Development of Improved Forward Models for Assimilation of Snow Properties into Land Surface Models

Eric Wood¹ In conjunction with Rafal Wójcik¹, Konstantinos M. Andreadis², and Dennis P. Lettenmaier²

¹Dept. of Civil and Environmental Engineering, Princeton University ²Dept. of Civil and Environmental Engineering, University of Washington

Univeristy of Washington

Outline

Introduction

Importance of snow in (terrestrial) water budget studies Satellite remote sensing of snow Model-based physical approaches for prediction of snow properties

- Forward Emission Models for Snow Microwave T_b Retrival DMTR, LSMEM, MEMLS
- Models Testing and Validation
 NASA's CLPX experiment

Sensitivity analyses, emission models vs CLPX and AMSR-E data

• Conclusions, Challenges, and Future Work

Multi-sensor, multi-platform, multi-scale snow $\rm T_{\rm b}$ assimilation - twin experiment set up

Introduction: importance of snow in water budget estimates

- Snow cover extent (SCE) and water equivalent (SWE) are key factors in land-atmosphere feedbacks
- As much as 90% of annual streamflow is snowmelt driven in the western US
- Operational large-scale estimates of SCE and SWE would likely enhance the accuracy of NWP
- Improved NWP forecasts would also benefit flood forecasting and drought monitoring.
- In situ observations are unable to temporal and spatial variability of snow processes

Snow Cover Extent (SCE)

- Visible wavelength sensors (GOES, AVHRR, MODIS etc)
- Cloud-free conditions required
- Lack of any information about water storage

Snow Water Equivalent (SWE)

- Passive microwave sensors (SSM/I, AMSR-E etc)
- Coarse spatial resolution
- Wet snow and metamorphism greatly affect signal

Introduction: satellite remote sensing of snow

- Potential exits for improved retrieval of SWE at large-scales from spaceborne microwave radiometry. Challenging because microwave T_b derives from surface, snow pack, vegetation, and atmosphere
- SWE retrieval theory:
 - dielectric constant of frozen water differs from liquid form
 - snow crystals are effective scatterers of microwave radiation (snow density, grain size, stratigraphic structure and liquid water)
 - deeper snow packs --> more snow crystals --> lower T_b
- Direct assimilation of T_b is a challenging problem requires comprehensive land surface microwave emission model.

Introduction: physical models of snow properties

- Additional information about snow properties can be obtained by mass/energy balance snow models
- Uncertainty in forcing data and/or model parameters
- Nonlinearity and scale of modeled processes

University of Washington

Introduction: physical models of snow properties

Example: SNTHERM (SNow THERmal Model)

Output : snow depth, profiles of snow temperature, water content, density, grain size

University of Washington

Research Questions

- Can a forward model of surface microwave emission be developed that is capable of providing realistic brightness temperatures for snow covered areas,
- Can the inputs for the forward model be provided by operational observations and/or physical snow model output, and
- Is the modeled/predicted T_b sufficiently accurate and useful for assimilation into operational NWP?

Forward emission models for snow Tb retrival

$$T_{b} = F(Atmos \uparrow \downarrow, T_{veg}, T_{snow}, T_{soil}, \varepsilon_{snow})$$

 ε_{soil} , scattering albedo, optical depth)

- Processes needed for cold seasons:
 - frozen ground
 - snow covered surface
 - tall vegetation (snow or no snow).

Observed emission = surface (snow/soil) emission + reflection + vegetation emission + attenuation + atmospheric emission + attenuation + water/ice emission + reflection

Princeton University

Forward emission models for snow Tb retrival

All Seasons LSMEM (Drusch et al., 2001, 2004; Gao et al., 2004)

- Calculates microwave emission from a surface partially covered with vegetation and/or snow
- Snow component based on the semi-empirical HUT emission model
- Treats snowpack as a single homogeneous layer
- Dielectric constants of ice and snow calculated from different optional models
- Inputs include snow depth, density, temperature, grain size and ground temperature

DMRT (Tsang et al, 2000)

- Calculates Tb from a densely packed medium
- A quasi-crystalline approximation is used to calculate absorption characteristics with particles allowed to form clusters
- The distorted Born approximation is used to calculate the scattering coefficients
- Inputs include snow depth, snow temperature, fractional volume and grain size

MEMLS (Metzler, 1998)

- Calculates Tb from a multi-layer snow medium
- The absorption coefficient is derived from snow density, frequency and temperature
- The scattering depens on snow density, frequency and correlation length
- Inputs include snow depth, temperature, density, ground temperature and correlation length
- So far successfully validated only for dry snow conditions

Cold Land Processes Field Experiment Plan

NASA Land Surface Hydrology Program - Cold Land Processes Working Group

Princeton University

Validation with CLPX Observations

- Ground-Based Microwave Radiometer (GBMR)
- Dense Snow Pit measurements
- 12-13 Dec 2002 & 19-24 Mar 2003
- Snow on bare ground (no vegetation)
- Assume snow measurements representative of entire LSOS (100 x 100 m)

- Microwave emission from full snow coverage at 55°
- AS-LSMEM was run for different grain sizes to capture observed stratigraphy
- Strong dependence of results with assumed grain size

- Microwave emission from full snow coverage at 55° •
- MEMLS was run for different correlation lengths to capture observed stratigraphy •
- Strong dependence of results with assumed correlation length •

Univeristy of Washington

Princeton University

Validation of SNTHERM at CLPX Snow Pits, Feb-March 2003

Validation of SNTHERM at CLPX Snow Pits, Feb-March 2003

Can the inputs for a forward model be provided by physical snow model output to obtain realistic Tb estimates?

force AS-LSMEM, DRTM, MEMLS with outputs from SNTHERM
compare estimated Tb with GBMR and AMSR-E

measurements at 18.7 and 36.7 (h/v) Ghz

Assumptions: single snow layer, dry snow

Simulated (DMTR, LSMEM and MEMLS) near-surface Tb at LSOS for the period 18 - 26.02.2003

Univeristy of Washington

Time index [h]

Time index [h]

Simulated (MEMLS and LSMEM) and observed (AMSR-E) near-surface Tb at LSOS for the period 04.02.2003 -29.03.2003

Univeristy of Washington

Princeton University

Potentials

- There is great potential is for estimating snow Tb by forward emission models
- Assimilating satellite Tb could improve snow estimates in land surface models at variety of spatio temporal scales ---> improved water budget estimates
- Data assimilation offers the framework to:
- optimally combine forward emission models and remote sensing observations of snow Tb
 - account for the limitations of both by error structure description

Challenges and Future Work

• Understanding of the error structure of forward emission models, sensors, etc, including how they vary in time and space

- Data assimilation of snow Tb observations
- Improving forward emission models

Twin experiment: multi -model, multi-scale, multi sensor snow Tb data assimilation

- Generate "snow reality" with SNTHERM at multiple spatio-temporal scales
- Force an ensemble of forward emission models with SNTHERM output
- Compare the above estimates of Tb with multi-sensor measurements
- Derive observational operators by quantizing error structure using flexible pdf estimators (copula models, mixture models)
- Assimilate multi-sensor measurements into Noah LSM and/or multiple land surface models
- Update snow characteristics, combine them (Bayesian model mixture) and compare with SNTHERM "snow reality"

Simulated (SNTHERM/LSMEM before and after assimilation) and observed (AMSR-E) high-altitude brightness temperatures over the Stanley Basin (43.60 N, 114.67 W)

Simulated snow depth, before (prior) and after (EnKF) assimilation in the Stanley Basin (43.60 N, 114.67 W).

The End

Probability of a White Christmas (snow depth 1" or more)

