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1 Introduction

It has been assumed for quite some time that the Universe is expanding (de Sitter, 1934). But
in recent years, it has been hypothesized that the Universe is expanding at an accelerating rate
(Perlmutter et al., 1999). A new entity called dark energy is one possible way to explain this
acceleration (Riess et al., 1998). To explore this theory, observations are needed to verify the
current cosmological models and estimate the unknown parameters of interest. Type-Ia supernovae
data, cosmic microwave background (CMB), and assumptions on the structure of the Universe can
be used. One of the best measures of the expanding Universe is the magnitude-redshift relation of
type-Ia supernovae (Perlmutter and et al., 1997). Because type-Ia supernovae are standard candles
we can measure their distance and we can also measure their redshift; relating these two quantities
should give us more information about movement in the Universe. This relationship can further
shed light on the dimensionless matter density parameter for the Universe (Ωm) and the equation
of state (EOS, w(z)) of dark energy (DE) (Genovese et al., 2009; Huterer and Turner, 2001). These
parameters can hopefully shed light on the acceleration of the Universe and about the mysterious
dark energy.

The hypothesized dark energy is not directly detectable or measurable, so other means of
investigation are employed to learn about this mysterious influence (Genovese et al., 2009). We
investigate some of these probes to gain a better understanding of the possible existence and nature
of dark energy. These are the distance-redshift relation quantified through abundance of galaxy
clusters, baryon acoustic oscillations measured from the size of galaxy clusters, a measure of the
background photons passing through hot clusters called the integrated Sachs-Wolfe effect, weak
lensing, and type Ia supernovae.

The type-Ia supernovae are one of the best ways to explore the expanding Universe because of
their property as a standardizable candle, consisting of measurable luminosity (Leibundgut, 2004;
Riess et al., 1996b; Wood-Vasey and et al., 2008). The peak luminosity when a supernova explodes
provides information on the distance for the supernova, which can be directly related to the redshift
of the object. So, we have two measures from the same object that can be related: redshift (z) and
luminosity distance (DL).
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Obtaining luminosity measurements (DL) is a rather complicated process that we do not discuss
here in detail. The luminosity,DL, is often referred to in terms of µ: DL = 10

µ−25
5 . The peak

luminosity is of greatest interest and can be obtained from fitting a light curve to each supernova’s
data (Pskovskii, 1977). The brightness of the supernova is closely related to the shape of its light
curve (Leibundgut, 2001). The color, light curve shape, and peak luminosity are related and nearby
supernovae data are needed to assist in estimating these values (W. M. Wood-Vasey et al., 2007;
Riess et al., 1996a). We assume that the previous work of the astronomer and light curve fitters
is correct and provides valid peak luminosity values (DL) and error bars for these measurements
(σ2). Most of the variability is assumed to be due to differences in the supernovae at low and high
redshift and needed color correcting for reddening from intergalactic dust. This includes complex
astronomy, filtering, multiple measurements per supernovae, classification of the supernova as a
type-Ia, and light curve fitting processes (Guy et al., 2005).

Redshift (z) is one of the measurable quantities and it comes from spectra (Dodelson, 2003).
In our paper, this refers to the cosmological redshift of an object. This is not quite the same as the
typical redshift and here encompasses the stretching of space between objects (Filippenko, 1997).

Many cosmological assumptions are needed about the Universe and are a result of work done
on general relativity with the Friedmann-Robertson-Walker metric. We also need the Hubble
parameter and the speed of light for these equations. We assume to know the speed of light (c)
precisely. But we need to estimate the Hubble parameter (H0); there has been previous work to
estimate this parameter from other sources which provides good prior information for us.

Finally, we come to our magnitude-redshift relation accounting for the comoving distance (r(z))
to an object (Huterer and Turner, 1999; Genovese et al., 2009). This yields:

r(z) =
1

c(1 + z)
10

µ−25
5 (1)

r(z) =
1
H0

∫ z

0

(
Ωm(1 + s)3 + (1− Ωm)(1 + s)3e−3

∫ s
0
−w(u)
1+u

du

)−1/2

ds (2)

As is clear from equations (1) and (2), the data are related to the parameters of interest via a non-
linear equation. There are two approaches that could be taken to estimate the unknown parameters
Ωm, w(z), and H0. One is to use equation (2) directly. This requires a double integration. Another
is to take one or both derivatives and work with r′ or r′′ to relate the data. The data are discrete so
it is impossible to differentiate directly without using some sort of smoothing. The second derivative
of such curve would be directly related to w(z) (Sahni and Starobinsky, 2006; Saini et al., 2000;
Weller and Albrecht, 2002). Following this approach, some authors have fitted different parametric
forms to w(z) (Huterer and Turner, 2001; Astier, 2000). We looked into this approach and found
that there is loss of information when taking derivatives and poor behavior for low z values. An
approach consisting of taking the first derivative, r′ case is discussed later in more detail.

There are modeling options we have not explored; this includes a piecewise constant model
that requires binning of the supernovae into categories based on their redshift values (Huterer and
Starkman, 2003). The principal component analysis (PCA) has some benefits in that it relies on

2



the data to weight the model and can focus on analyzing specific redshift values, but it produces a
non-continuous estimate for w(z) (Krauss et al., 2007; Crittenden and Pogosian, 2005; Simpson and
Bridle, 2006). Other approaches in the literature use parametric forms for w(z) or ansatz (trying
many parametric forms) based on higher order polynomials.

Ansatz models typically result in more constrained parameter estimates than those from non-
parametric models but this comes at a price because they are more rigid models. We have pursued
some new non-parametric models in the hope of giving a better alternative to the inflexible para-
metric approaches or methods relying on binning. Genovese et al. (2009) work with a bases of
functions, which they claim cover the polynomial and piecewise constant cases. They employ least
squares hypothesis testing of a few of the favored ranges or sets for w(z). Alternately, we propose
a Bayesian Gaussian process formulation to estimate w(z), which gives a flexible fit for w(z). Our
methods provide smaller probability bands than some of the frequently used ansatz models.

2 Nonlinear Equation

The real data comes in terms of z, µ, and τ . Let µi = α(zi) + εi where τi is approximately one
standard deviation of uncertainty in µi and σ2 is the estimated variance of the data. We have
Normal distributed errors: εi ∼ N(0, τ2

i σ
2) or µi ∼ N(α(zi), τ2

i σ
2).

We use the equation for r(z) found in (Genovese et al., 2009), which is dependent on w(z). r(z)
has some useful equalities as well, that will lead to our transformation, T(z), of the data:
r(z) = DL

c(1+z) = 1
c(1+z)10

µ−25
5 or µ = 5log10(c(1 + z)r(z)) + 25. This leads to the relationship:

r(z) =
1
H0

∫ z

0

(
Ωm(1 + s)3 + (1− Ωm)(1 + s)3e−3

∫ s
0
−w(u)
1+u

du

)−1/2

ds

This leads to a useful transformation of the data. We will write it in the standard form in equation
(3) and then we will move H0 and rewrite it in a more usable form for our analysis in (4).

