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INTRODUCTION

The 1989 ‘Exxon Valdez’ oil spill in Prince William
Sound (PWS) and the Gulf of Alaska resulted in wide-
spread mortality and injury among species occupying
marine habitats (Spies et al. 1996). Acute effects fol-
lowing the spill were most apparent as direct, oil-re-
lated mortality, affecting multiple species of kelps,

marine invertebrates, fishes, birds and mammals
(Piatt et al. 1990, Garrott et al. 1993, Bodkin & Udevitz
1994, Brown et al. 1996, Highsmith et al. 1996, Rice et
al. 2007). Hundreds of thousands of marine birds and
thousands of marine mammals died as a result of the
spill (Ballachey et al. 1994, Frost et al. 1994, Piatt &
Ford 1996), along with indeterminate numbers of
kelps, invertebrates and fishes. Although injury and
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ABSTRACT: The protracted recovery of some bird and mammal populations in western Prince
William Sound (WPWS), Alaska, and the persistence of spilled ‘Exxon Valdez’ oil in intertidal sed-
iments, suggests a pathway of exposure to consumers that occupy nearshore habitats. To evaluate
the hypothesis that sea otter (Enhydra lutris) foraging allows access to lingering oil, we contrast
spatial relations between foraging behavior and documented oil distribution. We recovered
archival time-depth recorders implanted in 19 sea otters in WPWS, where lingering oil and de -
layed ecosystem recovery are well documented. Sea otter foraging dives ranged from +2.7 to
−92 m below sea level (MLLW), with intertidal accounting for 5 to 38% of all foraging. On average,
female sea otters made 16 050 intertidal dives per year and 18% of these dives were at depths
above the +0.80 m tidal elevation. Males made 4100 intertidal dives per year and 26% of intertidal
foraging took place at depths above the +0.80 m tidal elevation. Estimated annual oil encounter
rates ranged from 2 to 24 times yr−1 for females, and 2 to 4 times yr−1 for males. Exposure rates
increased in spring when intertidal foraging doubled and females were with small pups. In sum-
mer 2008, we found sea otter foraging pits on 13.5 of 24.8 km of intertidal shoreline surveyed.
Most pits (82%) were within 0.5 m of the zero tidal elevation and 15% were above 0.5 m, the level
above which most (65%) lingering oil remains. In August 2008, we detected oil above background
concentrations in 18 of 41 (44%) pits excavated by sea otters on beaches with prior evidence of oil-
ing, with total PAH concentrations up to 56 000 ng g−1 dry weight. Our estimates of intertidal for-
aging, the widespread presence of foraging pits in the intertidal, and the presence of oil in and
near sea otter foraging pits documents a pathway of exposure from lingering intertidal oil to sea
otters  foraging in WPWS.
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mortality were evident across a wide range of taxa, it
was those species that occupy or rely on nearshore
habitats where oil accumulated in bays and was de-
posited and retained on shorelines for which acute ef-
fects were most evident (Spies et al. 1996).

Early assessment of the fate and persistence of
spilled oil identified relatively high initial decay rates
(~58% yr−1) for several years following the spill (Wolfe
et al. 1994) and it was generally presumed that, as a
result, long-term exposure to wildlife was of little con-
cern (Peterson et al. 2003). In addition, claims of rapid
recovery for most species that suffered acute injury
were made shortly after the spill (Johnson & Garshelis
1995, Wiens et al. 1996) and later work suggested that
long term con sequences of lingering oil to sea otters
specifically were minimal (Harwell & Gentile 2006,
 Harwell et al. 2010, Boehm et al. 2011). However, con-
trary to claims of rapid re covery and limited long- term
effects, ample evidence accumulated in the decades
since the spill has de mon strated that not all injured
species and ecosystems recovered quickly, with pro-
tracted recovery particularly evident in nearshore
food webs (Peterson 2001, Rice et al. 2007). Sea otter
(Enhydra lutris) population re covery rates in heavily
oiled western PWS (WPWS) were about half those ex-
pected, and in areas where oiling and sea otter mor-
tality were greatest, there was no evidence of
recovery through 2000 (Bodkin et al. 2002). Reduced
survival rates ap peared to be the proximate factor for
delayed sea otter recovery (Monson et al. 2000, 2011,
Balla chey et al. 2003), and food limitation was dis-
counted as contributing to that reduced survival
(Dean et al. 2002). However, failure of populations to
return to pre-spill levels, although suggestive, is not
necessarily indicative of failure to recover. Establish-
ing that re covery processes are related to the spill,
rather than factors independent of the spill (e.g.
ecosystem shifts, or other demographic constraints)
re quires evi dence of continuing exposure to oil.

Following initial injury assessment efforts, re search
to evaluate the process and progress toward re  covery
of injured species and ecosystems identified un -
expected delays for several species that occupy
nearshore habitats (Peterson et al. 2003, Rice et al.
2007). Studies directed at examining cause for de -
layed recovery, completed in 1999, focused on 2
marine birds — pigeon guillemots Cepphus columba
and harlequin ducks Histrionicus histrionicus — and 2
mammals — sea otters and river otters Lontra cana -
densis (Peterson & Holland-Bartels 2002). Each of
these species exhibited both acute initial mortality
from the spill and unexplained, protracted recovery.
Golet et al. (2002) found that exposure to hydrocar-

bons measured through the cytochrome P4501A
(CYP1A) enzyme and the liver enzymes aspartate
aminotransferase (AST) and lactate dehydrogenase
(LDH) were elevated in pigeon guillemots residing in
oiled, compared to unoiled habitats. For harlequin
ducks, re duced adult female survival was identified
as the proximate cause of delayed recovery for at least
a decade after the spill, and chronic exposure to lin-
gering oil, also indicated by elevated CYP1A, was im-
plicated as a contributing factor (Esler et al. 2002,
2010). Although evidence of continued exposure to
lingering oil through the CYP1A enzyme in river
otters was present in 1996, diminishing levels there-
after led Bowyer et al. (2003) to conclude that the level
of ex po sure was insufficient to cause continued injury.
Sea otters also demonstrated evidence of continued
ex posure to oil late into the 1990s, through elevation
of a serum enzyme (GGT) associated with liver
disease or injury (Lipscomb et al. 1993, Ballachey et
al. 2002a, Bodkin et al. 2002). As recently as 2008, sea
otters from PWS showed elevated transcription in sev-
eral genes indicating possible recent and chronic ex-
posure to organic contaminants (Miles et al. in press).

