj Assignment of Contract Number

1. Contract No. N62470-82-B-4620 has been assigned to the following project:

Title:
ELEC OISTR SYS, MADNOT PT SUBSTN
Location:
2. Other numbers applicable to this project are:

PWD No.
Project No. Program No. \qquad
E. L. ROUSE

POWER SYSTEM ANALYSIS
 AND PLANNING

Prepared By:
J.W. KELLEY

Electrical Engineer

SECTION 1	Purpose
SECTION 2	Procedure
SECTION 3	Commercial Electrical Power Supply
SECTION 4	Existing Electrical System
SECTION 5	CAPSE Fault Study
SECTION 6	Station Load Analysis
SECTION 7	System Loadflow Analysis
SECTION 8	General Discussion and Recommendations
SECTION 9	Table of Recommended Relay Settings
SECTION 10	One-line Diagram
Appendix A	Graph - Peak Demands 1979-1983
Appendix B	Graph - Megawatt Hours 1979-1983
Appendix C	Load Duration Curve 1983
Appendix D	Typical Daily Profiles 1983

SECTION 1

PURPOSE

This power system analysis and electrical system planning study for the Camp Lejeune complex is a comprehensive analysis used to evaluate the current electrical system for performance, adequacy, reliability, and to ascertain the effectiveness of alternate plans for system expansion and operation.

The analysis and planning is threefold.
First, it is used to develop a $10-15$ year electrical utility master plan which is based on the military construction objectives.

Second, it is used to optimize utilization of capital within DOD funding constraints.

Third, it is used to develop a data base for future analysis, utilizing the Computer Assisted Power System Engineering Program (CAPSE).

SECTION 2

PROCEDURE

Field investigations were conducted to secure information in order to prepare bus-node diagrams of the electrical power system, compile existing load data, and determine circuit configurations and impedances. The existing circuit configuration and loads were entered into a digital computer in order to conduct fault current and loadflow analysis of the present system.

Based on the findings on Load flow Analysis L-83 and Fault Analysis F-83 other cases were developed and analyzed as required.

The fault current study is to be used in rating interrupting capacities of equipment and setting of protective devices.

Upon completion of using the CAPSE Program, the data for the computer runs were stored within the computer system. The stored data, which represents the electrical power system parameters and loading, can promptly be modified for future analysis.

SECTION 3

COMMERCIAL ELECTRICAL POWER SUPPLY

COMMERCIAL

Electrical power is purchased from the Carolina Power and Light Company at 12.47 KV . The Carolina Power and Light Company serves the Camp Lejeune complex from a 230 KV circuit through two transformers with a total of 50 MVA of capacity at 12.47 KV .

The total short circuit currents available at the point of service as calculated by Carolina Power and Light are as follows:

Three Phase $=13118 \mathrm{amps}$ - symmetrical (283.3 MVA)
Line to ground $=13637$ amps - symmetrical (294.5 MVA)

The description of the existing system is reflected in Load Flow Analysis L-83 and Fault Current Analysis F-83.

The MCB CAMP LEJEUNE main switching station is served from an adjacent Carolina Power and Light Company Substation at 12,420/7,200 volts from two 25 MVA transformers. The CP\&L substation is served from a 230 KV aerial line.

The interrupting capacities of the ten Main Substation Oil Circuit Breakers are 500 MVA. The present fault level from Carolina Power and Light is 295 MVA.

Distribution from the main switching station is accomplished by ten radial overhead circuits.

Sections of the existing overhead distribution system in the regimental areas are being converted to underground distribution as a result of the new construction in the area.

Air break switches on the overhead feeders allow for isolation of sections of the circuits for repair/maintenance as well as for providing a method to interconnect the feeders in order to provide alternate methods of service.

Presently, there are nine voltage regulators on five of the feeders to correct low voltage conditions.

Onslow Beach and portions of Paradise Point are served at 2.4 KV through step down transformers.

Midway Park and portions of Paradise Point have been converted to 12.47 KV .
The existing 24 KV distribution system at the old Naval Hospital site is scheduled for conversion to 12.47 KV as part of P 808 , Convert Hospital to Division HQ.

SECTION 5

CAPSE FAULT STUDY

This program produces both three-phase, and single-line to ground fault current information. For each fault, the output data is based on the following:
a. Per-unit resistance and per-unit reactance to the point of fault on a 10 MVA base.
b. MVA at point of fault. Current (actual not per-unit) at point of fault at 12.47 KV .

Fault Analysis F1-83
Reference should be made to Bus-node diagram (Section 11) to correlate BUS location with calculated values listed in Table I.