T (z) = 25 + 5log10

(
c(1 + zi)
H0

∫ zi

0

(
Ωm(1 + s)3 + (1− Ωm)(1 + s)3e−3

∫ s
0
−w(u)
1+u

du

)−1/2

ds

)
(3)

T (z) = 25−5log10(H0)+5log10

(
c(1 + zi)

∫ zi

0

(
Ωm(1 + s)3 + (1− Ωm)(1 + s)3e3

∫ s
0
w(u)
1+u

du

)−1/2

ds

)
(4)

c = 3 ∗ 105 is the speed of light constant. Ωm0 and H0 can be considered as constants in the
simulated data but in reality they are unknown parameters; we examine them as both known and
unknown quantities. These are discussed later as we set up priors. We set up our likelihoods for

all of our models: L ∝
(

1
σ

)n
e
− 1

2

∑(
εi
τiσ

)2

or L ∝
(

1
σ

)n
e
− 1

2

∑(
µi−T (z)

τiσ

)2
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2.1 Simulated Datasets

We will consider four simulated data sets to test the robustness of our analysis before applying the
methods to real data. The data sets include summary statistics for each supernova: a maximum
(µi) and its associated standard deviation (τi). These datasets reflect real data that should soon
be available with n=2000 observations. Figure 1 graphs the four data sets; by visual inspection,
there seems to be little to no difference but each one is based on a different form of the equation of
state, w(z). µ0, µ1, µ2, and µ3 are simulated and therefore the truth is known.

In these simulated data sets H0 = 72 and Ωm = 0.27. The weights are set at a constant 0.06 for
every observation. In dataset µ0, the variability is half of the other datasets. The major difference
in these four datasets is the underlying w(z), which can be seen in Figure 2. For µ0 and µ1 have
the simple truth being w(z) = −1; the only difference being the uncertainty in µ0 should be less.
In µ2 the true w(z) has slight curvature and should be fit well by the Chevallier-Polarski-Linder
parameterization (Linder, 2003), which we will examine in what we refer to as Model 3. µ3 is a
more complex model with much more curvature and does not correspond to any current models
but is a good test for the analysis methods.
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Figure 1: z vs. µ

2.2 MCMC set up: Gibbs and Metropolis-Hasting Steps

2.2.1 Gibbs step for σ2

All of our model analysis is done using Bayesian methods (Gelman et al., 2004). We use a conjugate
prior for σ2 and this allows a Gibbs step. We let π(σ2) ∼ IG(a, b); we believe σ2 should be
approximately one because the error bars are accounting for the variation in the data. We will
need the posterior for σ2, where T (z) is the transform given in equation(3):

σ2|z,H0,Ωm, w0 ∼ IG

(
n

2
+ a,

1
2

∑(
µi − T (z)

τi

)2

+ b

)
.
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Figure 2: True w(z)

2.2.2 Discussion on H0

To sample H0, we use a Gibbs step by transforming it as follows: h = −5log10(H0). A possible prior
for H0 could be π(H0) ∼ N(c, d2); we found this to be one of the current estimates of H0 coming
from analysis of other types of data sources and it should work as an informative prior. As other
data types produce better estimates of H0, we hope to incorporate this into a more informative
prior. This is not a conjugate prior but if we use −5log10(H0) as our parameter then we can use a
transformation of this prior to the form π(h) ∼ N(m, s2). Let h = −5log10(H0) so π(H0) ∼ N(c, d2)

is approximately π(h) ∼ N
(
m = −5log10(c), s2 = d2

(
−5

c ln(10)

)2
)

using the delta method, which is

now a conjugate prior and we can employ a Gibbs step. The posterior for h is:

h|... ∼ N

(
1
σ2

∑ µi−Vi
τi

+ m
s2

1
σ2

∑ 1
τ2 + 1

s2

,
1

1
σ2

∑ 1
τ2
i

+ 1
s2

)

where Vi = 25 + 5log10

(
c(1 + zi)

∫ zi
0

(
Ωm(1 + s)3 + (1− Ωm)(1 + s)3e3

∫ s
0
w(u)
1+u

du

)−1/2

ds

)
.

This Gibbs step was not employed in much of the analysis because H0 is highly correlated with
other variables. Thus the Gibbs step relies directly on the mixing of Ωm and also any variables
that come from the parameterization of w(z). The method of sampling Ωm, the variables of w(z),
and H0 together in one Metropolis-Hastings step had superior mixing in most cases.

3 Conventional Parametric Models

Our analysis includes Bayesian estimation for three of the most popular ansatz models for w(u):
w(u) = a, w(u) = a + bu, and w(u) = a + b

(
1

1+u − 1
)

. This covers the constant case, linear, and
one non-linear case for w(u). First, we discuss a way to distinguish between these models with
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Bayesian hypothesis testing and then provide results for each of the three models. We use standard
priors in all of these models. These models have been proposed and explored in previous work by
Linder (2007) .

Because our data is simulated we have the truth for these models. We will be able to compare
our analysis against these truths, as we should get coefficients near these values. For µ0 and µ1

things are simple with Model 1 being the truth with w(z) = −1. This means that for Model 1
a = −1 and both Models 2 and 3 have a = −1 and b = 0. µ2 is to come from a model similar
to Model 3 with parameters a = −0.818 and b = 0.232. And Model 1 is much less certain and
could be something like a = −0.892 and it would have Model 2 parameters near a = −0.840 and
b = −0.090. µ3 is a more complex model with much more curvature and does not correspond to
Models 1, 2, or 3. Model 1 is not able to be fit well but might give something like an average of
a = −0.619. This would give Model 2 parameters: a = −0.905 and b = −0.324 and Model 3 may
have parameters: a = −1.083 and b = −1.063.

We used similar priors for all of these models. We did extensive prior sensitivity analysis and
found that we could use rather non-informative priors for the parameters in w(z). We will use:
π(a) ∼ U(−25, 1) and π(b) ∼ U(−25, 25). The prior for σ2 was chosen because of its properties
as a conjugate prior: π(σ2) ∼ IG(10, 9). And Ωm and H0 were given informative priors based on
known estimates of these variables: π(H0) ∼ N(72, 12) and π(Ωm) ∼ N(0.27, 0.032).

3.1 Nonlinear Equation Hypothesis Testing

Bayesian hypothesis testing will be used to test the parameters in w(z). This will be done using
point masses (using δ functions) in the priors at key levels we wish to test. The δ function is
problematic and would typically require just the use of an auxiliary variable to make these into
Gibbs steps. However, with our very special non-linear likelihood function it is not possible to use
Gibbs steps. So, other methods must be applied here. We introduce an auxiliary variable but must
deal with the change in dimensions between spaces. If our w = −1 then we are at a lower dimension
than if w ∼ U(−25, 1), so our prior will be π(w0|λ) ∼ λδw0=−1 + (1− λ)U(−25, 1).