Evidence of exposure to lingering oil through
meta  bolic pathways via CYP1A has also been docu-
mented in other nearshore species, including Bar-
row’s goldeneye Bucephala islandica (Trust et al.
2000, Esler et al. 2011) and 2 nearshore fishes, the
masked greenling Hexagrammos octogrammus, and
the crescent gunnel Pholis laeta (Jewett et al. 2002).
The intertidal clam Protothaca staminea, a common
sea otter prey in the nearshore invertebrate food web
that resides in intertidal habitats where lingering oil
was present, sequestered oil in tissues and demon-
strated reduced growth rates late into the 1990s (Fu -
ku yama et al. 2000).

In 2001, Short et al. (2004) documented unexpected
amounts (55 600 kg over 11.3 ha) of ‘Exxon Valdez’
oil (EVO) remaining in intertidal habitats, primarily
in sheltered bays in WPWS and particularly along the
northern Knight Island archipelago. In 2003, Short et
al. (2006) identified that most intertidal oil was in the
mid-tidal range of +1.8 to +2.8 m, and that oil could
be found down to the −0.2 m tidal elevation (below
mean lower low water [MLLW]). Further, Short et al.
(2006) estimated an average probability for encoun-
tering surface or subsurface oil in the intertidal of
0.0048, within previously heavily oiled bays at
Knight Island, or about 1 in 200 random sediment dis-
turbance events, such as a sea otter excavating a for-
aging pit. Short et al. (2007) also found that subsur-
face EVO may be expected to persist for decades in
some sites.
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The persistence of spilled oil in intertidal habitats
in WPWS for more than a decade following the spill
provides cause for concern for recovery of injured
resources (Peterson et al. 2003, Short et al. 2004,
2006, Esler et al. 2010). Exposure of upper trophic
level consumers to lingering oil through an inverte-
brate pathway has been widely recognized as a po -
tential mechanism contributing to protracted eco sys -
tem recovery (Dean et al. 2000, Esler et al. 2000,
2002, Fukuyama et al. 2000, Trust et al. 2000, Bodkin
et al. 2002). However, empirical data quantifying use
of intertidal habitats by consumers in WPWS has
been lacking, leading to controversy surrounding the
extent of exposure to EVO (Boehm et al. 2007, 2011,
Neff et al. 2011) or the potential effects of long-term
ex posure (Harwell & Gentile 2006, Harwell et al.
2010).

Sea otters rely extensively on clams (approximately
75% of diet) as prey in WPWS (Calkins 1978, Dean et
al. 2002), in both intertidal and subtidal sediments,
and excavations of sediments >0.1 to 0.5 m in depth
can be required to obtain this prey (Nickerson 1977,
Kvitek & Oliver 1988). Thus, intertidal foraging pro-
vides a potential pathway of exposure to oil for sea
otters and other nearshore species through direct
contact with oil and/or through ingestion of contami-
nated prey (Bodkin et al. 2002, Short et al. 2006,
Boehm et al. 2008). The pits left behind by foraging
sea otters are evidence of their feeding activities, and
are readily quantifiable through systematic beach
sur veys. In addition, time-depth recorders (TDRs) im -
plan t ed in sea otters (Bodkin et al. 2004) provide de -
tailed dive records that can be used to quantify their
diving behavior, particularly in relation to depth.

Our goal was to evaluate the potential for sea otters
to gain exposure to EVO remaining in intertidal sed-
iments while foraging. We use surveys of foraging
pits on beaches in oiled areas of WPWS and data
from TDRs implanted in sea otters residing in these
areas, along with published estimates of the distribu-
tion and abundance of lingering oil (Short et al. 2006,
Boehm et al. 2008), to estimate the probability that
sea otters inhabiting these areas may encounter oil
while foraging in intertidal habitats. We had 4 objec-
tives: (1) describe the extent of intertidal foraging by
sea otters in WPWS, (2) estimate rates at which forag-
ing sea otters encounter lingering oil, (3) estimate the
frequency of occurrence of intertidal foraging pits
dug by sea otters across soft-sediment bea ch es at
northern Knight Island, where lingering oil is most
common, and (4) quantify the concentration of total
polycyclic aromatic hydrocarbons (TPAH) in sedi-
ments from intertidal foraging locations.

MATERIALS AND METHODS

Study area

This research was focused in the northern Knight
Island archipelago in WPWS. Sea otters were cap-
tured between Squirrel Island and Bay of Isles at
Knight Island, and sea otter foraging pit surveys
were conducted between Herring Bay and Bay of
Isles (Fig. 1). Shoreline oiling throughout the study
area was extensive in 1989 (Wolfe et al. 1994) and
sea otter mortality approached 90% following the
spill (Bodkin & Udevitz 1994). This is an area
where the abundance of sea otters had not recov-
ered to pre-spill levels by 2000 (Bodkin et al. 2002)
and where spilled oil persisted for more than a
decade following the spill (Short et al. 2004, 2006,
2007).
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Fig. 1. Study area in the northern Knight Island archipelago
of western Prince William Sound (WPWS) and locations of
(1) sea otter captures (marine areas within oval), (2) sea otter
pit surveys (all beaches surveyed), and (3) sediment collec-

tions (diamonds: 4 known oiled and 2 reference sites)
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Foraging dive depths

In 2003 and 2004, we captured 30 sea otters in
WPWS, at northern Knight Island (Fig. 1). Sea otters
were sedated (Monson et al. 2001) and a premolar
tooth was extracted for age determination (Bodkin et
al. 1997). We implanted adult male and female sea
otters with a VHF radio and an archival TDR (Mark
IX, Wildlife Computers) (Bodkin et al. 2004, 2007).
VHF radio transmitters were used to obtain direct
observations of otters for verification of dive types
and reproductive status. TDRs were programmed to
record depth at 2 s intervals from the time of deploy-
ment for approximately 1 yr and were capable of
storing these data for up to 10 yr. In 2004 and 2005,
we attempted to recapture all of the sea otters that
received TDRs in 2003 or 2004, following at least 1 yr
of data collection. We opportunistically recovered
additional TDRs through 2008. Capture, handling,
moni toring, and surgical procedures were approved
by the Animal Care and Use Committee of the US
Geological Survey, Alaska Science Center and under
Federal Permit DMA-766818.

