

TOXICOLOGY AND CARCINOGENESIS STUDIES OF

PARA-CHLOROANILINE HYDROCHLORIDE

(CAS NO. 20265-96-7)

IN F344/N RATS AND B6C3F₁ MICE

(GAVAGE STUDIES)

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
Public Health Service
National Institutes of Health

NTP TECHNICAL REPORT

ON THE

TOXICOLOGY AND CARCINOGENESIS STUDIES OF

PARA-CHLOROANILINE HYDROCHLORIDE

(CAS NO. 20265-96-7)

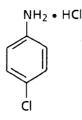
IN F344/N RATS AND B6C3F₁ MICE

(GAVAGE STUDIES)

R.S. Chhabra, B.V.Sc., Ph.D., Chemical Manager

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

July 1989


NTP TR 351

NIH Publication No. 89-2806

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
Public Health Service
National Institutes of Health

CONTENTS

		ı	PAGE
-			
EXP	LANATION	N OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY	. 7
CON	TRIBUTOF	RS	
		PANEL	
SUM		PEER REVIEW COMMENTS	
I.	INTROD	UCTION	. 11
II.	MATER	IALS AND METHODS	. 21
III.	RESULT	's	. 35
	RAT	`S	. 36
		E	
		WETIC TOXICOLOGY	
IV.	DISCUS	SION AND CONCLUSIONS	. 83
V.	REFERE	ENCES	. 91
		APPENDIXES	
APP	ENDIX A	SUMMARY OF LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY	
		OF p-CHLOROANILINE HYDROCHLORIDE	. 101
APP.	ENDIX B	SUMMARY OF LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE	
		STUDY OF p-CHLOROANILINE HYDROCHLORIDE	. 141
APP:	ENDIX C	SUMMARY OF LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY	
		OF ρ-CHLOROANILINE HYDROCHLORIDE	. 171
APP	ENDIX D	SUMMARY OF LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE	
		STUDY OF p-CHLOROANILINE HYDROCHLORIDE	. 201
APP	ENDIX E	SENTINEL ANIMAL PROGRAM	231
APP	ENDIX F	ANALYSIS OF ORGAN WEIGHTS FOR RATS AND MICE IN THE THIRTEEN-	
		WEEK GAVAGE STUDIES OF p-CHLOROANILINE HYDROCHLORIDE	. 235
APP	ENDIX G	INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN	
		NIH 07 RAT AND MOUSE RATION	239
APP	ENDIX H	DISTRIBUTION AND DISPOSITION OF p-CHLOROANILINE AND	
		p-CHLOROANILINE HYDROCHLORIDE IN F344 RATS	. 243
APP	ENDIX I	AUDIT SUMMARY	255

p-CHLOROANILINE HYDROCHLORIDE

CAS No. 20265-96-7

C₆H₆NCl • HCl

Molecular weight 164.1

Synonyms: 1-amino-4-chlorobenzene hydrochloride; 4-chlorophenylamine hydrochloride; 4-chlorobenzenamine hydrochloride

ABSTRACT

p-Chloroaniline has a large production volume and is used as a dye intermediate. Toxicology and carcinogenesis studies of p-chloroaniline (greater than 99% pure) were conducted by administering p-chloroaniline hydrochloride in water by gavage to groups of F344/N rats and B6C3F₁ mice of each sex for 16 days, 13 weeks, or 2 years. Vehicle controls were given deionized water by gavage. All doses were calculated as p-chloroaniline; the chemical was administered as the hydrochloride after dissolution in water containing molar equivalents of hydrochloric acid. Genetic toxicology studies were conducted in Salmonella typhimurium, mouse L5178Y lymphoma cells, and Chinese hamster ovary (CHO) cells. Hematologic parameters were measured at the end of the 13-week studies and at 6, 12, 18, and 24 months in the 2-year studies. Supplemental studies of the distribution and disposition of p-chloroaniline were conducted in male F344 rats.

Sixteen-Day and Thirteen-Week Studies: In the 16-day studies, male and female rats and mice received 25, 50, 100, 200, or 400 mg/kg of body weight. The vehicle controls received deionized water. All rats and mice that received 200 or 400 mg/kg died during the first 6 days of the studies. Some deaths occurred in each of the lower dose groups of mice. Splenic enlargement was observed at necropsy in rats administered 25, 50, or 100 mg/kg. Congestion of the spleen and hemosiderin deposition in the renal cortical tubular epithelial cells were observed at 100 mg/kg in male and female rats. Compound-related lesions in mice included hemosiderosis of the liver Kupffer cells and congestion of the spleen.

In the 13-week studies, 10 rats of each sex were administered doses of 0, 5, 10, 20, 40, or 80 mg/kg. All male rats lived to the end of the 13-week studies. One of 10 female rats that received 80 mg/kg died from unknown causes. The final mean body weights of rats that received 80 mg/kg were 16% lower than that of vehicle controls for males and 4% lower for females. In the 13-week studies in mice, 10 animals of each sex were administered doses of 0, 7.5, 15, 30, 60, or 120 mg/kg. Deaths in mice were not related to p-chloroaniline hydrochloride administration. The final mean body weights of dosed and vehicle control mice were similar. In both rats and mice, no chemically related effects on organ weights were observed at necropsy, except for the spleen, which was enlarged as a function of increasing dose. Methemoglobin was increased in dosed groups and resulted in a secondary anemia, the severity of which was dose related. Compound-related lesions observed histologically, including pigmentation (hemosiderin) in the kidney, spleen, and liver and hematopoiesis in the liver and spleen, reflected the response to the hemolytic anemia and methemoglobinemia induced by p-chloroaniline hydrochloride.

Based on these results, groups of 50 rats of each sex were administered 2, 6, or 18 mg/kg *p*-chloro-aniline hydrochloride in water by gavage, 5 days per week for 103 weeks. Groups of 50 mice of each sex were administered 3, 10, or 30 mg/kg on the same schedule.

Metabolism and Disposition Studies in Rats: The metabolism and disposition studies in F344/N rats showed that metabolic and excretory pathways were not saturated by p-chloroaniline administered orally at doses ranging from 0.3 to 30 mg/kg. p-Chloroaniline was rapidly metabolized and excreted primarily in urine with a half-life of approximately 2 hours.

Body Weight and Survival in the Two-Year Studies: Mean body weights of dosed rats were generally within 5% of those of vehicle controls throughout the studies. The survival of the low and mid dose groups of male rats and of the low and high dose groups of female rats was significantly greater than that of the vehicle controls (male: vehicle control, 18/49; low dose, 32/50; mid dose, 32/50; high dose, 21/50; female: 27/50; 39/50; 36/50; 37/50). The increased survival was attributed to the decreased incidences of mononuclear cell leukemia. Mean body weights of high dose male and female mice were generally within 5% of those of vehicle controls throughout the studies. The survival of the mid dose group of male mice was lower than that of the vehicle controls after week 99 (male: 43/50; 36/50; 29/50; 35/50; female: 39/50; 42/50; 44/50; 41/50).

Nonneoplastic and Neoplastic Effects in the Two-Year Studies: Fibrosis of the spleen was increased in dosed male and high dose female rats (male: vehicle control, 3/49; low dose, 11/50; mid dose, 12/50; high dose, 41/50; female: 1/50; 2/50; 3/50; 42/50). Cellular infiltration of lipocytes (fatty metaplasia) was observed in the spleen at increased incidences in high dose rats (male: 0/49; 0/50; 0/50; 24/50; female: 0/50; 0/50; 0/50; 11/50). The incidence of uncommon sarcomas of the spleen in high dose male rats was significantly greater than that in the vehicle controls (fibrosarcomas, osteosarcomas, or hemangiosarcomas, combined: 0/49; 1/50; 3/50; 38/50). Many of these tumors metastasized to one or more sites. In female rats, one fibrosarcoma of the spleen was found in a mid dose animal, and one osteosarcoma of the spleen was found in a high dose animal. The historical incidence of splenic connective tissue sarcomas (all types) in water gavage vehicle controls is 1/298 (0.3%) for male rats and 0/297 for female rats. The historical incidence of hemangiosarcomas in water gavage controls is 0/300 for male rats and 1/297 (0.3%) for female rats.

Adrenal medullary hyperplasia was observed at an increased incidence in high dose female rats (4/50; 4/50; 7/50; 24/50). Marginally increased incidences of pheochromocytomas were seen in high dose male (13/49; 14/48; 15/48; 26/49) and female (2/50; 3/50; 1/50; 6/50) rats. The historical incidence of pheochromocytomas in water gavage vehicle control male F344/N rats is 121/299 (40% \pm 16%); the historical incidence in water gavage vehicle control female F344/N rats is 20/295 (7% \pm 2%).

The incidences of mononuclear cell leukemia in dosed male and female rats were lower than those in vehicle controls (male: 21/49; 3/50; 2/50; 3/50; female: 10/50; 2/50; 1/50; 1/50). The incidences of malignant lymphomas in dosed male and female mice were lower than those in vehicle controls (male: 10/50; 3/49; 9/50; 3/50; female: 19/50; 12/50; 5/50; 10/50).

Hematologic and methemoglobin measurements were made on blood samples collected from 15 randomly selected male and female rats per dose group at 6, 12, 18, and 24 months. In general, the high dose group at various intervals showed mild hemolytic anemia and dose-related increases in methemoglobin.

In rats, compound-related nonneoplastic lesions were seen histopathologically in the bone marrow, spleen, and liver. These lesions included bone marrow hyperplasia, hepatic hemosiderosis, and splenic fibrosis and suggest compound-related effects on the hematopoietic system in general, the erythropoietic system specifically, and mesenchymal cells in the spleen.

In male mice, the incidence of hemangiosarcomas of the liver or spleen in high dose male mice was greater than that in the vehicle controls (4/50; 4/49; 1/50; 10/50). The historical incidence of hemangiomas or hemangiosarcomas at all sites (combined) in water gavage vehicle control male $B6C3F_1$ mice is 11/350 (3% \pm 3%).

The incidences of hepatocellular adenomas or carcinomas (combined) were increased in dosed male mice (11/50; 21/49; 20/50; 21/50), primarily due to increased incidences of hepatocellular carcinomas (3/50; 7/49; 11/50; 17/50). Hepatocellular carcinomas metastasized to the lung in 1/50 vehicle control, 1/49 low dose, 2/50 mid dose, and 9/50 high dose male mice. The historical incidence of hepatocellular neoplasms in water gavage vehicle controls is 106/347 ($31\% \pm 6\%$).

Genetic Toxicology: p-Chloroaniline was mutagenic in S. typhimurium strains TA98 and TA100 in the presence of exogenous metabolic activation; no increase in revertant colonies was observed in strains TA97, TA1535, or TA1537. p-Chloroaniline induced trifluorothymidine (Tft) resistance in mouse L5178Y lymphoma cells with and without metabolic activation. In cultured CHO cells, treatment with p-chloroaniline produced significant increases in sister chromatid exchanges (SCEs) both with and without metabolic activation (S9); chromosomal aberrations were significantly increased only in the presence of S9.

Audit: The data, documents, and pathology materials from the 2-year studies of *p*-chloroaniline have been audited. The audit findings show that the conduct of the studies is documented adequately and support the data and results given in this Technical Report.

Conclusions: Under the conditions of these 2-year water gavage studies, there was clear evidence of carcinogenic activity* of p-chloroaniline hydrochloride for male F344/N rats, as indicated by increased incidences of uncommon sarcomas of the spleen. Pheochromocytomas of the adrenal gland may also have been associated with chemical administration. There was equivocal evidence of carcinogenic activity of p-chloroaniline hydrochloride for female F344/N rats, as indicated by the presence of uncommon sarcomas of the spleen in one mid and one high dose animal and the increased incidence of pheochromocytomas of the adrenal gland. There was some evidence of carcinogenic activity of p-chloroaniline hydrochloride for male $B6C3F_1$ mice, as indicated by increased incidences of hepatocellular neoplasms and of hemangiosarcomas of the liver or spleen. There was no evidence of carcinogenic activity of p-chloroaniline hydrochloride for female $B6C3F_1$ mice administered 3, 10, or 30 mg/kg by gavage for 2 years.

The incidences of mononuclear cell leukemia in male and female rats and of malignant lymphomas in male and female mice were decreased by administration of p-chloroaniline hydrochloride. Compound-related splenic fibrosis was present in male and female rats.

^{*}Explanation of Levels of Evidence of Carcinogenic Activity is on page 7.

A summary of the Peer Review comments and the public discussion on this Technical Report appears on page 10.

SUMMARY OF THE TWO-YEAR GAVAGE STUDIES OF ρ -CHLOROANILINE HYDROCHLORIDE AND GENETIC TOXICOLOGY STUDIES OF ρ -CHLOROANILINE

Male F344/N Rats	Female F344/N Rats	Male B6C3F ₁ Mice	Female B6C3F ₁ Mice
Doses			
2,6, or 18 mg/kg p-chloroani- line in acidified water, 5 d/wk; vehicle controls received deionized water	2, 6, or 18 mg/kg p-chloroani- line in acidified water, 5 d/wk; vehicle controls received deionized water	3, 10, or 30 mg/kg p-chloro- aniline in acidified water, 5 d/wk; vehicle controls received deionized water	3, 10, or 30 mg/kg p-chloro- aniline in acidified water, 5 d/wk; vehicle controls received deionized water
Body weights in the 2-year	study		
Dosed groups within 5% of vehicle controls	Dosed groups within 5% of vehicle controls	Dosed groups within 5% of vehicle controls	Dosed groups within 5% of vehicle controls
Survival rates in the 2-year 18/49; 32/50; 32/50; 21/50	study 27/50; 39/50; 36/50; 37/50	43/50; 36/50; 29/50; 35/50	39/50; 42/50; 44/50; 41/50
Nonneoplastic effects Fibrosis of the spleen (3/49; 11/50; 12/50; 41/50)	Fibrosis of the spleen (1/50; 2/50; 3/50; 42/50)		
Neoplastic effects Sarcomas of the spleen	Sarcomas of the spleen	Hepatocellular adenomas	None
(0/49; 1/50; 3/50; 38/50); pheochromocytomas of the adrenal gland (13/49; 14/48; 15/48; 26/49)	(0/50; 0/50; 1/50; 1/50); pheochromocytomas of the adrenal gland (2/50; 3/50; 1/50; 6/50)	or carcinomas (combined) (11/50; 21/49; 20/50; 21/50); hemangiosarcomas (4/50; 4/49; 1/50; 10/50)	
Level of evidence of carcino	ogania activity		
Clear evidence	Equivocal evidence	Some evidence	No evidence
Other considerations			
Decreased incidences of leukemia (21/49; 3/50; 2/50; 3/50)	Decreased incidences of leukemia (10/50; 2/50; 1/50; 1/50)	Decreased incidences of lymphomas (10/50; 3/49; 9/50; 3/50)	Decreased incidences of lymphomas (19/50; 12/50; 5/50; 10/50)
Genetic toxicology			
Salmonella (gene mutation)	Mouse L5178Y/TK ^{+/-} (Tft resistance)	SCE CHO Ce	Aberration
Positive with S9; negative without S9;	Positive with and without S9	Positive with and without S9	Positive with S9; negative without S9

EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY

The National Toxicology Program describes the results of individual experiments on a chemical agent and notes the strength of the evidence for conclusions regarding each study. Negative results, in which the study animals do not have a greater incidence of neoplasia than control animals, do not necessarily mean that a chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a chemical is carcinogenic for laboratory animals under the conditions of the study and indicate that exposure to the chemical has the potential for hazard to humans. Other organizations, such as the International Agency for Research on Cancer, assign a strength of evidence for conclusions based on an examination of all available evidence including: animal studies such as those conducted by the NTP, epidemiologic studies, and estimates of exposure. Thus, the actual determination of risk to humans from chemicals found to be carcinogenic in laboratory animals requires a wider analysis that extends beyond the purview of these studies.

Five categories of evidence of carcinogenic activity are used in the Technical Report series to summarize the strength of the evidence observed in each experiment: two categories for positive results ("Clear Evidence" and "Some Evidence"); one category for uncertain findings ("Equivocal Evidence"); one category for no observable effects ("No Evidence"); and one category for experiments that because of major flaws cannot be evaluated ("Inadequate Study"). These categories of interpretative conclusions were first adopted in June 1983 and then revised in March 1986 for use in the Technical Reports series to incorporate more specifically the concept of actual weight of evidence of carcinogenic activity. For each separate experiment (male rats, female rats, male mice, female mice), one of the following quintet is selected to describe the findings. These categories refer to the strength of the experimental evidence and not to either potency or mechanism.

- Clear Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a dose-related (i) increase of malignant neoplasms, (ii) increase of a combination of malignant and benign neoplasms, or (iii) marked increase of benign neoplasms if there is an indication from this or other studies of the ability of such tumors to progress to malignancy.
- Some Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of neoplasms (malignant, benign, or combined) in which the strength of the response is less than that required for clear evidence.
- Equivocal Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a marginal increase of neoplasms that may be chemically related.
- No Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing no chemically related increases in malignant or benign neoplasms.
- Inadequate Study of Carcinogenic Activity is demonstrated by studies that because of major qualitative or quantitative limitations cannot be interpreted as valid for showing either the presence or absence of carcinogenic activity.

When a conclusion statement for a particular experiment is selected, consideration must be given to key factors that would extend the actual boundary of an individual category of evidence. This should allow for incorporation of scientific experience and current understanding of long-term carcinogenesis studies in laboratory animals, especially for those evaluations that may be on the borderline between two adjacent levels. These considerations should include:

- The adequacy of the experimental design and conduct;
- Occurrence of common versus uncommon neoplasia;
- Progression (or lack thereof) from benign to malignant neoplasia as well as from preneoplastic to neoplastic lesions;
- Some benign neoplasms have the capacity to regress but others (of the same morphologic type) progress. At present, it is impossible to identify the difference. Therefore, where progression is known to be a possibility, the most prudent course is to assume that benign neoplasms of those types have the potential to become malignant;
- Combining benign and malignant tumor incidences known or thought to represent stages of progression in the same organ or tissue;
- Latency in tumor induction;
- Multiplicity in site-specific neoplasia;
- Metastases:
- Supporting information from proliferative lesions (hyperplasia) in the same site of neoplasia or in other experiments (same lesion in another sex or species);
- The presence or absence of dose relationships;
- The statistical significance of the observed tumor increase;
- The concurrent control tumor incidence as well as the historical control rate and variability for a specific neoplasm;
- Survival-adjusted analyses and false positive or false negative concerns;
- Structure-activity correlations; and
- In some cases, genetic toxicology.

CONTRIBUTORS

The NTP Technical Report on the Toxicology and Carcinogenesis Studies of *p*-Chloroaniline Hydrochloride is based on 13-week studies that began in March 1981 and ended in June 1981 and on 2-year studies that began in January 1982 and ended in January 1984 at Battelle Columbus Laboratories (Columbus, Ohio).

National Toxicology Program (Evaluated Experiment, Interpreted Results, and Reported Findings)

R.S. Chhabra, B.V.Sc., Ph.D., Chemical Manager

John Bucher, Ph.D.

Scot L. Eustis, D.V.M., Ph.D.

Joseph K. Haseman, Ph.D.

James Huff, Ph.D.

(Discipline Leaders and Principal Contributors)

Jack Bishop, Ph.D.

Douglas W. Bristol, Ph.D. C.W. Jameson, Ph.D.

E.E. McConnell, D.V.M.

G.N. Rao, D.V.M., Ph.D. B.A. Schwetz, D.V.M., Ph.D.

M. Vernon, Ph.D.

Douglas Walters, Ph.D.

NTP Pathology Working Group (Evaluated Slides and Prepared Pathology Report for Rats on 7/29/86)

Michael Elwell, D.V.M., Ph.D. (Chair) (NTP)

Roger Alison, B.V.Sc., M.R.C.V.S. (NTP)

Ken Ayers, D.V.M. (Burroughs Wellcome Laboratories)

Gary A. Boorman, D.V.M., Ph.D. (NTP)

Scot L. Eustis, D.V.M., Ph.D. (NTP) William MacKenzie, D.V.M., M.S. Experimental Pathology

Laboratories, Inc.

Kunitoshi Mitsumori, D.V.M., Ph.D. (NTP)

(Evaluated Slides and Prepared Pathology Report for Mice on 11/22/85)

Linda Uraih, D.V.M., M.S. (Chair) (NTP) John Cullen, D.V.M., Ph.D. (North

Carolina State University)

Michael Elwell, D.V.M., Ph.D. (NTP)

Scot L. Eustis, D.V.M., Ph.D. (NTP)

Robert Maronpot, D.V.M. (NTP)
Ronald Persing, D.V.M. (Battelle
Columbus Laboratories)
Barry Yano, D.V.M., Ph.D. (Dow
Chemical USA)

Principal Contributors at Battelle Columbus Laboratories (Conducted Studies and Evaluated Tissues)

A. Peters, D.V.M.

R. Persing, D.V.M.

J. Toft, D.V.M.

M. Chang, Ph.D. R. Wilson, B.S.

A. Killmeyer, B.S.

Principal Contributors at Experimental Pathology Laboratories, Inc. (Provided Pathology Quality Assurance)

J. Gauchat

Peter Millar, M.V.M., M.R.C.V.S.

Jerry Hardisty, D.V.M.

Principal Contributors at Carltech Associates, Inc. (Contractor for Technical Report Preparation)

William D. Theriault, Ph.D.

Abigail C. Jacobs, Ph.D.

John Warner, M.S. Naomi Levy, B.A.

PEER REVIEW PANEL

The members of the Peer Review Panel who evaluated the draft Technical Report on p-chloroaniline hydrochloride on April 18, 1988, are listed below. Panel members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, Panel members have five major responsibilities: (a) to ascertain that all relevant literature data have been adequately cited and interpreted, (b) to determine if the design and conditions of the NTP studies were appropriate, (c) to ensure that the Technical Report presents the experimental results and conclusions fully and clearly, (d) to judge the significance of the experimental results by scientific criteria, and (e) to assess the evaluation of the evidence of carcinogenicity and other observed toxic responses.