The Algorithm

1. Gibbs step for σ2: σ2|z,H0,Ωm, w0 ∼ IG(n2 + 10, 1
2

∑(
µi−T (z,H0,Ωm,w0)

τi

)2
+ 9)

2. Add an auxiliary variable q, which is either: 0 (w0 6= −1) or 1 (w0 = −1) where p(q = 1|λ) = λ
and p(q = 0|λ) = 1− λ. Then we re-write the likelihood as follows:

L(w, q|x) = L(w = −1|x)Iq=1 + L(w|x)Iq=0

Now for the full conditional:

L(w, q|x)p(q|λ)p(λ)p(w) = L(w = −1|x)Iq=1p(q = 1|λ)p(λ)p(w) + L(w|x)Iq=0p(q = 0|λ)p(λ)p(w)
= L(w = −1|x)Iq=1λp(λ)p(w) + L(w|x)Iq=0(1− λ)p(λ)p(w)

6



3. Gibbs step for q:

q|w, λ... ∼ Bern
(

L(−1|x)λp(λ)p(w)
L(−1|x)λp(λ)p(w) + L(w|x)(1− λ)p(λ)p(w)

)
∼ Bern

(
L(−1|x)λ

L(−1|x)λ+ L(w|x)(1− λ)

)
4. Gibbs step for λ:

p(w0, λ, q) ∝ L(w0|...) ∗ λq ∗ 1 ∗ (1− λ)1−q

λ|w0, q... ∝ λq+1−1((1− λ))1−q+1−1 ∼ Beta(q + 1, 2− q)

5. Steps for w0: w|.... ∝ p(w)L(w, q|x) ∝ p(w) (L(−1|x)λIq = 1 + L(w|x)(1− λ)Iq=0)

(a) If q=1 then assign wj+1 = wj

(b) If q=0 then propose a w∗ from a symmetric distribution such as w∗ ∼ U(wj − d,wj + d)

w|.... ∝ L(w|x)(1− λ)p(w)Iq=0

αMH =
L(w∗|x)(1− λ)π(w∗)Iq=0

L(wj |x)(1− λ)π(wj)Iq=0
=
L(w∗|x)
L(wj |x)

6. Posterior for H0:

p(H0|...) ∼ L(w, q|x)p(q|λ)p(λ)p(w)p(Ωm)p(H0) ∼ L(w, q|x)p(H0)

(a) when q=1 then L(w = −1); so just let H0,j+1 = H0,j

(b) when q=0 then L(wj+1)p(H0) which is a Metropolis step.

7. Posterior for Ωm:

p(Ωm|...) ∼ L(w, q|x)p(q|λ)p(λ)p(w)p(Ωm)p(H0) ∼ L(w, q|x)p(Ωm)

(a) when q=1 then L(w = −1) and let Ωm,j+1 = Ωm,j

(b) when q=0 then L(wj+1)p(Ωm) which is a Metropolis step.

Just to complicate things further the steps in 4,5, and 6 need to be combined into one correlated
proposal. The three parameters are correlated with one another, so in larger data sets one must
take this into account in order to get good mixing in the posterior chains.

Note that in the larger datasets (n=2000) there are issues with the likelihood being zero, which
poses problems in step 3. Usually, this can be handled by taking the log of the likelihood and then

7



later exponentiating but because of the form in 2 this is not straightforward and the computation
needs to be done as follows: L(−1|x) = ep1 and L(w|x) = ep2 which leads to:

L(−1|x)λ

L(−1|x)λ+ L(w|x) (1−λ)
27

=
ep1λ

ep1λ+ ep2 (1−λ)
27

=
1

1 + (1−λ)ep2

27λep1

=
1

1 + (1−λ)ep2−p1
27λ

The hypothesis test for the null hypothesis is evaluated as the sum of the qs, not the number
of points where w = −1 (w is not equal negative one in this algorithm.) In our case q = 1 when
w0 = −1; so we can simply sum the vector of q and divide by its length to get the proportion
associated with the null hypothesis.

3.2 Model 1 - Assume w(z) is a Constant

This model works well with traditional hypothesis testing and results in a single value for w(z)
with a probability interval. The downside to this model is that it is very rigid and does not allow
for w(z) to change as redshift increases. Many are interested in determining whether w(z) is a a
cosmological constant whether it be -1, -2/3, -1/3, or something else (Genovese et al., 2009). If it
could be shown that w(z) is constant then this model would be sufficient. In this model we have
w(z) = a. This leads to a simplified form for r(z):

r(z) =
1
H0

∫ z

0

(
Ωm(1 + s)3 + (1− Ωm)(1 + s)3(1 + s)3a

)−1/2
.

We use a flat rather non-informative prior for a: π(a) ∼ Unif(−25, 1). H0 and Ωm can be fixed
or variable; we include a variable Ωm in the table and graphs. a and Ωm are highly correlated and
they can be sampled jointly from a multivariate Normal distribution with a covariance structure
that is obtained after running the process for some time. If they are sampled independently, it
affects the mixing negatively.

Table 1 and Figure 3 contain the results of this analysis. In Figure 3 we have the mean fit of
w(z) as a black line, the 68% probability interval in dark blue, and the 95% probability interval in
light blue. Table 2 contains the results of hypothesis testing for this model.

3.2.1 Analysis

The simulations were all run 10,000 times and all acceptance rates for w(z) were around 20% and
definately within 10-40%. The mixing of the Metropolis algorithm was acceptable in all cases. As
we can see, we do not gain information about Ωm from the data. Instead this variable is included
in the model to show the uncertainty it adds to the fit of w(z).

Here we see that Model 1 fits the dataset µ1 quite well in Tables 1 and 2 and Figure 3 parts
(a) and (d). This is expected as the truth for µ1 is a straight line. However, Model 1 does not fit
either dataset µ2 or µ3 that well because the truth for w(z) in those datasets is curved. When Ωm

is added to the model it is poorly estimated in the case where the true w(z) is curved.
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Table 1: Model 1 - 95% PIs
Dataset a Ωm0 H0 σ2

µ0 (-1.003,-0.996) 0.27 72 (0.43,0.47)
µ1 (-1.005,-0.994) 0.27 72 (0.95,1.05)
µ2 (-0.865,-0.855) 0.27 72 (0.97,1.07)
µ3 (-0.912,-0.902) 0.27 72 (1.07,1.18)
µ0 (-1.033,-0.969) (0.264,0.278) (71.74, 72.18) (0.43,0.47)
µ1 (-1.048,-0.957) (0.262,0.282) (71.63, 72.27) (0.95,1.05)
µ2 (-0.884,-0.785) (0.239,0.271) (71.77, 72.43) (0.97,1.08)
µ3 (-1.243,-1.133) (0.343,0.359) (71.84, 72.41) (0.97,1.07)
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Figure 3: Model 1

Table 2: Model 1 - Hypothesis Test
Dataset Percent a = −1 a σ2

µ0 0.99 (-1.000,-1.000) (0.43,0.48)
µ1 0.98 (-1.000,-1.000) (0.95,1.05)
µ2 0.00 (-0.865,-0.855) (0.97,1.07)
µ3 0.00 (-0.912,-0.902) (1.07,1.19)
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3.3 Model 2 - Assume w(u) = a + bu

Model 2 is fitting a simple linear model with two coefficients to w(z). We let w(u) = a + bu in
the r(z) equation. We use a flat rather non-informative prior for a: π(a) ∼ Unif(−25, 1) and b:
π(b) ∼ Unif(−25, 25). This leads to a simplified version of r(z):

r(z) =
1
H0

∫ z

0

(
Ωm(1 + s)3 + (1− Ωm)(1 + s)3(a−b+1)e3bs

)−1/2
ds.

The general results can be seen in Table 3; we ran the same analysis for w(z) two times: once
with Ωm and H0 fixed and once with both variable. Table 4 contains the results from performing
the hypothesis testing. Graphical fits are in Figure 4 and show a mean line in black, 68% probability
bands in dark blue, and 95% probability bands in light blue. We have the truth because these are
simulated datasets, so the truth for w(z) is the dashed black line.

