
UNIVERSITY OF CALIFORNIA
SANTA CRUZ

RINGER: DISTRIBUTED NAMING ON A GLOBAL SCALE

A project submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Ian Gerald Pye

December 2008

The Project of Ian Gerald Pye
is approved:

Scott Brandt

Carlos Maltzan

Lisa C. Sloan
Vice Provost and Dean of Graduate Studies



Copyright c© by

Ian Gerald Pye

2008



Abstract

Ringer: Distributed Naming on a Global Scale

by

Ian Gerald Pye

This project describes an attempt to bridge the divide between immutable web-based

content and traditional read-write distributed filesystems. The system we have developed

(dubbed Ringer) provides a completely distributed service which comprises both a wide area

read-write filesystem and a searchable content index.

Ringer fills the gap between distributed filesystems and the Internet. The Internet,

except in specialized environments like wikis, is an extremely difficult medium for users to

generate collaborative content. Almost all files are immutable except to their owners, and when

multiple authors are allowed it is up to the application (Mediawiki, Google Docs for example)

to support this. Current distributed filesystems either do not scale, or make trade-offs between

distributed search and file mutability. Ringer facilitates mutability of files at a filesystem level,

freeing applications running above Ringer to focus on their core tasks. Since there is no reliance

on content referencing other content, Ringer is able to effectively index and rank data in more

general formats than pure HTML.

Ringer works by separating nodes into two classes. Client nodes host files and transfer

data directly between each other in a peer-to-peer manor. All metadata and search operations

are sent to an overlay graph of specialized metadata nodes. Access and concurrency control

is maintained via these metadata nodes. The metadata nodes are arranged into an arbitrary



graph, which can be constructed so that no single node, or small group of nodes, is a choke

point. Metadata nodes support two types of search: a tagging-based distributed index and a

completely automated similarity hash search.



Chapter 1

Introduction

There is currently no good way to organize important mutable information on a global

scale. This paper presents a solution to this problem. The information which we consider in this

paper is found in documents which lack the highly connected nature of hypertext, where pages

routinely reference many other pages. These documents may be spread over diverse locations,

without a centralized database organizing them all. Multiple writers and multiple readers all

expect good consistency. Information may not be repeated across multiple documents: some

data only exists in one particular document, and this one document may be constantly edited.

We present a system which enables distributed finding of one correct document in a sea of false

leads, and controlled editing of this document.

As a motivating example, consider the United Nations. The UN has offices all over

the world, each of which is dedicated to producing information. This information is encoded in

a wide variety of document formats, most of which do not reference other documents. These

documents have to be available on demand to anyone who asks, but a hot-cold distribution of

1



interest is expected where most documents are seldom read while a few are frequently accessed.

Furthermore, while documents should be stored redundantly, they are not immutable; writes as

well as reads must be expected. And of course, all this has to be done on a budget. Financial

constraints combined with a large volume of documents make storing all information centrally

(with local cached copies for fast access) untenable.

The problem we have solved is twofold: first finding information and then accessing

and updating that information. Ringer upholds concurrency, while supporting writes as well as

reads. We have implemented security, privacy and user privilege systems. Ringer also provides

reasonable performance over low bandwidth connections.

Our solution has three features:

1. Filesystem Semantics: Concurrency control and close-to-open consistency are essential

to keep things manageable in a distributed system with many readers and writers.

2. Database-Style Indexing: We need the ability to search on arbitrary file attributes and

get good results quickly. Additionally, Ringer’s approach should work well even when

information is found in only a few sources.

3. Internet-Style Connectivity: Files need to be available on demand, but only downloaded

(a slow operation on a low bandwidth network) as needed. Most files are expected to be

accessed rarely.

A naive approach to global document organization might be to simply rely on email

to spread documents. This has the benefit of being easy to deploy, low cost and a process which

(most) everyone understands. However, with this approach there is no way to discover what

2



documents are out there, only the local collection is visible to a user. As the number of files

scales, this approach falls apart.