TDR data were processed with zero offset software
(ZOC, Wildlife Computers) to calibrate each data
point relative to the sea surface (Hooker & Baird
2001) and through the Dive Analysis program (DA,
Wildlife Computers), which transformed the 2 s inter-
val depth data into individual dives using 3 user-
defined values. These user-defined parameters (and
values from Bodkin et al. 2004) include minimum
usable dive depth (1.5 m), allowable surface error
(0.5 m) and the percent of maximum depth used to
define the ‘bottom’ (80%). Output from DA included
the following attributes for each dive: date and start
time of each dive, dive duration, time at bottom, max-
imum depth, and mean descent and ascent rates. The
variables maximum depth, dive time and bottom
time, and descent and ascent rate were log10 trans-
formed, and the ratio of bottom time/dive time was
arcsine square root transformed to normalize distrib-
utions prior to analysis.

Among dives recorded by TDRs was a subset of
dives that we observed directly. For each observed
dive we recorded the date and start time of each dive
along with its function as foraging or non-foraging
(i.e. traveling, grooming, or interacting). We then
iden tified these observations in the archival TDR re -
cord. Following the methods described in detail by
Bodkin et al. (2004), we used this sample of known
dives and their attributes (duration, bottom time and
ascent/descent rates) to parameterize (Table 1) a
logistic model (PROC LOGISTIC, SAS Institute),

which we then used to classify all unobserved dives
as either foraging or non-foraging.

We adjusted the depth of each foraging dive by
sub tracting the tidal elevation at the time each dive
began. Minimum low tide heights and maximum
high tide heights in this area during the time of de -
ployments ranged from −1.2 to +4.8 m, respectively.
Tidal elevations were determined based on NOAA
tide predictions for Port Audrey in WPWS, using ref-
erence station 9454050 in Cordova, Alaska (Tides
and Currents, Nobeltec). Based on these tide height
adjusted dive depths, each foraging dive was classi-
fied as either subtidal (>1.5 m below MLLW) or inter-
tidal (≤1.5 m below MLLW). The minimum dive
depth defined by the DA program was 1.5 m and the
maximum high tide was +4.8 m, and the highest
identifiable intertidal dive was to 2.7 m above MLLW.
Intertidal dives were classified into 7 depth bins
within the intertidal zone as identified by Short et
al. (2006), including <1 m below MLLW, –1 to
 –0.2 m, –0.2 to +0.8 m, +0.8 to +1.8 m, +1.8 to +2.8 m,
+2.8 to +3.8 m and + 3.8 to +4.8 m above MLLW.
Subtidal dives were classified by depth below the
water surface in 5 m depth bins from 0 to 100 m.
Thus, within the 0 to 5 m and 5 to 10 m true dive
depth bins, the proportion of those dives to <1.5 m
below MLLW were sub- classified as intertidal.

Foraging in intertidal habitats

Between June and September 2008, we surveyed
soft sediment beaches (grain sizes < cobble-large
boulder, or 20 cm diameter, Wentworth scale) for evi-
dence of sea otter foraging in the intertidal (Fig. 1).
We conducted surveys during negative tide periods,
beginning 15 to 30 min after the tide dropped below
the MLLW level, and finishing 15 to 30 min prior to
the tide rising back to MLLW. We surveyed soft sedi-
ment beaches with appropriate sediment sizes and
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Variable      Parameter                                           Estimate

α                  Intercept for dive type                      −5.8068
                   = foraging dive
k1                 Bottom time/dive duration               2.7670
k2                 Dive duration ×                                 −0.0649
                   average ascent rate
k3                 Bottom time/dive duration ×            7.8299
                   average descent rate

Table 1. Parameter estimates from the logistic regression
model used to classify dive types for sea otters in western 

Prince William Sound (WPWS), Alaska, 2003 to 2005
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visual evidence of clam presence, through shell re -
mains. We gave each beach segment a unique ID and
recorded the beginning and ending point with a GPS
waypoint. At each beach segment, 2 biologists sur-
veyed the entire region of exposed intertidal soft sed-
iments looking for clear evidence of sea otter forag-
ing as indicated by the presence of characteristic pits
and shell litter (Kvitek & Oliver 1988, Kvitek et al.
1988, Dean et al. 2002). When we encountered an
area with 5 or more otter foraging pits, we gave it a
unique pit section ID and recorded the location of
each end with a GPS. Each beach segment could
have 1 or more pit sections. For each pit section, we
re corded the linear density of otter pits (pits m−1) and
their elevation relative to MLLW based on tide
charts. Occasionally, a group of pits was found to -
gether within a small area of a few m2 (commonly at
the interface of soft sediments and rock outcrops),
and for these pit sections we marked only a single
GPS waypoint. During pit surveys, we also recorded
evidence of surface oil on beaches and in sea otter
foraging pits. This largely consisted of observations
of oil sheen on pooled water, and the detection of oil
through olfaction, following guidance provided by
NOAA Auke Bay Laboratory staff. We did not con-
sider tar balls on rocky surfaces nor did we excavate
sediments to detect lingering oil.

Sediment collections for hydrocarbon analysis

During 29 to 31 August 2008, we collected 10 to 11
sediment samples directly from sea otter foraging
pits at each of 4 beach segments where we had de -
tected visible oil sheen in or near foraging pits during
prior pit surveys in June (see above). We collected
sediment samples from otter pits in the area centered
on the coordinates of the sheen sighting, within a
radius of approximately 20 m. On 18 September, we
collected 10 reference sediment samples from sea
otter pits at each of 2 presumably unoiled beaches in
Lower Herring Bay (Fig. 1).