Table 3: Model 2 - 95% PIs
Dataset a b Ωm0 H0 σ2

µ0 (-1.017,-0.991) (-0.035,0.071) 0.27 72 (0.43,0.47)
µ1 (-1.025,-0.986) (-0.055,0.102) 0.27 72 (0.95,1.05)
µ2 (-0.854,-0.817) (-0.165,-0.026) 0.27 72 (0.97,1.08)
µ3 (-1.072,-1.039) (0.501,0.622) 0.27 72 (0.97,1.08)
µ0 (-1.024,-0.946) (-0.382,0.293) (0.223,0.301) (71.66, 72.20) (0.43,0.47)
µ1 (-1.042,-0.945) (-0.470,0.288) (0.226,0.306) (71.57, 72.24) (0.95,1.05)
µ2 (-0.880,-0.790) (-0.344,0.164) (0.214,0.301) (71.69, 72.40) (0.97,1.08)
µ3 (-1.204,-1.057) (0.238,0.653) (0.267,0.335) (71.92, 72.50) (0.97,1.08)

Table 4: Model 2 - Hypothesis Test
Dataset Percent a = −1 and b = 0 a b σ2

µ0 0.99 (-1.000,-1.000) (0.000,0.000) (0.43,0.47)
µ1 0.99 (-1.000,-1.000) (0.000,0.000) (0.95,1.05)
µ2 0.00 (-0.853,-0.817) (-0.168,-0.031) (0.97,1.07)
µ3 0.00 (-1.072,-1.038) (0.500,0.622) (0.97,1.08)

3.3.1 Analysis

The simulations were all run 10,000 times for the data sets. All acceptance rates were around 10-
40%. Model 2 does an adequate job of fitting datasets µ1 and µ2; the flat dataset and the slightly
curved one. The hypothesis testing indicates that µ1 has a truth of w(z) = −1, which means this
analysis is working as it should. However, Model 2 does not do a superb job of capturing the true
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Figure 4: Model 2

w(z) for µ3. This can be seen in Figure 4 parts (c) and (f); the dashed true line for w(z) is outside
the probability bands.

Model 2 does estimate the value for Ωm and H0 fairly well in all cases, which is an improvement
from Model 1. When Ωm and H0 are added to the model the probability bands are much wider
and our fit of w(z) more uncertain. The parameters a and b are more highly correlated when Ωm

and H0 are fixed.

3.4 Model 3 - Assume w(u) = a + b( 1
1+u
− 1)

Model 3 was recommended by the cosmologists as a form of interest for w(u). Linder proposes
this model as a robust form for an equation of state (EOS) with monotonic behavior (Linder,
2003). The parameters were sampled jointly because they are correlated to one another. Linder
advocates using the more robust parameterization w(u) = a∗ + b∗(1− 1

1+u) to avoid any bias with
the cosmological constant (Linder, 2006). We are including two-way plots of the parameters Ωm,
a, and b. He also examines higher order polynomial fits and find they do not estimate the EOS
correctly and oscillate heavily and must be truncated for high z values (Linder, 2007). So, here we
let w(u) = a+ b( 1

1+u − 1) = a+ −bu
1+u in the r(z) equation and not include any higher order terms.
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So now we have:

r(z) =
1
H0

∫ z

0

(
Ωm(1 + s)3 + (1− Ωm)(1 + s)3(a−b+1)e

3bs
1+s

)−1/2
ds.

We use a flat rather non-informative prior for a: π(a) ∼ Unif(−25, 1) and b: π(b) ∼ Unif(−25, 25).
The simulations were all run 10,000 times. As with Model 1, the parameters were sampled jointly
because they are correlated to one another; this includes a, b, H0, and Ωm. The results of this
analysis can be seen in Tables 5 and 6 and Figure 5.

Table 5: Model 3 - 95% PIs
Dataset a b Ωm0 H0 σ2

µ0 (-1.024,-0.989) (-0.138,0.061) 0.27 72 (0.43,0.47)
µ1 (-1.036,-0.983) (-0.205,0.094) 0.27 72 (0.95,1.05)
µ2 (-0.852,-0.805) (0.047,0.299) 0.27 72 (0.97,1.07)
µ3 (-1.122,-1.077) (-1.164,-0.929) 0.27 72 (0.97,1.08)
µ0 (-1.040,-0.967) (-0.473,0.421) (0.237,0.293) (71.72, 72.25) (0.43,0.47)
µ1 (-1.048,-0.951) (-0.545,0.510) (0.229,0.297) (71.61, 72.34) (0.95,1.05)
µ2 (-0.878,-0.784) (-0.322,0.473) (0.215,0.291) (71.72, 72.45) (0.97,1.08)
µ3 (-1.237,-1.096) (-1.368,-0.613) (0.243,0.324) (72.05, 72.65) (0.97,1.08)

Table 6: Model 3 - Hypothesis Test
Dataset Percent a = −1 and b = 0 a b σ2

µ0 0.99 (1.000,1.000) (0.000,0.000) (0.43,0.47)
µ1 0.98 (1.000,1.000) (0.000,0.000) (0.95,1.05)
µ2 0.00 (-0.852,-0.804) (0.044,0.305) (0.97,1.08)
µ3 0.00 (-1.121,-1.078) (-1.159,-0.936) (0.97,1.08)

3.4.1 Analysis

The simulations were all run 10,000 times for the data sets. All acceptance rates were around
10-40%. Model 3 is made to pick up the slight curvature in dataset µ2. Model 3 is capable of
fitting µ1 and µ2, however, it is not flexible enough to capture the true w(z) in dataset µ3, as seen
in Figure 5. Model 3 does an adequate job of estimating the unknown Ωm and H0 parameters in
almost all cases (Table 5). When these two parameters are unknown, the results have much wider
probability intervals. But overall Model 3 did fairly well and the hypothesis test in Table 6 also
chooses µ1 as having the truth be w(z) = −1 which is correct.
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Figure 5: Model 3

4 Non-parametric Modeling of w(z)

We now employ non-parametric models to do inference on w(z). In Model 4, we assume w(z) is a
Gaussian process and use the r(z) equation as our relationship for the data (Banerjee et al., 2004).
A Gaussian process is a stochastic process such that when sampled at any finite collection of points,
the values jointly follow a multivariate Normal distribution. Thus the process can be defined by
its mean and correlation functions. This model is advantageous in that it allows for a flexible fit
to a function, w(z), based on probability theory rather than assuming a parametric form like the
previous models. We still assume that the errors of the data follow a Normal distribution as in the
previous models and we use the same likelihood.

4.1 Model 4 - Gaussian Process on w(u)

For the Gaussian process, we assume that w(u1), ..., w(un) for any collection of u1, ..., un follows
a multivariate Gaussian distribution with mean, θ, and powered exponential covariance function
written in a non-standard form: K(u, u′) = κ2ρ|u−u

′|α . We consider w(u) to be a Gaussian process:
w(u) ∼ GP (θ, κ2K(u, u′)).

A standard powered exponential covariance structure suffices in this case but we reparametrize
the typical e−λ = ρ, so K(u, u′) = ρ|u−u

′|α . α is typically equal to two but this leads to issues in
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Cholesky decomposition and matrix inversion for us. To fix this issue we let α be less than two and
in most cases something like 1.9999 works. The Gaussian correlation was tried in this manner, as
well as, the Matern with smoothness parameter (ν) equal to 1.5. Ultimately, we ended up choosing
α = 1 for a more flexible model that fit both flat and curved w(z) equations. Other possible options
would typically be to add a nugget term or jitter but this is not possible with the interpolation
method we are using. Also, Cholesky decomposition with pivoting was considered.