National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee

Robert A. Scala, Ph.D. (Chair)
Senior Scientific Advisor, Medicine and Environmental Health Department
Research and Environmental Health Division, Exxon Corporation
East Millstone, New Jersey

Michael A. Gallo, Ph.D. (Principal Reviewer)
Associate Professor, Director of Toxicology
Department of Environmental and Community
Medicine, UMDNJ - Rutgers Medical School
Piscataway, New Jersey

Frederica Perera, Dr. P.H.*
Division of Environmental Sciences
School of Public Health, Columbia
University
New York, New York

Ad Hoc Subcommittee Panel of Experts

John Ashby, Ph.D.
Imperial Chemical Industries, PLC
Central Toxicology Laboratory
Alderley Park, England

Charles C. Capen, D.V.M., Ph.D.

Department of Veterinary Pathobiology
Ohio State University
Columbus, Ohio

Vernon M. Chinchilli, Ph.D.

Department of Biostatistics

Medical College of Virginia

Virginia Commonwealth University

Richmond, Virginia

Kim Hooper, Ph.D.
Hazard Evaluation System and
Information Services
Department of Health Services
State of California
Berkeley, California

Donald H. Hughes, Ph.D. (Principal Reviewer)
Scientific Coordinator, Regulatory Services
Division, The Procter and Gamble Company
Cincinnati, Ohio

Director, Chemical Carcinogenesis Frederick Cancer Research Facility Frederick, Maryland

Franklin E. Mirer, Ph.D.*

Director, Health and Safety Department
International Union, United Auto
Workers, Detroit, Michigan

James A. Popp, D.V.M., Ph.D.

Head, Department of Experimental
Pathology and Toxicology
Chemical Industry Institute of Toxicology
Research Triangle Park, North Carolina

Andrew Sivak, Ph.D. (Principal Reviewer)
Vice President, Biomedical Science
Arthur D. Little, Inc.
Cambridge, Massachusetts

William Lijinsky, Ph.D.

^{*}Unable to attend

SUMMARY OF PEER REVIEW COMMENTS ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF P-CHLOROANILINE HYDROCHLORIDE

On April 18, 1988, the draft Technical Report on the toxicology and carcinogenesis studies of *p*-chloro-aniline hydrochloride received public review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts. The review meeting was held at the National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina.

Dr. R.S. Chhabra, NIEHS, began the discussion by reviewing the experimental design, results, and proposed conclusions (clear evidence of carcinogenic activity for male rats, equivocal evidence of carcinogenic activity for female rats, some evidence of carcinogenic activity for male mice, no evidence of carcinogenic activity for female mice).

Dr. Sivak, a principal reviewer, agreed with the conclusions. However, he suggested that the unusually low hepatic tumor incidence in vehicle control male mice, coupled with a tumor yield in high dose male mice not much above the historical control range, might be mentioned. Dr. Chhabra agreed and pointed out that the effects were mainly due to carcinomas and, further, that there was considerable metastasis of these tumors to the lung (1/50, vehicle controls vs. 9/50, high dose). Dr. Sivak stated that inclusion of pharmacokinetic data indicating that saturation was not reached, even at the highest dose, was an important addition to the data base. He suggested deleting the speculation that increased sensitivity to aniline toxicity was based on differences in a single erythrocyte enzyme, and Dr. Chhabra agreed.

Dr. Hughes, the second principal reviewer, agreed with the conclusions. He requested an explanation for poor survival in male and female vehicle control rats compared with that in dosed groups. Dr. Chhabra noted that there appeared to be a correlation with a marked negative trend for mononuclear cell leukemia. Dr. Hughes thought that the addition of structure-activity data on genetic toxicity, carcinogenicity, and other effects for the aniline compounds was useful.

Dr. Gallo, the third principal reviewer, agreed with the conclusions, although he argued that if rarity of the tumors is the criterion for the level of evidence, then the level in female rats should be the same as that in male rats. Dr. J. Haseman, NIEHS, said that to his knowledge, the Program had never made a call above equivocal evidence based on a single tumor, regardless of rarity. Dr. Gallo commented that there were marked increases in methemoglobinemia for both rats and mice in the 13-week studies, even at the lowest doses, and suggested that chronic methemoglobinemia could be an appropriate criterion for dose selection for this type of compound.

In response to inquiries as to why the 1979 NCI studies (NCI Technical Report No. 189) were repeated, Dr. Chhabra said p-chloroaniline was considered to be a good candidate for restudy because the findings from the NCI studies were unclear as to carcinogenicity and because of the nature of the chemical and the degree of industrial exposure of humans. Dr. J. Huff, NIEHS, added that three of the four previous studies were equivocal, the duration of exposure was only 18 months, and the gavage route was used in the current studies.

Dr. Sivak moved that the Technical Report on p-chloroaniline hydrochloride be accepted with the revisions discussed and with the conclusions as written: for male rats, clear evidence of carcinogenic activity; for female rats, equivocal evidence of carcinogenic activity; for male mice, some evidence of carcinogenic activity; and for female mice, no evidence of carcinogenic activity. Dr. Hughes seconded the motion, which was approved by eight members, with one abstention (Dr. Ashby).

I. INTRODUCTION

Physical and Chemical Properties
Use, Production, and Exposure
Absorption, Distribution, Metabolism, and Excretion
Genetic Toxicology
Toxicity and Carcinogenicity
Study Rationale

p-CHLOROANILINE HYDROCHLORIDE

CAS No. 20265-96-7

C₆H₆NCl • HCl

Molecular weight 164.1

Synonyms: 1-amino-4-chlorobenzene hydrochloride; 4-chlorophenylamine hydrochloride; 4-chlorobenzenamine hydrochloride

Physical and Chemical Properties

p-Chloroaniline forms colorless orthorhombic crystals and has a melting point of 72.5° C and a boiling point of 232° C. It is soluble in hot water and freely soluble in alcohol, ether, acetone, and carbon disulfide (Merck, 1983). p-Chloroaniline (99% pure) was used to prepare p-chloroaniline hydrochloride solutions for administration to animals.

Use, Production, and Exposure

p-Chloroaniline is an aromatic amine widely used in the dye, chemical, textile, rubber, and other industries (Beard and Noe, 1981). p-Chloroaniline is used as an intermediate in the manufacture of more than 10 dyes and pigments (Colour Index, 1956) and has been detected as a degradation product in some pharmaceutical preparations (Ciarlone et al., 1976). In rats, pchloroaniline is one of the metabolites of the urea herbicides monuron, buturon, and monolinuron (Ernst, 1969; Hargesheimer et al., 1981). Monuron is carcinogenic in male rats, causing increased incidences of tubular cell adenocarcinomas of the kidney, tubular cell adenomas of the kidney, and neoplastic lesions of the liver (NTP, 1988). p-Chloroaniline has also been identified as a degradation product of 4,4'dichloro-3-(trifluoromethyl)carbanilide, an active component of deodorant bars (Demers and Yates, 1977).

Specific production data for *p*-chloroaniline are not available; however, the Toxic Substance Control Act (TSCA) Inventory listed two companies that manufactured *p*-chloroaniline in 1977 (USEPA, 1978). One company reported that it produced between 100,000 pounds and 1,000,000 pounds; the other company did not report its production volume in the nonconfidential portion of the TSCA inventory. Four companies were reported to import *p*-chloroaniline in 1977. Of these four, two reported a combined import volume of between 10,000 and 101,000 pounds; the other two companies did not report import volumes.

No data are available on the number of workers exposed to this chemical, but the use pattern of p-chloroaniline suggests an exposure potential to workers in the dye, agricultural, and chemical industries. It is also a potential food contaminant because of its release as a metabolic degradation product from herbicides used in agriculture. Aromatic organochlorine compounds are known to be persistent in the aquatic environment. Schauerte et al. (1982) studied the longterm fate of hexachlorobenzene, pentachlorobenzene, and p-chloroaniline in small experimental ponds in southern Germany. The chemicals, with added ¹⁴C-labeled tracers, were applied to the ponds for 4-6 weeks in amounts sufficient to maintain an average concentration of 50 µg/ liter. Chemical residue concentrations were determined in water, sediment, flora, and fauna up

to 166 weeks after application. Residues of these compounds were initially present in the biota at relatively high concentrations; concentrations of residue slowly built up and then declined in the sediment. Suss et al. (1978) studied the degradation of aniline, p-chloroaniline, and 3,4-dichloroaniline in four different soil types in the laboratory and reported low degradation rates and strong adsorption for the chloroanilines, suggesting accumulation in the soil. However, according to Freitag et al. (1984), laboratory soil mobility studies, which normally have much higher leaching rates and shorter time spans than those conducted under environmental conditions, are not suitable for predicting the longterm behavior of p-chloroaniline.

Absorption, Distribution, Metabolism, and Excretion

p-Chloroaniline is readily absorbed through skin and from the gastrointestinal tract after oral administration. It causes more intense methemoglobinemia after dermal exposure than after oral exposure, suggesting greater or more rapid hepatic metabolism following absorption from the gastrointestinal tract (Gosselin et al., 1984). Distribution and excretion studies of [14C]pchloroaniline hydrochloride in rats showed that p-chloroaniline is excreted rapidly after oral administration at 0.3, 3.0, or 30 mg/kg (Perry et al., 1981a,b; Appendix H). Within 24 hours, 81% of the administered dose appeared in urine and 10% in feces. An average of 98% of the dose was recovered in excreta (87% in urine, 11% in feces) 7 days after administration. At day 7, essentially all of the remaining radioactivity was located in the erythrocytes. The preliminary results from a single intravenous dose (3 mg/kg) also revealed an accumulation of p-chloroaniline-derived radioactivity in erythrocytes. The ratio of concentration of p-chloroaniline in erythrocytes to that in plasma increased with time and was 2:1 at 2 hours, 20:1 at 12 hours, and 74:1 at 2 days. These studies also revealed that p-chloroaniline administered to F344 rats by intravenous injection was rapidly N-acetylated to p-chloroacetanilide as the first step in metabolism and excretion. The absence of any pchloroacetanilide in urine indicated further metabolism before excretion.

Concurrent disposition studies in mongrel dogs and in A/J and Swiss Webster mice also were performed by Perry et al. (1981a,b). Dogs administered 3 mg/kg [14C]p-chloroaniline by intravenous injection excreted 93% of the radioactivity in urine and 3% in feces within 2 days, whereas mice of both strains eliminated 75% in urine and 10% in feces in a similar time period; recovery of mouse urine was probably not complete. For all species, the disappearance of total radioactivity from whole blood displayed twophase decay kinetics, but the rates were substantially different. The initial decay constants in both strains of mice were 10 times greater than those in dogs and rats, and the terminal rates were greater by a factor of 2 to 4. The halflife of the radioactivity in plasma was similar in F344 rats and dogs. Dogs and rats rapidly eliminated the parent compound in a manner best described by biexponential decay kinetics, with a half-life of less than 10 minutes for the first phase and 1.5-4.6 hours for the second phase. The parent compound could not be detected after 4 hours in dogs and rats or after 1 hour in mice. p-Chloroaniline clearance by mice was too rapid to permit calculation of the kinetic parameters.

The biologic activity, including mutagenicity and carcinogenicity, of a number of aromatic amines may be due to their N-hydroxy metabolites (Poirier and Weisburger, 1972; Weisburger and Weisburger, 1973; Selkirk, 1980). A number of in vitro studies have shown N-oxidation of p-chloroaniline by the hepatic microsomal cytochrome P450 system (Smith and Gorrod, 1978; Liu and Franklin, 1984; Hlavica, 1984). N-oxidation of p-chloroaniline during lipid peroxidation promoted by various mechanisms in rabbit liver microsomal preparations was also reported (Golly et al., 1984). In addition, based on in vitro studies of the N-oxidation of p-chloroaniline by rabbit hemoglobin, Golly and Hlavica (1983) proposed that erythrocytes may be a site of bioactivation of aromatic amines. This proposal of a reactive intermediate produced by, and reacting with, erythrocytes would be consistent with the observed persistence of p-chloroanilinederived radioactivity in erythrocytes by Perry et al. (1981a,b). However, this conclusion has not been confirmed because it was not possible to extract the p-chloroaniline-derived radioactivity from erythrocytes. Microbial oxidation of p-chloroaniline was shown by Kaufman et al. (1973); Corbett et al. (1980) demonstrated the Noxidizing action of the fungal enzyme chloride peroxidase in vitro.

Genetic Toxicology

p-Chloroaniline has been tested for mutagenicity by numerous laboratories in bacterial assays with Escherichia coli and Salmonella typhimurium. Test results reported in the literature were generally negative (Garner and Nutman, 1977; Pai et al., 1978; Rosenkranz and Poirier, 1979; Seuferer et al., 1979; Gilbert et al., 1980; Zimmer et al., 1980; Thompson et al., 1983) with two exceptions: a positive response for gene mutation in S. typhimurium strain TA98 in the presence of S9 metabolic activation (Dunkel et al., 1985) and the observation of growth inhibition due to DNA damage in E. coli polA⁺/polA⁻ (Rosenkranz and Poirier, 1979). p-Chloroaniline was tested for mutagenicity in S. typhimurium for the NTP by three independent laboratories. Mutagenic activity was observed by two laboratories in strain TA98 in the presence of Aroclor 1254-induced male Sprague Dawley rat or Syrian hamster S9, and one laboratory noted an increase in revertant colonies in strain TA100 in the presence of hamster S9 only. No mutagenic activity was reported in strains TA97, TA1535, or TA1537 (Mortelmans et al... 1986; Table 27). Several of the negative studies that were reported in the literature tested pchloroaniline within dose ranges similar to those used by the NTP laboratories (1,000-2,000 μg/plate).

In addition to the bacterial assays, gene mutation was also reported in Aspergillus nidulans after administration of 200 µg/ml p-chloroaniline in the absence of exogenous metabolic activation (Prasad, 1970) and in cultured mouse L5178Y lymphoma cells both with and without Aroclor 1254-induced male F344 rat liver S9 (Myhr and Caspary, 1989; Table 28).

Treatment of primary hepatocyte cultures from adult male F344 rats with 20 µg/ml p-chloroaniline was reported to induce unscheduled DNA synthesis (UDS) (Williams et al., 1982); another such investigation detected no induction of UDS at doses of 6.35 µg/ml and lower and found

toxicity at all doses greater than 10 μ g/ml (Thompson et al., 1983). Therefore, it may be that only doses within a narrow range close to toxic levels elicit a positive response in this assay.

The NTP tested several structural analogs of pchloroaniline for mutagenic activity, including aniline, o- and m-chloroaniline, and p-bromoaniline. All these compounds produced a negative response in the Salmonella gene mutation assay (Haworth et al., 1983; Zeiger et al., 1987). Aniline and m-chloroaniline induced SCEs in cultured CHO cells with and without S9 from Aroclor 1254-induced male Sprague Dawley rat liver; both compounds also induced chromosomal aberrations in this test system, but aniline required the addition of S9 for a positive response (Galloway et al., 1987). Aniline induced trifluorothymidine (Tft) resistance in mouse L5178Y lymphoma cells with and without Aroclor 1254induced male F344 rat liver S9 (Myhr and Caspary, 1989; Mitchell et al., 1989). Published reports on the absence of mutagenic activity of aniline, p-bromoaniline, and m-chloroaniline in bacteria support the NTP results (Garner and Nutman, 1977; Simmon, 1979; Chung et al., 1981; De Flora, 1981; Probst et al., 1981; Ashby et al., 1983; Thompson et al., 1983). Although ochloroaniline was reported to be nonmutagenic in Salmonella, it was observed to produce growth inhibition due to DNA damage in E. coli strain polA⁺/polA⁻, with and without S9 activation (Rosenkranz and Poirier, 1979; Rosenkranz and Leifer, 1980). The only reported genetic effects of aniline exposure were the induction of SCEs in vitro (Wilmer et al., 1981; Tohda et al., 1983) and in vivo (Parodi et al., 1983) and DNA damage as determined by alkaline elution sedimentation in liver and kidney cells of Sprague Dawley rats administered 420 mg/kg aniline; no DNA damage was observed in the spleen cells of these rats (Parodi et al., 1982a,b). Swiss mice administered identical doses of aniline showed no liver, kidney, or bone marrow DNA damage (Parodi et al., 1982a). No induction of UDS was observed in primary hepatocyte cultures from F344 rats, DS-1 mice, or Syrian golden hamsters; the cultures contained 1 × 10^{-3} or 1×10^{-5} M aniline (Williams, 1981; McQueen et al., 1981).

Mutagenicity information is available on paminophenol, one of the purported metabolites of p-chloroaniline (Ichikawa et al., 1969). Although p-aminophenol is not generally observed to be mutagenic in Salmonella (NTP unpublished results; Garner and Nutman, 1977; Degawa et al., 1979; Thompson et al., 1983), there is one report of a positive response in the absence of S9 in S. typhimurium strain TA1535 (Wild et al., 1980). In addition, induction of Tft resistance in mouse L5178Y lymphoma cells has been reported (Amacher and Turner, 1982; Oberly et al., 1984) as well as in vivo induction of chromosomal aberrations (Mitra and Manna, 1971), micronuclei (Wild et al., 1980), and sperm head abnormalities (Topham, 1980). Treatment of human EBV-transformed lymphoblastoid cells with p-aminophenol resulted in inhibition of DNA synthesis presumably through alterations of the DNA superstructure as noted by changes in the sedimentation rate of DNA extracts from treated cells (Hayward et al., 1982). SCE induction in human lymphocytes was reported after exposure to p-aminophenol (Takehisa and Kanaya, 1982).

Toxicity and Carcinogenicity

The dominant toxic effect of aromatic amines is methemoglobin formation (Beard and Noe, 1981). Specific information on p-chloroaniline toxicity in humans is limited. Short-term exposure to p-chloroaniline produces cyanosis, a manifestation of methemoglobin formation that could develop with or without loss of hemoglobin. Medical intervention is required when methemoglobin levels are at or above 10% in the blood of humans. Long-term exposure could produce reversible anemia (Linch, 1974). p-Chloroaniline administered dermally induces more intense methemoglobin formation than when administered orally (Gosselin et al., 1984). A threshold limit value for aniline and its homologs has been set at 2 ppm for dermal exposure (ACGIH, 1988-89). McLean et al. (1969) studied methemoglobin formation in cats by a number of substituted anilines including p-chloroaniline. These studies showed that chloro- and bromoanilines, especially the 3- and 4-halo compounds, tend to produce a long-lasting methemoglobin response. The oral LD₅₀ value in rats for p-chloroaniline was reported to be 310 mg/kg, and the

dermal LD_{50} value in rabbits was reported to be 360 mg/kg (Smyth et al., 1962).

Aniline hydrochloride was carcinogenic for male F344/N rats (NCI, 1978a; Gralla et al., 1979). Azobenzene (NCI, 1979a), D & C Red No. 9 (NTP, 1982a), dapsone (NCI, 1977a), and o-toluidine hydrochloride (NCI, 1979b), all structurally related to aniline, are carcinogens in rats. Carcinogenesis studies on p-chloroaniline in feed were conducted by the National Cancer Institute in F344/N rats and B6C3F1 mice of each sex (NCI, 1979c). The dietary concentrations were 250 and 500 ppm for rats and 2,500 and 5,000 ppm for mice. The duration of compound administration was 78 weeks, followed by an observation period of 24 weeks for rats and 13 weeks for mice. Mesenchymal neoplasms (including six fibromas, one sarcoma, one fibrosarcoma, one osteosarcoma, and one hemangiosarcoma) in the spleen of male rats (vehicle control, 0/20; low dose, 0/49; high dose, 10/49) and hemangiomatous neoplasms in mice (male: 2/20: 10/50: 14/50; female: 0/18; 3/49; 8/42) may have been related to p-chloroaniline administration. However, the conclusions of the studies given in the Technical Report were that "sufficient evidence was not found to establish the carcinogenicity of p-chloroaniline for F344/N rats and B6C3F₁ mice."

p-Chloroaniline is 1 of 17 compounds with a chloroaniline moiety which have been evaluated or are under evaluation by the NCI/NTP (Table 1). Six of the nine compounds evaluated to date were found to be carcinogenic, whereas the results of the original p-chloroaniline carcinogenesis studies were considered equivocal. 2-Chloro-p-phenylenediamine sulfate (NCI, 1978b) and 3-chloro-p-toluidine (NCI, 1978c) were determined not to be carcinogenic in rats or mice.