For each sample, we used a spade to dig down ap -
prox imately 15 cm at the center of each otter pit. With
a chemically cleaned spoon, we collected ap prox i -
mately 170 g of sediment that had not been contacted
by the spade. We split each sample be tween 2 sterile,
labeled sample bottles, which were immediately
closed tightly and placed in a cooler with ice. Within
2 h, all sample bottles were sealed with electrical
tape and placed in a freezer. We kept samples frozen
until processing by the NOAA laboratory at Auke
Bay, Alaska.

Analytical methods

Probability of intertidal diving. For each in di vi -
dual, we calculated the proportion of foraging dives
that occurred within the intertidal zone for each
week of the calendar year, and we combined these
individual results to look for population level pat-
terns in intertidal foraging over the course of a year.
This was accomplished by using a binomial distribu-
tion and a logistic function to model the probability of
intertidal feeding over time with week number treat -
ed as a categorical variable, which allowed the prob-
ability of intertidal feeding to change each week. The
model was fit with a generalized linear model pack-
age (Proc Genmod, SAS Institute), and we included
sex and reproductive state of adult females as co-
variates. Female reproductive states included (1) fe -
males with pups and (2) females without pups. We
de termined reproductive state by direct observation
and by internal body temperature data obtained from
the internally implanted TDRs, which can indicate
estrus and parturition dates (Esslinger 2011).

Oil encounter rates. We used the combined proba-
bility (0.0048) of encountering surface or sub-surface
oil in the upper and lower intertidal (−0.2 to +4.8 m)
from northern Knight Island provided by Short et al.
(2006), the proportion of prey in the sea otters’ diet in
WPWS that requires sediment excavations (0.75;
Calkins 1978, Dean et al. 2002), and the frequency of
intertidal sea otter foraging in the zone above MLLW
and above the +0.8 m zero tidal elevation to calculate
the probability of individual sea otters encountering
intertidal oil at the northern Knight Island archipel-
ago on an annual basis.

Foraging in intertidal habitats. For each beach
segment sampled, we calculated the total length of
the segment and the total length of each sea otter pit
section within the beach segment. Endpoints and a
line connecting those for each beach segment and pit
section were plotted in GIS. We also calculated the
distribution of each pit segment relative to the zero
tidal elevation, in 0.5 m intervals.

Hydrocarbon analysis of sediments. Sediment
samples from sea otter foraging pits were thawed,
homogenized, subsampled, spiked with 500 µl of
deu terated surrogate recovery standard and ex tract -
ed with dichloromethane. We then dried extracts
with sodium sulfate and concentrated to 1 ml in
hexane, and samples were fractionated into aliphatic
and aromatic compounds on a chromatography col-
umn (6 g 100% activated silica gel). The aliphatic
compounds were eluted with 10 ml pentane and the
aromatic compounds were eluted with 20 ml of a 1:1
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mixture of pentane and dichloromethane. Both the
aliphatic and the aromatic extracts were reduced to
1 ml in hexane, spiked with internal standards, dode -
cyl cyclohexane and hexamethylbenzene, re spec tive -
ly, and stored at −20°C pending analysis.

We analyzed the aromatic fractions for PAHs using
a gas chromatograph equipped with a mass selective
detector (GC/MSD). Concentrations were deter-
mined by the internal standard method (Short et al.
1996, Carls et al. 2004). Resultant measures were cor-
rected for surrogate recovery. Surrogate recoveries
were within acceptable limits (31 to 105%) for all
samples. Total PAH (TPAH) concentrations were cal-
culated by summing concentrations of individual
PAH.

We analyzed the aliphatic fractions for n-alkanes
using a gas chromatograph equipped with a flame
ionization detector (GC/FID). Analyte concentrations
were determined by the internal standard method
(Short et al. 1996). Surrogate recoveries were within
acceptable limits (64 to 95%) for all samples. Hydro-
carbon source was inferred from PAH composition
using an algorithm that summarizes 3 independent
oil recognition models and 2 pyrogenic recognition
models (Carls 2006).

RESULTS

Foraging dive depths

We recovered archival TDRs from 19 of 28 sea
otters instrumented, consisting of 15 females and 4
males (Table 2). We documented 1 957 894 dives, and
classified 63% of those as foraging and 37% as non-
foraging (including travel, grooming, and interacting
behaviors). Female sea otters made significantly
more foraging dives per day (mean = 219, range 155
to 312) than males (mean = 131, range 118 to 150; p <
0.01; Table 2), but fewer, although not significantly,
non-foraging dives (108 [range 51 to 176], compared
to 151 [range 58 to 259] for males).

Tidal height-adjusted foraging dive depths ranged
from +2.7 m above MLLW to 90 m below MLLW.
Among individuals, most diving (85%) oc curred in
water depths less than 20 m. Although we recorded
foraging dives to depths of 92 m, less than 0.01 of for-
aging dives were to depths greater than 60 m. In gen-
eral, fe males foraged in shallower water than males.
The modal depth bin for all female foraging dives
was 5 to 10 m, and 15 to 20 m for males (Fig. 2). For-
aging also exhibited a second slight mode in the 60 to
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Otter                 Age           Capture          Archive            No. of             No. of           Foraging           No. of         Intertidal 
ID                       (yr)             weight             length              dives             foraging            dives           intertidal          dives 
                                              (kg)           (no. full d)       recorded            dives             (no. d−1)             dives           (no. d−1)

OrCh                   3                 19.5                 356               162 098           111 325               312              32 174              91
ChPi                     3                 20.4                 368               96 721           70 158               190               5277               18
ChCh                   4                 20.2                 254               64 232           47 193               186               1676               8
LBPi                     5                 20.6                 160               63 813           37 949               237               7208               45
AqCh                   5                 26.3                 367               154 415           89 712               244              15 620              43
YeGr                    6                 20.4                 362               138 978           104 988               289              31 754              87
YePi                     6                 21.3                 362               115 590           74 537               206              13 916              39
PuCh                   6                 22.7                 369               122 756           77 464               210              29 771              82
ReRe                    7                 22.7                 362               112 228           93 800               259               8205               30
ChWh                  7                 25.4                 368               119 273           62 791               171              13 636              37
ChYe                   7                 27.7                 368               93 431           63 470               173               7352               21
PiCh                     8                 21.1                 215               75 381           37 437               174               9317               44
PuRe                    8                 23.4                 362               126 210           102 326               282              23 262              65
RBCh                  11               23.1                 370               96 513           74 493               201              11 838              34
GrRB                   13               28.6                 143               33 690           22 152               155               2062               15
Total/mean       f’s                                                           1 575 329           1 069 795              219              213 068              44