Another possible solution is to give each office a web-server and access to a VPN,

and throw a search appliance on the resulting network. However, because of the many formats

which documents can take, the expected lack of references and the lack of redundancy, this

approach does not work well [6].

A third solution might be a decentralized peer to peer file-sharing network, in the

manor of Frangipani [15]. This fails because of the search requirement. It is not enough to be

able to read a document; users have to be able to find the document first.

The common thread here is that search is hard, especially when combined with con-

currency and stability.

The Ringer system works by adding a metadata superstructure onto a decentralized

P2P network, separating out the handling of data and metadata. Clients transfer data directly

between each other in a traditional P2P manner. Clients find each other via a graph of meta-

data servers (MDS) organized in parent/child relationships. The MDS graph can be arbitrarily

organized. In general, parents know what files their children have, but not more than that. To fa-

cilitate search, we have explored topologies where MDSs are grouped into sparsely connected

clusters or rings (hence the name Ringer) connected by a few, or even one, top level MDS.

Ringer differs from other P2P systems such as Ivy [10] since while there is no single MDS,

there is also not a complete lack of centrality. Our hybrid approach simplifies implementation

and search while avoiding the bottlenecks caused by a single central MDS.

3



Chapter 2

A Distributed Filesystem

Similar to the Ceph object based filesystem [16], Ringer separates out the handling of

data and metadata through node specialization. This is in sharp contrast to most P2P networks

which use uniform nodes. Ceph differentiates data and metadata to allow for scalable numbers

of parallel metadata operations, and also to support a pseudo-random object placement scheme

(CRUSH). Conversely, Ringer uses node specialization to facilitate search rather than perfor-

mance. Virtual metadata nodes add structure to the Ringer topology while creating a secondary

connectivity graph, allowing clients to find one another quickly.

We first focus on the client filesystem, followed by the metadata servers (MDS). We

then show how these pieces interact to produce coherent reads and writes.

2.0.1 Client

The Ringer client is implemented via the FUSE library as a mountable local volume.

Data is stored in a shadow directory which is unique to each user. Each client connects to

4



(registers with) only one MDS. This MDS is known as the “owning” MDS and is passed via a

configuration file or command line parameter to the client at initialization time. All metadata

lookups are sent to this single MDS. In practice, this involves translating from the native Unix

“struct stat” structure to Ringer’s metadata objects (dubbed “rnodes”) and vice-versa. Data is

transfered directly between clients in blocks. Currently a 4K block-size, the native block-size

of FUSE, is used. Clients are identified by a client id, consisting of a host and port pair, which is

unique to each user. Therefore, more than one Ringer volume may be simultaneously mounted

on a single physical system.

Files are owned by only the one client which created that file. Ownership cannot be

transferred. A client is responsible for registering newly created files with that client’s MDS.

Ringer supports both a synchronous and an asynchronous communication protocol

for data transfer. A client may contact another client and ask for a block of data from a file. The

requesting client blocks until the data is sent back. Alternatively, a client or MDS may contact a

client and request that a block of data be sent to a specified host. The requested block is sent to

the noted recipient and handled by a separate callback function. The recipient may be the client

making the request or a third party. For example, a MDS may realize that a client’s cached data

is invalid and send a request to update the data. In this form, the requested block is sent to the

noted recipient and handled by a separate callback function.

2.0.2 Metadata Server

The MDS maintains a list of registered clients, and can connect to an unlimited num-

ber of parent MDSs as a client MDS via the same protocol clients use to connect to their owning

5



MDS. Ancestor MDSs know which files (via an in memory hash table of Ringer paths) their

descendent MDSs own, but do not store more detailed file metadata. Since MDSs can have

arbitrarily many parents, the MDS graph for a particular network can be as complete or sparse

as desired.

When a client owns a file, the client’s MDS owns the rnode for that file

2.0.3 Single Namespace

Ringer paths are globally unique for each file. They are formed by appending the

owning client’s client id to the file path. Some path mangling is required to translate ringer

paths to locally understandable paths, but we feel that the simplicity of unique paths outweighs

the additional translation logic.