No epidemiologic study of p-chloroaniline carcinogenicity was available in the literature. However, an epidemiologic study on an analog, 4-chloro-2-methylaniline, indicated the possibility of bladder cancer in exposed workers (USEPA, 1986). Other structurally related chemicals such as 4,4'-methylene bis(2-methylaniline) and toluidine were reported to be

TABLE 1. NCI/NTP STUDIES OF CHEMICALS CONTAINING CHLOROANILINE MOIETIES

			NTP Testing Status	3
Structure	Chemical	CAS Number	Genetic Toxicity	Carcinogenicity and Other
NH ₂	o-Chloroaniline	95-51-2	Negative in Salmonella (Zeiger et al., 1987)	Not evaluated for carcinogenicity
				V.
NH ₂	m-Chloroaniline	108-42-9	Negative in Salmonella (Zeiger et al., 1987); positive for chromosomal aberrations and SCE in CHO cells	Not evaluated for carcinogenicity
NH ₂	p-Chloroaniline	106-47-8	Positive in Salmonella (Mortelmans et al., 1986); positive in mouse lymphoma cells (Mitchell et al., 1989; Myhr and Caspary, 1989); positive for chromosomal aberrations and SCE in CHO cells; negative in BALB/c-3T3 transformation assay; positive in Fischer cell/Rauscher leukemia virus transformation assay; positive for UDS in primary rat hepatocytes	Equivocal results in feed studies in rats and mice (NCI, 1979c)
4,4'-Met	chylene bis(o-chloroanili	ne) 101-14-4 NH ₂	Positive in Salmonella (Haworth et al., 1983); positive in mouse lymphoma cells (Mitchell et al., 1989; Myhr and Caspary, 1989); negative for chromosomal aberrations; positive for SCE in CHO cells (Galloway et al., 1985); positive in BALB/c-3T3 transformation assay; positive in Fischer cell/Rauscher leukemia virus transformation assay; positive for UDS in primary rat hepatocytes; on test in Drosophila	Determined by IARC to have sufficient evidence of carcinogenicity in animals (IARC, 1974); nominated for reproductive effects study
NH ₂	2,5-Dichloroaniline	95-82-9	Negative in Salmonella	Not evaluated for carcinogenicity

TABLE 1. NCL/NTP STUDIES OF CHEMICALS CONTAINING CHLOROANILINE MOIETIES (Continued)

			NTP Testing Status	6
Structure	Chemical	CAS Number	Genetic Toxicity	Carcinogenicity and Other
NH ₂	3,4-Dichloroaniline	95-76-1	Negative for Salmonella	Not evaluated for carcinogenicity
CO	OH Chloramben Cl NH ₂	133-90-4	Positive in Salmonella (Haworth et al., 1983); positive for chromosomal aberrations and SCE in CHO cells; equivocal for sex-linked recessive lethals in Drosophila (Valencia et al., 1985)	Positive in feed studies; hepatocellu- lar carcinomas in fe- male mice (NCI, 1977b)
NH ₂	4-Chloro-o-nitroaniline	89-63-4	Positive in Salmonella (Haworth et al., 1983); positive for chromosomal aberrations, weakly positive for SCE in CHO cells; positive in mouse lymphoma assay (Galloway et al., 1987)	Short-term gavage studies in rats and mice; chemical dis- position studies in rats; on test in sperm morphology and vag- inal cytologic assays
NH ₂ CI	2-Chloro-p-phenylenediamin sulfate H ₂ SO ₄	e 61702- 44 -1	Positive in Salmonella (Haworth et al., 1983); positive for chromosomal aberrations and for SCE in CHO cells	Negative in feed studies in rats and mice (NCI, 1978b)
NH ₂	4-Chloro-o-phenylenediamine	95-83-0	Positive in Salmonella (Zeiger et al., 1988; Dunkel et al., 1985); positive for chromosomal aberrations and for SCE in CHO cells	Positive in feed studies; neoplasms of urinary bladder and forestomach in rats of each sex; hepato- cellular carcinomas in mice of each sex (NCI, 1978d)
NH ₂ 4	-Chloro- <i>m</i> -phenylenediamine	5131-60-2	Positive in Salmonella (Haworth et al., 1983; Dunkel et al., 1985); positive for chromosomal aberrations and SCE in CHO cells	Positive in feed studies; adrenal gland pheochromo- cytomas in male rats; hepatocellular neoplasms in female mice (NCI, 1978e)

TABLE 1. NCI/NTP STUDIES OF CHEMICALS CONTAINING CHLOROANILINE MOIETIES (Continued)

			NTP Testing Status	
Structure	Chemical	CAS Number	Genetic Toxicity	Carcinogenicity and Other
CI NH ₂	2,6-Dichloro-p-phenylene- diamine Cl	609-20-1	Positive in Salmonella (Mortelmans et al., 1986); positive in mouse lymphoma cells; positive for chromosomal aberrations and for SCE in CHO cells	Positive in feed studies; hepatocellular adenomas or carcinomas (combined) in mice of each sex; hepatocellular adenomas in male mice (NTP, 1982b); on test for chemical disposition
NH ₂ CI CH ₃	3-Chloro-p-toluidine	95-74-9	Negative in Salmonella (Haworth et al., 1983); positive for chromoso- mal aberrations and SCE in CHO cells	Negative in feed studies in rats and mice (NCI, 1978c)
CI NH2	5-Chloro-o-toluidine CH3	95-79-4	Negative in Salmonella (Haworth et al., 1983); negative in mouse lymphoma cells; negative in in vitro cytogenetics (Galloway et al., 1987)	Positive in feed studies; hemangio- sarcomas and hep- atocellular carcino- mas in mice of each sex; not carcino- genic in rats (NCI, 1979d)
NH ₂ CH ₃		3165-93-3	Negative in Salmonella (Haworth et al., 1983); positive in mouse lymphoma cells; positive for chro- mosomal aberrations and for SCE in CHO cells (Galloway et al., 1987)	Positive in feed studies; hemangio- sarcomas and he- mangiomas in mice of each sex; not carci- nogenic in rats (NCI, 1979e)
NH ₂ CI	2,4-Dichloroaniline	554-00-7	Negative in Salmonella	Not evaluated for carcinogenicity
CI NH ₂	2,4,6-Trichloroaniline	634-93-5	On test in Salmonella	Not evaluated for carcinogenicity

associated with increased deaths from urinary bladder cancer in dyestuff factory workers in northern Italy (Rubino et al., 1982; Lamb et al., 1986).

Study Rationale

In a previous p-chloroaniline study, rare splenic neoplasms were found in dosed male rats; however, the number of neoplasms was considered to be insufficient to establish clearly the carcinogenicity of p-chloroaniline (NCI, 1979c). p-Chloroaniline is unstable in feed, and the animals may have received the chemical at less than the targeted dietary concentration. Thus, the study

is considered to be inadequate for determining carcinogenicity.

The widespread exposure of workers to p-chloro-aniline in the dye, chemical, and pharmaceutical manufacturing industries and the structural resemblance of p-chloroaniline to known carcinogens were the rationale for reevaluating this chemical for toxicity and carcinogenicity in laboratory animals. The studies described in this report were conducted in F344/N rats and B6C3F₁ mice of each sex at three doses. The gavage route with a water vehicle was selected because the chemical was found to be unstable in feed.

II. MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION OF p-CHLOROANILINE

PREPARATION AND CHARACTERIZATION OF

p-CHLOROANILINE HYDROCHLORIDE DOSE MIXTURES
SIXTEEN-DAY STUDIES

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Study Design
Source and Specifications of Animals
Animal Maintenance
Clinical Examinations and Pathology
Statistical Methods

GENETIC TOXICOLOGY

PROCUREMENT AND CHARACTERIZATION OF p-CHLOROANILINE

p-Chloroaniline (S2 flaked, technical grade) was obtained in one lot (lot no. 127) from E.I. DuPont de Nemours and Company, Inc. (Wilmington, Delaware). Purity and identity analyses were conducted at Midwest Research Institute (MRI) (Kansas City, Missouri). MRI reports on the analyses performed in support of the p-chloroaniline studies are on file at the National Institute of Environmental Health Sciences. Lot no. 127 was identified as p-chloroaniline by infrared (Figure 1), ultraviolet/visible, and nuclear magnetic resonance spectra (Figure 2), which were consistent with those expected for the structure and the spectra in the literature (Sadtler Standard Spectra).

Purity was determined by elemental analysis, Karl Fischer water analysis, titration of the amine component with perchloric acid, thinlayer chromatography, and gas chromatography. Cumulative data indicated that lot no. 127 was 99.1% pure. Results of elemental analysis of lot no. 127 were in agreement with theoretical values for carbon, hydrogen, chlorine, and nitrogen. Water content was 0.020% by Karl Fischer titration. Titration of the amine group in glacial acetic acid with perchloric acid indicated a purity of 98.8%. Thin-layer chromatography with two different solvent systems (chloroform:methanol:acetic acid, 95:4:1, or diethylamine) showed a single spot. Gas chromatography performed with a 10% Carbowax 20M column indicated one impurity after the major peak with an area 0.14% that of the major peak and three other impurities, two before and one after the major peak, with individual peak areas less than 0.1% that of the major peak. A second gas chromatographic system with a 3% SP2100(DB) column indicated one impurity after the major peak with an area 0.13% that of the major peak and a group of unresolved impurities after the major peak, with a total area 0.15% that of the major peak.

PREPARATION AND CHARACTERIZATION OF p-CHLOROANILINE HYDROCHLORIDE DOSE MIXTURES

All dose mixtures administered to animals in these studies were prepared from weighed quantities of p-chloroaniline dissolved in water containing hydrochloric acid: all doses refer to the pchloroaniline content of the solution. p-Chloroaniline and molar equivalents of 1.0 N hydrochloric acid were mixed together in a calibrated container (Table 2). The resulting p-chloroaniline hydrochloride solutions were diluted to the appropriate concentration with deionized water and had a pH of approximately 2. The solutions were refrigerated for 1 day and filtered through filter paper to remove precipitate. The stability of p-chloroaniline hydrochloride in water gavage solutions (5 mg/ml as p-chloroaniline) was determined by gas chromatography with a 3% SP2401 on 100/200 mesh Supelcoport packed column after dilutions with methanol and additions of biphenyl as an internal reference. The chemical was found to be stable in water for at least 14 days at room temperature. For the 16day and 13-week studies, dose mixtures were prepared at weekly intervals, placed in foilwrapped containers, and refrigerated until the day of dosing. For the 2-year studies, the filtrates were stored in amber bottles at 5° C and were used as the stock solutions or as the dose mixtures for the highest dose groups of rats and mice.

Periodic analysis of formulated *p*-chloroaniline hydrochloride in water dose mixtures by ultraviolet spectroscopy at 216 nm was conducted at the study and analytical chemistry laboratories. The study laboratory analyzed dose mixtures by ultraviolet spectroscopy two times during the 13-week studies (Table 3). During the 2-year studies, the dose mixtures were analyzed at approximately 8-week intervals. The number of times that concentrations were not within specifications can be extrapolated to indicate the frequency with which mixtures were formulated

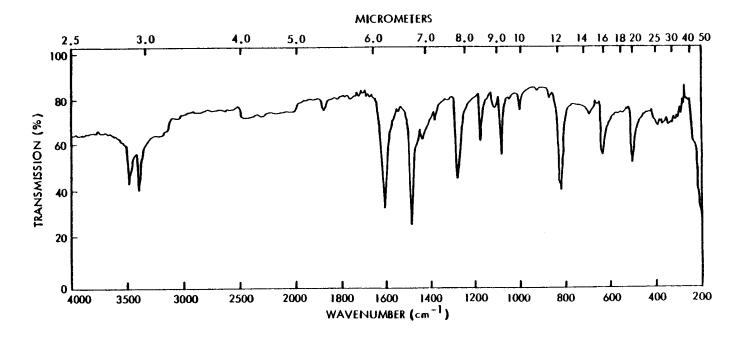


FIGURE 1. INFRARED ABSORPTION SPECTRUM OF p-CHLOROANILINE (LOT NO. 127)

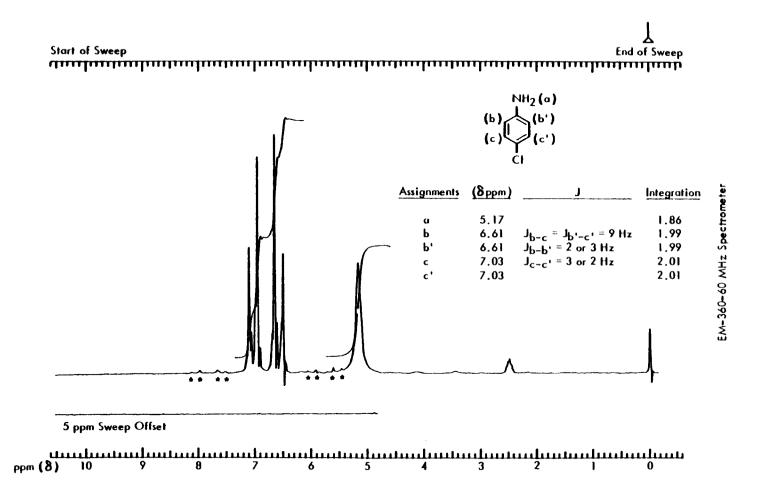


FIGURE 2. NUCLEAR MAGNETIC RESONANCE SPECTRUM OF p-CHLOROANILINE (LOT NO. 127)

TABLE 2. PREPARATION AND STORAGE OF DOSE MIXTURES IN THE GAVAGE STUDIES OF ρ-CHLOROANILINE HYDROCHLORIDE

Sixteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Preparation Weighed portions of p-chloroaniline mixed with molar equivalents of 1.0 N hydrochloric acid. Resulting solution further diluted to appropriate concen- tration with deionized water. Solution allowed to stand 1 d and then filtered through filter paper. Serial dilutions made with deionized water to obtain lower dose mixtures	Same as 16-d studies	Same as 16-d studies
Maximum Storage Time 2 wk	2 wk	2 wk
Storage Conditions 5° C in foil-wrapped containers	5° C in foil-wrapped containers	5° C in amber glass containers

TABLE 3. RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE THIRTEEN-WEEK GAVAGE STUDIES OF ρ -CHLOROANILINE HYDROCHLORIDE

	Concentration	of p-Chloroaniline in ochloric Acid (mg/ml)	Determined as a
Date Mixed	Target	Determined (a)	Percent of Target
3/25/81	1	1.09	109
	1.5	1.4	93
	2	2.0	100
	3	2.8	93
	4	4.2	105
	6	5.6	93
	8	8.5	106
	12	10.9	91
	16	17.1	107
	24	22.2	92
5/12/81	1	1	100
	2	1.8	90
	4	3.9	98
	8	8.6	108
	16	17.6	110
5/12/81	1.5	1.0	67
	3	2.8	93
	6	6.3	105
	12	13.0	108
	24	25.7	107
5/19/81	1.5	(b) 1.4	93
	3	(c) 3.1	103
	6	(c) 6.4	107
	12	(c) 13.0	108
	24	(c) 26.0	108

⁽a) Results of duplicate analysis; concentrations expressed as milligrams per milliliter p-chloroaniline; the hydrochloride was formed during does preparetion

(c) Remix of dose mixture of 5/12/81

formed during dose preparation.
(b) Remix of dose mixture of 5/12/81 which was out of specifications

within the specified $\pm 10\%$ of the target concentrations. For the 2-year p-chloroaniline hydrochloride studies, 72/72 dose mixtures were formulated within $\pm 10\%$ of the target concentrations, and it is therefore estimated that 100%

of the dose mixtures were properly prepared (Table 4). Results of periodic referee analyses performed by the analytical chemistry laboratory indicated good agreement with the results from the study laboratory (Table 5).

TABLE 4. RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF ρ -CHLOROANILINE HYDROCHLORIDE

Date Mixed	0.4	0.6	Farget Conce 1.2	2.0	3.6	6.0
Date Mixed	0.4	0.0	1,2	2.0	3.0	0.0
01/20/82	0.37		1.25		3.70	
02/03/82		0.61		1.86		5.98
06/10/82	0.40	0.57	1.19	2.03	3.56	6.09
08/11/82	0.37	0.60	1.11	1.97	3.61	6.08
10/14/82	0.37	0.66	1.12	1.95	3.65	6.00
12/08/82		0.59		2.02		6.13
12/09/82	0.39		1.15		3.66	
02/09/83	0.39	0.58	1.17	2.06	3.54	6.08
03/30/83	0.44	0.57	1.27	2.09	3.49	5.79
06/15/83	0.39		1.18		3.59	
06/16/83		0.60		1.99		5.96
07/27/83	0.41	0.60	1.20	1.93	3.54	5.83
09/21/83	0.36	0.55	1.17	2.02	3.56	5.90
11/17/83	0.37	0.57	1.16	2.03	3.50	5.92
01/11/84	0.39	0.62	1.21	2.01	3.62	5.83
ean (mg/ml)	0.39	0.59	1.18	2.00	3.58	5.97
tandard deviation	0.022	0.029	0.047	0.062	0.065	0.114
efficient of variation (perc		4.9	4.0	3.1	1.8	1.9
inge (mg/ml)	0.36-0.44	0.55-0.66	1.11-1.27	1.86-2.09	3.49-3.70	5.79-6.13
umber of samples	12	12	12	12	12	12

⁽a) Results of duplicate analysis; concentrations expressed as milligrams per milliliter p-chloroaniline; the hydrochloride was formed during dose preparation.

TABLE 5. RESULTS OF REFEREE ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF ρ -CHLOROANILINE HYDROCHLORIDE

		Determined Cond	entration (mg/ml)
Date Mixed	Target Concentration (mg/ml)	Study Laboratory (a)	Referee Laboratory (b)
01/20/82	1.2	1.25	1.18
08/11/82	0.6	0.60	0.655
02/09/83	3.6	3.54	3.50
09/21/83	6.0	5.90	5.99

⁽a) Results of duplicate analysis; concentrations expressed as milligrams per milliliter p-chloroaniline; the hydrochloride was formed during dose preparation.

⁽b) Results of triplicate analysis

SIXTEEN-DAY STUDIES

Male and female F344/N rats and B6C3F₁ mice were obtained from Charles River Breeding Laboratories and held for 14 days (rats) or 15 days (mice) before the studies began. The rats were approximately 7 weeks old when placed on study, and the mice were 8 weeks old.

Groups of five rats and mice of each sex were administered 25, 50, 100, 200, or 400 mg/kg p-chloroaniline by gavage in aqueous hydrochloric acid, 5 days per week for a total of 12 doses over 16 days. Vehicle controls received deionized water by gavage.

Animals were housed five per cage. Water and feed were available ad libitum. Rats and mice were observed twice per day. A necropsy was performed on all animals. Details of animal maintenance are presented in Table 6.

THIRTEEN-WEEK STUDIES

Thirteen-week studies were conducted to evaluate the cumulative toxic effects of repeated administration of p-chloroaniline hydrochloride and to determine the doses to be used in the 2-year studies.

Four-week-old male and female F344/N rats and 6-week-old male and female B6C3F₁ mice were obtained from Harlan Industries, observed for 19 days, distributed to weight classes, and assigned to dose groups according to a table of random numbers. Rats were approximately 7 weeks old when placed on study, and mice were 9 weeks old.

Groups of 10 rats of each sex were administered 5, 10, 20, 40, or 80 mg/kg p-chloroaniline by gavage in water acidified with hydrochloric acid, 5 days per week for 13 weeks for a total of 64 or 65 doses. Groups of 10 mice of each sex were administered 7.5, 15, 30, 60, or 120 mg/kg on the same schedule for a total of 66 or 67 doses. Vehicle controls received deionized water by gavage.

Rats and mice were housed five per cage. Feed and water were available ad libitum. Animals were observed two times per day; moribund animals were killed. Individual animal weights were recorded once per week. Further experimental details are summarized in Table 6.

At the end of the 13-week studies, survivors were killed. A necropsy was performed on all animals except those excessively autolyzed or cannibalized. Tissues and groups examined are listed in Table 6.

On the day of necropsy, blood was taken for hematologic and methemoglobin determinations from the vena cava of pentobarbital-anesthetized rats or from the retro-orbital sinus of unanesthetized mice. Blood was collected in Becton-Dickinson® microtainers containing sodium EDTA. Hematologic analyses were performed with an Ortho ELT-8 Hematology Analyzer. The methemoglobin concentration was determined by the method of Evelyn and Malloy (1938).

TWO-YEAR STUDIES

Study Design

Groups of 49 or 50 rats of each sex were administered 2, 6, or 18 mg/kg p-chloroaniline by gavage in aqueous hydrochloric acid, 5 days per week for 103 weeks. Groups of 50 mice of each sex were administered 3, 10, or 30 mg/kg on the same schedule. Vehicle controls received deionized water by gavage.

Source and Specifications of Animals

The male and female F344/N rats used in these studies were produced under strict barrier conditions at Charles River Breeding Laboratories, and the B6C3F₁ (C57BL/6N, female × C3H/HeN MTV⁻, male) mice used in these studies were produced at Frederick Cancer Research Center. Breeding stock for the foundation colonies at the production facilities originated at the National Institutes of Health Repository. Animals shipped for study were progeny of defined microflora-associated parents that were transferred from isolators to barrier-maintained rooms. Rodents were shipped to the study laboratory at 5-6 weeks of age. Rats were quarantined at the study laboratory for 20 days and

TABLE 6. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF $\rho\textsc{-}$ CHLOROANILINE HYDROCHLORIDE

Sixteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
EXPERIMENTAL DESIGN		
Size of Study Groups 5 males and 5 females of each species	10 males and 10 females of each species	49 or 50 males and 50 females of each species
Doses 25, 50, 100, 200, or 400 mg/kg p-chloro- aniline by gavage in aqueous hydro- chloric acid (molar equivalents); dose vol5 ml/kg; vehicle controls received deionized water by gavage	Rats5, 10, 20, 40, or 80 mg/kg p-chloroaniline by gavage in aqueous hydrochloric acid (molar equivalents); mice7.5, 15, 30, 60, or 120 mg/kg; dose vol5 ml/kg; vehicle controls received deionized water by gavage	Rats2, 6, or 18 mg/kg p-chloroaniline by gavage in aqueous hydrochloric acid (molar equivalents); mice3, 10, or 30 mg/kg; dose vol5 ml/kg; vehicle controls received deionized water by gavage
Date of First Dose Rats2/3/81; mice2/4/81	3/30/81	Rats1/25/82; mice2/8/82
Date of Last Dose Rats2/18/81; mice2/19/81	Ratsmale: 6/26/81; female: 6/29/81; micemale: 6/30/81; female: 7/1/81	Rats1/13/84; mice1/27/84
Duration of Dosing 12 doses over 1 6 d	5 d/wk for 13 wk	5 d/wk for 103 wk
Type and Frequency of Observation Observed $2 \times d$; weighed $1 \times wk$	n Observed 2 × d; weighed initially and 1 × wk thereafter	Observed 2 \times d; weighed 1 \times wk for 13 wk and then 1 \times mo
Necropsy, Histologic Examinations, Necropsy performed on all animals; histologic exams performed on 2 males and 2 females in the vehicle control and 100 mg/kg groups. Tissues examined include: adrenal glands, bone marrow, brain, colon, esophagus, gallbladder (mice), heart, jejunum, kidneys, liver, lungs and mainstem bronchi, mandibular lymph nodes, pancreas, parathyroid glands, pituitary gland, prostate/ testes or ovaries/uterus, regional lymph nodes, salivary glands, seminal vesicles (mice), skin, spleen, stomach, thymus, thyroid gland, tissue masses, trachea, and urinary bladder. Spleen examined from 2 males and 2 females in the 25 mg/kg groups	Necropsy and histologic exams performed on all vehicle control and high dose animals; the following tissues were examined: adrenal glands, bone marrow, brain, colon, duodenum, esophagus, gallbladder (mice), gross lesions, heart, ileum, jejunum, kidneys, liver, lungs and mainstem bronchi, mandibular lymph nodes, nasal cavity, pancreas, parathyroid glands, pituitary gland, prostate/testes or ovaries/ uterus, rectum, regional lymph nodes (rats), salivary glands, skin, spleen, stomach, thymus, thyroid gland, tissue masses (rats), trachea, and urinary bladder. Tissues examined in the lower dose groups include: adrenal glands (mice), bone marrow, kidneys, liver, lungs and bronchi (mice), nasal	Necropsy performed on all animals; histologic exams performed on all vehicle contro and high dose animals and on all animals dying before the end of the studies. Tissues examined include: adrenal glands, brain, colon, esophagus, eyes (if grossly abnormal) gallbladder (mice), gross lesions, heart, kidneys, liver, lungs and mainstem bronchi, mammary gland, mandibular or mesenteric lymph nodes, pancreas, parathyroid glands pituitary gland, prostate/testes or ovaries/ uterus, regional lymph nodes, salivary glands, skin, small intestine, spinal cord (if neurologic signs present), spleen, sterne-brae or vertebrae or femur including marrow, stomach, thymus, thyroid gland, tissue masses, trachea, and urinary bladder. Tissues examined in the lower dose groups include: adrenal glands, bone, bone marrow, kidneys, liver, spleen, and testes for rats and liver and spleen for mice. Hematologic and methemoglobin determinations performed for rats at 6, 12, 18, and 24 mo
ANIMALS AND ANIMAL MAINTER	NANCE	
Strain and Species F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice

TABLE 6. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

Sixteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
ANIMALS AND ANIMAL MAINTE	NANCE (Continued)	
Animal Source Charles River Breeding Laboratories (Kingston, NY)	Harlan Industries (Indianapolis, IN)	RatsCharles River Breeding Laboratories (Kingston, NY); miceFrederick Cancer Research Center (Frederick, MD)
Study Laboratory Battelle Columbus Laboratories	Battelle Columbus Laboratories	Battelle Columbus Laboratories
Method of Animal Identification Toe mark	Toe mark	Toe clip and ear mark
Time Held Before Study Rats14 d; mice15 d	19 d	Rats20 d; mice12 d
Age When Placed on Study Rats7 wk; mice8 wk	Rats7 wk; mice9 wk	Rats8 wk; mice7 wk
Age When Killed Rats9 wk; mice10 wk	Rats20 wk; mice22 wk	Rats112 wk; mice111 wk
Necropsy Dates Rats2/19/81; mice2/20/81	Ratsmale: 6/29/81; female: 6/30/81; micemale: 7/1/81; female: 7/2/81	Rats1/24/84-1/27/84; mice2/6/84-2/10/84
Method of Animal Distribution Animals distributed to weight classes and assigned to cages by one table of random numbers and to groups by another table of random numbers	Same as 16-d studies	Same as 16-d studies
Feed NIH 07 Rat and Mouse Ration (Zeigler Bros., Inc., Gardners, PA); available ad libitum	Same as 16-d studies	Same as 16-d studies
Bedding Absorb-dri hardwood chips (Absorb- Dri, Inc., Garfield, NJ)	Same as 16-d studies	Same as 16-d studies
Water Automatic watering system (Edstrom Industries, Waterford, WI); available ad libitum	Same as 16-d studies	Same as 16-d studies
Cages Polycarbonate (Lab Products, Inc., Rochelle Park, NJ)	Polycarbonate (Lab Products, Inc., Garfield, NJ)	Same as 16-d studies
Cage Filters Spun-bonded polyester, Dupont 2024® Snow Filtration, Cincinnati, OH)	Same as 16-d studies	Same as 16-d studies
Animals per Cage 5	5	5
Chemicals on Study in the Same Ro	oom None	None

TABLE 6. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF ρ-CHLOROANILINE HYDROCHLORIDE (Continued)

Sixteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
ANIMALS AND ANIMAL MAIN	ΓENANCE (Continued)	
Animal Room Environment		Temp64°-82° F; hum24%-75%;

mice for 12 days. Thereafter, a complete necropsy was performed on five animals of each sex and species to assess their health status. The rodents were placed on study at 7-8 weeks of age. The health of the animals was monitored during the course of the studies according to the protocols of the NTP Sentinel Animal Program (Appendix E).

Animal Maintenance

Animals were housed five per cage. Feed and water were available ad libitum. Cages and racks were rotated. Further details of animal maintenance are given in Table 6.

Clinical Examinations and Pathology

Blood samples for hematologic and methemoglobin determinations were collected in Vacutainers® containing EDTA by retro-orbital puncture from 15 randomly selected rats from each group at 6, 12, 18, and 24 months. Rats were dosed for 2 consecutive days before blood collection except at 24 months when collection was performed 11-14 days after administration of the last dose. Hematologic analyses were performed with an Ortho ELT-8 Hematology Analyzer; methemoglobin concentration was determined by the method of Evelyn and Malloy (1938).

All animals were observed two times per day. Clinical signs were recorded once per week for 13 weeks and then at least once per month. Individual body weights were recorded once per week for the first 13 weeks of the studies and once per month thereafter. Mean body weights were calculated for each group. Animals found moribund and those surviving to the end of the studies were humanely killed. A necropsy was

performed on all animals including those found dead, unless they were excessively autolyzed or cannibalized, missexed, or missing. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and is not necessarily equal to the number of animals that were placed on study.

During necropsy, all organs and tissues were examined for grossly visible lesions. Tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Histopathologic examination of tissues was performed according to an "inverse pyramid" design (McConnell, 1983a,b). That is, complete histopathologic examinations (Table 6) were performed on all high dose and vehicle control animals and on lower dose animals dying before the end of the study. In addition, histopathologic examinations were performed on all grossly visible lesions in all dose groups. Potential target organs for chemically related neoplastic and nonneoplastic effects were identified from the short-term studies or the literature and were determined by examination of the pathology data; these target organs/tissues in the lower dose groups were examined histopathologically. If mortality in the highest dose group exceeded that in the vehicle control group by 15%, complete histopathologic examinations were performed on all animals in the second highest dose group in addition to those in the high dose group.

When the pathology evaluation was completed, the slides, paraffin blocks, and residual wet tissues were sent to the NTP Archives for inventory, slide/block match, and wet tissue audit. The slides, individual animal data records, and pathology tables were sent to an independent

quality assessment laboratory. The individual animal records and tables were compared for accuracy, slides and tissue counts were verified, and histotechnique was evaluated. All tumor diagnoses, all target tissues, and all tissues from a randomly selected 10% of the animals were evaluated by a quality assessment pathologist. The quality assessment report and slides were submitted to the Pathology Working Group (PWG) Chairperson, who reviewed all target tissues and those about which there was a disagreement between the laboratory and quality assessment pathologists.

Representative slides selected by the Chairperson were reviewed by the PWG, which includes the laboratory pathologist, without knowledge of previously rendered diagnoses. When the consensus diagnosis of the PWG differed from that of the laboratory pathologist, the laboratory pathologist was asked to reconsider the original diagnosis. This procedure has been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). The final diagnoses represent a consensus of contractor pathologists and the NTP Pathology Working Group. For subsequent analysis of pathology data, the diagnosed lesions for each tissue type are combined according to the guidelines of McConnell et al. (1986).

Slides/tissues are generally not evaluated in a blind fashion (i.e., without knowledge of dose group) unless the lesions in question are subtle or unless there is an inconsistent diagnosis of lesions by the laboratory pathologist. Nonneoplastic lesions are not examined routinely by the quality assessment pathologist or PWG unless they are considered part of the toxic effect of the chemical.

Statistical Methods

Survival Analyses: The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses at the time they were found to be missing or dead from other than natural causes; animals dying from natural causes were not censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality

and Tarone's (1975) life table test for a doserelated trend. When significant survival differences were detected, additional analyses using these procedures were carried out to determine the time point at which significant differences in the survival curves were first detected. All reported P values for the survival analysis are two-sided.

Calculation of Incidence: The incidence of neoplastic or nonneoplastic lesions is given as the ratio of the number of animals bearing such lesions at a specific anatomic site to the number of animals in which that site was examined. In most instances, the denominators include only those animals for which the site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) prior to histologic sampling, or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the number of animals on which a necropsy was performed.

Analysis of Tumor Incidence: The majority of tumors in this study were considered to be incidental to the cause of death or not rapidly lethal. Thus, the primary statistical method used was a logistic regression analysis, which assumed that the diagnosed tumors were discovered as the result of death from an unrelated cause and thus did not affect the risk of death. In this approach, tumor prevalence was modeled as a logistic function of chemical exposure and time. Both linear and quadratic terms in time were incorporated initially, and the quadratic term was eliminated if it did not significantly enhance the fit of the model. The dosed and vehicle control groups were compared on the basis of the likelihood score test for the regression coefficient of dose. This method of adjusting for intercurrent mortality is the prevalence analysis of Dinse and Lagakos (1983), further described and illustrated by Dinse and Haseman (1986). When tumors are incidental, this comparison of the time-specific tumor prevalences also provides a comparison of the time-specific tumor incidences (McKnight and Crowley, 1984).

In addition to logistic regression, alternative methods of statistical analysis were used, and the results of these tests are summarized in the appendixes. These include the life table test (Cox, 1972; Tarone, 1975), appropriate for rapidly lethal tumors, and the Fisher exact test and the Cochran-Armitage trend test (Armitage, 1971; Gart et al., 1979), procedures based on the overall proportion of tumor-bearing animals.

Tests of significance include pairwise comparisons of each dosed group with vehicle controls and a test for an overall dose-response trend. Continuity-corrected tests were used in the analysis of tumor incidence, and reported P values are one-sided. The procedures described above also were used to evaluate selected nonneoplastic lesions. (For further discussion of these statistical methods, see Haseman, 1984.)

Historical Control Data: Although the concurrent control group is always the first and most appropriate control group used for evaluation, there are certain instances in which historical control data can be helpful in the overall assessment of tumor incidence. Consequently, control tumor incidences from the NTP historical control data base (Haseman et al., 1984, 1985) are included for those tumors appearing to show compound-related effects.

GENETIC TOXICOLOGY

Salmonella Protocol: Testing was performed as reported by Ames et al. (1975) with modifications listed below and described in greater detail by Haworth et al. (1983) and Mortelmans et al. (1986). Chemicals were sent to three different laboratories as coded aliquots from Radian Corporation (Austin, Texas). The study chemical was incubated with the Salmonella typhimurium tester strains (TA97, TA98, TA100, TA1535, and/or TA1537) either in buffer or S9 mix (metabolic activation enzymes and cofactors from Aroclor 1254-induced male Sprague Dawley rat or Syrian hamster liver) for 20 minutes at 37° C before the addition of soft agar supplemented with L-histidine and D-biotin and subsequent plating on minimal glucose agar plates. Incubation was continued for an additional 48 hours.

Chemicals were tested in a series (four strains used) or in a hierarchy (initial testing in TA98 and TA100; if results were negative, then the chemical was tested further in additional

strains). If all results were negative, the chemical was retested in all strains with a different concentration of S9.

Each test consisted of triplicate plates of concurrent positive and negative controls and of at least five doses of the study chemical. The high dose was limited by toxicity or solubility but did not exceed 10 mg/plate. All negative assays were repeated, and all positive assays were repeated under the conditions that elicited the positive response.

A positive response was defined as a reproducible, dose-related increase in histidine-independent (revertant) colonies in any one strain/activation combination. An equivocal response was defined as an increase in revertants which was not dose related, not reproducible, or of insufficient magnitude to support a determination of mutagenicity. A response was considered negative when no increase in revertant colonies was observed after chemical treatment.

Mouse Lymphoma Protocol: The experimental protocol is presented in detail by Myhr et al. (1985) and follows the basic format of Clive et al. (1979). All study chemicals were supplied as coded aliquots from Radian Corporation (Austin, Texas). The highest dose of the study compound was determined by solubility or toxicity and did not exceed 1 mg/ml. Mouse lymphoma L5178Y cells were maintained at 37° C as suspension cultures in Fischer's medium supplemented with 2 mM L-glutamine, 110 µg/ml sodium pyruvate, 0.05% pluronic F68, antibiotics, and heat-inactivated horse serum; normal cycling time was about 10 hours. To reduce the number of spontaneously occurring trifluorothymidine (Tft)-resistant cells, subcultures were exposed once to medium containing thymidine, hypoxanthine, methotrexate, and glycine for 1 day, to thymidine, hypoxanthine, and glycine for 1 day, and to normal medium for 3-5 days. For cloning, horse serum content was increased and Noble agar was added. Freshly prepared S9 metabolic activation factors were obtained from the liver of either Aroclor 1254-induced or noninduced male F344 rats.

All doses within an experiment, including concurrent positive and solvent controls, were

replicated. Treated cultures contained 6×10^6 cells in 10 ml of medium. This volume included the S9 fraction in those experiments performed with metabolic activation. Incubation with the study chemical continued for 4 hours, after which time the medium plus chemical was removed and the cells were resuspended in 20 ml of fresh medium and incubated for an additional 2 days to express the mutant phenotype. Cell density was monitored so that log phase growth was maintained. After the 48-hour expression period, 3×10^6 cells were plated in medium and soft agar supplemented with Tft for selection of Tft-resistant cells (TK +/+), and 600 cells were plated in nonselective medium and soft agar to determine cloning efficiency. Plates were incubated at 37° C under 5% carbon dioxide for 10-12 days. All data were evaluated statistically for both trend and peak response. Both responses had to be significant (P < 0.05) for a chemical to be considered capable of inducing Tft resistance; a single significant response led to an "equivocal" conclusion, and the absence of both a trend and a peak response resulted in a "negative" call.

Minimum criteria for accepting an experiment as valid and a detailed description of the statistical analysis and data evaluation are presented in Myhr et al. (1985). This assay was initially performed without S9; if a clearly positive response was not obtained, the experiment was repeated with induced S9.

Chinese Hamster Ovary Cytogenetics Assays: Testing was performed as reported by Galloway et al. (1985, 1987) and is described briefly below. Chemicals were sent to the laboratories as coded aliquots from Radian Corporation (Austin, Texas). Chemicals were tested in cultured Chinese hamster ovary (CHO) cells for induction of sister chromatid exchanges (SCEs) and chromosomal aberrations both in the presence and absence of Aroclor 1254-induced male Sprague Dawley rat liver S9 and cofactor mix. Cultures were handled under gold lights to prevent photolysis of bromodeoxyuridine (BrdU)-substituted DNA. Each test consisted of concurrent solvent and positive controls and of at least three doses of the study chemical; the high dose was limited by toxicity or solubility but did not exceed 5 mg/ml.

In the SCE test without S9, CHO cells were incubated for 26 hours with the study chemical in McCoy's 5A medium supplemented with 10% fetal bovine serum, L-glutamine (2 mM), and antibiotics. BrdU was added 2 hours after culture initiation. After 26 hours, the medium containing the study chemical was removed and replaced with fresh medium plus BrdU and colcemid, and incubation was continued for 2 more hours. Cells were then harvested by mitotic shake-off, fixed, and stained with Hoechst 33258 and Giemsa. In the SCE test with S9, cells were incubated with the chemical, serum-free medium, and S9 for 2 hours. The medium was then removed and replaced with medium containing BrdU and no study chemical; incubation proceeded for an additional 26 hours, with colcemid present for the final 2 hours. Harvesting and staining were the same as for cells treated without S9.

In the chromosomal aberration test without S9, cells were incubated in McCoy's 5A medium with the study chemical for 8 hours; colcemid was added, and incubation was continued for 2 hours. The cells were then harvested by mitotic shake-off, fixed, and stained with Giemsa. For the chromosomal aberration test with S9, cells were treated with the study chemical and S9 for 2 hours, after which the treatment medium was removed and the cells were incubated for 10 hours in fresh medium, with colcemid present for the final 2 hours. Cells were harvested in the same manner as for the treatment without S9.

For the SCE test, if significant chemical-induced cell cycle delay was seen, incubation time was lengthened to ensure a sufficient number of scorable cells. The harvest time for the chromosomal aberration test was based on the cell cycle information obtained in the SCE test; if cell cycle delay was anticipated, the incubation period was extended approximately 5 hours.

Cells were selected for scoring on the basis of good morphology and completeness of karyotype $(21 \pm 2 \text{ chromosomes})$. All slides were scored blind, and those from a single test were read by the same person. For the SCE test, 50 second-division metaphase cells were usually scored for frequency of SCEs per cell from each dose; 100 first-division metaphase cells were scored at each dose for the chromosomal aberration test.

II. MATERIALS AND METHODS

Classes of aberrations included simple (breaks and terminal deletions), complex (rearrangements and translocations), and other (pulverized cells, despiralized chromosomes, and cells containing 10 or more aberrations).

Statistical analyses were conducted on both the slopes of the dose-response curves and the individual dose points. An SCE frequency 20% above the concurrent solvent control value was chosen as a statistically conservative positive

response. The probability of this level of difference occurring by chance at one dose point is less than 0.01; the probability for such a chance occurrence at two dose points is less than 0.001. Chromosomal aberration data are presented as percentage of cells with aberrations. As with SCEs, both the dose-response curve and individual dose points were statistically analyzed. A statistically significant (P < 0.003) trend test or a significantly increased dose point (P < 0.05) was sufficient to indicate a chemical effect.

III. RESULTS

RATS

SIXTEEN-DAY STUDIES

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Body Weights and Clinical Signs
Survival
Hematology at Six, Twelve, Eighteen, and
Twenty-Four Months
Pathology and Statistical Analyses of Results

MICE

SIXTEEN-DAY STUDIES

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Body Weights and Clinical Signs
Survival
Pathology and Statistical Analyses of Results

GENETIC TOXICOLOGY

SIXTEEN-DAY STUDIES

All rats that received 200 or 400 mg/kg p-chloroaniline hydrochloride died within 5 days (Table 7). The final mean body weights of rats that received 100 mg/kg were 19% lower than that of vehicle controls for males and 5% lower for females. Compound-related clinical signs included blue extremities and eyes, indicative of cyanosis. Rats that received 200 or 400 mg/kg were lethargic, and rats that received 25 or 50 mg/kg had labored breathing. Splenic enlargement was observed at 25, 50, and 100 mg/kg. Sinusoidal congestion of the spleen and hemosiderin deposition in the renal cortical tubular epithelial cells were observed in 2/2 males and 2/2 females that received 100 mg/kg.

TABLE 7. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE SIXTEEN-DAY GAVAGE STUDIES OF ρ -CHLOROANILINE HYDROCHLORIDE

		Mean 1	Body Weight	Final Weight Relativ	
Dose (a) (mg/kg)	Survival (b)	Initial (c)	Final	Change (d)	to Vehicle Controls (percent)
MALE					
0	5/5	125	209	+84	
25	5/5	124	199	+75	95.2
50	5/5	123	196	+73	93.8
100	5/5	125	1 69	+44	80.9
200	(e) 0/5	124	(f)	(f)	(f)
400	(g) 0/5	124	(f)	(f)	(f)
FEMALE					
0	5/5	105	132	+27	
25	5/5	105	131	+26	99.2
50	5/5	104	133	+29	100.8
100	5/5	105	125	+20	94.7
200	(e) 0/5	104	(f)	(f)	(f)
400	(h) 0/5	103	(f)	(f)	(f)

⁽a) All doses calculated as milligrams p-chloroaniline per kilogram body weight

⁽b) Number surviving/number initially in group

⁽c) Initial group mean body weight

⁽d) Mean body weight change of the group

⁽e) Day of death: 4,4,4,4,5

⁽f) No data are reported due to the 100% mortality in this group.

⁽g) Day of death: 2,2,2,3,3 (h) Day of death: 2,2,3,3,3

THIRTEEN-WEEK STUDIES

All male rats lived to the end of the studies (Table 8). One of 10 female rats that received 80 mg/kg died before the end of the studies. The final mean body weights of rats that received 80 mg/kg were 16% lower than that of vehicle controls for males and 4% lower for females. The weights of brain, liver, thymus, kidney, heart, lung, and testis for dosed groups were comparable to those of vehicle controls, except that the brain and lung weights of male rats at 80 mg/kg were significantly lower than those of vehicle controls and the heart and kidney weights of female rats were significantly greater than those of vehicle controls (Table F1). Spleen weights were increased in dosed groups, and a clear doseresponse relationship was observed (Figure 3; Table F1). Spleen weights were not recorded for male vehicle controls, but the spleens of untreated animals of comparable age weigh 0.678-0.848 g (NTP data base). The hematocrit value, the hemoglobin concentration, and the erythrocyte count for all dosed groups of rats were significantly lower than those for vehicle controls (Table 9; Figures 4 and 5). The methemoglobin concentrations for all dosed groups of rats were significantly greater than those for vehicle controls. Blood samples for hematologic analysis were taken 72 (male) or 24 (female) hours after administration of the final dose.

This time difference probably contributed to the lower methemoglobin concentrations observed for males compared with those for females. Compound-related increases were seen for the number of segmented neutrophils, the mean corpuscular hemoglobin, the mean corpuscular hemoglobin concentration, the mean corpuscular volume, and the numbers of nucleated and polychromatophilic erythrocytes. The leukocyte count and lymphocyte count were significantly increased for male rats at 40 mg/kg (but not at 80 mg/kg) and for all dosed groups of female rats.

TABLE 8. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF p-CHLOROANILINE HYDROCHLORIDE

		Mean	Body Weights	(grams)	Final Weight Relative
Dose (a) (mg/kg)	Survival (b)	Initial (c)	Final	Change (d)	to Vehicle Controls (percent)
MALE					
0	10/10	140 ± 3	334 ± 9	$+194 \pm 7$	
5	10/10	135 ± 3	338 ± 6	$+203 \pm 5$	101
10	10/10	137 ± 2	345 ± 4	$+208 \pm 4$	103
20	10/10	135 ± 2	338 ± 4	$+203 \pm 4$	101
40	10/10	137 ± 3	325 ± 8	$+188 \pm 5$	97
80	10/10	136 ± 3	280 ± 9	$+144 \pm 8$	84
FEMALE					
0	10/10	110 ± 2	197 ± 2	+87 ± 2	
0 5	10/10	109 ± 2	199 ± 3	$+90 \pm 2$	101
10	10/10	111 ± 2	197 ± 3	$+86 \pm 3$	100
20	10/10	109 ± 2	194 ± 2	$+85 \pm 2$	98
40	10/10	107 ± 2	192 ± 3	$+85 \pm 3$	97
80	(e) 9/10	104 ± 2	189 ± 3	$+84 \pm 3$	96

⁽a) All doses calculated as milligrams p-chloroaniline per kilogram body weight

⁽b) Number surviving/number initially in group

⁽c) Initial group mean body weight \pm standard error of the mean. Subsequent calculations are based on animals surviving to the end of the study.