The main parameter of interest is ρ to test if their is enough relationship in the data for a GP
to be needed. In most of the simulated data sets, we would expect this to be the case. The mean of
the GP is also important, θ = −1 is typically the value of interest for w(z); other values for θ were
used and did not change the GP or results. Allowing θ to vary did not produce stable posteriors
for this and other parameters. All of the parameters in the model need priors, for our analysis they
will be: π(ρ) = Beta(6, 1), π(κ2) = IG(25, 9), and σ2 =IG(10, 9).

Altered Gaussian process A typical Gaussian process prior is set up to have a mean and
correlation function: w(u) ∼ GP (θ,Σρ,κ2). In our case with our likelihood function, this leads to
the following posterior:

σ2, ρ, κ2|µi, τ2
i , zi ∝ L(zi, µi, τi|w(u), σ2)GP (w(u)|ρ, κ2)π(ρ)π(κ2)π(σ2)

Instead of the usual Gaussian process set up just described, we went with an altered form to
allow for slower changes in the GP. We let w(u) ∼ MVN(θ,Σ) and Σ−1/2(w(u) − θ) = wo(u) ∼
MVN(0, I). So now our posterior becomes:

L(zi, µi, τi|wo(u), ρ, κ2, σ2)MVN(wo(u); 0, I)π(ρ)π(κ2)π(σ2)

4.1.1 The Not so Simple Algorithm

This algorithm is not a simple Gaussian process case because of the double integration and the
altered GP form previously discussed. The integration could be done using trapezoid integration
and setting up partitioning for both integrals. While that type of algorithm is simpler it takes
extensive computational power to perform. Instead, we will use more difficult methods where the
inner integral of T (zi, w(u), ρ, κ2) is calculated based on properties of the GP. Once again, w(u)
is our GP (as seen in equation(5)) with m points but now we want to evaluate y(s) =

∫ s
0
w(u)
1+u du

and we know based on the properties of the GP that y(s) is a GP (as seen in equation(6)), too.
Equation(7, 8) shows the relationship between the two GPs: w(u) and y(s).

w(u) ∼ GP (θ,Σ22 = κ2ρ|u−u
′|α) (5)

y(s) ∼ GP

(
θ ln(1 + s),Σ11 = κ2

∫ s

0

∫ s′

0

ρ|u−u
′|α

(1 + u)(1 + u′)
dudu′

)
(6)

[
y(s)
w(u)

]
∼MVN

[[
θ ln(1 + s)

θ

] [
Σ11 Σ12

Σ21 Σ22

]]
(7)
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y(s)|w(u) = E(y(s)|w(u)) = θ ln(1 + s) + Σ12Σ−1
22 (w(u)− θ) (8)

We can draw more y(s) points than are in original partition of w(u). This will act as an
interpolator so we have enough points for a smoother outer integral calculation. This method
does not require one large covariance matrix to be computed and inverted. And it does the inner
integral and partitioning/smoothing process all in one step. Σ11 is never computed so the slowness
of computing double integrals for each entry of the covariance matrix is avoided.

However, we need Σ12 = κ2
∫ s′

0
ρ|u−s|

α

1+u du which requires a single integral for every entry.

4.1.2 Chebyshev-Gauss quadrature method for solving the single integral

K(s, s′) =
∫ s′

0
ρ|u−s|

α

(1+u) du this integral used in the correlation matrix cannot be solved analytically
and there is no good approximation because the limits of integration do not go between 0 and
infinity. Numerical methods have to be used and Chebyshev-Gauss quadrature provides a good
alternative to other forms of slower numerical integration. R uses Gauss-Kronrod quadrature.

First, we must change the limits of integration from [0, s′] to [−1, 1] to be able to use this form of
quadrature using the rule:

∫ b
a f(x)dx = b−a

2

∫ 1
−1 f

(
(b−a)x

2 + a+b
2

)
dx. Chebyshev-Gauss quadrature

uses Chebyshev polynomials of the first kind as its orthogonal polynomials, 1√
1−x2

. In total one

integral is approximated as such,
∫ 1
−1

f(x)√
1−x2

dx ∼
∑n

i=1 γif(xi), xi = cos
(

(2i−1)π
2n

)
, and γi = π

n . In

our case we let: ui = cos
(

(2i−1)π
2n

)
, and n=100 so the weights are constant and fully specified. We

take our single integral in equation(9) and who how we implement the quadrature in equation(10).

K(s, s′) =
∫ s′

0

ρ|u−s|
α

(1 + u)
du =

s′

2

∫ 1

−1

ρ|
s′u
2

+ s′
2
−s|α

(1 + s′u
2 + s′

2 )

√
1− u2

1√
1− u2

du (9)

K(s, s′) =
s′

2

n∑
i=1

γi

√
1− u2

i

(1 + s′ui
2 + s′

2 )
ρ|
s′ui

2
+ s′

2
−s|α (10)

4.1.3 The Not so Simple Algorithm Continued

1. Initialize all variables: ρ = ρ1, κ2 = κ2
1, and wo(u) = wom,1(u). w(u) is a vector with m points

in our GP and y(s) has m*h points. We run this algorithm q=1,...,Q times. Set all tuning
parameters,δ1,2,3, which needs to be tuned until good mixing occurs. Also, all proposals used
are symmetric and do not need a jumping function in αMH . ρ between zero and one, the
variance parameters σ2 and κ2 must be greater than zero, any proposals that do not fit this
criteria will be rejected.

2. Propose ρ∗ = Unif(ρ1 − δ1, ρ1 + δ1)

(a) Compute the covariance matrix K22ρ∗ = ρ∗|uj−ui|
α
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(b) Compute the Cholesky decomposition for K22ρ∗ = U ′ρ∗Uρ∗

(c) Compute the special K12ρ∗ =
∫ s′

0
ρ∗|u−s|

α

1+u du

(d) We want yρ∗(s) = θ ln(1 + s) + [κ2
q−1K12∗][κ2

q−1K
−1
22∗](wρ∗(u)− θ)

where: wρ∗(u) = [κq−1U
′
ρ∗ ]w

o
m,q−1 + θ

yρ∗(s) = θ ln(1 + s) + [κ2
q−1K12∗][κ2

q−1K22∗]−1(
(
κq−1U

′
ρ∗w

o
m,q−1 + θ

)
− θ)

= θ ln(1 + s) + κq−1K12∗[(U ′ρ∗Uρ∗)
−1U ′ρ∗ ]w

o
m,q−1

= θ ln(1 + s) + κq−1K12∗[U−1
ρ∗ ]wom,q−1

(e) L(zi, µi, τi|wρ∗ , σ2
q−1) = e

− 1
2

∑(
µi−T (zi,wρ∗ (u))

τiσi

)2

where the definite integrations in T (zi, wρ∗(u))
are done numerically through summations of the trapezoid algorithm.

(f) If we accept αMH = Lρ∗π(ρ∗)
Lρq−1π(ρq−1) then we let ρq = ρ∗

3. Draw κ2∗ = Unif(κ2
q−1 − δ2, κ

2
q−1 + δ2)

(a) Compute yκ2∗(s) = θ ln(1 + s) + κ∗K12ρq [U−1
ρq−1

]wom,q−1

(b) L(zi, µi, τi|wκ2∗ , σ2
q−1) = e

− 1
2

∑(
µi−T (zi,wκ2∗ (u))

τiσi

)2

where the definite integrations in T (zi, wκ2∗(u))
are done numerically through summations of the trapezoid algorithm.