OrYe                    8                 32.9                 366               149 825           55 035               150               3008               8
YeRe                   12               36.3                 360               107 287           45 300               125               4083               12
AqCh                 12               37.2                 363               85 574           43 175               118               4871               16
LBPi                    12                 39                   212               39 879           27 644               130               1812               9
Total/mean       m’s                                                           382 565           171 154               131              13 774              11

Total                                                                                   1 957 894           1 240 949                                   226 842

Table 2. Enhydra lutris. Summary of data gathered from sea otters that were captured, implanted with time-depth recorders
(TDRs), and recaptured (n = 19; 15 females and 4 males) at Knight Island, Prince William Sound (PWS), Alaska, 2003 to 2005
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70 m depth range in both sexes (Fig. 2)
and 7% of the male foraging dives
were to depths ≥50 m.

Of the 1 240 949 foraging dives,
226 842 were in the intertidal zone
(18%). However, intertidal use differed
between the sexes, with intertidal
dives comprising on average 19% (SE
= 2.6%) of all foraging dives for fe-
males, and 8% (SE = 0.7%) of all forag-
ing dives for males. The shallowest
identified intertidal dive was to +2.7 m
above MLLW and the deepest was to
1.5 m below MLLW. On average, sea
otters made 37 dives in the intertidal
zone each day, but intertidal use varied
widely by individual, ranging from 8 to
91 dives per day. Females foraged sig-
nificantly more in the intertidal (mean
value = 44 dives d−1) than males (mean
value = 11 dives d−1, rank sum test T =
14.0, p < 0.05), and had a higher maxi-
mum number of identified intertidal
dives re corded in 1 d (mean maximum
= 236; range 54 to 352 for females, and mean maxi-
mum = 107; range 74 to 156 for males). Within the in-
tertidal zone, female foraging was centered near the
MLLW tidal elevation, with 42% occur ring above
MLLW. Al though males foraged significantly less in
the intertidal than fe males, they tended to use higher
intertidal zones than females (Fig. 3), with 56% oc -
curring above MLLW. On average, females made 8
foraging dives per day, and males 3, into the zone
≥0.8 m above MLLW. At the individual level, foraging
dives above MLLW ranged from 3 to 38 dives per day
(1146 to 13 790 yr−1) and foraging dives to ≥+0.8 m
above MLLW ranged from almost 2 to >8 dives per
day (482 to 6720 yr−1).

Presence of intertidal foraging dives in TDR re -
cords peaked in the spring, although intertidal diving
oc curred year-round. The broad, pro nounced peak in
the frequency of in tertidal foraging extended from
Wk 12 of the calendar year (about 26 March) to
Wk 26 for females (about 2 July) and Wk 20 for males
(about 21 May) (Fig. 4). A second peak in in tertidal
for aging was evident in fe males be gin ning in mid-
September and ex ten ding through late January.

Oil encounter rates

Based on the frequency of intertidal foraging and
the probability of en countering oil (Short et al. 2006),

we estimated that a sea otter for aging at northern
Knight Island would en  counter lingering EVO on
average 10 times each year (range 2 to 24) (Fig. 5).
Females were 2.5 times more likely to encounter lin-
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gering oil than males, with females
averaging 10 en counters per year
(range 2 to 24) and males averaging 4
encounters per year (range 2 to 5).
Maximum esti mated oil en count er
rates, assuming an equal pro bability
(0.0048) of en countering oil down to
the MLLW level, were about once a
week and most females (11 of 15; 73%)
were likely to en coun ter oil more than
once a month.

Foraging in intertidal habitats

We surveyed 277 soft sediment beach
segments, totaling 24.84 linear km, for
the presence of sea otter foraging pits
during summer 2008 in the northern
Knight archipelago (Fig. 1). Sea otter
foraging pits were encountered on
71% of the beach segments surveyed
(range across sites 40 to 81%; Table 3). Foraging pits
were detected on 13.46 km of the shorelines surveyed,
or 54% of the total length. The total length of individ-
ual shoreline surveyed with pits ranged from 40 to
82% of the total beach segment length. Within beach
segments, we measured 331 distinct pit sections and
determined the tidal elevation of that section (Table 4).
Most foraging pit segments (86%) were within 0.5 m
of MLLW; about 15% were above 0.5 m, and only 2%
were observed below −0.5 m.

Sediment hydrocarbon analysis

There were clear indications of oil in 18 of the 41
samples collected from 4 beach segments that were
identified as oiled sites (Fig. 1, Table 5). Earlier in the
summer, these 4 segments were identified as having
numerous sea otter pits present, and sheening was
observed in or near some of the pits. The highest oil
concentrations in sediments were detected at Disk
Island (over 56 000 ppb PAH). Complementary data
(alkanes, unresolved complex mixture [UCM], phy-
tane, and petrogenic/pyrogenic source modeling)
were all greater in the 18 oiled samples and support
the assignment of these 18 sediment samples as oil
contaminated. Alkanes were high, and the carbon
preference index that compares the odd and even
ratios of alkane chains were relatively equal, in con-
trast to reference samples where the ratios diverged.
Phytane, common in crude oil, was also greatest in

oiled samples. The source modeling of petrogenic
PAH versus pyrogenic PAH was above 4 for oiled
samples, further indicating crude oil as the source,
rather than a diesel or pyrogenic origin.

Reference samples from Lower Herring Bay, along
with 23 samples from formerly oiled areas, were all
below 50 ppb PAH, and most were at or below the
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17 ppb PAH level, indicating that these samples were
not contaminated. In these samples, the UCM was
nearly zero, the carbon preference indices were all
above 3 (indicating the alkane contributions detected
are of local plant origin rather than petroleum), and
the petrogenic/pyrogenic modeling was below 4,
indicating that petroleum had little influence.