This global namespace can be traversed as follows: In the root of each Ringer volume,

a .hosts directory exists. The .hosts directory contains a set of directories corresponding to all of

the clients connected to the local client’s owning MDS, the local client’s owning MDS’s children

and the local client’s owning MDS’s parents. In the case of a binary tree structured MDS graph,

there would be clients from at most 4 MDSs in one .hosts file. Each client is mounted inside its

directory. Note that a path of the form .hosts/client id1/.hosts/client id2/foo

is the same to Ringer as client id2/foo. Long path names are simplified automatically.

Clients further away in the topology (for example, associated with a grandparent MDS) can be

accessed via a chain of intermediate clients.

6



2.0.4 Reads

Close-to-open consistency is maintained by a system of leases, arbitrated by the MDS

which owns the rnode for the file under consideration.

When a client wishes to read a file, it must request a read lease from the MDS which

owns the rnode of that file. The client initially sends the request to the owning MDS of that

client, which then finds the correct MDS by successively checking with parent MDSs until

some ancestor recognizes the file. This ancestor MDS forwards the request to the MDS which

actually owns the file. The owning MDS checks file permissions, decides whether or not to

grant the lease and passes back permission (or denial) down the chain of intermediate MDSs.

Read leases are always granted to clients with read permission, except when another client has

a current write lease for the file. Note that leases operate on the file (not block) level. If a read

lease is not granted, the client may try again after a few moments.

To eliminates the lookup overhead when a file is repeatedly accessed, each client

maintains a cache of known filenames and their associated MDSs.

If granted a read, the requesting client first downloads the rnode for that file. Rnodes

maintain a “last modified” date for the associated file; there is no caching of rnodes. The

requesting client then checks to see if the last modified date matches the date for any locally

cached relevant blocks. If the last modified dates differ or the file has not yet been read, the

requesting client contacts the owning client directly and downloads the requested blocks. The

owning client’s IP address and port are listed in the rnode for the file.

Leases do not time out quickly; they should be explicitly terminated by the lease-

7



holder. Whenever the client’s read() system call ends, the endRead() function is invoked.

This function contacts the owning metadata server for the file, and requests lease termination.

The call is asynchronous, returning without waiting for a response from the MDS.

One performance improvement would be maintaining read leases beyond one

read() call. This optimization would not change the overall Ringer protocol however.

2.0.5 Writes

Writes follow the same protocol as reads, with one important difference. Only one

client can have the lease for a file at any given time, if that lease is a write lease. When a write

lease is requested, the MDS only grants the lease if there are no outstanding read leases for the

file. Because leases are short lived, clients busy-wait until a write lease is granted. The duration

of the write lease is the duration of the client’s write() system call.

2.0.6 Failures

Because of the distributed nature of Ringer, network or system failures can be handled

gracefully. A client being lost for any reason will only cause those files owned by the lost client

to become unavailable to new readers, while local copies of these files will still be accessible

to existing readers. If a MDS is lost, those files owned by the MDS are lost. However, clients

connected to this MDS may re-connect to a different MDS, while multiple parents allow any

children of the failed MDS to still access the rest of the network.

8



Chapter 3

Security and Authentication

The security and privacy of Ringer is built transparently on top of the GNU Transport

Layer Security Library (GnuTLS)[5]. GnuTLS intercepts data streams at the TCP socket level;

transmitted data is encrypted and compressed on its way out and decrypted and decompressed

when it is received at the other end. A handshake protocol is used to negotiate a cypher and

authenticate both the client and server. By default, Ringer uses a relaxed protocol which pro-

motes interoperability. If a non-encrypted client (server) asks to connect to a encrypted server

(client) the encryption will be dropped and the connection made in the clear. This behavior is

customizable, and Ringer can enforce encryption if security is a priority over flexibility.

The GnuTLS library allows for both X.509 and OpenPGP based authentication;

Ringer uses the PGP model.