⁽d) Mean body weight change of the survivors ± standard error of the mean

⁽e) Week of death: 3

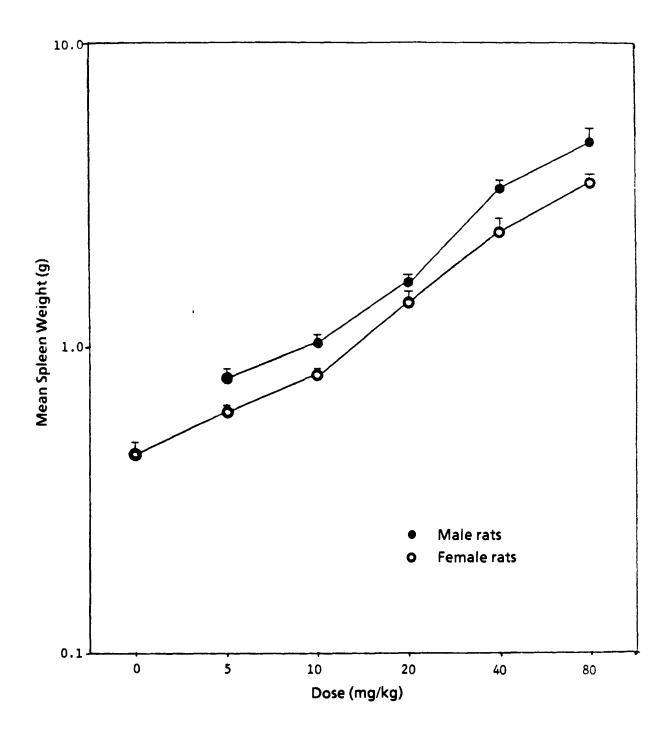


FIGURE 3. SPLEEN WEIGHTS (MEAN AND STANDARD DEVIATION) OF RATS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF ρ -CHLOROANILINE HYDROCHLORIDE

TABLE 9. ANALYSIS OF HEMATOLOGIC DATA FOR RATS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF ρ -CHLOROANILINE HYDROCHLORIDE (a)

	Vehi Cont		mg.		10 mg/	-	29 mg/	-	40 mg/k	g	86 mg/	-
MALE												
Number examined	10		10		9		10		10		10	
Leukocytes (1,000/mm ³)	5.49 ±	0.222	6.28 ±	0.227	6.60 ±	0.197	6.55 ±	0.109	(b) 12.55 ±	0.816	(b) 3.47 ±	0.231
Lymphocytes (1,000/mm ³)	4.64 ±	0.274	5,36 ±	0.221	5.38 ±	0.132	5.50 ±	0.119	(b) 10.34 ±	0.638	(b) 2.76 ±	0.167
Segmented neutrophils												
(1,000/mm ³)	0.74 ±	0.096	0.86 ±	0.072	1.19 ±	0.140	1.00 ±	0.078	(b) $2.07 \pm$	0.328	0.66 ±	0.094
Monocytes (1,000/mm ³)	0.06 ±	0.021	0.01 ±	0.008	0.00 ±	0.000	0.01 ±	0.007	0.08 ±	0.032	0.04 ±	0.019
Eosinophils (1,000/mm ³)	0.05 ±	0.015	0.04 ±	0.016	0.03 ±	0.016	0.05 ±	0.020	0.06 ±	0.023	0.01 ±	0.007
Hematocrit (percent)	45.5 ±	0.43	(b) 42.8 ±	0.49	(b) 42.4 ±	0.24	(b) 42.7 ±	0.37	(b) 39.4 ±	0.31	(b) 36.5 ±	0.43
Hemoglobin (g/dl)	15.5 ±	0.11	(b) 14.7 ±	0.17	(b) 14.6 ±	0.10	(b) 15.1 ±	0.13	(b) 14.2 \pm	0.13	(b) 13.4 ±	0.16
MCH (pg)	16.9 ±	0.06	17.0 ±	0.10	(b) 17.9 ±	0.12	(b) 20.1 ±	0.12	(b) $23.5 \pm$	0.15	(b) 27.3 ±	0.14
MCHC (g/dl)	34.0 ±	0.10	34.3 ±	0.19	(b) 34.5 ±	0.14	(b) 35.3 ±	0.14	(b) 35.9 ±	0.16	(b) 36.6 ±	0.13
MCV (cubic microns)	50.1 ±	0.18	49.4 ±	0.16	(b) 51.8 ±	0.28	(b) 56.9 ±	0.28	(b) 65.1 ±	0.41	(b) 74.7 ±	0.40
Methemoglobin (percent												
of hemoglobin)	0.08 ±	0.035	(c) $0.59 \pm$	0.098	(c) 0.70 ±	0.241	(c) 0.68 ±	0.195	(c) 0.68 ±	0.186	(b) 0.86 ±	0.155
Nucleated erythrocytes												
$(1.000/mm^3)$	0.00 ±	0.000	1.70 ±	0.496	(c) 3,44 ±	0.603	(c) 2,90 ±	0.458	(b) 8.70 ±	1,359	(b) 23.80 ±	1.590
Erythrocytes (10 ⁶ /mm ³)	9.14 ±	0.056	(b) $8.68 \pm$	0.096	(b) 8.18 ±	0.035	(b) 7.48 \pm	0.061	(b) $6.07 \pm$	0.063	(b) 4.90 \pm	0.069
FEMALE												
Number examined	10		10		10		10		10		9	
Leukocytes (1,000/mm ³⁾	4.57 ±	0.321	(c) 6.04 ±	0.221	(b) 8.09 ±	0.278	(b) 9.70 ±	0.550	(b) 10.26 ±	0.781	(b) 6.49 ±	0.391
Lymphocytes (1,000/mm ³)	$3.84 \pm$	0.270	(c) 5.14 \pm	0.232	(b) $6.81 \pm$	0.228	(b) 7.99 ±	0.479	(b) $7.93 \pm$	0.647	(b) 5.13 \pm	0.332
Segmented neutrophils												
(1,000/mm ³)	$0.68 \pm$	0.081	0.86 ±	0.075	(c) 1.17 \pm	0.138	(b) 1.64 ±	0.244	(b) $2.26 \pm$	0.241	(b) 1.33 ±	0.148
Eosinophils (1,000/mm ³)	0.05 ±	0.016	0.04 ±	0.015	0.10 ±	0.028	0.06 ±	0.033	0.06 ±	0.028	0.03 ±	0.015
Hematocrit (percent)	45.7 ±	0.26	(b) 43.8 \pm	0.29	(b) 43.3 \pm	0.40	(b) 42.5 \pm	0.34	(b) 39.8 \pm	0.63	(b) 36.3 ±	0.47
Hemoglobin (g/di)	15.1 ±	0.11	(b) 14.4 ±	0.11	(b) 14.3 \pm	0.14	(b) 14.8 ±	0.16	(b) 13.7 \pm	0.24	(b) 13.0 \pm	0.12
MCH (pg)	18.1 ±	0.08	18.5 ±	0.06	(b) 19.6 \pm	0.09	(b) 22.8 ±	0.17	(b) 24.0 \pm	0.22	(b) 25.8 \pm	0.21
MCHC (g/dl)	33.1 ±	0.12	32.8 ±	0.13	33.2 \pm	0.27	(b) $35.0 \pm$	0.17	(b) 34.3 \pm	0.22	(b) 35.7 ±	0.31
MCV (cubic microns)	55.0 ±	0.00	(b) 56.3 \pm	0.15	(b) 59.3 ±	0.15	(b) 65.1 ±	0.23	(b) $69.9 \pm$	0.28	(b) $72.2 \pm$	0.22
Methemoglobin (percent												
of hemoglobin)	0.46 ±	0.126	(b) 1.35 \pm	0.146	(b) 1.85 ±	0.178	(b) 1.73 ±	0.213	(b) 2.40 ±	0.154	(b) 3.68 ±	0.448
Nucleated erythrocytes												
(1,000/mm ³)	1.40 ±	0.542	3.10 ±	0.605	4.40 ±	0.618	(c) 7.90 ±	1.048	(b) 22.60 ±	3.622	(b) 24.44 ±	1.676
Erythrocytes (106/mm3)		0.049	(b) 7.77 ±		(b) 7.27 ±		(b) 6.49 ±		(b) 5.69 ±		(b) 5.06 ±	0.060

⁽a) Mean ± standard error. MCH = mean corpuscular hemoglobin; MCHC = mean corpuscular hemoglobin concentration; MCV = mean corpuscular volume; P values are vs. the vehicle controls; Dunnett's test was used when a nonsignificant result was obtained by the Jonckheere test; otherwise Williams' test was used (Dunnett, 1980; Jonckheere, 1954; Williams, 1971, 1972); doses calculated as p-chloroaniline.

⁽b) P < 0.01 vs. vehicle controls

⁽c) P<0.05 vs. vehicle controls

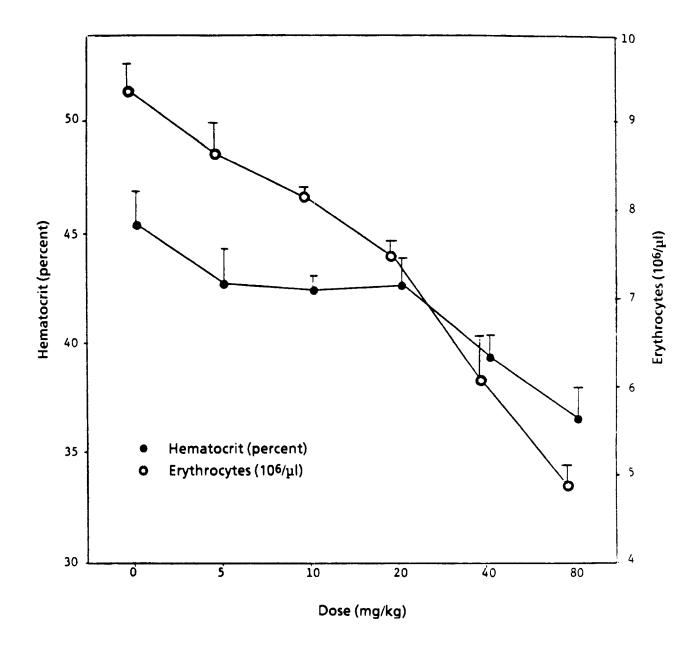


FIGURE 4. PERCENTAGE HEMATOCRIT AND ERYTHROCYTE COUNT (AND STANDARD DEVIATION) FOR MALE RATS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF ρ -CHLOROANILINE HYDROCHLORIDE

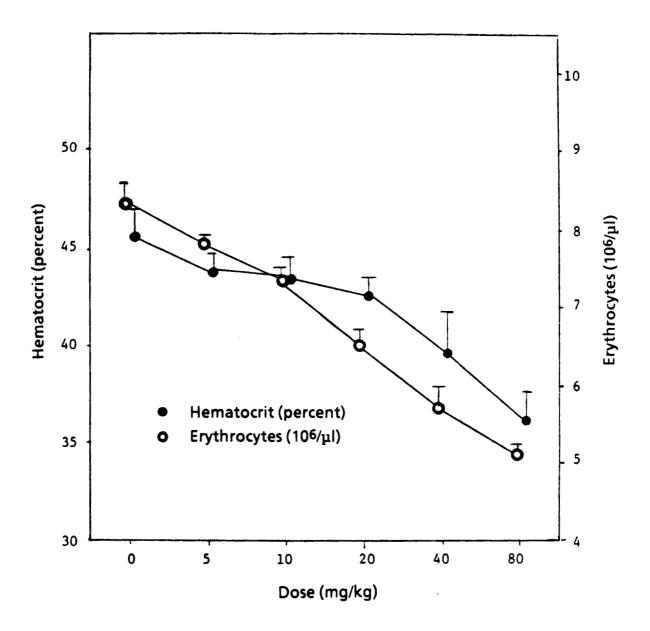


FIGURE 5. PERCENTAGE HEMATOCRIT AND ERYTHROCYTE COUNT (AND STANDARD DEVIATION) FOR FEMALE RATS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF p-CHLOROANILINE HYDROCHLORIDE

Compound-related lesions included bone marrow hyperplasia (severe at 80 mg/kg and minimal at 5 mg/kg), pigmentation (hemosiderin) of the kidney, spleen, and Kupffer cells of the liver, hematopoiesis of the liver and spleen, and splenic congestion, which are attributable to increased erythrocyte destruction secondary to methemoglobin formation (Table 10).

TABLE 10. NUMBER OF RATS WITH SELECTED LESIONS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF ρ-CHLOROANILINE HYDROCHLORIDE (a)

	Dose (mg/kg)						
Site/Lesion	0	5	10	20	40	80	
MALE							
Femoral bone marrow							
Hyperplasia	0	10	10	10	10	10	
Kidney							
Hemosiderosis	0	5	10	10	10	10	
Liver							
Hemosiderosis of Kupffer cells	0	0	0	3	5	10	
Hematopoiesis	0	Ö	1	2	4	7	
Spleen							
Hematopoiesis	0	3	10	10	10	10	
Hemosiderosis	Ö	10	9	9	4	10	
Congestion	0	10	10	10	10	10	
FEMALE							
Femoral bone marrow							
Hyperplasia	0	9	10	10	10	10	
Kidney							
Hemosiderosis	0	2	7	10	10	10	
Liver	0			c	0	10	
Hemosiderosis of Kupffer cells Hematopoiesis	0	0 0	2 0	6 0	9 3	10 2	
i temawyotesis	U	U	U	v	J	4	
Spleen							
Hematopoiesis	0	0	4	1	10	5	
Hemosiderosis	0	10	10	8	10	9	
Congestion	0	10	10	9	10	10	

 $⁽a) \ Ten\ animals\ in\ each\ group\ examined;\ all\ doses\ calculated\ as\ milligrams\ p\ - chloroaniline\ per\ kilogram\ body\ weight.$

Dose Selection Rationale: Major compoundrelated effects observed in rats were hemolytic anemia, methemoglobinemia, and splenomegaly. The hemolytic anemia and splenomegaly responses were dose related. Methemoglobin levels were approximately 1%-4% in the highest dose groups and slightly lower in the other dose groups. It was judged that doses higher than 20 mg/kg for the 2-year studies might produce severe anemia in animals because hematocrit and erythrocyte values were reduced substantially in the 13-week studies at doses of 40 and 80 mg/kg. Furthermore, the magnitude of splenomegaly was considered to be too great to permit selection of doses higher than 20 mg/kg. Therefore, 18 mg/kg was selected as the high dose and 2 and 6 mg/kg, as the low and mid doses, respectively. This dose regimen was expected to achieve a no-effect level at the low dose and to produce some effects on the hematopoietic system at the mid dose in the 2-year studies.

TWO-YEAR STUDIES

Body Weights and Clinical Signs

The mean body weights of high dose female rats were 4%-6% lower than those of vehicle controls after week 70 (Table 11 and Figure 6). Mean body weights of dosed male rats were generally within 5% of those of vehicle controls throughout the studies. Mid and high dose male rats and high dose female rats had blue extremities indicative of cyanosis.

TABLE 11. MEAN BODY WEIGHTS OF RATS IN THE TWO-YEAR GAVAGE STUDIES OF ρ -CHLOROANILINE HYDROCHLORIDE

Weeks		Control	A	2 mg/kg		A 9877	6 mg/kg	N7 -	A 1174	18 mg/kg	No.
on Study	Av. Wt. (grams)	No. Weighed	Av. Wt. (grams)	Wt. (percent of veh. controls)	No. Weighed	Av. Wt. (grams)	Wt. (percent of veh. controls)	No. Weighed	Av. Wt. (grams)	Wt. (percent of veh. controls)	Weighe
MALE											
0	135	49	131	97	50	134	99	50	134	99	50
1	170	49	166	98	50	168	99	50	166	98	50
2	203	49	200	99	50	202	100	50	203	100	50
3	232	49	229	99	50	229	99	50	232	100 106	50 50
4 5	241 265	49 49	238 258	9 9 97	50 50	248 263	103 99	50 50	255 269	102	50
6	279	49	275	99	50	275	99	50	284	102	50
7	295	49	289	98	50	289	98	50	293	99	50
8	305	49	304	100	50	307	101	50	307	101	50
9	316	49	315	100	50	313	99	50	315	100	50
10	330	49	325	98	50	319	97	50	324	98	50
11	337	48	334	99	50	326	97	50	331	98	50
12	346	48	344	99	50	338	98	50	341	99	50
13	354	48	352	99	50	348	98	50	348	98	50
17	375	48	373	99	50	371	99	50	371	99	50
22 26	397	(a) 47	395	99	50	392	99	(a) 39	387	97	(a) 35
30	411 429	48 48	413 429	100 100	50 50	404 418	98 97	50 50	403 417	98 97	50 50
34	440	48	437	99	50	427	97	50	425	97	50
38	448	48	447	100	50	440	98	50	436	97	50
42	454	47	449	99	50	446	98	50	440	97	(a) 45
46	462	47	456	99	50	454	98	50	446	97	50
50	474	46	466	98	50	458	97	49	453	96	50
54	467	46	468	100	50	460	99	48	443	95	50
55	471	46	473	100	50	466	99	48	451	96	50
58	472	46	484	103	50	474	100	48	464	98	50
62	489	(a) 41	484	99	(a) 45	478	98	48	468	96	(a) 44
66	493	45	492	100	50	486	99	48	475	96	49
70	492	44	488	99	49	482	98	46	467	95	(a) 47
74	484	43	484	100	49	475	98	45	461	95 96	47
78 82	479 474	42 40	480 474	100 100	48 47	478 467	99 99	(a) 39 42	458	9 6 97	45
86	478	38	473	99	47	467	98	39	461 460	96	44 43
90	469	36	470	100	46	467	100	39	460	98	39
94	456	31	460	101	42	461	101	39	458	100	39
98	455	26	474	104	37	456	100	39	456	100	32
102	442	21	462	105	35	453	102	37	462	105	28
'EMAL	E										
0	108	50	109	101	50	108	100	50	109	101	50
1	128	50	128	100	50	128	100	50	124	97	50
2	138	50	138	100	50	140	101	50	137	99	50
3 4	150 156	50 50	151 160	101 103	50 50	154	103 9 6	50	150	100 95	50 50
5	165	50	168	103	50	149 167	101	50 50	148 166	101	50
6	169	50 50	175	104	50 50	172	102	50 50	170	101	50
7	173	50	179	103	50	179	103	50	178	103	50
8	181	50	185	102	50	185	102	50	182	101	50
9	184	50	188	102	50	189	103	50	188	102	50
10	186	50	191	103	50	192	103	50	189	102	50
11	188	50	193	103	50	195	104	50	193	103	50
12	190	49	195	103	50	198	104	50	195	103	50
13	192	49	198	103	50	200	104	50	200	104	50
17	200	49	206	103	50	207	104	50	206	103	50
22	207	(a) 47	217	105	(a) 48	214	103	(a) 46	212	102	(a) 48
26 30	211 224	49 47	220 229	104 102	49 49	218 230	103 103	50 50	214 225	101 100	50 50
34	226	46	231	102	49 49	233	103	50 50	225 229	101	50 50
34 38	231	46 46	231	103	49 49	233 241	104	50 50	236	101	50 50
42	234	46	241	103	49	244	104	50 50	240	103	50
46	238	46	245	103	49	245	103	50	239	100	50
50	249	46	258	104	49	258	104	49	247	99	50
54	256	45	264	103	49	261	102	49	249	97	(a) 46
58	260	44	274	105	49	272	105	49	260	100	50
	276	44	286	104	48	286	104	49	272	99	(a) 47
62	287	44	298	104	48	297	103	49	275	96	50
		43	305	104	48	300	103	49	282	97	50
62 66 70	292	43	303	104	48	303	104	49	279	96	49
62 66 70 74	292		308	103	48	304	102	47	284	95	47
62 66 70 74 78	292 299	40				302	101	46	283	95	46
62 66 70 74 78 82	292 299 299	40 38	305	102	48				200		
62 66 70 74 78 82 86	292 299 299 309	40 38 38	305 320	104	48	317	103	43	294	95	44
62 66 70 74 78 82 86 90	292 299 299 309 309	40 38 38 35	305 320 314	104 102	48 45	317 317	103 103	43 41	294 291	95 94	44 42
62 66 70 74 78 82 86 90 94	292 299 299 309 309 316	40 38 38 35 33	305 320 314 322	104 102 102	48 45 45	317 317 327	103 103 103	43 41 40	294 291 301	95 94 95	44 42 41
62 66 70 74 78 82 86 90	292 299 299 309 309	40 38 38 35	305 320 314	104 102	48 45	317 317	103 103	43 41	294 291	95 94	44 42

⁽a) The number of animals weighed was lower than the number of animals surviving.

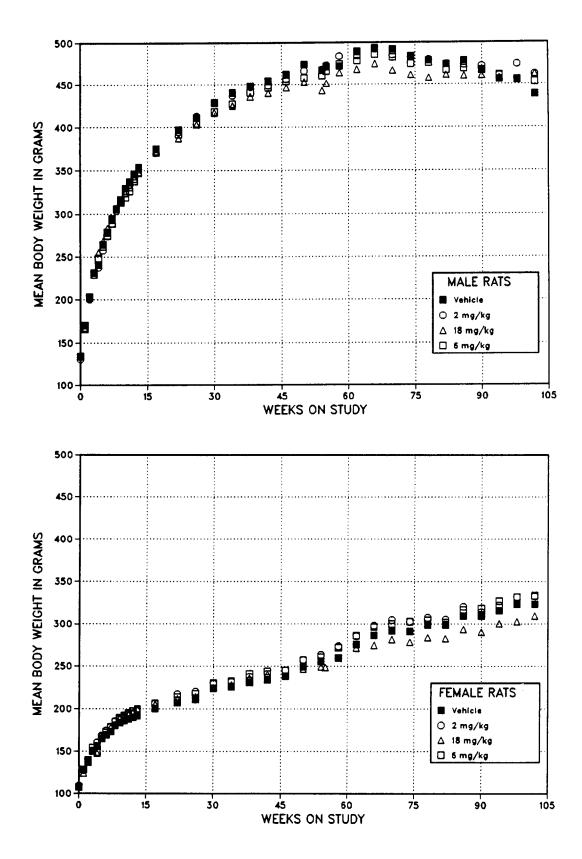


FIGURE 6. GROWTH CURVES FOR RATS ADMINISTERED ρ -CHLOROANILINE HYDROCHLORIDE BY GAVAGE FOR TWO YEARS

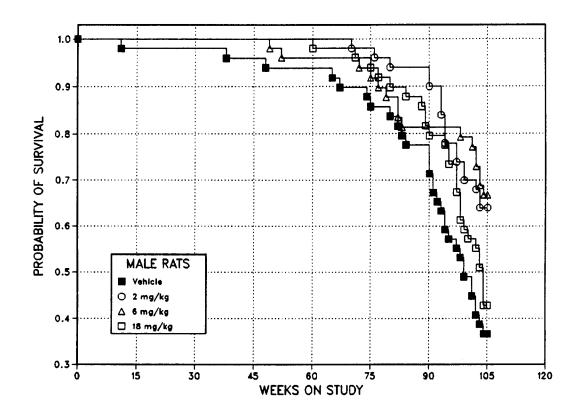
Survival

Estimates of the probabilities of survival for male and female rats administered p-chloro-aniline hydrochloride at the doses used in these studies and for vehicle controls are shown in Table 12 and in the Kaplan and Meier curves in Figure 7. The survival of the low and mid dose groups of male rats was significantly greater than that of the vehicle controls after week 94. The survival of the high dose group of female rats was significantly greater than that of the vehicle controls at the end of the study; the survival of the low dose female group was significantly greater than that of the vehicle controls after week 77.