TABLE I

Bus 非	Feeder	Location	MVA	AMPS	MVA	AMPS
2	Main Bus		283	13118	294	13637
29	Rifle Range	(BKR 44)	73	3370	53	2437
30	Rifle Range	(F.C. TAP)	47	2198	31	1439
31	Rifle Range	(R.R. 1)	33	1543	21	. 960
32	Rifle Range	(RR-2)	25	1145	15	692
33	Rifle Range	(Triangle Tap)	21	965	12	576
34	Rifle Range	(Triangle Load)	8	380	7	310
35	Rifle Range	(BKR 39)	20	933	12	555
37	Rifle Range	(BKR 43)	12	573	7	332
38	Rifle Range	(BKR 40)	8	378	5	216
39	Rifle Range	(End Load)	8	353	4	205
26	French Crk	(1500 KVA REG)	86	3970	64	2984
27	French Crk	(FTC Top)	72	3356	53	2441
28	French Crk	(FTC Load)	62	2885	44	2050
25	Industrial	(GUM ST)	101	4688	77	3572
23	Reg 2	(Gum St)	162	7517	141	6520
24	Reg 2	(BKR 37)	94	4372	72	3333
21	Reg 3	(Holcomb Cir)	113	5226	87	4019
22	Reg 3	(End Load).	80	3689	58	2674
18	Reg 1	(BKR 41)	145	6701	111	5166
19	Reg 1	(BKR 33-34-8)	131	6048	99	4584
20	Reg 1	(End Load)	101	4689	76	3511
11	Paradise Pt	(BKR 7)	112	5167	76	3529
16	Paradise Pt	(Hospital)	73	3353	45	2099
17	-					
12	Paradise Pt	(BKR 18)	59	2715	40	1857
14	Paradise Pt	(BKR 11)	42	1965	29	1331
3	Capehart	(SUB)	50	2310	33	1539
6	Montford Pt	(Midway)	41	1888	27	1241
5	Montford Pt	Alt Hospital	38	1738	29	1339
8	Hospital	New Hospital	46	2123	24	1097
9	Montford Pt	(BKR 31)	22	1016	15	684
10	Montford Pt	(Camp 2)	18	817	12	557

TABLE I

SECTION 6

STATION LOAD ANALYSIS

Existing Conditions

A peak load of $37,843 \mathrm{KW}(40,650 \mathrm{KVA})$ with a power factor of 93 percent was recorded on August 22,1983 . The peak electrical demand has increased by approximately 20 percent since 1979. A graph of the monthly peak demand and kilowatt hour consumption for the years 1979 through 1983 are provided as. Attachment A and B. Utilizing 1983 hourly, utility metering data a load duration curve and typical maximum, average and minimum daily load profiles were prepared for each month and are provided as Attachments C and D. .

Future Requirements

Projected future loading for each radial circuit is as follows:

CIRCUIT
NUMBER

1

2

3
4

5

6

7
8

9

10

CIRCUIT

Midway/Monford Pt

Regimental \#1
Rifle Range
Paradise Point
French Creek
Capehart
Industrial
Regimental \#2
Regimental \#3
Hospital

PROJECTED MVA LOAD/ RATED CKT CAPACITY
$5.0 / 11.4$
$4.6 / 11.4$
$3.8 / 6.6$
$4.2 / 10.3$
$5.4 / 11.4$
$6.6 / 11.4$
$4.3 / 6.6$
$7.8 / 10.3$
$3.4 / 10.3$
$3.8 / 11.4$

PERCENT OF RATED CAPACITY
43.9\%
40.4%
57.6%
40.8\%
47.4\%
57.9\%
65.2%
75.7\%
33.0\%
33.3%

Total Projected System Load 48,900 KVA

The future electrical load increase on the system was determined by considering the planned projects scheduled for construction and consideration of normal load growth. The load increase for the next five years is projected to continue to increase at the four percent average annual rate experienced during the past five years, resulting in a peak station load of 48,900 KVA.

```
The planned projects, listed by individual feeders, that were considered in
projecting the increased electrical load are as follows:
Montford Point/Midway Park Feeder
HR3-81 (under construction) Repair Laham Housing (Midway Park)
P628 (FY-84) UEPH
P808 (FY-86) of 35 Mech School
P810 (FY-87) of 35 Mech School
P807 (FY-88) of 35 Driver Training Facility
Regimental 非 Feeder
P808 (FY-85) Division HQ
P527 (FY-86) Elec Comm Maintenance Shop
P525 (FY-87) Combat Vehicle Maintenance Facility
P643 (FY-87) Elec Comm Maintenance Shop
Rifle Range Feeder
F775 (FY-84) Onslow Beach Lodge
P346 (FY-84) Amphibious Vehicle Maintenance Shop
P784 (FY-84) Expand Utilities (water and sewage)
French Creek Feeder
P240 (FY-84) Combat Maintenance Shops
P054 (FY-85) Automotive Org Shop
P065 (FY-86) Gym
P517 (FY-86) Combat Vehicle Maintenance Shop
P031 (FY-87) BN SQDRN HQ
P057 (FY-87) Administrative Building
P167 (FY-87) Elec Comm Maintenance Shop
P257 (FY-87) Field Maintenance Shop
P803 (FY-87) Field Maintenance Shop
P679 (FY-88) Elec Comm Maintenance Shop
```

```
P804 (FY-88) Field Maintenance Shop
P805 (FY-88) Field Maintenance Shop
Capehart Feeder
F549 (FY-85) High School
Industrial Feeder
P786 (FY-88) Cold Storage Plant
Regimental 非2 Feeder
P503 (under construction) Engr Btn Vehicle Maintenance Shop
P635 (under construction) UEPH
P624 (FY-85) UEPH
P631 (FY-86) UEPH
P806 (FY-86) Light Armored Vehicle Maintenance Shop
P627 (FY-87) UEPH
P229 (FY-88) Elec Comm Maintenance Shop
P568 (FY-88) Combat Vehicle Maintenance Shop
P626 (FY-88) UEPH
Regimental 韭3
P785 (FY-85) Water Treatment Facility Upgrade
P629 (FY-88) UEPH
```


SECTION 7

SYSTEM LOADFLOW ANALYSIS

Load Flow Case L-83 (Existing Sytem)

Reference should be made to the one-line diagram (Section 10) to correlate specific locations with the discussion. The analysis assumes regulators and capacitors shown on the one-line diagram are operational.

A peak station load of $37843 \mathrm{KW}(40,650 \mathrm{KVA}$ at 93% power factor) was recorded during August of 1983.