(c) If we accept αMH = Lκ2∗π(κ2∗)

L
κ2
q−1

π(κ2
q−1)

then we let κ2
q = κ2∗

4. I want to propose a non-standard w∗m as my Gaussian Process. I start with drawing a proposal
for wo∗ ∼MVN(woq−1, δ3Imxm)

(a) Compute y∗(s) = θ ln(1 + s) + κqK12q[U−1
q ]wo∗m,

(b) Lzi,µi,τi|w∗new(u),σ2
q−1

= e
− 1

2

∑ µi−T (zi,w
∗
new(u))

τiσ

2

(c) If we accept αMH =
Lw∗new(u)MVN(wo∗m |0,I)
Lwq−1MVN(wm,q−1|0,I) then wom,q(u) = wo∗m (u) and the Gaussian

process realization is wm,q(u) = w∗m(u)

5. σ2
q |... ∼ IG

(
n
2 + 10, 1

2

∑(
µi−T (z|...)

τi

)2
+ 9
)

6. Repeat steps 2-6, Q times and rerun the entire algorithm as needed after resetting the tuning
parameters.
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4.1.4 Results of Model 4

The best way to summarize the results of the Gaussian process model is with the typical plots.
As we see in Figure 6, the Gaussian process model is capable of finding the true w(z) for all
three datasets: µ1, µ2, and µ3. The roughness in the plots comes from the exponential correlation
function. All other correlation functions over smooth the fit and do allow enough flexibility for
fitting a true w(z) like µ3. We chose a model with more rough edges to be able to fit a more
curvaceous w(z).
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Figure 6: Model 4

The two parameters we can can fit with this model are Ωm and H0. And then in the second
set of simulations we let Ωm and H0 both be parameters to be estimated. We used a Gibbs step
for H0 and it worked well and had better mixing than a Metropolis-Hastings step in this analysis.

Table 7: Model 4
Dataset Ωm H0

µ0 (0.265,0.299) (71.74, 72.37)
µ1 (0.250,0.290) (71.53,72.34)
µ2 (0.243,0.280) (71.77,72.62)
µ3 (0.237,0.279) (71.81,72.68)
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Overall, the Gaussian process fits well for all three datasets when Ωm is known. But we see that
the true Ωm is at the boundary of the estimated interval for µ0 and µ3. This is also seen in several of
the other models. We could go back and run a smoother fit using a Gaussian correlation function
for µ0, µ1, and µ2 because they do not need the extra flexibility of the exponential correlation
function.

4.2 Approximating a Gaussian Process with Damped Hermite Polynomials

Linder opposes fitting w(z) with higher order polynomials because of their oscillating behavior and
the need to truncate the fit for higher z values, as well as, the fact that they can introduce bias in
the fit (Linder, 2007). However, Genovese et al. (2009) use a mixture of basis functions (which need
not be orthonormal) to fit w(z) in their analysis. But they find that the w(z) equals a constant
is the best while using model selection criteria. Their analysis allows for all three subforms that
include polynomial basis, scale factor polynomials, and piecewise constant fits and can be extended
to include B-splines, orthogonal polynomials and wavelet analysis (Genovese et al., 2009). However,
we believe they may have only tried the first few orders of the basis function in their comparison.

Here we follow the work of Steinberg (2004) on damped Hermite polynomials as the basis func-
tions. We want to fit a series expansion to W (u) = w(u)

1+u in this way: W (u) = γ(u) +
∑∞

s=0 βsJs(u)
where γ(u) = −θ

1+u is the mean of W (u) where θ is a constant, Js(u) = H∗s exp− wu2

2(1+m) are the

damped polynomials, and H∗s (u) = Hs(u/
√

(2))/(2ss!)1/2 is a physicist Hermite polynomial. The
Hermite polynomials, H∗s , are orthonormal with respect to a standard Normal, and have the prop-
erty: E[H∗s (W )H∗t (W )] =

∫∞
−∞ exp−u

2/2H∗s (u)H∗t (u)du = δs,t. But the damped polynomials Js(u)
are not orthogonal.

We are interested in the Hermite polynomial parameterization because it corresponds to a
Gaussian process with Gaussian correlation where range parameter λ = m

2(1−m2)
and variance

σ2 = τ2(1 −m2)−1/2 and 0 ≤ m ≤ 1. The prior on β also contains m, the damping parameter,
π(βs) ∼ MVN(0, σ2ms). Both τ2 and m are unknown parameters that must be estimated, so we
have priors: π(m) ∼ Beta(6, 1) and τ2 ∼ IG(25, 9), and then for our variance in the likelihood we
have σ2 ∼ IG(10, 9).

If we let k =
√

1+m
m , we notice that k2 is a variance term and it 2 ≤ k2 ≤ ∞. We found that

because our distance data (z) has range between zero to two the basis of Hermite polynomials needs
to be rescaled by a factor of two or three like J(2z) or J(3z) before we begin the analysis. The
unscaled polynomials do not dampen until closer to 3.0 on the z scale.

We will write the series expansion up to the first two polynomials with β’s and show that if the
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polynomials are truncated then they can be re-written with new coefficients,a’s.

W (u) = γ(u) +
∞∑
s=0

βsJs(u)

= γ(u) + exp− mu2

2(1 +m)
[β0 −

1√
2
β2 + β1u+ (β2

1√
2

)u2...]

= γ(u) + exp
(
− mu2

2(1 +m)

)[
a0 + a1u+ a2u

2...
]

In figure 7, we see the first six damped Hermite polynomials. The first plot is of the H∗

polynomials with βs coefficients and the second with the as coefficients. We set m = 0.9 for these
graphs and use a rescaling factor of 3.
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Figure 7: Damped Hermite Polynomials

We need to integrate W (u); this does not yield a fully analytic solution. We choose to use
W (u) instead of w(u) because we wish to perform the inner integration in our transform using the
properties of the Normal distribution which is well approximated by our statistical software.∫ s

0
W (u)du =

∫ s

0
γ(u)du+ e

− mu2

2(1+m)
(
a0 + a1u+ a2u

2
)
du

=
∫ s

0

−θ
1 + u

du+ a0

∫ s

0
e−

u2

2k2 ds+ a1

∫ s

0
ue−

u2

2k2 du+ a2

∫ s

0
u2e−

u2

2k2 du

= −θ ln(1 + s) + a0

√
2πk2[N(s|0, k2)− 1/2] + a1{−k2e−s

2/2k2
+ k2}

+ a2{−k2e−s
2/2k2

(s) + k2
√

2πk2[N(s|0, k2)− 1/2]}
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4.2.1 Results

The best fit comes from using only the first two terms of the damped Hermite polynomial expansion.
If any higher order terms are added the analysis breaks down with our current data. We get poor
mixing in the MCMC, wide probability bands, and a poor fitting mean especially for high z values.
This is partly expected as the same thing happens with other basis expansions. We would like to
continue to do further work with this analysis by adding Ωm and H0, and possibly adding θ as a
variable in the mean.

4.3 The Real Data

There are currently several sets of real data available for the supernovae Ia (SNe Ia). All four sets
contain the same basic set of supernovae data and then a few more points depending on the light
curve fitters criteria. Three of these sets are fit using SALT light curve fitter and one uses the
MLCS17 light curve fitter. We call these data sets the Davis data set (n=192) (Davis et al., 2007;
Riess et al., 2007; W. M. Wood-Vasey et al., 2007), Kowalski data set (n=307) (Kowalski et al.,
2008), SALT3 data set (n=397), and MLCS17 data set (n=372). The real data has larger error
bars associated with µ than in our simulated data and this produces much larger error bands on
our fits of w(z). Also, with the real data both Ωm and H0 are currently unknown but have general
values found from other data sources, we use as priors.