Hematology at Six, Twelve, Eighteen, and Twenty-Four Months

Hematologic changes at 6 months for male and female rats included decreases in hemoglobin concentration, erythrocyte count, and hematocrit value and increases in mean corpuscular volume, nucleated erythrocytes, and mean corpuscular hemoglobin (Tables 13 and 14). These changes, which were mild in the mid dose groups and moderate in the high dose groups, are consistent with a regenerative response (increases in mean corpuscular hemoglobin, nucleated erythrocytes, and mean corpuscular volume) secondary to a decreased erythrocyte mass (decrease in erythrocyte count, hematocrit value, and hemoglobin concentration). The increases in methemoglobin concentrations in the dosed groups indicate a hemolytic mechanism through the oxidation and subsequent denaturation of hemoglobin as the cause of the regenerative anemia. The increase in methemoglobin was more pronounced in high dose male rats (approximately sevenfold that of vehicle controls) compared with that in the high dose female rats (approximately twofold that of vehicle controls); however, the regenerative response, as measured by nucleated erythrocyte count and mean corpuscular volume, was greater in female rats.

TABLE 12. SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIES OF ρ -CHLOROANILINE HYDROCHLORIDE (a)


	Vehicle Control	2 mg/kg	6 mg/kg	18 mg/kg
MALE (b)				
nimals initially in study	50	50	50	50
Ionaccidental deaths before termination (c)	31	18	16	28
ccidentally killed	0	Ó	2	1
nimals missexed	1	0	0	0
illed at termination	18	32	32	20
ied during termination period	0	0	0	1
urvival P values (d)	0.793	0.007	0.005	0.367
EMALE (b)				
nimals initially in study	50	50	50	50
onaccidental deaths before termination (c)	23	11	14	13
illed at termination	27	39	36	37
urvival P values (d)	0.244	0.011	0.075	0.043

⁽a) All doses calculated as milligrams p-chloroaniline per kilogram body weight

⁽b) First day of termination period: 730 (week 105)

⁽c) Includes animals killed in a moribund condition

⁽d) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons with the vehicle controls are in the dosed columns.

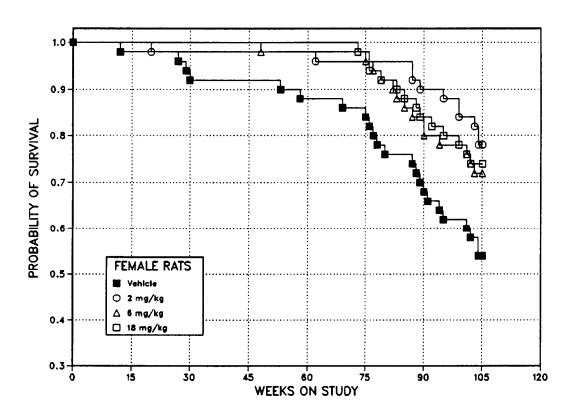


FIGURE 7. KAPLAN-MEIER SURVIVAL CURVES FOR RATS ADMINISTERED p-CHLOROANILINE HYDROCHLORIDE BY GAVAGE FOR TWO YEARS

TABLE 13. HEMATOLOGY FOR MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF $\rho\text{-}CHLOROANILINE HYDROCHLORIDE (a)$

Analysis	Vehic	le Control	2 n	ng/kg	6 n	ng/kg	18 r	ng/kg
6 Months								
Number examined (b)		13		12		12		13
Hemoglobin (g/dl)	15.3	± 0.21	15.2	± 0.27	(c) 14.6	± 0.14	(c) 14.7	± 0.14
Hematocrit (percent)	45	± 0.5	44	± 1.1	(d) 42	± 0.5	(d) 41	± 0.4
Leukocytes (103/mm3)	6.0	± 0.37	5.9	± 0.36	7.1		6.7	
Erythrocytes (106/mm ³)	9.34	± 0.102	9.10		(d) 8.61	± 0.094	(d) 7.58	± 0.058
Mean corpuscular volume (μ ³)	48	± 0.2	(c) 49	± 0.2	(d) 50		(d) 54	± 0.2
Bands (percent)	0	$\pm 0.0(14)$	0	± 0.0	0	± 0.0	0	± 0.0
Segmented neutrophils (percent)	22	$\pm 1.7(14)$	24	± 2.0	18		18	± 1.4
Eosinophils (percent)	1	$\pm 0.3(14)$	1	± 0.4	1	± 0.5	1	± 0.4
Lymphocytes (percent)	77	$\pm 1.7(14)$	74		80	± 2.1	80	± 1.4
Monocytes (percent)	0	$\pm 0.0(14)$	0	± 0.1	0	± 0.3	(d) 1	± 0.4
Nucleated erythrocytes (per 100 leukocytes)	1	$\pm 0.3(14)$	1	± 0.5	2	± 0.4	(d) 4	± 0.3
Mean corpuscular hemoglobin (pg)	16.4	± 0.09	16.7	± 0.14	(d) 16.9	± 0.10	(d) 19.4	± 0.10
Mean corpuscular hemoglobin								
concentration (percent)	34.4	± 0.16	34.2	± 0.36	34.3	± 0.29	(d) 36.0	± 0.19
Methemoglobin (percent of hemoglobin)	0.26	± 0.111	(c) 0.79	± 0.151	(d) 0,89	± 0.178	(d) 1.97	± 0.170
12 Months								
Number examined		14		15		15	:	15
Hemoglobin (g/dl)	14.3	$\pm~0.28$	14.5	± 0.16	13.9	± 0.28	14.4	± 0.18
Hematocrit (percent)	42	± 0.9	43	± 0.5	42	± 0.1	43	± 0.5
Leukocytes (103/mm3)	5.0	± 0.27	6.0	± 0.24	(d) 7.0	± 0.58	(d) 8.6	± 0.56
Erythrocytes (106/mm ³)	8.91	± 0.183	9.04	± 0.104	8.57	± 0.192	(c) 8.38	± 0.103
Mean corpuscular volume (µ3)	48	± 0.3	47		(d) 49	± 0.3	(d) 51	± 0.2
Bands (percent)	0	± 0	0	± 0	0	± 0	0	± 0
Segmented neutrophils (percent)	26	± 1.8	27	± 1.8	30	± 3.0	(d) 42	± 2.9
Eosinophils (percent)	1	± 0.3	1	± 0.3	1	± 0.3	(c) 0	± 0.1
Lymphocytes (percent)	73	± 2.0	72	± 1.9	69	± 3.0	(d) 58	± 2.8
Monocytes (percent)	0	± 0	0	± 0	0	± 0	0	± 0
Nucleated erythrocytes (per 100 leukocytes)	1	± 0.2	1	± 0.3	2	± 0.5	(d) 3	± 0.4
Mean corpuscular hemoglobin (pg)	16.1	± 0.15	16.0	± 0.09	16.2	± 0.12	(d) 17.2	± 0.09
Mean corpuscular hemoglobin	00.7	1 0 00	22.2					
concentration (percent)	33.7	± 0.29	33.9	± 0.15	33.3	± 0.17	33.4	± 0.14
Reticulocytes (percent of erythrocytes)	0.8	± 0.05	(c) 1.3	± 0.18	(c) 1.5	± 0.20	(c) 1.4	± 0.19
Methemoglobin (percent of hemoglobin)	0.28	± 0.056	0.41	± 0.090	(d) 1.08	± 0.122	(d) 1.18	± 0.167
18 Months								
Number examined	1	13	1	15	1	13	1	13
Hemoglobin (g/dl)	14.4	± 0.19	13.8	± 0.42	13.9	± 0.24	13.7	± 0.47
Hematocrit (percent)	47	± 0.7	46	± 1.3	45	± 0.8	(c) 43	± 1.3
Leukocytes (103/mm³)	5.2	± 0.31	4.4	± 0.21	5.0	± 0.35	(d) 8.4	± 0.72
Erythrocytes (106/mm ³)	8.92	± 0.106	8.89	± 0.177	8.47	± 0.167	(d) 7.32	± 0.206
Mean corpuscular volume (µ3)	53	± 0.6	51	± 0.9	54	± 0.5	(d) 58	± 0.5
Bands (percent)	0	± 0.0	0	± 0.1	0	± 0.2	0	± 0.2
Segmented neutrophils (percent)	43	± 2.2	36	± 2.5	43	± 2.7	(c)53	± 3.4
Eosinophils (percent)	1	± 0.6	2	± 0.4	2	± 0.2	1	± 0.2
Lymphocytes (percent)	56	± 2.4	61	± 2.4	55	± 2.7	(d) 45	± 3.3
Monocytes (percent)	0	± 0.2	(c) 1	± 0.2	0	± 0.0	0	± 0.0
Nucleated erythrocytes (per 100 leukocytes)	1	± 0.3	1	± 0.4	2	± 0.4	(d) 5	± 1.5
Mean corpuscular hemoglobin (pg)	16.1	± 0.17	15.5	± 0.26	16.4	± 0.18	(d) 18.7	± 0.36
Mean corpuscular hemoglobin	00.	1 0 40		1015				
concentration (percent)	30.5	± 0.40	30.3	± 0.19	30.7	± 0.11	(d) 32.1	± 0.44
Reticulocytes (percent of erythrocytes)	2.0	± 0.12	(c) 3.2	± 0.43	(c) 3.2	± 0.19	(d) 6.4	± 0.54
Methemoglobin (percent of hemoglobin)	1.04	± 0.056	(d) 1.96	± 0.130	(a) 2.37	± 0.245	(d) 4.09	± 0.248

TABLE 13. HEMATOLOGY FOR MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF p-CHLOROANILINE HYDROCHLORIDE (Continued)

Analysis	Vehic	le Control	2 n	ng/kg	6 n	ng/kg	18 1	ng/kg
24 Months (e)								
Number examined (b)		15		15		15		15
Hemoglobin (g/dl)	14.1	± 0.41	14.0	± 0.33	13.9	± 0.48	13.8	± 0.71
Hematocrit (percent)	42	± 1.1	42	± 0.9	42	± 1.4	40	± 2.1
Leukocytes (103/mm3)	6.9	± 1.07	(f) 5.4	$\pm 0.34(1$	4) 6.1	± 0.96	8.8	± 0.97
Erythrocytes (106/mm3)	7.82	± 0.268	8.07	± 0.179	8.08	± 0.262	7.54	± 0.40
Mean corpuscular volume (μ ³)	54	± 0.7	52	± 0.5	52	± 0.5	54	± 0.6
Bands (percent)	1	± 0.2	0	± 0.1	0	± 0.2	1	± 0.7
Segmented neutrophils (percent)	55	± 3.2	49	± 3.8	57	± 2.9	63	± 1.8
Eosinophils (percent)	1	± 0.2	2	± 0.4	1	± 0.4	1	\pm 0.3
Lymphocytes (percent)	44	± 3.2	48	± 4.0	41	± 3.0	(c)34	± 1.9
Monocytes (percent)	0	± 0.0	0	± 0.0	0	± 0.0	0	± 0.0
Nucleated erythrocytes (per 100 leukocytes)	3	± 0.7	1	± 0.2	1	± 0.4	5	± 1.1
Mean corpuscular hemoglobin (pg) Mean corpuscular hemoglobin	18.1	± 0.22	(c) 17.3	± 0.20	(d) 17.2	± 0.20	18.4	± 0.19
concentration (percent)	33.6	± 0.21	33.2	± 0.27	33.2	± 0.23	34.1	± 0.27
Platelets ($\times 10^{3}/\text{mm}^{3}$)	408	± 28.3	(c) 486	± 20.6	(c) 490	± 23.8	(d) 609	\pm 33.5
Reticulocytes (percent of eythrocytes)	3.4	± 0.61	3.0	± 0.44	3.2	± 0.32	4.2	± 0.66
Methemoglobin (percent of hemoglobin)	1.56	± 1.333	1.79	± 0.136	(d) 2.16	± 0.101	(d) 2.17	± 0.198

⁽a) Mean ± standard error; P values vs. the vehicle controls by Williams' test (Williams, 1971, 1972); doses calculated as p-chloroaniline.

⁽b) Unless otherwise specified by a number in parentheses

⁽c) P<0.05 (d) P<0.01

⁽e) Blood taken for analysis 11-14 days after the last dose was administered

⁽f) One value of 128.2 excluded

TABLE 14. HEMATOLOGY FOR FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF $\rho\text{-}CHLOROANILINE HYDROCHLORIDE (a)$