Disk Island had the highest percentage of oiled
sediment samples (8 of 10), all of which fingerprinted
consistently with EVO, and had the highest PAH con-
centrations (over 56 000 ppb). However, even within

this site, concentrations were variable, ranging from
background levels up to 2 samples with exception-
ally high values.

DISCUSSION

Identifying recovery from large scale disturban ces
such as the ‘Exxon Valdez’ oil spill is problematic, of-
ten due to inadequate data on population abundance
and trend at the time of the event, and the potential

for populations to be influenced by
factors independent of the event dur-
ing the re covery process. Attributing
de layed re cov ery to the spill requires
at least 2 elements — evidence for
continuing elevated mortality or some
other demographic anomaly, and evi-
dence for continuing ex posure to oil.
The former is pro vided by Bodkin et
al. (2002) and Monson et al. (2000,
2011) and here we present evidence
for the latter.

The presence of oil in intertidal sed-
iments (Short et al. 2006, Boehm et al.
2007, Neff et al. 2011) provides a path
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Site                            Total                  Total           Percentage     Percentage 
                             length (m)          length (m)         of beach          of beach
                               of beach               of pit               length           segments
                           segments (n)      segments (n)       with pits          with pits

Herring Bay          5776 (92)           4725 (100)              82                    71
Northwest Bay      1974 (20)             794 (17)                40                    40
Lower Passage      4895 (78)            2354 (80)               48                    68
Bay of Isles           12 194 (87)          5588 (134)              46                    80

All                        24 840 (277)        13 461 (331)             54                    71

Table 3. Locations, lengths, and counts (n) of beach segments surveyed and
sea otter foraging pit segments identified in the northern Knight Island archi-

pelago, Prince William Sound (PWS), Alaska, 2008

Mean tidal elevation       Herring Bay        Northwest Bay      Lower Passage         Bay of Isles        All sites        Percentage 
                                                                                                                                                                                             of total

>1.5 m                                                                   49 (1)                      94 (1)                                              143 (2)                  1
1.0 – 1.5 m                              3 (2)                      154 (2)                    111 (3)                      1 (1)                269 (8)                  2
0.5 – 1.0 m                           681 (14)                     1 (1)                     277 (11)                  355 (12)           1315 (38)               10
0.0 – 0.5 m                          3283 (54)                  517 (7)                  1113 (31)                2155 (51)         7068 (143)              53
0.0 – –0.5 m                          747 (29)                    71 (5)                    622 (28)                 2887 (63)         4457 (129)              33
–0.5 – –1.0 m                          11 (1)                       1 (1)                       78 (3)                     188 (6)             278 (11)                 2

Table 4. Distribution of sea otter pit segments relative to tidal elevation. Data are total length of pit sections in m, and number
of pit segments (n). Percentage of total refers to segment lengths. Note that depth bins differ from those used with time-depth 

recorder (TDR) data

                                                               n TPAH (ng g−1 dry)          Alkanes        CPI          UCM          Phytane        PetPy
                                                                             Mean    Range         (ng g−1 wet)                                                 

Oiled sites
Samples above background             18             136    19−56568             4289            1.1           80351             27.5             4.7
Samples at or below background     23               8         3−16                  94              3.6               1                  0.1              1.0

Reference sites
Above background                             2               36        29−46                1534            4.5               0                  0.0              3.2
At or below background                   18               6         2−15                 172             4.7               0                  0.0              2.7

Table 5. Comparison of hydrocarbon chemistry data from 4 beach segments in formerly oiled sites (41 samples) and from 2 ref-
erence sites (20 samples) that were not directly oiled by the ‘Exxon Valdez’. Means are geometric; cut off for background was
17 ppb total PAH (TPAH), supported by the alkane data including CPI (carbon preference index), UCM (unresolved complex 

mixture), phytane, and source modeling (PetPyr) that identifies oil as the source when ≥4.0
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through which foraging sea otters may be exposed to
that oil. Some models suggest that exposure levels are
so low as to provide negligible risk to sea otters
(Boehm et al. 2007, Harwell et al. 2010, Neff et al.
2011). Alternatively, Bodkin et al. (2002), Monson et
al. (2000, 2011), and Short et al. (2006) suggest that
exposure to lingering oil may be contributing to the
lack of recovery of sea otters, as has been documented
for other nearshore consumers (Esler et al. 2000, 2002,
2010, 2011, Fukuyama et al. 2000, Trust et al. 2000).

Foraging behavior and oil encounter rates

Variation in foraging behavior among individuals
and over time resulted in marked differences in oil
exposure probabilities. Individual dietary specializa-
tion is well documented in the sea otter (Estes et al.
2003, Tinker et al. 2008), and leads to differences in
foraging dive depths among individuals (Bodkin et
al. 2004, this study). As a result, not all sea otters had
equal probabilities of encountering oil sequestered in
intertidal sediments, with more than an order of mag-
nitude difference between the highest (24 exposures
per year) and lowest frequency (2 exposures per
year). A strong seasonal component to sea otter for-
aging behavior was evident, where across all individ-
uals, there was a strong shift toward in tertidal forag-
ing during the last week of March. This shift was
most prominent among females with small pups, who
averaged over 50% intertidal foraging over a several
week period that gradually de clined until reaching
the overall average intertidal foraging frequency of
about 20% in early July. A similar pattern was evi-
dent among males, although the magnitude and span
of the peak were slightly lower. This seasonal phe-
nomenon toward intertidal for aging has not been
previously described and we speculate that the pat-
tern may be in response to a potential increase in the
energy or nutrient quality of prey, particularly inter-
tidal clams that likely enter a period of gonad devel-
opment in late spring through summer (Paul & Feder
1973, Keck et al. 1975). This is significant because
estimating oil exposure risk to for aging sea otters will
be influenced by seasonal patterns, and estimates
that do not account for seasonality can produce
biased exposure risk (e.g. Boehm et al. 2007, 2011).