The load flow analysis was conducted to determine the capability of the system at rated cpacity, that is 50 MVA . The loads utilized for the ten radial feeders under this condition are as follows:

Feeder

1. Montford Point
2. New Hospital
3. Industrial
4. Capehart
5. Paradise Point
6. Regimental 1
7. Regimental 2
8. Regimental 3
9. French Creek
10. Rifle Range

MVA Load.
Rated MVA

Percent of Rated capacity
$4.0 / 11.4 \quad 35.0 \%$
$5.0 / 11.4$
$4.0 / 6.6$
$6.0 / 11.4$
$5.8 / 10.3$
$4.2 / 11.4$
$6.8 / 10.3$
3.4/10.3
$6.2 / 11.4$
$4.6 / 6.6$ 50 MVA
43.9\%
60.6\%
52.6\%
56.3\%
36.8\%
66.0\%
33.0\%
54.4\%
70.0\%

- The load flow analysis indicates no problem areas when the feeders were operated with a total system load of 50 MVA .
is f
Additional Load flow Analysis was conducted to detrmine the effects of interties between feeders during emergency cases．

Reference should be made to bus－node diagram and one－line diagram（Section 10） to correlate the node discussion with specific locations in the cases discussed below：

Industrial load on Regimental 2 Feeder

In the event that Main Breaker 7 is out of service，a switch can be closed between nodes 23－25 at Gum Street to connect the Industrial load to the Regimental 2 feeder．Computer calculations were obtained using a peak load of 5.8 MVA on the Regimental 2 feeder and a peak load of 3.9 MVA on the Industrial feeder．The critical points for this temporary arrangements are listed below：
a．Nodes 2－23，a load of 9.9 MVA can be expected on $⿰ ⿰ 三 丨 ⿰ 丨 三 4 / 0$ Regimental 2 bottom circuit along Holcomb Boulevard which is rated at 10.3 MVA．
b．Additional construction in the Regimental Area will add new air conditioning load which will reduce the capability of the Regimental 2 feeder to serve the Industrial Area during peak load periods．Load shedding will be required on both feeders during these times in order to reduce load．

Rifle Range Load on French Creek Feeder
In the event that Main Breaker 3 is out of service，a switch can be closed between nodes 30－27 along the Main Service Road to connect the Rifle Range load to the French Creek feeder．A peak load of 6.2 MVA on French Creek feeder and peak load of 4.6 MVA on the Rifle Range feeder．The critical points for this temporary arrangement are listed below：
a．Nodes $2-26$ ，a load of 10.8 MVA can be expected on the 非336．4 ACSR French Creek feeder rated at 11.4 MVA．
b．At node 26 ，a load of 10.4 MVA can be expected on the 1500 KVA regulator rated at 15 MVA．
c．At node 27 ，a load of 8.7 MVA can be expected on $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ $/ 0$ section of French Creek feeder along Main Service Road which is rated at 10.3 MVA．
d．The voltage regulator at Node 10 （French Creek Area）and the voltage regulators on the Rifle Range feeder are adequate to compensate for the expected voltage drop on both feeders．

French Creek Load on Regimental 2 Feeder

In the event that Main Breaker 5 is out of service, a switch can be closed between nodes 24-26 to connect the French Creek load to Regimental 2 feeder. Computer calculations were obtained using a peak load of 5.7 MVA on the French Creek feeder and a peak load of 5.6 MVA on Regimental 2 feeder. The crucial points for this temporary arrangement are listed below:
a. At node 23 , a load of 11.3 MVA can be expected on 非4/0 Regimental 2 bottom circuit along Holcomb Boulevard which is rated at 10.3 MVA. This represents a 10% overload.
b. At node 24 , a 5% voltage drop can be expected at Regimental 2 area loads.
c. To reduce the possible overloading of the Regimental 2 feeder that may result from this method of operation it is recommended that a portion of the existing load on Regimental 2 and future projects in the area be served from the Regimental 3 feeder. This can be accomplished by closing Switch R-1 and opening OCB 35.

Regimental 2 Load on Regimental 3 Feeder
In the event that Main Breaker 8 is out of service，a switch can be closed between nodes 21－24 to connect Regimental 2 load to the Regimental 3 feeder． Computer calculations were obtained using a peak load of 6.0 MVA on the Regimental 2 feeder and 2.6 MVA on Regimental 3 feeder．The critical points for this temporary arrangement are listed below：
a．At node 21 ，a load of 8.6 MVA can be expected on $⿰ ⿰ 三 丨 ⿰ 丨 三 一 4 / 0$ Regimental 3 top circuit along Holcomb Boulevard which is rated at 10.3 MVA．
b．A 5% voltage drop can be expected at the L Street load．

Regimental 3 Load on Regimental 1 Feeder
In the event that Main Breaker 9 is out of service, a switch can be closed between nodes 19-21 to connect Regimental 3 load to the Regimental 1 feeder. Computer calculations were obtained using a peak load of 3.6 MVA on Regimental 3 feeder and 4.7 MVA for Regimental 1 feeder. The critical point for this temporary arrangement is listed below:
a. At node $2-21$, a load of 8.3 MVA can be expected on $\$ 336.4$ ACSR bottom circuit of the 3 circuit armless construction span leading from the Main Substation to Breaker 41 which is rated at 11.4 MVA.