Trust in Ringer flows uphill, in the sense that clients trust their MDS to be a trusted

introducer and MDSs trust their parents to be trusted introducers. Trust is not recursive, and

because a certificate is trusted (but not signed) by a parent MDS does not mean that the child

9



MDS will trust the certificate. Therefore, whenever a MDS receives a certificate to sign, it

passes it up to all of its parents to sign as well.

{Trusted Introducer}

Alice Bob

Charlie

{Data Transfer}

Figure 3.1: In Ringer, trust flows uphill. Parents are trusted introducers, children are not. In this
example, Alice and Bob are introduced to each other by Charlie.

An example of how this all works is seen in Figure 3.1. Alice wants to communi-

cate with Bob, but they do not share a common top level MDS. However, both Alice and Bob

do trust Charlie to be an introducer and Charlie has singed both Alice and Bob’s certificates.

Therefore, when Alice and Bob send each other their certificates, they both see that they are

being introduced by a trusted introducer.

Ringer supports user/group/all style read and write permissions. These are set

using the Unix chmod command. Permissions can only be changed by the client which owns

the file. All users on the same host machine are considered part of the same group; adding

and managing new groups is left for future work. Each client is identified uniquely by their

machine’s host-name and local user id.

10



Chapter 4

Search

Search is the key component of Ringer. Any document, once found, can be read. It is

the finding, in a distributed manor, which is the hard part. One major goal of Ringer is not to be

tied to any one search program. Instead, we designed Ringer to be a search framework, allowing

many different algorithms to be easily implementable on top of the basic Ringer architecture.

Currently we explore two example approaches to search: human tagging and machine computed

binary similarity.

4.0.7 Tag Search

The first search method we support is a tag based one. Files are tagged by human

users, using the extensible attribute component of the file’s local inode. The new tag is relayed

to the client’s MDS, which needs to update the index of tags. This MDS attempts to find a MDS

which “owns” the tagged keyword, via a breadth-first search of its ancestors. A parent MDS

knows all of the keywords which its children own, and can respond to a keyword lookup request

11



with the address of the owning child. If no result comes back after a given timeout period, or if

the owning MDS is down, the client’s MDS notifies its parents that it has assumed ownership

of the keyword. If another MDS is found to be the owner, this MDS is sent the absolute Ringer

path of the tagged file. Note that there may be multiple owners for each keyword.

This scheme is optimized for the assumption that clients are likely to re-use metadata

tags, leading to fast lookup for commonly used tags. The number of owners is a function of

how well connected the MDS parent relation graph is. Note that there is no need to prepare

a mapping of keywords to MDSs in advance. There is also no reliance on any kind of central

authority to arbitrate keywords. Associating keywords with specific owners allows us to prune

the search space. There is no need to ask every MDS if they have a matching file: you only need

to go up your list of ancestors high enough to identify which MDS owns the requested tags.

Human users (searchers) can query the system via a standalone program. Searchers

input a list of search keywords and a MDS via a command line interface. The search program

then contacts that MDS and relays the keyword list. This MDS then looks up keyword owners,

in the manor described above. Again, if there is no owner, the MDS assumes ownership. After

collecting a list of owners, the MDS contacts the owners directly, asking for all files matching

each keyword. The responses are then collected into a single response and sent back to the

issuing search program. The results are presented to the searcher as a list of Ringer file paths,

grouped by the keywords satisfied.

An extension of tag based search would be a full text keyword search. In this form,

all words in a file would be considered keywords, and indexed accordingly. Beyond the com-

munication overhead, we consider this extension unsatisfactory because our desire is for Ringer

12



to work equally well with all data formats and languages, and not require specialized handling

for any particular format.

4.0.8 Similarity Search

The other type of search implemented came about because we wanted a search which

did not need any human input.

Hash functions allow for a compact representation of a file, so that identical files can

be quickly identified. With a similarity hash, files which have similar content hash to similar

values.