Hematocrit (percent)	0.24	$\begin{array}{c} 3.1 & \pm 0.1 \\ 0.63 & \pm 0.3 \\ \end{array}$ $\begin{array}{c} 15 \\ 4.5 & \pm 0.1 \\ 44 & \pm 0.9 \\ 3.0 & \pm 0.1 \\ 0.13 & \pm 0.10 \\ 54 & \pm 0.2 \\ 0 & \pm 0.0 \\ 28 & \pm 2.6 \\ 1 & \pm 0.3 \\ \end{array}$	(c) 43 8 4.6 13 (b) 7.60 (b) 56 0 15 14 (c) 5 9 (b) 18.3 5 32.7 22 0.07 9 13.8 42 7 3.5 66 7.62 (b) 55 0 (c) 32	± 0.3 ± 0.19 ± 0.057 ± 0.2 ± 0.0 ± 1.4 ± 0.2 ± 1.3 ± 0.2 ± 0.07 ± 0.12 ± 0.029 14 ± 0.36 ± 1.1 ± 0.39 ± 0.202 ± 0.30 ± 0.202 ± 0.0029	3.8 (b) 6.49 (b) 61 0 (b) 19 1 (b) 80 1 (b) 20.3 33.2 0.45 14.8 47 (b) 4.7 8.17 (b) 57 0 (c) 30	$\begin{array}{c} \pm \ 0.8 \\ \pm \ 0.19 \\ \pm \ 0.121 \\ \pm \ 0.2 \\ \pm \ 1.4 \\ \pm \ 0.2 \\ \pm \ 1.4 \\ \pm \ 0.19 \\ \pm \ 0.32 \\ \pm \ 0.136 \\ \\ \end{array}$
Hemoglobin	0.24	$\begin{array}{c} 4.3 & \pm 0.1 \\ 0.43 & \pm 0.6 \\ 3.9 & \pm 0.1 \\ 0.63 & \pm 0.1 \\ 0.54 & \pm 0.1 \\ 0 & \pm 0.5 \\ 1 & \pm 0.3 \\ 84 & \pm 1.6 \\ 0 & \pm 0.2 \\ 2 & \pm 0.5 \\ 7.7 & \pm 0.0 \\ 0.63 & \pm 0.3 \\ \end{array}$	(c) 43 8 4.6 13 (b) 7.60 (b) 56 0 15 14 (c) 5 9 (b) 18.3 5 32.7 22 0.07 9 13.8 42 7 3.5 66 7.62 (b) 55 0 (c) 32	$\begin{array}{c} \pm \ 0.12 \\ \pm \ 0.3 \\ \pm \ 0.19 \\ \pm \ 0.057 \\ \pm \ 0.2 \\ \pm \ 0.0 \\ \pm \ 1.4 \\ \pm \ 0.2 \\ \pm \ 1.3 \\ \pm \ 0.27 \\ \pm \ 0.07 \\ \end{array}$ $\begin{array}{c} \pm \ 0.12 \\ \pm \ 0.029 \\ \end{array}$ $\begin{array}{c} \pm \ 0.12 \\ \pm \ 0.029 \\ \end{array}$ $\begin{array}{c} \pm \ 0.12 \\ \pm \ 0.029 \\ \end{array}$	(b) 40 3.8 (b) 6.49 (b) 61 0 (b) 19 1 (b) 80 1 (b) 20.3 33.2 0.45 14.8 47 (b) 4.7 8.17 (b) 57 0 (c) 30	$\begin{array}{c} \pm \ 0.32 \\ \pm \ 0.8 \\ \pm \ 0.19 \\ \pm \ 0.121 \\ \pm \ 0.2 \\ \pm \ 0.0 \\ \pm \ 1.4 \\ \pm \ 0.2 \\ \pm \ 1.4 \\ \pm \ 0.19 \\ \\ \pm \ 0.32 \\ \pm \ 0.136 \\ \\ \end{array}$
Hematocrit (percent)	0.6 (c) 0.32 0.123 (b) 8 0.2 (b) 0.0 1.6 0.2 1.7 0.2 0.4 0.13 (c) 1 0.22 3 0.108 0 0.31 1 1.1 0.17 0.197 8 0.2 0.0 1.7 0.5 1.9 0.0	$\begin{array}{c})43 & \pm 0.6 \\ 3.9 & \pm 0.1 \\ 3.08 & \pm 0.1 \\)54 & \pm 0.1 \\ 0 & \pm 0.0 \\ 15 & \pm 1.5 \\ 1 & \pm 0.3 \\ 84 & \pm 1.6 \\ 0 & \pm 0.2 \\ 2 & \pm 0.5 \\ 7.7 & \pm 0.0 \\ \end{array}$	(c) 43 8 4.6 13 (b) 7.60 (b) 56 0 15 14 (c) 5 9 (b) 18.3 5 32.7 22 0.07 9 13.8 42 7 3.5 66 7.62 (b) 55 0 (c) 32	± 0.3 ± 0.19 ± 0.057 ± 0.2 ± 0.0 ± 1.4 ± 0.2 ± 1.3 ± 0.2 ± 0.07 ± 0.12 ± 0.029 14 ± 0.36 ± 1.1 ± 0.39 ± 0.202 ± 0.30 ± 0.202 ± 0.0029	(b) 40 3.8 (b) 6.49 (b) 61 0 (b) 19 1 (b) 80 1 (b) 20.3 33.2 0.45 14.8 47 (b) 4.7 8.17 (b) 57 0 (c) 30	$\begin{array}{c} \pm \ 0.8 \\ \pm \ 0.19 \\ \pm \ 0.121 \\ \pm \ 0.2 \\ \pm \ 1.4 \\ \pm \ 0.2 \\ \pm \ 1.4 \\ \pm \ 0.19 \\ \pm \ 0.32 \\ \pm \ 0.136 \\ \\ \end{array}$
Leukocytes (10³/mm³) 4.1 ± Erythrocytes (10⁶/mm³) 8.54 ± Mean corpuscular volume (μ³) 53 ± Bands (percent) 0 ± Segmented neutrophils (percent) 1 ± Lymphocytes (percent) 86 ± Monocytes (percent) 1 ± Nucleated erythrocytes (per 100 leukocytes) 2 ± Mean corpuscular hemoglobin (pg) 17.3 ± Mean corpuscular hemoglobin 32.6 ± Methemoglobin (percent) 32.6 ± Methemoglobin (percent of hemoglobin) 0.20 ± 12 Months 12 Number examined 12 Hemoglobin (g/dl) 14.8 ± Hemoglobin (g/dl) 14.8 ± Hemoglobin (g/dl) 14.8 ± Leukocytes (10³/mm³) 3.0 ± Erythrocytes (10³/mm³) 8.41 ± Mean corpuscular volume (μ³) 54 ± Bands (percent) 2 ± Lymphocytes (percent) 74 ± Monocytes (percent) 0 ± Nucleated erythrocytes (per 100 leukocytes) 1 ± Mean corpuscular hemoglobin (pg) 17.6 ± Mean corpuscular hemoglobin (pg) <td>0.32 0.123 (b) 8 0.2 (b) 0.0 1.6 (c) 1.7 0.2 (c) 1.7 0.2 (c) 1.7 0.22 (c) 1.7 0.13 (c) 1 0.22 (c) 1.7 0.197 (c) 1.7 0.9 0.0</td> <td>3.9 ± 0.1 3.08 ± 0.1 3.09 ± 0.1 3.09</td> <td>8 4.6 13 (b) 7.60 (b) 56 0 15 1 84 1 (c) 5 9 (b) 18.3 5 32.7 22 0.07 9 13.8 42 7 3.5 66 7.62 (b) 55 0 (c) 32</td> <td>± 0.19 ± 0.057 ± 0.2 ± 0.0 ± 1.4 ± 0.2 ± 1.3 ± 0.2 ± 0.8 ± 0.07 ± 0.12 ± 0.029 14 ± 0.36 ± 1.1 ± 0.39 ± 0.202 ± 0.39 ± 0.39 ±</td> <td>3.8 (b) 6.49 (b) 61 0 (b) 19 1 (b) 80 1 (b) 20.3 33.2 0.45 14.8 47 (b) 4.7 8.17 (b) 57 0 (c) 30</td> <td>$\begin{array}{c} \pm \ 0.19 \\ \pm \ 0.121 \\ \pm \ 0.2 \\ \pm \ 0.0 \\ \pm \ 1.4 \\ \pm \ 0.2 \\ \pm \ 1.4 \\ \pm \ 0.19 \\ \pm \ 0.32 \\ \pm \ 0.136 \\ \\ \end{array}$</td>	0.32 0.123 (b) 8 0.2 (b) 0.0 1.6 (c) 1.7 0.2 (c) 1.7 0.2 (c) 1.7 0.22 (c) 1.7 0.13 (c) 1 0.22 (c) 1.7 0.197 (c) 1.7 0.9 0.0	3.9 ± 0.1 3.08 ± 0.1 3.09 ± 0.1 3.09	8 4.6 13 (b) 7.60 (b) 56 0 15 1 84 1 (c) 5 9 (b) 18.3 5 32.7 22 0.07 9 13.8 42 7 3.5 66 7.62 (b) 55 0 (c) 32	± 0.19 ± 0.057 ± 0.2 ± 0.0 ± 1.4 ± 0.2 ± 1.3 ± 0.2 ± 0.8 ± 0.07 ± 0.12 ± 0.029 14 ± 0.36 ± 1.1 ± 0.39 ± 0.202 ± 0.39 ±	3.8 (b) 6.49 (b) 61 0 (b) 19 1 (b) 80 1 (b) 20.3 33.2 0.45 14.8 47 (b) 4.7 8.17 (b) 57 0 (c) 30	$\begin{array}{c} \pm \ 0.19 \\ \pm \ 0.121 \\ \pm \ 0.2 \\ \pm \ 0.0 \\ \pm \ 1.4 \\ \pm \ 0.2 \\ \pm \ 1.4 \\ \pm \ 0.19 \\ \pm \ 0.32 \\ \pm \ 0.136 \\ \\ \end{array}$
Erythrocytes (10 ⁶ /mm³) 8.54 ± Mean corpuscular volume (μ³) 53 ± Bands (percent) 0 ± Segmented neutrophils (percent) 1 1 ± Lymphocytes (percent) 1 1 ± Nucleated erythrocytes (per 100 leukocytes) 2 ± Mean corpuscular hemoglobin (pg) 17.3 ± Mean corpuscular hemoglobin concentration (percent) 32.6 ± Methemoglobin (percent) 32.6 ± Methemoglobin (percent) 45 ± 12 Months Number examined 12 Hemoglobin (g/dl) 14.8 ± Hematocrit (percent) 45 ± Leukocytes (10 ³ /mm³) 3.0 ± Leukocytes (10 ³ /mm³) 8.41 ± Mean corpuscular volume (μ³) 54 ± Bands (percent) 2 ± Lymphocytes (percent) 2 ± Lymphocytes (percent) 2 ± Lymphocytes (percent) 2 ± Monocytes (percent) 74 ± Monocytes (percent) 74 ± Monocytes (percent) 74 ± Mean corpuscular hemoglobin (pg) 17.6 ± Mean corpuscular hemoglobin (pg) 17.6 ± Mean corpuscular hemoglobin (concentration (percent) 32.6 ± Reticulocytes (percent of erythrocytes) 1.5 ± Reticulocytes (percent of erythrocytes) 1.5 ± Reticulocytes (percent of erythrocytes) 1.5	0.123 (b) 8 0.2 (b) 0.0 1.6 (c) 1.7 (c) 1 0.2 (d) 1.7 (e) 1 0.22 (d) 1.7 (e) 1 0.13 (f) 1 0.17 (f) 1.9 (f) 8 0.0 (f) 1.7 (f) 1.9 (f) 8 0.19 (f) 1.7 (f) 1.9 (f	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 (b) 7.60 (b) 56 0 15 1 84 1 (c) 5 9 (b) 18.3 5 32.7 22 0.07 9 13.8 42 7 3.5 66 7.62 (b) 55 0 (c) 32	± 0.057 ± 0.2 ± 0.0 ± 1.4 ± 0.2 ± 0.8 ± 0.07 ± 0.12 ± 0.029 14 ± 0.36 ± 1.1 ± 0.39 ± 0.202 ± 0.3 ± 0.00 ± 0.202	(b) 6.49 (b) 61 0 (b) 19 1 (b) 80 (b) 20.3 33.2 0.45 14.8 47 (b) 4.7 8.17 (b) 57 0 (c) 30	$\begin{array}{c} \pm \ 0.121 \\ \pm \ 0.2 \\ \pm \ 0.0 \\ \pm \ 1.4 \\ \pm \ 0.2 \\ \pm \ 1.4 \\ \pm \ 0.19 \\ \pm \ 0.136 \\ \\ \end{array}$ $\begin{array}{c} \pm \ 0.32 \\ \pm \ 0.136 \\ \\ \end{array}$ $\begin{array}{c} \pm \ 0.33 \\ \pm \ 0.136 \\ \\ \end{array}$ $\begin{array}{c} \pm \ 0.34 \\ \pm \ 0.173 \\ \pm \ 0.2 \\ \pm \ 0.173 \\ \pm \ 0.173 \\ \pm \ 0.173 \\ \pm \ 0.173 \\ \end{array}$
Mean corpuscular volume (μ³) 53 ± Bands (percent) 0 ± Segmented neutrophils (percent) 13 ± Lymphocytes (percent) 86 ± Lymphocytes (percent) 1 ± Monocytes (percent) 1 ± Nucleated erythrocytes (per 100 leukocytes) 2 ± Mean corpuscular hemoglobin (pg) 17.3 ± Mean corpuscular hemoglobin 32.6 ± Methemoglobin (percent of hemoglobin) 0.20 ± 12 Months 1 14.8 ± Number examined 12 45 ± Hemoglobin (g/dl) 14.8 ± ± Hemoglobin (g/dl) 3.0 ± ± Hemoglobin (g/dl) 3.0 ± ± Hemoglobin (g/dl) 4.5 ± ± <	0.2 (b) 0.0 1.6 0.2 1.7 0.2 0.4 0.13 (c) 1 0.22 3 0.108 0 0.31 1 1.1 0.17 0.197 8 0.2 0.0 1.7 0.5 1.9 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(b) 56 0 15 1 84 1 (c) 5 9 (b) 18.3 5 32.7 22 0.07 9 13.8 42 7 3.5 66 7.62 (b) 55 0 (c) 32	± 0.2 ± 0.0 ± 1.4 ± 0.2 ± 1.3 ± 0.8 ± 0.07 ± 0.12 ± 0.029 14 ± 0.36 ± 1.1 ± 0.39 ± 0.202 ± 0.39 ± 0.00 ± 0.202 ± 0.30 ± 0.202 ± 0.30 ± 0.3	(b) 61 0 (b) 19 1 (b) 80 1 (b) 12 (b) 20.3 33.2 0.45 14.8 47 (b) 4.7 8.17 (b) 57 0 (c) 30	$\begin{array}{c} \pm \ 0.2 \\ \pm \ 0.0 \\ \pm \ 1.4 \\ \pm \ 0.2 \\ \pm \ 1.4 \\ \pm \ 0.2 \\ \pm \ 1.4 \\ \pm \ 0.19 \\ \pm \ 0.136 \\ \\ \end{array}$
Bands (percent)	0.0 1.6 0.2 1.7 0.2 0.4 0.13 (c) 1 0.22 3 0.108 0 0.31 1 1.1 0.17 0.197 8 0.2 0.0 1.7 0.5 1.9 0.0	$\begin{array}{c} 0 & \pm 0.0 \\ 15 & \pm 1.5 \\ 1 & \pm 0.3 \\ 84 & \pm 1.6 \\ 0 & \pm 0.2 \\ 2 & \pm 0.5 \\ 7.7 & \pm 0.0 \\ 3.1 & \pm 0.1 \\ 3.63 & \pm 0.3 \\ \end{array}$ $\begin{array}{c} 15 \\ 4.5 & \pm 0.1 \\ 44 & \pm 0.9 \\ 3.0 & \pm 0.1 \\ 1.13 & \pm 0.1 \\ 0.13 & \pm 0.1 \\ 0.28 & \pm 2.6 \\ 1 & \pm 0.3 \\ \end{array}$	9 13.8 42 7 3.5 66 7.62 (b) 55 0 (c) 32	± 0.0 ± 1.4 ± 0.2 ± 1.3 ± 0.2 ± 0.8 ± 0.07 ± 0.12 ± 0.029 14 ± 0.36 ± 1.1 ± 0.39 ± 0.202 ± 0.3 ± 0.0 ± 0.202	0 (b) 19 1 (b) 80 1 (b) 12 (b) 20.3 33.2 0.45 14.8 47 (b) 4.7 8.17 (b) 57 0 (c) 30	$\begin{array}{c} \pm \ 0.0 \\ \pm \ 1.4 \\ \pm \ 0.2 \\ \pm \ 1.4 \\ \pm \ 0.2 \\ \pm \ 1.4 \\ \pm \ 0.19 \\ \pm \ 0.136 \\ \\ \end{array}$
Segmented neutrophils (percent)	1.6 0.2 1.7 0.2 0.4 0.13 0.22 3 0.108 0 0.31 1.1 0.17 0.197 0.097 8 0.2 0.0 1.7 0.5 1.9 0.0	$\begin{array}{c} 15 & \pm 1.5 \\ 1 & \pm 0.3 \\ 84 & \pm 1.6 \\ 0 & \pm 0.2 \\ 2 & \pm 0.5 \\ 7.7 & \pm 0.0 \\ 3.1 & \pm 0.1 \\ 0.63 & \pm 0.3 \\ \end{array}$ $\begin{array}{c} 15 \\ 4.5 & \pm 0.1 \\ 44 & \pm 0.9 \\ 3.0 & \pm 0.1 \\ 1.13 & \pm 0.1 \\ 54 & \pm 0.1 \\ 28 & \pm 2.6 \\ 1 & \pm 0.3 \\ \end{array}$	15 184 1 (c) 5 9 (b) 18.3 5 32.7 22 0.07 9 13.8 42 7 3.5 66 7.62 (b) 55 0 (c) 32	± 1.4 ± 0.2 ± 1.3 ± 0.2 ± 0.8 ± 0.07 ± 0.12 ± 0.029 14 ± 0.36 ± 1.1 ± 0.39 ± 0.202 ± 0.3 ± 0.0 ± 0.202	(b) 19 1 (b) 80 1 (b) 12 (b) 20.3 33.2 0.45 14.8 47 (b) 4.7 8.17 (b) 57 0 (c) 30	$\begin{array}{c} \pm 1.4 \\ \pm 0.2 \\ \pm 1.4 \\ \pm 0.2 \\ \pm 1.4 \\ \pm 0.19 \\ \\ \pm 0.136 \\ \\ \end{array}$ $\begin{array}{c} \pm 0.32 \\ \pm 0.136 \\ \\ \pm 0.44 \\ \pm 0.173 \\ \pm 0.2 \\ \pm 0.1 \end{array}$
Eosinophils (percent) 1 ± Lymphocytes (percent) 86 ± Monocytes (percent) 1 ± Nucleated erythrocytes (per 100 leukocytes) 2 ± Mean corpuscular hemoglobin (pg) 17.3 ± Mean corpuscular hemoglobin concentration (percent) 32.6 ± Methemoglobin (percent of hemoglobin) 0.20 ± 12 Months Number examined 12 Memoglobin (g/dl) 14.8 ± Leukocytes (10³/mm³) 3.0 ± Leukocytes (10³/mm³) 3.0 ± Erythrocytes (10⁴/mm³) 8.41 ± Mean corpuscular volume (μ³) 54 ± Bands (percent) 2 ± Eosinophils (percent) 2 ± Eosinophils (percent) 2 ± Eosinophils (percent) 2 ± Monocytes (percent) 3 ± Mean corpuscular hemoglobin (pg) 17.6 ± M	0.2 1.7 0.2 0.4 0.13 (c) 1 0.22 3 0.108 0 0.31 1 1.1 0.17 0.197 8 0.2 0.0 1.7 0.5 1.9 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 84 1 (c) 5 9 (b) 18.3 5 32.7 22 0.07 9 13.8 42 7 3.5 66 7.62 (b) 55 0 (c) 32	± 0.2 ± 1.3 ± 0.2 ± 0.8 ± 0.07 ± 0.12 ± 0.029 14 ± 0.36 ± 1.1 ± 0.39 ± 0.202 ± 0.03 ± 0.0 ± 0.202	1 (b) 80 1 (b) 12 (b) 20.3 33.2 0.45 47 (b) 4.7 8.17 (b) 57 0 (c) 30	$\begin{array}{c} \pm \ 0.2 \\ \pm \ 1.4 \\ \pm \ 0.2 \\ \pm \ 1.4 \\ \pm \ 0.19 \\ \end{array}$ $\begin{array}{c} \pm \ 0.32 \\ \pm \ 0.136 \\ \end{array}$ $\begin{array}{c} \pm \ 0.30 \\ \pm \ 1.1 \\ \pm \ 0.44 \\ \pm \ 0.173 \\ \pm \ 0.2 \\ \pm \ 0.1 \end{array}$
Lymphocytes (percent) 86 ± Monocytes (percent) 1 ± Nucleated erythrocytes (per 100 leukocytes) 2 ± Mean corpuscular hemoglobin (pg) 17.3 ± Mean corpuscular hemoglobin concentration (percent) 32.6 ± Methemoglobin (percent of hemoglobin) 0.20 ± 12 Months 12 Number examined 12 Hemoglobin (g/dl) 14.8 ± Hemoglobin (g/dl) 45 ± Leukocytes (10³/mm³) 3.0 ± Erythrocytes (106/mm³) 8.41 ± Mean corpuscular volume (μ³) 54 ± Bands (percent) 0 ± Segmented neutrophils (percent) 24 ± Lymphocytes (percent) 74 ± Monocytes (percent) 0 ± Monocytes (percent) 0 ± Mean corpuscular hemoglobin (pg) 17.6 ± Mean corpuscular hemoglobin (pg) 17.6 ± Mean corpuscular hemoglobin (pg) 15.5 ±	1.7 0.2 0.4 0.13 (c) 1 0.22 3 0.108 0 0.31 1 1.1 0.17 0.197 8 0.2 0.0 1.7 0.5 1.9 0.0	$\begin{array}{c} 84 & \pm 1.6 \\ 0 & \pm 0.2 \\ 2 & \pm 0.5 \\ 7.7 & \pm 0.0 \\ 3.1 & \pm 0.1 \\ 0.63 & \pm 0.3 \\ \end{array}$ $\begin{array}{c} 15 \\ 4.5 & \pm 0.1 \\ 44 & \pm 0.9 \\ 3.0 & \pm 0.1 \\ 1.13 & \pm 0.1 \\ 0.13 & \pm 0.1 \\ 0.28 & \pm 2.6 \\ 1 & \pm 0.3 \\ \end{array}$	9 (b) 18.3 5 32.7 22 0.07 9 13.8 42 7 3.5 66 7.62 (b) 55 0 (c) 32	± 1.3 ± 0.2 ± 0.8 ± 0.07 ± 0.12 ± 0.029 14 ± 0.36 ± 1.1 ± 0.39 ± 0.202 ± 0.3 ± 0.00 ± 0.5	(b) 80 1 (b) 12 (b) 20.3 33.2 0.45 14.8 47 (b) 4.7 8.17 (b) 57 0 (c) 30	$\begin{array}{c} \pm \ 1.4 \\ \pm \ 0.2 \\ \pm \ 1.4 \\ \pm \ 0.19 \\ \end{array}$ $\begin{array}{c} \pm \ 0.32 \\ \pm \ 0.136 \\ \end{array}$ $\begin{array}{c} \pm \ 0.30 \\ \pm \ 1.1 \\ \pm \ 0.44 \\ \pm \ 0.173 \\ \pm \ 0.2 \\ \pm \ 0.1 \\ \end{array}$
Monocytes (percent) 1 ± Nucleated erythrocytes (per 100 leukocytes) 2 ± ± 17.3 ± 17	0.2 0.4 0.13 (c) 1 0.22 3 0.108 0 0.31 1 1.1 0.17 0.197 8 0.2 0.0 1.7 0.5 1.9 0.0	$\begin{array}{c} 0 & \pm 0.2 \\ 2 & \pm 0.5 \\ 7.7 & \pm 0.0 \\ 33.1 & \pm 0.1 \\ 0.63 & \pm 0.3 \\ \end{array}$ $\begin{array}{c} 15 \\ 4.5 & \pm 0.1 \\ 44 & \pm 0.9 \\ 3.0 & \pm 0.1 \\ 1.13 & \pm 0.12 \\ 54 & \pm 0.2 \\ 0 & \pm 0.0 \\ 28 & \pm 2.6 \\ 1 & \pm 0.3 \\ \end{array}$	9 (b) 18.3 5 32.7 22 0.07 9 13.8 42 7 3.5 66 7.62 (b) 55 0	± 0.2 ± 0.8 ± 0.07 ± 0.12 ± 0.029 14 ± 0.36 ± 1.1 ± 0.39 ± 0.202 ± 0.3 ± 0.0 ± 2.5	1 (b) 12 (b) 20.3 33.2 0.45 14.8 47 (b) 4.7 8.17 (b) 57 0 (c) 30	$\begin{array}{c} \pm \ 0.2 \\ \pm \ 1.4 \\ \pm \ 0.19 \\ \end{array}$ $\begin{array}{c} \pm \ 0.32 \\ \pm \ 0.136 \\ \end{array}$ $\begin{array}{c} 15 \\ \pm \ 0.30 \\ \pm \ 1.1 \\ \pm \ 0.44 \\ \pm \ 0.173 \\ \pm \ 0.2 \\ \end{array}$
Nucleated erythrocytes (per 100 leukocytes) 2 ± Mean corpuscular hemoglobin (pg) 17.3 ± Mean corpuscular hemoglobin Mean corpuscular hemoglobin 32.6 ± Methemoglobin (percent of hemoglobin) 0.20 ± Methemoglobin (percent of hemoglobin) Methemoglobin (percent of hemoglobin) 12 Months Number examined 12 Hemoglobin (g/dl) 14.8 ± Memoglobin (g/dl) Hematocrit (percent) 45 ± Memoglobin (g/dl) Leukocytes (10³/mm³) 3.0 ± Memoglobin (g/dl) Erythrocytes (10³/mm³) 8.41 ± Memoglobin (g/dl) Mean corpuscular volume (μ³) 54 ± Memoglobin (g/dl) Segmented neutrophils (percent) 2 ± Memoglobin (g/dl) Lymphocytes (percent) 74 ± Memoglobin (g/dl) Mean corpuscular hemoglobin (g/dl) 17.6 ± Memoglobin (g/dl)	0.4 0.13 (c) 1 0.22 3 0.108 0 0.31 1 1.1 0.17 0.197 8 0.2 0.0 1.7 0.5 1.9 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 (c) 5 9 (b) 18.3 5 32.7 22 0.07 9 13.8 42 7 3.5 66 7.62 (b) 55 0 (c) 32	± 0.8 ± 0.07 ± 0.12 ± 0.029 14 ± 0.36 ± 1.1 ± 0.39 ± 0.202 ± 0.3 ± 0.0 ± 2.5	(b) 12 (b) 20.3 33.2 0.45 14.8 47 (b) 4.7 8.17 (b) 57 0 (c) 30	$\begin{array}{c} \pm 1.4 \\ \pm 0.19 \\ \pm 0.32 \\ \pm 0.136 \\ \end{array}$ $\begin{array}{c} \pm 0.30 \\ \pm 1.1 \\ \pm 0.44 \\ \pm 0.173 \\ \pm 0.2 \\ \pm 0.1 \end{array}$
Mean corpuscular hemoglobin (pg) 17.3 ± Mean corpuscular hemoglobin concentration (percent) 32.6 ± Methemoglobin (percent of hemoglobin) 0.20 ± 12 Months 12 Number examined 12 Hemoglobin (g/dl) 14.8 ± Hematocrit (percent) 45 ± Leukocytes (10³/mm³) 3.0 ± Erythrocytes (10²/mm³) 8.41 ± Mean corpuscular volume (μ³) 54 ± Bands (percent) 0 ± Segmented neutrophils (percent) 24 ± Lymphocytes (percent) 74 ± Monocytes (percent) 1 ± Monocytes (percent) 1 ± Mean corpuscular hemoglobin (pg) 17.6 ± Mean corpuscular hemoglobin concentration (percent) 32.6 ± Reticulocytes (percent of erythrocytes) 1.5 ±	0.13 (c) 1 0.22 3 0.108 0 0.31 1 1.1 0.17 0.197 8 0.2 0.0 1.7 0.5 1.9 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 (b) 18.3 5 32.7 22 0.07 9 13.8 42 7 3.5 66 7.62 (b) 55 0 (c) 32	± 0.07 ± 0.12 ± 0.029 14 ± 0.36 ± 1.1 ± 0.39 ± 0.202 ± 0.3 ± 0.0 ± 2.5	14.8 47 (b) 4.7 (b) 57 0 (c) 30	± 0.19 ± 0.32 ± 0.136 15 ± 0.30 ± 1.1 ± 0.44 ± 0.173 ± 0.2 ± 0.1
Mean corpuscular hemoglobin concentration (percent) 32.6 ± Methemoglobin (percent of hemoglobin) 0.20 ± 12 Months 12 Months Number examined 12 Hemoglobin (g/dl) 14.8 ± ± 5 ± 1 Leukocytes (10³/mm³) 3.0 ± ± 5 ± 5 Erythrocytes (10³/mm³) 8.41 ± 5 ± 5 Mean corpuscular volume (µ³) 54 ± 5 ± 5 Bands (percent) 0 ± 5 Segmented neutrophils (percent) 24 ± 5 Eosinophils (percent) 24 ± 5 Lymphocytes (percent) 74 ± 5 Monocytes (percent) 0 ± 6 Monocytes (percent) 1 ± 6 Mean corpuscular hemoglobin (pg) 17.6 ± 6 Mean corpuscular hemoglobin (pg) 17.5 ± 6	0.22 3 0.108 0 0.31 1 1.1 0.17 0.197 8 0.2 0.0 1.7 0.5 1.9 0.0	$\begin{array}{c} 3.1 & \pm 0.1 \\ 0.63 & \pm 0.3 \\ \end{array}$ $\begin{array}{c} 15 \\ 4.5 & \pm 0.1 \\ 44 & \pm 0.9 \\ 3.0 & \pm 0.1 \\ 0.13 & \pm 0.10 \\ 54 & \pm 0.2 \\ 0 & \pm 0.0 \\ 28 & \pm 2.6 \\ 1 & \pm 0.3 \\ \end{array}$	5 32.7 22 0.07 9 13.8 42 7 3.5 66 7.62 (b) 55 0 (c) 32	± 0.12 ± 0.029 14 ± 0.36 ± 1.1 ± 0.39 ± 0.202 ± 0.3 ± 0.0 ± 2.5	33.2 0.45 14.8 47 (b) 4.7 8.17 (b) 57 0 (c) 30	± 0.32 ± 0.136 15 ± 0.30 ± 1.1 ± 0.44 ± 0.173 ± 0.2 ± 0.1
concentration (percent) 32.6 ± Methemoglobin (percent of hemoglobin) 0.20 ± 12 Months 12 Number examined 12 Hemoglobin (g/dl) 14.8 ± Hematocrit (percent) 45 ± Leukocytes (10³/mm³) 3.0 ± Erythrocytes (106/mm³) 8.41 ± Mean corpuscular volume (μ³) 54 ± Bands (percent) 0 ± Segmented neutrophils (percent) 24 ± Lymphocytes (percent) 74 ± Monocytes (percent) 0 ± Nucleated erythrocytes (per 100 leukocytes) 1 ± Mean corpuscular hemoglobin (pg) 17.6 ± Mean corpuscular hemoglobin 22.6 ± concentration (percent) 32.6 ± Reticulocytes (percent of erythrocytes) 1.5 ±	0.108 0 0.31 1 1.1 0.17 0.197 8 0.2 0.0 1.7 0.5 1.9 0.0	$\begin{array}{c} 15 \\ 4.5 \pm 0.19 \\ 44 \pm 0.9 \\ 3.0 \pm 0.19 \\ 1.13 \pm 0.19 \\ 54 \pm 0.2 \\ 0 \pm 0.0 \\ 28 \pm 2.6 \\ 1 \pm 0.3 \end{array}$	9 13.8 42 7 3.5 66 7.62 (b) 55 0 (c) 32	± 0.029 14 ± 0.36 ± 1.1 ± 0.39 ± 0.202 ± 0.3 ± 0.0 ± 2.5	14.8 47 (b) 4.7 8.17 (b) 57 0 (c) 30	± 0.136 ± 0.30 ± 1.1 ± 0.44 ± 0.173 ± 0.2 ± 0.1
Methemoglobin (percent of hemoglobin) 0.20 ± 12 Months Number examined 12 Hemoglobin (g/dl) 14.8 ± Hematocrit (percent) 45 ± Leukocytes (10³/mm³) 3.0 ± Erythrocytes (106/mm³) 8.41 ± Mean corpuscular volume (µ³) 54 ± Bands (percent) 24 ± Eosinophils (percent) 24 ± Lymphocytes (percent) 74 ± Monocytes (percent) 0 ± Nucleated erythrocytes (per 100 leukocytes) 1 ± Mean corpuscular hemoglobin (pg) 17.6 ± Mean corpuscular hemoglobin (concentration (percent) 32.6 ± Reticulocytes (percent of erythrocytes) 1.5 ±	0.108 0 0.31 1 1.1 0.17 0.197 8 0.2 0.0 1.7 0.5 1.9 0.0	$\begin{array}{c} 15 \\ 4.5 \pm 0.19 \\ 44 \pm 0.9 \\ 3.0 \pm 0.19 \\ 1.13 \pm 0.19 \\ 54 \pm 0.2 \\ 0 \pm 0.0 \\ 28 \pm 2.6 \\ 1 \pm 0.3 \end{array}$	9 13.8 42 7 3.5 66 7.62 (b) 55 0 (c) 32	± 0.029 14 ± 0.36 ± 1.1 ± 0.39 ± 0.202 ± 0.3 ± 0.0 ± 2.5	14.8 47 (b) 4.7 8.17 (b) 57 0 (c) 30	± 0.136 ± 0.30 ± 1.1 ± 0.44 ± 0.173 ± 0.2 ± 0.1
12 Months Number examined Hemoglobin (g/dl) Hematocrit (percent) Leukocytes (10³/mm³) Erythrocytes (106/mm³) Mean corpuscular volume (μ³) Segmented neutrophils (percent) Lymphocytes (percent) Lymphocytes (percent) Nucleated erythrocytes (per 100 leukocytes) Mean corpuscular hemoglobin concentration (percent) Reticulocytes (percent of erythrocytes) 1 ± 6 1	0.31 1 1.1 0.17 0.197 8 0.2 0.0 1.7 0.5 1.9	$\begin{array}{c} 15 \\ 4.5 & \pm 0.1! \\ 44 & \pm 0.9 \\ 3.0 & \pm 0.1! \\ .13 & \pm 0.1! \\ 54 & \pm 0.2 \\ 0 & \pm 0.0 \\ 28 & \pm 2.6 \\ 1 & \pm 0.3 \end{array}$	9 13.8 42 7 3.5 66 7.62 (b) 55 0 (c) 32	14 ± 0.36 ± 1.1 ± 0.39 ± 0.202 ± 0.3 ± 0.0 ± 2.5	14.8 47 (b) 4.7 8.17 (b) 57 0 (c) 30	15 ± 0.30 ± 1.1 ± 0.44 ± 0.173 ± 0.2 ± 0.1
Number examined 12 Hemoglobin (g/dl) 14.8 ± Hematocrit (percent) 45 ± Leukocytes (10³/mm³) 3.0 ± Erythrocytes (10²/mm³) 8.41 ± Mean corpuscular volume (μ³) 54 ± Bands (percent) 0 ± Segmented neutrophils (percent) 24 ± Eosinophils (percent) 74 ± Monocytes (percent) 0 ± 6 Nucleated erythrocytes (per 100 leukocytes) 1 ± 6 Mean corpuscular hemoglobin (pg) 17.6 ± 6 Mean corpuscular hemoglobin concentration (percent) 32.6 ± 6 Reticulocytes (percent of erythrocytes) 1.5 ± 6	0.31 1 1.1 0.17 0.197 8 0.2 0.0 1.7 0.5 1.9 0.0	4.5 ± 0.19 44 ± 0.9 3.0 ± 0.19 6.13 ± 0.10 54 ± 0.2 0 ± 0.0 28 ± 2.6 1 ± 0.3	42 7 3.5 66 7.62 (b) 55 0 (c) 32	± 0.36 ± 1.1 ± 0.39 ± 0.202 ± 0.3 ± 0.0 ± 2.5	47 (b) 4.7 8.17 (b) 57 0 (c) 30	± 0.30 ± 1.1 ± 0.44 ± 0.173 ± 0.2 ± 0.1
Hemoglobin (g/dl) 14.8 ± Hematocrit (percent) 45 ± Leukocytes (10³/mm³) 3.0 ± Erythrocytes (10⁴/mm³) 8.41 ± Mean corpuscular volume (μ³) 54 ± Bands (percent) 0 ± Segmented neutrophils (percent) 24 ± Eosinophils (percent) 74 ± Monocytes (percent) 74 ± Monocytes (percent) 0 ± Monocytes (percent) 1 ± Mean corpuscular hemoglobin (pg) 17.6 ± Mean corpuscular hemoglobin (concentration (percent) 32.6 ± Reticulocytes (percent of erythrocytes) 1.5 ± Reticulocytes (percent of erythrocytes) 1.5	0.31 1 1.1 0.17 0.197 8 0.2 0.0 1.7 0.5 1.9 0.0	4.5 ± 0.19 44 ± 0.9 3.0 ± 0.19 6.13 ± 0.10 54 ± 0.2 0 ± 0.0 28 ± 2.6 1 ± 0.3	42 7 3.5 66 7.62 (b) 55 0 (c) 32	± 0.36 ± 1.1 ± 0.39 ± 0.202 ± 0.3 ± 0.0 ± 2.5	47 (b) 4.7 8.17 (b) 57 0 (c) 30	± 0.30 ± 1.1 ± 0.44 ± 0.173 ± 0.2 ± 0.1
Hematocrit (percent)45 \pm Leukocytes (10^3 /mm³)3.0 \pm Erythrocytes (10^6 /mm³)8.41 \pm Mean corpuscular volume (μ ³)54 \pm Bands (percent)0 \pm Segmented neutrophils (percent)24 \pm Eosinophils (percent)74 \pm Lymphocytes (percent)74 \pm Monocytes (percent)0 \pm Nucleated erythrocytes (per 100 leukocytes)1 \pm Mean corpuscular hemoglobin (pg)17.6 \pm Mean corpuscular hemoglobin32.6 \pm concentration (percent)32.6 \pm Reticulocytes (percent of erythrocytes)1.5 \pm	1.1 0.17 0.197 8 0.2 0.0 1.7 0.5 1.9 0.0	44 ± 0.9 3.0 ± 0.1° 1.13 ± 0.10 54 ± 0.2 0 ± 0.0 28 ± 2.6 1 ± 0.3	42 7 3.5 66 7.62 (b) 55 0 (c) 32	± 1.1 ± 0.39 ± 0.202 ± 0.3 ± 0.0 ± 2.5	47 (b) 4.7 8.17 (b) 57 0 (c) 30	± 1.1 ± 0.44 ± 0.173 ± 0.2 ± 0.1
Leukocytes (10^3 /mm³) 3.0 \pm Erythrocytes (10^6 /mm³) 8.41 \pm Mean corpuscular volume (μ ³) 54 \pm Bands (percent) 0 \pm Segmented neutrophils (percent) 24 \pm Eosinophils (percent) 74 \pm Monocytes (percent) 0 \pm Monocytes (percent) 0 \pm Mucleated erythrocytes (per 100 leukocytes) 1 \pm Mean corpuscular hemoglobin (pg) 17.6 \pm Mean corpuscular hemoglobin concentration (percent) 32.6 \pm Reticulocytes (percent of erythrocytes) 1.5 \pm	0.17 0.197 8 0.2 0.0 1.7 0.5 1.9 0.0	3.0 ± 0.1° 3.13 ± 0.1° 54 ± 0.2° 0 ± 0.0° 28 ± 2.6° 1 ± 0.3°	7 3.5 66 7.62 (b) 55 0 (c) 32	± 0.39 ± 0.202 ± 0.3 ± 0.0 ± 2.5	(b) 4.7 8.17 (b) 57 0 (c) 30	± 0.44 ± 0.173 ± 0.2 ± 0.1
Erythrocytes (10 ⁶ /mm ³) Mean corpuscular volume (µ ³) Bands (percent) Segmented neutrophils (percent) Lymphocytes (percent) Nucleated erythrocytes (per 100 leukocytes) Mean corpuscular hemoglobin (pg) Mean corpuscular hemoglobin concentration (percent) Reticulocytes (percent of erythrocytes) 1.5 24 ± 4 54 ± 65 66 67 66 66 67 68 68 68 68 68	0.197 8 0.2 0.0 1.7 0.5 1.9 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66 7.62 (b) 55 0 (c) 32	± 0.202 ± 0.3 ± 0.0 ± 2.5	8.17 (b) 57 0 (c) 30	± 0.173 ± 0.2 ± 0.1
Mean corpuscular volume (μ³) 54 ± Bands (percent) 0 ± Segmented neutrophils (percent) 24 ± Eosinophils (percent) 74 ± Lymphocytes (percent) 74 ± Monocytes (percent) 0 ± Nucleated erythrocytes (per 100 leukocytes) 1 ± Mean corpuscular hemoglobin (pg) 17.6 ± Mean corpuscular hemoglobin concentration (percent) 32.6 ± Reticulocytes (percent of erythrocytes) 1.5 ±	0.2 0.0 1.7 0.5 1.9 0.0	54 ± 0.2 0 ± 0.0 28 ± 2.6 1 ± 0.3	(b) 55 0 (c) 32	± 0.3 ± 0.0 ± 2.5	(b) 57 0 (c) 30	± 0.2 ± 0.1
Bands (percent) 0 ± Segmented neutrophils (percent) 24 ± Eosinophils (percent) 2 ± Lymphocytes (percent) 74 ± Monocytes (percent) 1 ± Nucleated erythrocytes (per 100 leukocytes) 1 ± Mean corpuscular hemoglobin (pg) 17.6 ± Mean corpuscular hemoglobin concentration (percent) 32.6 ± Reticulocytes (percent of erythrocytes) 1.5 ±	0.0 1.7 0.5 1.9 0.0	$\begin{array}{ccc} 0 & \pm 0.0 \\ 28 & \pm 2.6 \\ 1 & \pm 0.3 \end{array}$	0 (c) 32	± 0.0 ± 2.5	0 (c) 30	± 0.1
Segmented neutrophils (percent) 24 ± Eosinophils (percent) 2 ± Lymphocytes (percent) 74 ± Monocytes (percent) 0 ± Nucleated erythrocytes (per 100 leukocytes) 1 ± Mean corpuscular hemoglobin (pg) 17.6 ± Mean corpuscular hemoglobin concentration (percent) 32.6 ± Reticulocytes (percent of erythrocytes) 1.5 ±	1.7 0.5 1.9 0.0	$\begin{array}{ccc} 28 & \pm \ 2.6 \\ 1 & \pm \ 0.3 \end{array}$	(c) 32	± 2.5	(c) 30	
Eosinophils (percent) 2 ± the Lymphocytes (percent) 74 ± the Monocytes (percent) 0 ± the Monocytes (per 100 leukocytes) 1 ± the Mean corpuscular hemoglobin (pg) 17.6 ± the Mean corpuscular hemoglobin (pg) 32.6 ± the Mean corpuscular hemoglobin (percent) 4 ± the Mean corpuscu	0.5 1.9 0.0	1 ± 0.3			,	± 0.9
Lymphocytes (percent) 74 ± Monocytes (percent) 0 ± Nucleated erythrocytes (per 100 leukocytes) 1 ± Mean corpuscular hemoglobin (pg) 17.6 ± Mean corpuscular hemoglobin 22.6 ± Reticulocytes (percent of erythrocytes) 1.5 ±	1.9 0.0		1			
Monocytes (percent) 0 ± Nucleated erythrocytes (per 100 leukocytes) 1 ± Mean corpuscular hemoglobin (pg) 17.6 ± Mean corpuscular hemoglobin 22.6 ± Reticulocytes (percent of erythrocytes) 1.5 ±	0.0		1	± 0.3	1	± 0.3
Nucleated erythrocytes (per 100 leukocytes) Mean corpuscular hemoglobin (pg) Mean corpuscular hemoglobin concentration (percent) Reticulocytes (percent of erythrocytes) 1 ± 0 17.6 ± 0 22.6 ± 0 1.5 ± 0		71 ± 2.5	(c) 66	± 2.3	(c) 69	\pm 1.0
Mean corpuscular hemoglobin (pg) 17.6 ± Mean corpuscular hemoglobin 32.6 ± concentration (percent) 32.6 ± Reticulocytes (percent of erythrocytes) 1.5 ±	0 E	0 ± 0.0		± 0.0	0	± 0.0
Mean corpuscular hemoglobin 32.6 ± 1 concentration (percent) 32.6 ± 1 Reticulocytes (percent of erythrocytes) 1.5 ± 1	บ.ฮ	2 ± 0.3		± 0.6	(b) 5	± 0.4
concentration (percent) 32.6 \pm Reticulocytes (percent of erythrocytes) 1.5 \pm	0.16	7.9 ± 0.2	1 18.1	± 0.10	18.2	± 0.34
Reticulocytes (percent of erythrocytes) 1.5 \pm	0.20 2	3.4 ± 0.45	2 32.9	± 0.24	21 0	+ 0.69
		1.6 ± 0.13		± 0.24 ± 0.15	31.9	
weenemogroum (percent of flemogroum) 0.47 ±		$.34 \pm 0.06$		± 0.13 ± 0.123	(b) 2.7	
10 38. 41.	0.106 0	.54 ± 0.00	09 (0)1.10	I 0.123	(b) 1.82	I 0.122
18 Months						
Number examined 12		15		14		14
Hemoglobin (g/dl) 14.6 \pm (0.27	4.1 ± 0.18	3 (b) 13.5	± 0.23	(b) 13.5	± 0.24
Hematocrit (percent) 47 \pm (46 ± 0.6	(b) 44	± 0.7	(b) 44	± 0.7
Leukocytes (10^3 /mm ³) 2.5 \pm (2.9 ± 0.13		± 0.24	(b) 3.8	± 0.26
Erythrocytes $(10^6/\text{mm}^3)$ 8.30 $\pm ($.00 ± 0.10	04 (b) 7.35	± 0.119	(b) 6.80	
Mean corpuscular volume (μ^3) 57 \pm 6		57 ± 0.3	(b) 59	± 0.4		± 0.4
Bands (percent) 0 ± 0	0.0	0 ± 0.1	0	± 0.1	0	± 0.1
Segmented neutrophils (percent) 35 \pm	1.3	37 ± 1.8	36	± 2.3	33	± 2.3
Eosinophils (percent) 2 ± 6		± 0.3	1	± 0.3	1	± 0.1
Lymphocytes (percent) 64 ± 1		62 ± 1.8	62	± 2.3	66	± 2.4
Monocytes (percent) 0 ± 6		0 ± 0.1	0	± 0.0	0	± 0.1
Nucleated erythrocytes (per 100 leukocytes) 2 ± 6		3 ± 0.9	(c) 6	± 0.9	(b) 10	\pm 1.7
Mean corpuscular hemoglobin (pg) 17.5 ± (Mean corpuscular hemoglobin	0.17 1'	7.6 ± 0.12	(b) 18.3	± 0.16	(b) 19.9	± 0.24
	0.26 30	0.7 ± 0.12	000	± 0.22	30.4	± 0.26
	-		2 3U X		(b) 8.4	
Methemoglobin (percent of hemoglobin) 0.75 ± 0	0.10	2.9 ± 0.21		± 0.25	(U/U.T	