Regimental 1 Load on Regimental 3 Feeder
In the event that Main Breaker 2 is out of service，a switch can be closed between nodes 19－21 on Main Service Road near Holcomb Circle to connect the Regimental 1 load to the Regimental 3 feeder．Computer calculations were obtained using a peak load of 4.4 MVA on Regimental 1 feeder and 3.6 MVA for Regimental 3 feeder．The critical point for this temporary arrangement is listed below：
a．Nodes $2-21$ ，a load of 8.3 MVA can be expected on $⿰ ⿰ 三 丨 ⿰ 丨 三 一 4 / 0$ Regimental 3 top circuit along Holcomb Boulevard which is rated at 10．3 MVA．

Capehart Load on Montford Point Feeder
In the event that Main Breaker 6 is out of service，switches can be closed between nodes $4-14,4-5$ to connect the Capehart load to the Montford Point feeder．Computer calculations were obtained using a peak demand of 5.8 MVA for the Capehart feeder and 4.0 MVA for Montford feeder．The critical points are listed below：
a．At voltage regulator MM－1，the $⿰ ⿰ 三 丨 ⿰ 丨 三 一$（ 0 run along Holcomb Boulevard to
 substation（rated at 11.4 MVA ），a load of 9.8 MVA can be expected．

Paradise Point Load on Montford Point Feeder
In the event that Main Breaker 4 is out of service，switches can be closed between nodes 14－4 \＆4－5，and a switche can be opened at Stone Street and Brewster Boulevard to connect the Paradise Point load on to Montford Point feeder．Computer calculations were obtained using a peak demand of 6.5 MVA for Paradise Point and 4.7 MVA for the Montford Point feeder．The crucial Points are listed below：
a．At nodes，a load of 11.2 MVA can be expected on $⿰ ⿰ 三 丨 ⿰ 丨 三 一 4 / 0$ circuit along Holcomb Boulevard which is rated at 10.3 MVA．This represents an 8% overload．
b．At nodes 9,6 ，and 12 ，low voltage condition would exist；approximately 11% voltage drop at Montford Point area， 8.5% voltage drop at Midway Park，and 17% voltage drop at Paradise Point area．
c．As indicated above the overloading of the conductor and the excessive voltage drop limits the load that can be served．

GENERAL DISCUSSION AND RECOMMENDATIONS

EXISITING SXSTEM

The existing electrical distribution system is in good condition with no major operational problems. The system is well maintained for the most part. A contract, completed in 1982, provided for testing, inspection and calibration of circuit breakers, voltage regulator, major stepdown transformers and protective relays. The contract also identified equipment that required maintenance outside the scope of the contract.

Conversion of portions of the overhead distribution system in the Regimental Area to an underground system presents several potential problems that can be minimized by adequate system design. The existing overhead system can be easily examined for malfunction and repairs can be made in a timely manner. The underground system must provide for sectionalization of the system in such a manner as to minimize the area affected by the failure and where possible the provision of an alternate service. The purpose of this design is twofold; one, it permits sectionalization of the circuit to facilitate troubleshooting and, two, it allows a method of isolating the problem area allowing the unaffected portions to be served from alternate sources.

LOAD ANALYSIS

Analysis of the planned projects scheduled for construction indicates that the load growth for the next five years will continue to increase at the rate that was experienced during the past five years, approximately 4 percent per year. This projected load growth will approach the CP\&L Substation transformer capacity by the early 1990's. Additional load growth above that projected will require additional transformer capacity from CP\&L.

The individual distribution feeders, with the exception of the Rifle Range feeder, are capable of serving the anticipated load growth. Although the existing voltage regulators on the rifle range feeder are adequate for the existing load small increases in the load can be better served with the relocation of regulator RRZ in the main line between the Onslow Beach tap and the Camp site 非2 tap. It is recommended that future projects causing large electrical load increases on the Rifle Range feeder be delayed until modificalions and circuit upgrade has been completed. Four voltage regulators and several capacitor banks (a total of $2,325 \mathrm{KVAC}$) are required to correct the low voltage conditions during periods of peak load. Due to the voltage drop on the feeder the capacity of the circuit (Rated 6.6 MW) is limited to approximately 4.5 MW . In order to provide the capability to serve loads in excess of 4.5 MW the following circuit modifications are proposed:
(a) Reconductor the Rifle Range feeder from the main switching station to the area of OCB 44 (near Lyman Road and Main Service Road) with 336.4 MCM Aluminum.
(b) Convert the 12.47 KV line to 34.5 KV from OCB 44 to Courthouse Bay.
(c) Provide stepdown transformer to serve the onslow Beach area and Triangle Outpost tap.

RELAY COORDINATION
A protective device coordination study was conducted to determine the proper setting for the relays and circuit reclosures. Recommended settings are provided in Section 9. It is recommended that a company specializing in relay testing and calibration be retained to test, calibrate and set the relays in accordance with the recommended settings.

SECTION 9

RELAY COORDINATION STUDY

PRESENT SYSTEM PROTECTION

The majority of the system protection consists of a combination of instantaneous and inverse time non-directional overcurrent type relays ${ }_{0}$. circuit reclosers and fuses are used on branch circuits. System coordination can be achieved with the existing relays. Although on some circuits, relays of different time current characteristics result in higher settings of upstream devices than would be required if the relays had more compatitive characteristics. (As presently connected circuit breakers 8 and 8 A can not be coordinated. It is recommended that circuit breaker 8 A be connected as a tap off the Regimental $\#$ 添CIRCUT IW LIEU OF THE LUAD SIDE OF CIRCOT EDEAKER 8 .)

COORDINATION PROCEDURES

The primary objective of protective relaying is to constantly monitor the power system to assure maximum circuit and equipment protection consistant with assuring service continuity in the event of abnormal conditions such as short circuits of large overloads. Generally cofrdination is a complomises $S P$ between the mutually desirable but somewhat inconsistent goals of maximum protection and maximum service continuity. The goal is to achieve a selective system in which the system problem will be isolated as quickly as possible while the remainder of the system remains in service. The settings recommended by this study, (Table I) are based on a judgement as to the best balance between the competing objectives.