Assumptions

Under the assumptions implicit in our approach,
female sea otters encountered lingering oil about 10

times per year on average and males 4 times per
year. We believe these estimates to be conservative
for several reasons. First, the accuracy of the instru-
ments we use is 0.25 m (MK IX Wildlife Computers)
and the free floating placement of the instrument in
the abdominal cavity required that we consider only
dives below 1.5 m in depth. If the TDR in the sea otter
does not attain a depth below the surface of ≥1.5 m,
those dives will not be considered in our analysis. As
we have observed sea otters foraging in the intertidal
or shallow subtidal without complete submersion, it
is likely that our methods underestimate the fre-
quency of intertidal foraging, compared to the sub -
tidal. Second, we assume that only observations of
prey identified as clams result in exposure potential.
However, it is likely that foraging on other inverte-
brates such as polychaete and echiuran worms, mus-
sels or smaller clams such as Macoma spp. also re -
quire excavations. Such prey are often unidentified
and considered as ‘other prey’ when categorizing
prey items, yet may result in unaccounted exposure
potential. Third, it is possible that exposure may
occur incidental to a source of disturbance in the
intertidal that results in re-suspension of lingering
oil, such as another foraging sea otter or wave action.
Fourth, it is likely that additional exposure is gained
through ingestion of prey, such as bivalves, that can
accumulate tissue hydrocarbons (Fukuyama et al.
2000, Downs et al. 2002). And lastly, we do not con-
sider the possibility of lingering oil persisting in sed-
iments below the 0.8 m elevation, that if present
could greatly increase encounter rates.

Alternatively, some of our assumptions may tend to
overestimate the degree to which foraging in the
intertidal results in exposure to residual oil. First, we
assume that otters do not avoid oil sequestered in
sediments and that prey distribution is independent
of oil distribution. Second, we assume that the diet
while foraging in the intertidal does not differ from
that reported in the literature, which includes both
intertidal and subtidal foraging, i.e. 75% clams. To
the extent that the intertidal diet differs from the sub-
tidal (or below MLLW), our encounter probabilities
may be biased. We know of no data from our study
area to evaluate this assumption. Harwell et al.
(2010) suggest that some age/sex classes may forage
more, or less, on clams in the intertidal compared to
the subtidal. Applying the diet composition provided
by Harwell et al. (2010; 33 to 67%) would tend to
reduce the frequency of oil encounter through pit
excavation correspondingly. However, the lowest
rate (33%) applies to females with large pups, which
are generally not present during the peak in inter-
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tidal foraging due to a highly synchronous reproduc-
tive cycle with birth taking place about the time that
intertidal foraging peaks in late spring (Bodkin
2003). Additionally, the 75% clam diet reported from
the observational studies we use (Calkins 1978, Dean
et al. 2002) incorporates females with small pups.
Perhaps more importantly, the peak in spring inter-
tidal foraging that we observed (Fig. 4) coincides
with the peak in sea otter pupping in PWS. Thus,
small pups that are presumably more sensitive to oil
contamination could receive similar exposure as their
mother, with maximum rates of about 1 wk−1.

As defined by the Exxon Valdez Oil Spill Trustee
Council (Anchorage, Alaska), sea otter recovery from
the spill will be complete when pre-spill abundance
has been achieved and sea otters in the spill area are
no longer exposed to oil. Harwell et al. (2010) revised
the Short et al. (2006) estimated probability of en -
countering subsurface oil (0.0037) by nearly an order
of magnitude, to 0.00043, and concluded that there
was no plausible toxicological risk to sea otters forag-
ing in the intertidal. When we use this lower expo-
sure probability, our oil encounter rates in the zone
above MLLW are reduced on average to 2 yr−1 for
females and <1 yr−1 for males. Maximum en counter
rates using the more conservative encounter proba-
bility are about once every 2 mo with 5 females hav-
ing encounter rates of 3 yr−1 or more. Under either
scenario, most sea otters, 15 yr after the spill, are con-
tinuing to be at risk of exposure to lingering EVO,
and regardless of potential toxicological effects, as
defined, it is difficult to conclude that recovery of sea
otters has been attained. Additionally, we suggest
that mean values of exposure presented by us, or oth-
ers, may not be the most meaningful metric to evalu-
ate the potential for lingering oil to affect recovery.
We consider that either reduced survival (Monson et
al. 2000, in press) or increased emigration, resulting
from those relatively few individuals with the highest
exposure potential, would be capable of contributing
to the reduced rate of sea otter recovery observed,
particularly in a population that has historically
demonstrated moderate growth rates (Bodkin et al.
2002, Bodkin & Ballachey 2010).

Foraging in intertidal habitats

Our observations of sea otter foraging pits in and
near beaches with visible oil, including cases of oil
sheen in otter foraging pits, clearly demonstrate that
not all oiled beaches are avoided by foraging sea
otters. While surveying for sea otter foraging pits, we

identified 11 beach segments where visible oil sheen
was present in the intertidal zone, most often be -
tween the −0.5 and +0.5 m tidal height. These beach
segments include known oiled beaches previously
sampled by Short et al. (2004, 2006) as well as seg-
ments not previously sampled. Additionally, sea
otters and other species that occur in close proximity
to oiled shores may gain exposure as disturbance
events, including foraging by sea otters, mobilize se -
ques tered intertidal oil and that oil disperses over
nearshore waters.

Exposure to oil by foraging sea otters requires that
lingering oil is present at the tidal elevations where
they forage. Intertidal foraging by sea otters, evi-
denced by foraging pits, occurred along most of the
shoreline we identified as potential clam habitat and
surveyed at northern Knight Island, where 54% of
the total shoreline length surveyed and 70% of the
individual beach segments contained foraging pits.
Approximately 13% of the foraging pits we located
were above the + 0.5 m tidal elevation and 19% of
the TDR-defined intertidal dives were above the +0.8
m elevation. Although Short et al. (2006) found that
by 2003 most lingering oil at northern Knight Island
was in the mid-intertidal (+1.8 to +2.8 m), about 36%
of the subsurface oil was at tidal elevations where
about 13 to 19% of intertidal sea otter foraging
occurred (<+1.8 m). The spatial overlap between
where sea otters forage in the intertidal and where
lingering oil remains, and the presence of oil in for-
aging pits, demonstrates a clear path of exposure.