We integrated an existing similarity hashing function 1 as a library in Ringer to create

the similarity search. This code works as follows: since the goal is binary similarity, the hashing

function is initialized with a set of n byte-strings to look for. These byte-strings are static; the

same strings are used on all files throughout the Ringer system. In each file processed, the

similarity hash counts the number of occurrences of each string. These counts are turned into

an n dimensional vector. Similarity is defined by the angle between vectors. As two files get

closer to each other, we expect this angle to go to 0.

In Ringer, similarity search uses a basic broadcast pattern. When a file is added or

edited, its similarity vector is computed and stored as part of its metadata. Because we use a

bounded set of strings to look for, this does not grow too large. For search, a file and an epsilon

are given to the search client. The target file is hashed, and the hash value and the epsilon sent

to a MDS. This MDS sends the search to its parents and children, and so on. Any MDS which
1Written by Caitlin Sadowski and Greg Levin, both graduate students at UCSC.

13



owns files with similarity vectors within an angle of epsilon to the searched for file’s similarity

vector are returned. The results are recursively aggregated and returned, after a timeout period

ends, as a list of Ringer paths to the original requesting search client.

In practice, we do not separate out tagging and similarity search, instead giving the

search client a mixed list of tags and file paths to hash. If a directory is given, all files in that

directory are hashed separately.

14



Chapter 5

Experimental Results

Testing is still ongoing. We have completed a few small scale evaluations, presented

below, and feel that the filesystem is relatively stable, even in a wide area, low bandwidth

environment. Further tests will evaluate Ringer’s performance, including search, as a large dis-

tributed file system. Using the Amazon Elastic Compute Cloud, we are planning on measuring

the scalability of Ringer as it grows from from a few client nodes and one MDS to hundreds of

clients and MDSs.

5.0.9 Micro-Benchmarks

We first present several micro-benchmarks. We measure the time to stat a file and read

the file’s metadata, acquire a read lease, acquire a write lease, end the read lease, and finally end

the write lease. All of these require communication with a separate MDS process. Each time is

the average time in microseconds measured using the gettimeofday() system call of 1000

runs. Our results are presented in Table 5.0.9.

15



test local remote (DSL) remote (GigE) mixed (DSL)
put rnode() 223 14,575 746 n/a
get rnode() 472 35308 724 n/a
get read() 413 31103 501 33000
get write() 791 4403 524 786
end read() 498 33471 530 57000
end write() 874 5403 525 829

Table 5.1: Metadata micro-benchmarks (in microseconds).

local refers to a client communicating with a MDS over a loopback device. remote

(DSL) refers to a client and a remote MDS accessed via a DSL connection. remote (GigE) is

the same but using a gigabit ethernet connection for the client/MDS communication. Finally,

mixed (DLS) refers to local client speaking to a local MDS which in turn communicates with a

remote MDS via DSL.

The major differences within columns are caused by the synchronous nature of the

three get*() calls, which all wait for a response from the server before returning. The other

methods (end read(), end write() and put rnode()) all return immediately after any

client-side processing.

While the latency of DSL obviously adds to the time required to get leases, the over-

head is cut almost in half because no response is needed to end a lease.

5.0.10 Integrated Performance

Next we compare Ringer and the SSHFS filesystem, chosen because it is also FUSE

based, as they perform a sequential read over a gigabit ethernet connection.

The results depicted in Figure 5.1 show elapsed time in seconds to complete a series

16



Figure 5.1: Time in seconds to read 2n bytes of sequential data.

of reads, from 2 bytes to 2 megabytes. These are the mean times out of 50 runs.

For this test using Ringer, one client and MDS are hosted on the same machine, while

the reading client is mounted on a separate computer. SSHFS uses a client-server model. The

times for Ringer and SSHFS are very similar. We interpret this as showing that the added

overhead Ringer incurs by finding files via a MDS is acceptably small and is largely eclipsed

by data transfer.

Turning our attention to writes in Figure 5.2, we see that the situation is very similar.

Ringer writes data only to the local disk, and after this the writing client considers the

operation to be complete.