KILOWATT IIEMANI

37,100 37,000 36.800 36,700 36,600 36,500 36,400 36,300 36,200 36,100 36,000 35,900 35,800 35:700 35,600 35,500 35,400 35,300 35,200 35,100 35,000 34,900 34,800 34,700 34,600 34,500 34,400 34,300 34,200 34,100 34,000 33,900 33.800 33,700 33,600 33.500 33,400 33,300 33,200 33.100 33,000 32,900 32,800 32,700
32,600
32,500
32,400 32,300 32.200 32,100

TIMES OF OCCURFENCE

TIMES IIEMAND WAS EXCEEIED OR EQUAL

1	1
3	4
1	5
4	9
4	13
3	16
15	31
6	37
19	56
8	64
12	76
9	85
14	99
9	108
5	113
12	125
4	129
5	134
2	136
4	140
3	143
9	152
4	156
4	160
7	167
4	171
6	177
3	180
11	191
5	196
5	201
4	205
7	212
9	221
12	233
11	244
4	248
11	259
6	265
12	277
2	279
17	296
6	302
12	314
3	317
16	333
16	349
2	351
8	359
5	364

KILOWATT DEMANII\%

TIME \%

99.99	0.0 .1
99.73	0.04
99.19	0.05
98.92	0.10
98.65	0.14
98.38	0.18
98.11	0.35
97.84	0.42
97.57	0.63
97.30	0.73
97.03	0.86
96.76	0.97
96.49	1.13
96.22	1.23
95.95	1.29
95.68	1.42
95.41	1.47
95.14	1.52
94.87	1.55
94.60	1.59
94.33	1.63
94.07	1.73
93.80	1.78
93.53	1.82
93.26	1.90
92.99	1.95
92.72	2.02
92.45	2.05
92.18	2.18
91.91	2.23
91.64	2.29
91.37	2.34
91.10	2.42
90.83	2.52
90.56	2.66
90.29	2.78
90.02	2.83
89.75	2.95
89.48	3.02
89.21	3.16
88.94	3.18
88.67	3.37
88.40	3.44
88.14	3.58
87.87	3.61
87.60	3.80
87.33	3.98
87.06	4.00
86.79	4.09
$86 \cdot 52$	4.15

LEJEUNE

TIMES OF OCCURRENCE

WAS EXCEEDED
 OR EQUAL

KILOWATT DEMANII\%

TIME\%

13
31,900
31,800
31,700
31,600
31,500
31,400
31,300
31,200
31,100
31,000
30,900
30,800
30,700
30,600
30,500
30,400
30,300
30,200
30,100
30,000
29,900
29,800
29,700
29,600
29,500
29,400
29,300
29,200
29,100
29,000
28,900
28,800
28,700
28,600
28,500
28,400
28,300
28,200
28,100
28,000
27,900
27,800
27,700
27,600
27,500
27,400
27,300
27,200 27,100

377
384 392 394 404 407 417 422 436 450 458
476
479
489
496
508
514
529
539
555
572
582
605
617
638
653
670
680
697
699
726
745
751
778
786
798
807
827
833
855
867
882
890
911
932
941
959
967
983
992

86.25	4.30
85.98	4.38
85.71	4.47
85.44	4.49
85.17	4.61
84.90	4.64
84.63	4.76
84.36	4.81
84.09	4.97
83.82	5.13
83.55	5.22
83.28	5.43
83.01	5.46
82.74	5.58
82.47	5.66
82.21	5.79
81.94	5.86
81.67	6.03
81.40	6.15
81.13	6.33
80.86	6.53
80.59	6.64
80.32	6.90
80.05	7.04
79.78	7.28
79.51	7.45
79.24	7.64
78.97	7.76
78.70	7.95
78.43	7.98
78.16	8.28
77.89	8.50
77.62	8.57
77.35	8.88
77.08	8.97
76.81	9.11
76.54	9.21
76.28	9.44
76.01	9.51
75.74	9.76
75.47	9.89
75.20	10.06
74.93	10.16
74.66	10.40
74.39	10.64
74.12	10.74
73.85	10.94
73.58	11.04
73.31	11.22
73.04	11.32

LEJEUNE

KILOWATT DEMANI

27,000 26,900 26,800 26,700
26,600
26,500
26,400 26,300 26,200 26,100 26,000 25,900 25,800 25,700 25,600 25,500 25,400 25,300 25,200 25,100 25,000 24,900 24,800 24,700 24,600 24,500 24,400 24,300 24,200 24,100 24,000 23,900 23,800 23,700
23,600
23,500
23,400 23,300 23,200 23,100 23,000 22,900 22,800 22,700 22,600 22,500 22,400 22,300 22,200 22,100

TIMES OF OCCURRENCE

TIMES DEMAND
 WAS EXCEELIEI OR EQUAL

1,009
1,017
1,043
1,055
1,075
1,096
1,111
1,138
1,148
1,166
1,178
1,196
1,205
1,228
1,237
1,259
1,292
1,300
1,321
1,332
1,359
1,386
1,407
1,416
1,448
1,465
1,497
1,528
1,544
1,574
1,589
1,642
1,661
1,689
1,712
1,748
1,755
1,795
1,813
1,843
1,880
1,907
1,946
1,960
2,012
2,042
2,084
2,099
2,137
2,158