In contrast, Boehm et al. (2007) found only 1% of sea
otter foraging pits at tidal elevations ≥+0.8 m along
known oiled shorelines at northern Knight Island in
2006. They concluded that there was little spatial
overlap between the distribution of oil as measured by
Short et al. (2004, 2006) and the distribution of sea ot-
ter foraging pits, and therefore sea otters had little risk
of exposure to lingering oil through intertidal foraging.
The finding of Boehm et al. (2007) that sea otters
rarely foraged along known oiled shores at tidal ele-
vations where oil remained may indicate that sea ot-
ters avoided foraging in oiled habitats. However, our
observations of sea otter foraging pits with oil sheen
indicated that avoidance was not universal, if at all.
Additionally, the finding of evidence of exposure to
lingering oil in a suite of nearshore consumers (Bal-
lachey et al. 2002a,b, Esler et al. 2002, 2010, 2011,
Jewett et al. 2002) provides additional evidence that
complete avoidance may not be achieved. The con-
clusion made by Boehm et al. (2007) that sea otters
rarely foraged in oiled intertidal habitats was based,
in part, on an assumption that sea otter foraging pits
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persisted for more than a year. Recent work exploring
the persistence of experimental sea otter foraging pits
determined that pit persistence was affected by tidal
height, with pits at higher tidal levels (+2.0 m) persist-
ing on average 99 to 121 d, whereas pits at +1.0 m per-
sisted from 124 to 160 d, and pits at MLLW persisted
from 130 to 180 d (Bodkin et al. 2011). As a result, our
surveys in June 2008 most likely identified pits that
would reflect the use of the intertidal for up to the pre-
vious 3 to 6 mo. Further, prior work that included a
single visit to a site and assumed that foraging pits
persisted for at least a year (Boehm et al. 2007) likely
underestimated the use of the intertidal, particularly
at levels above MLLW where encountering oil is more
likely, and where pits are less persistent.

The overlap of lingering oil in the intertidal with in-
tertidal foraging by sea otters provides a reasonable
explanation for their slow population recovery. Con-
trary to initial expectations, oil persisted in significant
quantities below the surface, and was first detected in
extensive areas, including northern Knight Island, in
2001 surveys (Short et al. 2004). The significance of
the lingering oil was heightened when the surveys
were extended lower into the intertidal in 2003 sur-
veys (Short et al. 2006), to elevations that support bi-
valves foraged upon by sea otters. Even in a heavily
oiled area like northern Knight Island, where acute
mortality was high and sea otter recovery has been
slow, an average of ~77 otters have occupied the area
most of the time since the spill (Dean et al. 2000, Bod-
kin et al. 2002). Assuming 1 pit per dive and similar
diving tendencies as re corded in 2003 and 2004, this
small population has dug an average of nearly
1 066 000 pits per year in the intertidal, and over 20
million pits in the 2 decades following the spill. This
turn-over of lower and mid-intertidal sediments by
foraging sea otters is a mechanism for direct exposure
to lingering oil. We speculate that such excavations
are likely a primary reason that reduced amounts of
oil remain at these lower tidal elevations, compared
to higher elevations. There should be little doubt that
encounter probabilities were much higher in the
years immediately following the spill when oil abun-
dance was greater (Short et al. 2007) and extended
into the lower intertidal and shallow subtidal (O’Clair
et al. 1996). Thus, given the sensitivity of this species
to oil contamination, this exposure pathway provides
a logical explanation for why the northern Knight Is-
land sub-population, compared to other areas in
PWS, had such a protracted period of population re-
covery (Bodkin et al. 2002) and reduced survival lev-
els post-spill (Monson et al. 2000, 2011, Ballachey et
al. 2003).

Sediment hydrocarbons

Nearly half of the sediment samples collected
directly from sea otter pits were contaminated with
oil. This finding of contaminated sea otter pits indi-
cates that sea otters do not avoid shorelines harbor-
ing sub-surface oil and, more importantly, can access
that oil while foraging. Most of the contaminated
samples were relatively moderate in concentration,
consistent with the 19 yr of time since the spill and
suggestive of chronic low-level exposure. However,
2 samples were above 54 000 ppb TPAH, in the range
of the moderately oiled pits found by Short et al.
(2004), where 1.1 kg m−2 of oil yielded a TPAH con-
centration of 68 000 ppb. Concentrations of oil of this
magnitude would have filled significant interstitial
space in sediments, and would be sufficiently high to
contaminate the fur of a sea otter excavating the pit.
Oil adhering to the fur would be ingested during sub-
sequent grooming, which could add to the energetic
challenges of sea otters to cope with external conta-
mination, as well as contributing to any long-term
damages caused by TPAH toxicity.

CONCLUSIONS

We found that nearly 20 yr after the spill, sea otters
at northern Knight Island were potentially exposed to
EVO on a weekly to monthly basis and that much of
that exposure occurred during a time of year when
relatively little observational work on diet, diving,
and behavior had been done, highlighting the need
to consider temporal variation in exposure potential.
Further, the highest risk of exposure comes in late
spring and early summer, when most adult females
are giving birth. Consequently, small pups that can-
not groom themselves, and are in frequent and
extended contact with their mothers, may be at
greater risk.

The combined evidence acquired from individual-
based and temporally extended sea otter dive behav-
ior, surveys of nearly all intertidal clam habitats
within the previously heavily oiled region of northern
Knight Island, and the presence of EVO in and near
sea otter foraging pits provide clear documentation
of a pathway of exposure from lingering intertidal oil
to foraging sea otters in PWS. Exposure levels cannot
be quantified, and the biological and ecological con-
sequences of the exposure that results from the iden-
tified path are difficult to assess and largely remain
unknown. However, we now know that variation in
individual and seasonal dive patterns means that
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some sea otters are much more likely to be exposed
to oil than others. We also know that most exposure
comes at a time of year when most adult females are
giving birth, and that pups have few mechanisms to
avoid or mitigate exposure to oil. This pathway also
provides a mechanism for disturbance to intertidal
sediments where lingering oil persists, that has and
will continue to contribute to the diminishment of lin-
gering oil and thus to the process of restoration of
oiled shorelines. However, a consequence of this pro-
cess is the suspension of deposited oil that is likely
contributing to the long-term exposure of other
nearshore species to oil contamination.
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