Figure 8 is of the real data. We have four general types of surveys and each is represented with
a separate color and symbol: HST - red filled circles, ESSENCE - blue diamonds with x’s, SLOAN-
LEGACY (SNLS) - green diamond, and HZSST - orange circles (which could be subdivided further
based on the team). These graphs show that the different telescopes focus their search in different
ranges of the redshift. Figure 8 (e)-(h) shows the estimated errors for each observation (µ); these
are given by our light curve fitter.

4.3.1 Real Data Analysis

First, we fit ansatz Models 1, 2, and 3 to the four real data sets. Ωm and H0 are variable in all of
these models. The prior for H0 is changed to π(H∗0 ) ∼ N(72, 42). This allows for the extra term,
M , that gets incorporated into H0 from the marginalization of the data that happens during the
light curve fitting. The estimates of H0 may be closer to 65 than to 72 because of this term as seen
in Table 8. H0 and M cannot be distinguished in these equations, so we just call the combined
item H∗0 . The results of the analysis for Models 1, 2,and 3 can be best seen in Table 8 and Figure
9.

Analysis Every model and dataset is within the 95% probability of having the truth be w(z) =
−1. This is partly due to the fact that our bands for most of these models are quite large. More
data or less variability data would help to reduce these bands. Also, if we had more certainty about
the parameters like H0 and Ωm, this could reduce the uncertainty in the cosmological parameter.
All of our 95% probablity estimates of Ωm include the value 0.27, which is of interest. It is also
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(h) MLCS17 data

Figure 8: z vs. mu

noted that we are gaining very little information here about Ωm; what we know prior to running
the analysis is fairly similar to the distribution of Ωm after the analysis. Thus, we can conclude
that with this data we are most likely not learning anything about Ωm and if we could get a better
estimate of Ωm from another data source it may prove to shrink our uncertainty about the EOS
curve. We cannot fully comment on H∗0 because its meaning is not fully understood as it is a
mixture of H0 and the marginalization during light curve fitting that results in M .

4.3.2 Model 4 - Gaussian Process

The Gaussian process was initially run with an exponential correlation function; the results were
mostly flat with some slight curvature as seen in Figure 10. Because of these rather flat results
and all of the training sets we had run on simulated data, we felt it safe to use an approximately
Gaussian correlation function which yields smoother results. It is approximate only in that we use
an exponent of 1.9999 instead of 2 for numerical stability. These results can be seen in Figure
11. Table 9 contains the parameter estimates for both the exponential and Gaussian correlation
function simulations.

Analysis We noticed first that our non-parametric fit had tighter probability bands than that of
some of the parametric models. All of the Gaussian process runs had w(z) = −1 within the 95%
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Figure 9: Model 1
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Table 8: Models 1, 2, 3 - 95% PIs
Model Dataset a b Ωm0 H∗0 σ2

Model 1 Davis (-1.334,-0.881) N/A (0.229,0.324) (64.62, 67.64) (0.87,1.20)
Kowalski (-1.241,-0.852) N/A (0.235,0.334) (69.08, 71.47) (0.90,1.16)
SALT3 (-1.156,-0.848) N/A (0.233,0.323) (64.44, 66.10) (1.04,1.31)

MLCS17 (-1.048,-0.756) N/A (0.226,0.320) (64.37, 65.76) (0.95,1.21)
Model 2 Davis (-1.576,-0.678) (-0.263,1.889) (0.228,0.337) (64.60, 67.99) (0.88,1.21)

Kowalski (-1.545,-0.876) (-0.549,2.175) (0.229,0.327) (69.36, 72.08) (0.90,1.16)
SALT3 (-1.251,-0.622) (-2.460,1.199) (0.233,0.338) (64.24, 66.22) (1.05,1.31)

MLCS17 (-1.132,-0.516) (-2.301,0.958) (0.229,0.333) (64.20, 65.77) (0.96,1.22)
Model 3 Davis (-1.699,-0.666) (-3.260,2.622) (0.232,0.328) (64.54, 68.20) (0.87,1.21)

Kowalski (-1.655,-0.867) (-3.683,1.024) (0.231,0.327) (69.45, 72.28) (0.90,1.16)
SALT3 (-1.286,-0.525) (-1.805,3.699) (0.232,0.336) (64.16, 66.19) (1.04,1.32)

MLCS17 (-1.184,-0.442) (-1.707,3.110) (0.232,0.332) (64.16, 65.82) (0.96,1.21)

Table 9: Models 4 - 95% PIs
Model Dataset Ωm0 H0 σ2

Model 4 Davis (0.232,0.325) (64.60, 67.63) (0.87,1.20)
Exponential Kowalski (0.231,0.330) (69.11, 71.58) (0.89,1.16)

SALT3 (0.229,0.323) (64.39, 66.15) (1.04,1.31)
MLCS17 (0.226,0.324) (64.32, 65.83) (0.96,1.21)

Model 4 Davis (0.228,0.324) (64.60, 67.51) (0.87,1.20)
Gaussian Kowalski (0.233,0.328) (69.10, 71.52) (0.90,1.16)

SALT3 (0.231,0.324) (64.47, 66.16) (1.04,1.31)
MLCS17 (0.226,0.323) (64.35, 65.77) (0.96,1.21)

probability. The mixing in the algorithm was good and had stable MCMC posteriors. The estimates
are very similar in this model to the other parametric ones; we are learning very little about H0 and
Ωm from the current supernova data. Either more data is needed to reduce uncertainty or more
data or more precise data. We were very happy with these results as the non-parameteric flexible
fit of w(z) we obtained through our Gaussian process method had smaller probability bands than
Model 2 and Model 3. This means not only did we achieve fitting w(z) with a non-parametric form
but we also were able to reduce the uncertainity in the estimation of the EOS.
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Figure 10: Model 4- Gaussian Process- Exponential Correlation
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Figure 11: Model 4- Gaussian Process- Gaussian Correlation

5 Future work

5.1 More parameters for the supernovae data

Our first future test is to add more information to the current model by looking at the most recent
SALT data. The real data has two more variables that so far we have not used in our analysis: k
(the color of the supernovae) and t (the scale of the light curve of the supernovae). Both of these
variables are important in the light curve fitting process of the real data and are two of the sources
of variability in the fitting process. Up until this point we have not included these in our models
but rather have been using µ, a unified response variable that accounts for all types of variability.
We now want to break down µ into more components: µi = mB −M − α(t − 1) − βk. We would
like to include the color and scale variables separately in the model as linear terms. It can be
useful to split the data into independent variables because the analysis can yield which variable is
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introducing the most uncertainty to the model. We have the new model:

mB = α(t− 1) + βk + 5log10(c(1 + zi)r(zi)) + 25 +M

r(z) =
1
H0

∫ z

0

(
Ωm(1 + s)3 + (1− Ωm)(1 + s)3e−3

∫ s
0
−w(u)
1+u

du

)−1/2

ds

Hopefully, this will help observers in their future work toward mitigating some of the measurement
error. Whereas, if a factor adds little variability to the model then in reducing its measurement
error is not important.