KILOWATT
IIEMANN
TIME\%
11.51
11.61
11.90
12.04
12.27
12.51
12.68
12.99
13.10
13.31
13.44
13.65
13.75
14.01
14.12
14.37
14.75
14.84
15.08
15.20
15.51
15.82
16.06
16.16
16.53
16.72
17.09
17.44
17.62
17.97
18.14
18.74
18.96
19.28
19.54
19.95
20.0 .3
20.49
20.69
21.04
21.46
21.77
22.21
22.37
22.97
23.31
23.79
23.96
24.39
24.63

LEJEUNE
KILOWATT
IIEMANI

22,000 21,900 21,800 21,700 21,600 21,500 21,400 21,300 21,200 21,100 21,000 20,900 20,800 20,700 20,600 20,500 20,400 20,300 20,200 20,100 20,000 19,900 19,800 19,700 19,600 19,500 19,400 19,300 19,200 19,100 19,000 18,900 18,800
18,700
18,600
18,500
18,400
18,300
18,200
18,100
18,000
17,900
17,800
17,700
17,600
17,500
17,400
17,300
17,200
17,100

TIMES OF OCCURRENCE

NUMBER OF TIMES DIEMAND WAS EXCEEDEI OR EQUAL

KILOWATT
DEMAN
2,196
2,254
2,272
2,328
2,360
2,415
2,448
2,492
2,521
2,594
2,623
2,703
2,765
2,799
2,873
2,907
2,990
3,031
3,127
3,162
3,269
3,321
3,411
3,457
3,557
3,662
3,717
3,837
3,894
4,016
4,062
4,171
4,230
4,334
4,371
4,460
4,567
4,621
4,716
4,767
4,863
4,898
4,985
5,034
5,123
5,175
5,255
5,337
5,374
5,463
59.29
59.02
58.76
58.49
58.22
57.95
57.68
57.41
57.14
56.87
56.60
56.33
56.06
55.79
55.52
55.25
54.98
54.71
54. 44
54.17
53.90
53.63
53.36
53.09
52.83
52.56
52.29
52.02
51.75
51.48
51.21
50.94
50.67
50.40
50.13
49.86
49.59
49.32
49.05
48.78
48.51
48.24
47.97
47.70
47.43
47.16
46.90
46.63
46.36
46.09

TIME\%
25.07
25.73
25.93
26.57
26.94
27.57
27.94
28.45
28.78
29.61
29.94
30.85
31.56
31.95
32.80
33.18
34.13
34.60
35.70
36.10
37.32
37.91
38.94
39.46
40.60
41.80
42.43
43.80
44.45
45.84
46.37
47.61
48.29
49.48
49.90
50.91
52.14
52.75
53.84
54.42
55.52
55.91
56.91
57.47
58.48
59.08
59.99
60.93
61.35
62.37

LEJEUNE

Kilowatt DEMANI

17,000
16,900
16,800
16,700
16,600
16,500
16,400
16,300
16,200
16,100
16,000
15,900
15,800
15,700
15,600
15,500
15,400
15,300
15,200
15,100
15,000
14,900
14,800
14,700
14,600
14,500
14,400
14,300
14,200
14,100
14,000
13,900
13,800
13,700
13,600
13,500
13,400
13,300
13,200
13,100
13,000
12,900
12,800
12,700
12,600
12,500
12,400
12,300
12,200
12,100

TIMES OF OCCURRENCE

TIMES IIEMAND
WAS EXCEEDEII
OR EQUAL

46	5,509	45.82
75	5,584	45.55
49	5,633	45.28
63	5,696	45.01
57	5,753	44.74
107	5,860	44.47
50	5,910	44.20
87	5,997	43.93
85	6,082	43.66
45	6,127	43.39
81	6,208	43.12
45	6,253	42.85
82	6,335	42.58
34	6,369	42.31
74	6,443	42.04
50	6,493	41.77
81	6,574	41.50
36	6,610	41.23
82	6,692	40.97
43	6,735	40.70
84	6,819	40.43
71	6,890	40.16
38	6,928	39.89
71	6,999	39.62
37	7,036	39.35
65	7,101	39.08
30	7,131	38.81
63	7,194	38.54
52	7,246	38.27
56	7,302	38.00
38	7,340	37.73
71	7,411	37.46
63	7,474	37.19
26	7,500	36.92
62	7,562	36.65
25	7,587	36.38
50	7,637	36.11
33	7,670	35.84
47	7,717	35.57
26	7,743	35.30
76	7,819	35.04
33	7,852	34.77
65	7,917	34.50
80	7.997	34.23
26	8,023	33.96
63	8,086	33.69
34	8,120	33.42
76	8,196	33.15
26	8,222	32.88
58	8,280	32,61

TIME\%
62.89
63.75
64.31
65.03
65.68
66.90
67.47
68.46
69.43
69.95
70.87
71.38
72.32

72,71
73.55
74. 12
75.05
75.46
76.40
76.89
77.85
78.66
79.09
79.90
80.32
81.07
81.41
82.13
82.72
83.36
83.79
84.61
$85 \cdot 32$
85.62
86.33
86.61
87.19
87.56
88.10
88.40
89.26
89.64
90.38
91.30
91.59
92.31
92.70
93.57
93.86
94.53

NUMBER OF
TIMES DEMANII

KILOWATT DEMANI

12,000 11,900 11,800 11,700 11,600 11,500 11,400
11,300 11,200 11,100 11,000 10,900 10,800 10,700 10,600 10,500

TIMES OF OCCURRENCE 27 92 32 76 25 54
48
24
41
19
19
11
7
2
1
1

WAS EXCEEDEII OR EQUAL

8,307
8,399
8,431
8,507
8,532
8,586
8,634
8,658
8,699
8,718
8,737
8,748
8,755
8,757
8,758
8,759
KILOWATT
DEMAND \quad TIME\%