It is only when another client reads the written data is data sent over the network.

For testing purposes, we consider this to be a read. Instead of data transfer then, the write times

shown here are dominated by the calls to the MDS, which lead to the mostly flat performance of

Ringer. The uptick at the shows the effect of writing larger files to local disk. SSHFS however

sends all writes to the server, and so write time grows with write size. Especially on a slow

17



Figure 5.2: Time in seconds to write 2n bytes of sequential data.

connection, network time comes to dominate disk access.

5.0.11 EC2

As another experiment to test scalability, we set up a larger Ringer network on a set of

nodes using the Amazon Elastic Compute Cloud framework. Figure 5.3 shows the total elapsed

time in seconds to setup and take down a network composed of one MDS and between one and

ten clients. Each node is run on a separate small (1 core) instance, with all instances in the same

availability zone.

5.0.12 Block Size

We also look at the effect of varying the block size has on Ringer.

Because Ringer is build on Fuse, we did not change the size of data which Ringer

handles on a local level. Instead, we changed the amount of data which is requested whenever

a block is not in the local file cache. As expected, with no network delay (see Figure 5.4), this

18



Figure 5.3: Time in seconds to launch and stop concurrent clients.

Figure 5.4: B
¯
lock-Size: Time needed to read and write 128K of data as the block size increases,

with no network delay.

19



does not effect things greatly.

Because leases last only the length of the system read() and write() calls, we believe

that very long block sizes here would result in faster access times due to the reduction in the

number of leases needed for a transaction. Unfortunately, this system block size is defined by

Fuse and is not accessible to the application writer.

20



Chapter 6

Related Work

The history of distributed filesystems is almost as long as the history of computer

networks. The original model and still the most commonly used systems in practice are client

and server rigs such as NFS [11] and CIFS[7]. These systems are conceptually simple and,

largely because of their ubiquity, easy to deploy and control. The existence of a single central

server however is a major limitation on how far such systems can be scaled. Both NFS and

CIFS focus exclusively on providing high speed connections between systems operating on a

LAN.

One attempt to extend a client-server based network to low bandwidth WANs is the

Low-bandwidth Network File System[9]. Here, a file is broken into chunks based on Rabin[12]

fingerprints. A Rabin fingerprint is the polynomial representation of the data modulo a prede-

termined irreducible polynomial.

In the High Performance Computing world, where network interconnect is assumed

to be fast and the limiting factor is largely disk bandwidth, the ability to handle petabytes of data

21



extremely quickly has become the greatest challenge to any distributed filesystem. Currently,

this is accomplished by striping files across multiple disks, while separating out storage and

compute nodes.

One implementation of this is via an object based interface. As reported by

Mesnier[8], ”Objects are storage containers with a file-like interface, effectively representing

a convergence of the NAS and SAN architectures. Objects capture the benefits of both NAS

(high-level abstraction that enables cross platform data sharing as well as policy-based secu-

rity) and SAN (direct access and scalability of a switched fabric of devices).”

Some implementations of Object based file systems include xFS[13] and Ceph[16],

discussed earlier.

There has been widespread interest in peer-to-peer and wide-area networks in the past

10 years. To briefly mention a few, the Gnutella and Freenet networks [4, 2] are both popular

examples.

Closer to Ringer, Kosha [3], extends the basic client-server model of NFS with peer-

to-peer data transfer. Kosha uses NFS to provide hierarchical file organization, directory listings

and file permissions, very much like the MDS concept in Ringer. Kosha peers transfer data

directly between each other, again in a similar manner to Ringer. A key difference is that

Ringer supports a de-centralized MDS network, while Kosha relies on a single NFS server to

handle the metadata requests of all its clients. Also, while Ringer has an emphasis on wide-area

search, Kosha is targeted at providing local area performance.

Another system similar to Ringer is Anglano and Ferrino’s work with N3FS. In [1],

they evaluate using the Chord [14] distributed hash table like the MDS network in Ringer to

22



provide metadata storage and lookup. The difference again with Ringer is its emphasis on

search.