As a note, there is a variable M that appears in the real data it comes from the marginalization
in the light curve fitting. As in all the real data both M and H0 cannot both be estimated. We will
set H0 = 65 and then let all of the variability be in the new variable M . Some of the most recent
ideas for priors are: π(M) = −19.46 ± 1.0, π(α) = −1.34 ± 0.08, π(β) = 2.59 + 0.12, 2.59 − 0.08,
π(Ωm) ∼ N(0.27, 0.032), and π(σ2) ∼ IG(10, 9).

We plan on fitting w(z) with a Gaussian process with exponential correlation function, as we
did with the previous parameterization of this problem. We obtained good results from this non-
parametric fit that had smaller probability bands than the Chevallier-Polarski-Linder parametric
model. We believe a non-parametric fit of w(z) allows for more flexibility than an ansatz model.
We hope to extend our understand of the nature w(z) through this type of analysis.

Another feature we wish to add is estimation for radiation density, Ωr. Currently, we have been
assuming this parameter contributes little to the original transformation and adds instability with
the additional parameter. Ωr can be added in the following way:

T (z) = M + α(t− 1) + βk + 25 + 5log10
c(1 + zi)
H0

∫ zi

0
H(s)ds (11)

H(s) =
(

Ωr(1 + s)4 + Ωm(1 + s)3 + (1− Ωm − Ωr)(1 + s)3e−3
∫ s
0
−w(u)
1+u

du

)−1/2

(12)

5.2 Experimental Design

Currently, our real data is comprised of several hundred supernova observations. Each of the
telescopes search different depths of space for the supernovae and collect their results. To gain a
better understanding of the nature of dark energy, through our function w(z), we need more data.
We would like to explore which redshift ranges will give us the best information for constraining
the cosmological parameter. This would need to account for the any variation in observations as
further objects tend to have larger error bars. Ultimately we would like to answer what would
be better, more noisy data or less data which is more accurate? These lines of investigation are
relevant, as many observers continue to collect this supernova data.

This analysis would help guide the observers to collect the most relevant data that would be
most efficient to current research. This type of problem is referred to as experimental design in
statistics. The experimental design can give guidelines for where the most useful data can be
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collected on the redshift range. Typical experimental design would specify exact redshifts to collect
data but the Universe probably will not comply with providing a supernova at that exact location,
so instead we will alter the standard approach and give redshift targets where data would be most
useful. These targeted values will be suggestions on where to look or what telescope may be more
useful.

Currently, we have data from four general telescope classifications which tend to concentrate in
particular regions of the redshift range. It is possible for astronomers to use different telescopes to
probe different redshift ranges but they need to know where to spend their time and money.

It may be useful, too, if we can give some general idea of how the small, medium, and large
redshift values contribute differently to constraining the cosmological parameter. This line of
research would include employing a utility function based on our posterior of the w(z) and estimate
the expected utility of additional observations at various redshift values. As with all of the previous
work on this problem we expect this to be computationally intensive due to the highly non-linear
relationship in this problem. Currently, the method that is used to weight different regions of
the redshift range is principal component analysis (Huterer and Starkman, 2003). This requires
that the w(z) be a piecewise discontinuous function and the supernovae are binned according to
redshift to perform this analysis. We hope to move away from those kind of assumptions in our
experimental design and allow w(z) to be flexible.

5.3 Different Probes

Currently, we have only examined the supernovae data. This has required much work setting up
the non-linear relationship and working with the computational intensive algorithms to produce
a non-parametric estimate for the equation of state. There are several other types of probes that
have similar non-linear relationships and use many of the same parameters we have already studied
with the supernovae data. We hope to configure our current algorithms to include these other
data sources and hopefully gain more information about the cosmological parameter and reduce
our estimation uncertainty.

The current supernovae relationship is given by equations(13) and it can be seen in this section
that it shares much of the same form and parameters as the other probes.

1
c(1 + zi)

10
µi−25

5 =
1
H0

∫ z

0
H(s)ds (13)

5.3.1 Baryon Acoustic Oscillation Data

We would like to include the baryon acoustic oscillation (BAO) data to our model. This data is not
derived from supernovae but rather a different probe. We are hoping to combine this small data set
with the supernova data and continue with w(z) with our unique Gaussian process method. This
method deals with some of the computational demanding features of the non-linear relationship
and allows for a flexible fit to w(z) and does not seem to increase the probability bands when
compared to other parametric fits.
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Adding the BAO data would require assuming this data is independent of the supernovae data
and creating a joint likelihood. We would also need to account for the difference in standard error
associated with the two different types of data through weights in the likelihood equation. We
assume the BAO data is far less noisy than the supernovae data, even though the data set only
contains several points. By using more data that is less noisy we would hope to constrain our
non-parametric fit of w(z) further and reduce the probability bands. Also, we would hope to gain
more understanding about Ωm and H0 through this method. We can use equation14 for H(s) or
include Ωr as in equation(12). Our data A relates to z in the following manner:

A =
√

Ωm
h(z1)1/3

(
1
z1

∫ z1
0

H0
H(s)ds

)2/3
where A = 0.469

(
ns
.98

)−.35 ± 0.017.

There are currently two data values from the BAO probe: z1 = 0.35 where ns = 0.958± 0.016
and there may be a second data point at z1 = 0.20 that has certain issue we may also be able
to use. Because there is uncertainty in both A and ns this will require some type of hierarchical
model. This way we can include both types of uncertainty into our analysis. We will also be able
to include other parameters of interest like: Ωrh

2 = 2.47x10−5 where h = H0
100 .

5.3.2 Cosmic Microwave Background Data

Another type of cosmological probe that could be included in our study is the cosmic microwave
background data (CMB). The physics of this data is best understood compared to other types of
data. This probe explores very high redshift, many orders of magnitude higher than any of the
previous data types discussed. There is only one data point available for this probe near redshift
z = 2000. We could include this probe similarly by assuming it independent to the current data
sets and incorporating its likelihood. We would like to have the fit for w(z) be non-parametric and
flexible. We would hope that the extra data would give us more information on the nature of w(z)
in another redshift region. Also, we could possible gain more information on the other parameters
of interest are Ωm and H0 and the data is R = 1.713 ± 0.020 and z2 = 1087.9 ± 1.2. The relation
between this form of the data is given by:

R =
√

Ωm

∫ z2

0

H0

H(s)
ds

H(s) =
(

Ωm(1 + s)3 + (1− Ωm)(1 + s)3e−3
∫ s
0
−w(u)
1+u

du

)−1/2

5.3.3 Combined Data Sources

Overall, we can obtain output from a high accuracy simulator and use an already constructed
emulator that allows for five different cosmological parameters (like Ωm, H0, w(z)...). We would
like to blend these parameters with our current information obtained from the supernova data.
This type of analysis should be more robust as it employs multiple data sources (like supernova,
CMB, BAO...). A benefit is that this reverse engineers the estimation process and will allow us to
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compare the accuracy of different probes. We hope this will be the general framework of design,
optimization, and analysis of future work on the dark energy surveys.

6 Timeline

Timeline 2009-2010

Sept Oct Nov Dec Jan Feb March April May June

Hermite orthogonal 
polynomial model

Add more parameters 
to the supernovae 
model

Add BAO data to the 
models

Add CMB data to the 
models using 
hierarchical modeling

Experimental design - 
where is more data 
needed on the z axis 

Add other types of 
data to the model 

Finish writing up 
dissertation
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