KILOWATT
32.34
32.07
31.80
31.53
31.26
30.99
30.72
30.45
30.18
29.91
29.64
29.38
29. 11
28.84
28.30
94.83
95.88
96.25
97.12
97.40
98.02
98.57
98.84
99.31
99.53
99.74
99.87
99.95
99.98
100.00

LEJEUNE

-

GENERAL ELECTRIC

INSTALLATION AND

SERVICE ENGINEERING

GENERAL ELECTRIC COMPANY, 141 PROVIDENCE ROAD, P. O. BOX 30697
CHARLOTTE, NORTH CAROLINA 28230, Phone (704) 371-3300
DIVISION

April 13, 1982

Mr. Luther Norris
Public Works Design Division
Bldg. 1005
U.S. Marine Corps
Camp Lejeune, NC 28542
Subject: Power System Study (Scope)
Dear Luther:

This letter is to follow-up your phone conversation with Gene Weaver in regards to the subject.

Gene ask me to send you the scope covering the areas you and he discussed:
a) One-Line Diagram
b) Short Circuit Analysis
c) Short Circuit Calculations
d) Protective Devices Coordination
e) Load Flow

The attached scope is what we furnish in these areas. These are what we recommend and may go deeper than you want to go in the system. With that in mind, you may delete some of the scope.

We sure hope this is helpful and is what you need. We would like very much to do the study for you.

If we can be of further help, please give us a call.
Sincerely,

J. O. Crompton

Sales Engineer
ps
Attachment
cc: R. E. Weaver
C. F. Brown
J. B. Wise

Study Workscopes

One-Line Diagram

In meeting certain study input requirements, a composite one-line diagram of the power distribution system will be developed on one sheet, showing in detail all the power transformers, disconnect switches circuit breakers, fuses, protective relays, current transformers and power sources.

All circuits significant to the analyses will be included in the diagram using standard I.E.E.E. formats conducive to study work.

All motor loads will be shown individually or as lumped horsepower, depending upon size, quantity and function.

All substations, circuits, tie circuits, motor loads and the like will be identified and labeled on the diagram. Each power transformer will include the rating, voltage transformation, percent impedance, winding configuration, and grounding methods, if present. All circuit breakers and fuse disconnects will be labeled according to their ratings.

Conductor sizes and lengths pertinent to the analyses will be labeled on the drawing.

Short-Circuit Analysis

A short-circuit current study will be performed and documented in report form with all short-circuit current calculations made in accordance with the latest standards adopted by the American National Standards Institute. The following short-circuit calculating standards will be used where appropriate in the study:

ANSI-C37.010	1979	- Standard Application Guide for AC High-Voltage Circuit Breakers.
ANSI-C37.5	- 1969	- Calculation of Fault Currents for Application of Power Circuit Breakers Rated on a Total Current Basis.
ANSI-C37.13	- 1980	- Low-voltage AC Power Circuit Breakers (600 Volt Insulation Class).

The short-circuit calculations will be accompanied by a bus-to-bus listing of all the system impedances referenced to the completed system one-line diagram. The short-circuit calculations will be made with the aid of a digital computer. A computer printout for each study condition will accompany the report for record purposes. The one-line diagram will be indexed to the computer printout for complete interpretation of shortcircuit duties. Calculations will include all buses specifically identified for study on the one-line diagram.

An engineering discussion of the results of the shortcircuit analyses will be included in the report.

In addition a tabulated comparison between the calculated short-circuit levels and the ratings of the circuit breakers and fuses encompassed in the study will be included in the report. Comments regarding the interrupting ratings of the tabulated devices and recommendations for replacing possible underrated equipment with specifications will be provided in each case.

To assure worst case conditions are covered, the calculations will be based on the system switching modes that will develop the maximum short-circuit currents.

Both the momentary and interrupting conditions will be calculated to check the ratings of the medium and low voltage circuit breakers and fuses.

The analysis will compare the calculated short-circuit currents with the interrupting ratings of all lowvoltage protective devices of each load center substation in the system.

The analysis will compare the calculated short-circuit: currents with the interrupting ratings of all lowvoltage protective devices of each load center substation and motor control center/panel in the system.

The analysis will compare the calculated short-circuit currents with the interrupting ratings of all mediumvoltage circuit breakers and fuses, along with all lowvoltage protective devices of each load center substation in the system.

Short-Circuit Calculations

When protective devices in a power distribution system are to be coordinated, it is necessary to calculate the system short-circuit current magnitudes. The shortcircuit current levels indicate how the protective devices are to be set relative to each other in achieving the desired selectivity throughout the system.

For protective device coordination purposes, short circuit calculations will be performed and documented in report form. All short-circuit current calculations will be made in accordance with the latest standards adopted by the American National Standards Institute. The following short-circuit calculating standards will be used where appropriate in the study:

$$
\begin{gathered}
\text { ANSI - C37.010-1979 - } \begin{aligned}
& \text { Standard Application Guide } \\
& \text { for AC High Voltage Circuit } \\
& \text { Breakers. }
\end{aligned} \\
\text { ANSI - C37.5 - } 1969-\begin{array}{l}
\text { Calculation of Fault Cur- } \\
\text { rents for Application of }
\end{array} \\
\begin{array}{l}
\text { Power Circuit Breakers } \\
\text { Rated on a Total Current } \\
\text { Basis. }
\end{array} \\
\text { ANSI - C37.13 - } 1980-\begin{array}{l}
\text { Low Voltage AC Power Current } \\
\text { Breakers (600 Volt Insulation } \\
\text { Class). }
\end{array}
\end{gathered}
$$

The short-circuit calculations will be accompanied by a bus-to-bus listing of all the system impedances referenced to the completed one-line diagram. The shortcircuit calculations will be made with the aid of a digital computer. A computer printout for each study condition will accompany the report for record purposes. The one-line diagram will be indexed to the computer printout for complete interpretation of short-circuit duties.