23



Chapter 7

Conclusions and Future Work

In the near future, we are focused on testing Ringer’s performance running on a large

number of nodes connected only via a low bandwidth network. Additionally, in order to see

how Ringer executes on a resource limited environment, we are porting both the client and

MDS parts of Ringer to run on a 500 MHz ARM powered NAS box.

Another active area of research for us is determining the optimal connectedness for

the MDS network. More parents for each MDS mean a better chance of finding queried rnodes

in searches but makes each search take longer. We believe that two or three parents for each

MDS will provide enough search paths for most queried rnodes to be found, and found relatively

quickly. A further refinement would entail dynamically updating the parent/child relationships

so that a MDS hosting a “hot” rnode has many paths leading to it, but “cold” rnodes are only

found via a few paths.

In conclusion, information exists in forms where it is either difficult to find or, once

found, difficult to update in a coherent manor. Our solution is to create a hybrid network where

24



content is found via a collection of metadata servers but transfered directly between clients. The

resulting lack of any central authority ensures scalability, while unique file paths and a system

of leases provide coherency. The specialized metadata servers in turn facilitate search. We hope

that Ringer will prove a reliable, efficient and scalable way to facilitate globally distributed

collaboration.

25



Bibliography

[1] C Anglano and A Ferrino. Using chord for meta-data management in the n3fs distributed

file system. Peer-to-Peer Systems, Jan 2004.

[2] J Berkes. Decentralized peer-to-peer network architecture: Gnutella and freenet. Univer-

sity of Manitoba Winnipeg, Jan 2003.

[3] A Butt, T Johnson, Y Zheng, and Y Hu. Kosha: A peer-to-peer enhancement for the

network file system. Journal of Grid Computing, Jan 2006.

[4] I Clarke, O Sandberg, B Wiley, and T Hong. Freenet: A distributed anonymous informa-

tion storage and retrieval system. Workshop on Design Issues in Anonymity and Unob-

servability, Jan 2000.

[5] The gnu transport layer security library. http://www.gnu.org/software/gnutls/.

[6] David Hawking. Challenges in enterprise search. In ADC ’04: Proceedings of the 15th

Australasian database conference, pages 15–24, Darlinghurst, Australia, Australia, 2004.

Australian Computer Society, Inc.

[7] P Leach. Cifs authentication protocols specification. Microsoft.

26



[8] M Mesnier, G Ganger, E Riedel, and C Mellon. Object-based storage. Communications

Magazine, Jan 2003.

[9] A Muthitacharoen, B Chen, and D Mazières. A low-bandwidth network file system. Pro-

ceedings of the eighteenth ACM symposium on Operating . . . , Jan 2001.

[10] A Muthitacharoen, R Morris, T Gil, and B Chen. Ivy: A read/write peer-to-peer file

system. Proc. of OSDI, Jan 2002.

[11] B Pawlowski, S Shepler, C Beame, and B Callaghan. The nfs version 4 protocol. Pro-

ceedings of the 2nd international system administration . . . , Jan 2000.

[12] M.O. Rabin. Fingerprinting by random polynomials. Technical report, Technical Report

TR-15-81, Center for Research in Computing Technology, Harvard University, 1981.

[13] O Rodeh and A Teperman. zfs-a scalable distributed file system using object disks. Mass

Storage Systems and Technologies, Jan 2003.

[14] I Stoica, R Morris, D Karger, and M Kaashoek. Chord: A scalable peer-to-peer lookup

service for internet applications. Proceedings of the 2001 SIGCOMM conference, Jan

2001.

[15] C Thekkath, T Mann, and E Lee. Frangipani: a scalable distributed file system. ACM

SIGOPS Operating Systems Review, Jan 1997.

[16] S Weil, S Brandt, E Miller, and D Long. Ceph: A scalable, high-performance distributed

file system. Proceedings of the 7th Symposium on Operating Systems Design . . . , Jan

2006.

27


