Cognitive Impairment in Heart Failure

Lee Ann Hawkins, MSN, NP Anthony Firek, MD Shirley Kilian, PhD Christopher Firek, BA Elena Perez T. Michael Kashner, PhD *and* Helme Silvet, MD

VA Loma Linda Healthcare System, Loma Linda, CA

The Problem

Adherence & Heart Failure

- Heart failure (HF) is growing & costly problem
- Proven strategies improve outcome
- Patient adherence to these strategies poor
- Poor adherence = poor outcome
 - Especially with medication
- Adherence is complex
 - WHO model (socio-economic, health care system, therapy, condition, and patientrelated domains)¹

¹Sabate,E. 2003

CI in HF

- Cl impacts memory, attention, learning, motor speed, reaction times and executive functioning
- CI may impact all domains in WHO model
 - Particularly with complex regimens
- Cl in HF
 - Limited studies
 - Paucity of data in outpatients
 - No data in veterans
 - No studies to evaluate association with medication adherence (MA)

Hypothesis

- We suspected CI may be both underrecognized and prevalent in veteran outpatients with HF
- We suspected CI may directly impact MA
- May provide a target for intervention to improve outcome

Study Aims

- Describe the prevalence, type, and severity of CI in the outpatient veteran population
- Examine clinical and demographic variables that may predict Cl in HF
- Determine the relationship between CI and MA

Study Setting and Population

- Prospective cohort at Loma Linda VA Healthcare System (ethnically mixed, urban population of 246,000 veterans in Southern California).
- Approved by the IRB
- Subjects recruited from the outpatient HF and general medical clinics
 - Inclusion: established clinical diagnosis of HF (not limited by LVEF), able to participate in cognitive function testing
 - Exclusion: life expectancy of >6 months, documented dementia requiring a caregiver.

- All subjects screened for CI using SLUMS¹
- Clinical and demographic data collected, including depression screen
- All subjects asked to bring all regularly taken prescription medications for a direct 30-day pill count
- All subjects identified as having CI invited back for a modified battery of neuropsychological testing

¹Morley, JE 2002

Study Flowsheet

Adherence measured with one-month pill-count

251 subjects recruited from December 2009 – March 2011

Other predictor variables collected:

Employment Perceived financial distress Educational level Systolic BP History of atrial fibrillation History of stroke Substance abuse: tobacco, marijuana, alcohol, illicits Serum: thiamine, vitamin B-12, creatinine, hemoglobin, TSH, Hgb A1c, BNP Number of prescribing providers Number of hospitalizations past Questionnaires: medication taking behavior

beliefs related to adherence

Age, years	<mark>66.4</mark>
Male gender	98.0%
Race	
Caucasian	72.0%
African-American	13.6%
Hispanic	9.6%
Living arrangement: living alone	27.0%
Diabetes	<mark>53.0%</mark>
Coronary artery disease	64.0%
Hypertension	77.0%
Systolic Blood Pressure (mean)	125.8
HF duration >5 years	49.0%
HF etiology: ischemic	55.0%
LVEF <u>< 4</u> 0%	<mark>66.0%</mark>
LVEF (mean)	<mark>37.5</mark>
History of depression	<mark>30.0%</mark>
Geriatric Depression Scale score ¹	13.3
PTSD	19.0%
Managed in specialized HF clinic	57.0%

¹score 0-9=normal, 10-19=mild depression, 20-30=severe depression

Strikingly High Prevalence of Undiagnosed Cl - 57.6%

Presence of CI in study population based on SLUMS exam n=250

Cognitive Impairment	No. / total no. (%)
None	106/250 42.4
Mild	104/250 41.6
Severe (dementia)	40/250 16.0
SLUMS score (mean <u>+</u> SD, range)	24.39 <u>+</u> 4.0 (12-30)

SLUMS administration time - 7.1 minutes \pm 1.4, (4-15) (mean \pm SD, range)

Neuropsychological Testing

- Subjects with CI were invited back for further neuropsychological testing
 - Only 61% actually returned, perhaps reflecting another effect of CI
 - Verbal learning, immediate memory and delayed verbal memory were the most impaired

Variables Predicting Cl Generalized Linear Regression using an Ordinal Multinomial link

Variables significantly associated with CI were:

Age

- African-American race
- Depression (GDS score)
- Use of alcohol
- Not returning for the pill-count

*adjusted for age, AA race, Hispanic ethnicity, living alone, tobacco use, and number of prior admissions to the hospital

Medication Adherence (MA)

MA was calculated from the 30-day pill count

To capture both overtaking and undertaking the medication, a "delta" was determined by computing the absolute difference between the number of pills that were taken from the number that should have been taken

Only 67% of subjects returned

CI Worsens MA

Cognitive Impairment	Adherence (%)	95% CI	Change score	X ² (df)	p-value
None	81.1	77.1 – 85.0	REF	REF	REF
Mild	74.1	69.6 – 78.5	7.0	5.22 (1)	0.022
Severe (dementia)	74.0	65.9 – 82.1	7.0	2.33 (1)	0.127

Change score computed from patients with no cognitive impairment.

CI Worsens MA (adjusted)

Cognitive Impairment	Adjusted Adherence (%)	95% CI	Adjusted change score	X ² (df)	p-value
None	78.1	70.5 – 85.6	REF	REF	REF
Mild	70.7	63.0 – 78.4	7.4	5.68 (1)	0.017
Severe (dementia)	73.3	63.3 – 83.4	4.7	1.03 (1)	0.310

Change score computed from patients with no cognitive impairment. Adjusted for patient age, race, ethnicity, living arrangement, use of tobacco, and number of prior hospitalizations

Limitations

- Male veteran population
- Pill count may not accurately reflect MA
- MA in the cohort may have been overestimated due to the high non-returning rate of cognitively impaired patients
- The use of the SLUMS screening may not be adequate to make quantitative conclusions about CI (though has been validated in a Veteran population as a sensitive qualitative screening tool).

Discussion

- We found a higher than previously reported incidence of CI
- Verbal learning, immediate memory, and delayed verbal memory were the most impaired
- Many predictors of CI found in previous studies did not reach significance in our study
- The entire study population had poor adherence
- The effect on adherence starts in mild CI range, which easily goes undiagnosed

Conclusions

- Our study demonstrated a high prevalence of undiagnosed CI in the outpatient veterans with HF
- CI had a significant effect on worsening MA
- Consider adding screen for CI for all HF patients
- Interventions that improve MA targeting underlying CI need to be implemented and tested