Both the momentary and interrupting short-circuit currents will be calculated for protective device coordination purposes.

Protective Device Coordination Study

A complete protective device coordination study of the power system will be performed and documented for the purpose of prescribing settings for the system's protective devices. The prescribed settings will be determined based on a practical compromise between devices for downstream faults. The criteria for protection shall be in accordance with the latest requirements that are set forth by the National Electrical Code (NEC) and the American National Standards Institute (ANSI).
A tabulation of the recommended relay and circuit breaker settings will be included in the report. The listing will identify the devices by location and function number.

An engineering evaluation will be made of the protective devices in the system from an application standpoint. Where existing devices are inadequate to coordinate, the report will reflect these deficiencies and make recommendations for improvement.

Time-current coordination curve plots will be included in the report.where necessary to display suggested settings for the system protective devices.

The study will begin "downstream" at the secondary main circuit breaker on each low-voltage substation. An analysis will be made of the setting for the main secondary circuit breakers based on the substation's highest set feeder circuit breaker. Where necessary, new settings will be prescribed for the secondary main circuit breakers and for all "upstream" medium-voltage applied adjustable relays in the system.

The study will begin at each low-voltage secondary feeder circuit breaker. An analysis will be made of the settings of each substation secondary feeder circuit breaker in providing the desired coordination with the largest downstream branch circuit protective device. Where necessary, new settings will be prescribed for the feeder circuit breakers to achieve this coordination. The study will continue through each substation secondary main circuit breaker, primary fuse (if applicable), medium-voltage feeder relay, main medium-voltage switchgear relays and then interface with the utility protective devices. New settings will be prescribed where necessary, to achieve the desired overall system coordination.

Where necessary, the study will prescribe new settings for all medium-voltage applied switchgear relays in the system. The settings will be prescribed based on existing settings for any downstream circuit breakers or fuses in the system.
The size and speed characteristics of the distribution fuses will be reviewed. Recommendations, where necessary, will be included to achieve the desired coordination.
Where necessary, the study will review and, if necessary, prescribe new settings for the protective relays such as bus, transformer, motor and generator differential relays, reverse power, loss of field, current unbalance, undervoltage, pilot wire and any other relays pertinent to the protection of the system.

A load flow study will be performed for the purpose of investigating system loading conditions for the normal operating condition. Up to (Number of Cases) cases of alternative operating conditions.will be studied. All system loads (watt and var components) and power sources (utility tieline ε generators) will be included in the analyses.

The study will be processed on a digital computer and will determine bus voltage levels, amperes, power factor, and real and reactive flows at the (Voltage)-volt buses. The study report shall include the following:

The data base for the load flow analysis can be reliably established with existing ammeters and watt hour or var:...: meters installed in the unit load center switchgear. If such devices are not available, an assumed power factor combined with connected loads and given diversity factors can be used with some reliability. On the other hand, if portable instrumentation is necessary to establish a more accurate data base, such field work is outside the scope of this proposal.

A separate one-line diagram showing real and reactive power quantities and direction, voltage levels, and power factor for each case studied will be included in the report. The one-line diagrams shall be accompanied with computer output sheets documenting the results of each case studied.

The study report will include a complete engineering analysis for each case studied. The engineering analysis will include recommendations for better system operating conditions involving suggestions for system redesign or operating conditions, if appropriate. The analysis will also include discussions on load shedding recommendations that would allow the system to continue functioning following the sudden loss of some supply power.

The study will review the system transformer tap positions. With the existing transformer tap ranges available, the study will include recommendations for new tap positions that will improve the voltage conditions in the system.

The study shall reflect steady-state loading conditions following automatic load shedding for emergency conditions.

The study will be used in conjunction with the stability study required as part of this specification.

Power Syplam Analyiós

BASE MAINTENANCE DIVISION
 Marine Corps Base
 Camp Lejeune, North Carolina 28542

From: Base Maintenance Officer
To: Public Works Officer
Subj: Request for Plans and Specifications
Ref: FONECON btwn L. Norris, PWD and F. Cone, BMO on 30 March 1982

1. As discussed during the reference, it is requested that plans and specifications be prepared to provide a coordination study for the electric distribution system served by the main Hadnot Point substation.
2. Base Maintenance personnel are available for consultation as required. Points of contact are F. Cone, Director, Utilities Branch, extension 5161 and H. Ireland, Supervisor, Electric Distribution Shop, extension 5256.
R.M. dillon
R. M. DILLON

By direction
Copy to:
UtilBr
MERBr
Shop 52

From: Base Naintenance Officer
To: Publle Wopks officer
Subj: Request for Plans and Specifications
Refi FOHECOA btwn L. Norris, PVD and F. Cone, BHO on 30 Harch 1962

1. As discussed during the reference, it is requested that plans and specifications be prepared to provide a coordination study for the electric distribution system served by the main Hadnot Point substation,
2. Base Maintenance personnel are available for congultation as required. Points of contact are F. Cone, Director, Utilities Branch, extension 5161 and H. Ireland. Supervisor, Electric Distribution Shop, extension 5256.
R. 17. DILLON

By direction
Copy to:
UtilBr MERBy Shop 52保

[^0]: Confidential Records Management, Inc.
 New Bern, NC
 1-888-622-4425
 $9 / 08$