TABLE 14. HEMATOLOGY FOR FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF p-CHLOROANILINE HYDROCHLORIDE (Continued)

Analysis	Veh	icle Control	2	mg/kg	6	mg/kg	18	mg/kg
24 Months (d)								
Number examined		15		15		15		15
Hemoglobin (g/dl)	13.2	± 0.41	13.2	± 0.43	13.8	± 0.16	14.1	± 0.54
Hematocrit (percent)	39	± 1.1	40	± 1.6	41	± 0.5	41	± 1.6
Leukocytes (103/mm³)	3.4	± 0.34	3.5	± 0.33	4.1	± 0.46	4.3	± 0.57
Erythrocytes (106/mm³)	7.12	± 0.248	7.22	± 0.226	7.33	± 0.162	7.10	± 0.184
Mean corpuscular volume (µ3)	55	± 0.6	54	± 0.3	55	± 0.7	(b) 58	
Bands	2	± 1.0	1	± 0.5	1	± 0.3	1	± 0.3
Segmented neutrophils (percent)	46	± 2.6	48	± 2.2	47	± 3.7	53	± 3.2
Eosinophils (percent)	2	± 0.4	2	± 0.5	2	± 0.4	1	± 0.3
Lymphocytes (percent)	50	± 2.8	48	± 2.3	50	± 3.8	44	± 3.1
Monocytes (percent)	0	± 0.0	0	± 0.0	0	± 0.0	0	± 0.1
Nucleated erythrocytes (per 100 leukocytes)	2	± 0.5	1	± 0.2	1	± 0.3	2	± 0.5
Mean corpuscular hemoglobin (pg)	18.5	± 0.19	18.3	± 0.12	18.7	± 0.23	(b) 19.7	± 0.40
Mean corpuscular hemoglobin								
concentration (percent)	33.6	± 0.23	34.1	± 0.25	33.9	± 0.16	34.2	± 0.21
Platelets (103/mm ³)	382	± 35.6	426	± 14.8	396	± 17.7	320	± 42.3
Reticulocytes (percent of erythrocytes)	2.5	± 0.65	2.7	± 0.84	2.1	± 0.20	5.1	± 2.32
Methemoglobin (percent of hemoglobin)	1.67	± 0.099	1.97	± 0.099	(c) 2.03	± 0.167	(c) 1.91	± 0.149

⁽a) Mean \pm standard error; P values vs. the vehicle controls by Williams' test (Williams, 1971, 1972); doses calculated as p-chloroaniline.

At 12 months, dose-related changes in the erythron were minimal to mild. Mild increases in mean corpuscular volume, nucleated erythrocytes, mean corpuscular hemoglobin, and methemoglobin were detected. At 18 months, however, changes in the erythrocyte mass and in methemoglobin concentrations were similar to those detected at 6 months. Approximately twofold to fourfold increases in methemoglobin concentrations in mid and high dose male and female rats were associated with hematologic evidence of regenerative anemia. At 24 months, results of methemoglobin and hematologic analyses were essentially unremarkable. Because these animals had not been dosed for 11-14 days before the collection of the samples, these data suggest that the direct hematologic effects of pchloroaniline hydrochloride are transient.

Pathology and Statistical Analyses of Results

This section describes the statistically significant or biologically noteworthy changes in the incidences of rats with neoplastic or nonneoplastic lesions of the spleen, adrenal gland, testis, bone marrow, liver, hematopoietic system, and anterior pituitary gland.

Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary tumors that occurred with an incidence of at least 5% in at least one animal group, and historical control incidences for the neoplasms mentioned in this section are presented in Appendixes A and B for male and female rats, respectively.

⁽b) P < 0.01

⁽c) P < 0.05

⁽d) Blood taken for analysis 11-14 days after the last dose was administered

Spleen: The incidences of proliferative mesenchymal lesions, which varied from nonneoplastic fibrous connective tissue (fibrosis) to highly malignant sarcomas, were increased in the spleen of dosed rats. The incidences of splenic fibrosis were increased in dosed males and females, whereas the incidences of sarcomas (fibrosarcomas, osteosarcomas, and hemangiosarcomas) were increased in males (Table 15). Many of the splenic sarcomas metastasized to one or more sites. Cellular infiltration of lipocytes (fatty metaplasia) was observed in high dose rats (male: vehicle control, 0/49; low dose, 0/50; mid dose, 0/50; high dose, 24/50; female: 0/50; 0/50; 0/50; 11/50). A fibrosarcoma was observed in one mid dose female rat, and an osteosarcoma was observed in one high dose female rat.

Fibrosis consisted of focal or diffuse proliferation of bundles of dense collagen intermixed with mildly to moderately pleomorphic fibroblasts. Fibrosis usually affected the splenic red pulp, where it replaced the splenic parenchyma, but in some animals fibrosis occurred in the splenic capsule with the formation of cysts on the capsular surface. In two high dose males, the fibrous tissue formed well-demarcated expansile lesions that were diagnosed as fibromas. Sarcomas were poorly demarcated, expansile, and invasive

lesions; in some cases, fibrosis and sarcomas were present in the same spleen. Fibrosarcomas had a typical morphology consisting of irregular, interlacing bundles of collagen mixed with spindle cells having highly pleomorphic, anaplastic nuclei. Many of the neoplasms with features of fibrosarcomas also contained either areas of osteoid formation or cavernous or sinusoidal vascular spaces; these neoplasms were diagnosed as osteosarcomas or hemangiosarcomas, respectively. Cellular infiltration of lipocytes was seen concurrently with fibrosis or sarcomas and consisted of a few to several clumped and/or scattered, variably sized adipose cells within the areas of fibrosis or neoplasia. This change appeared to represent metaplasia of the proliferating fibrous tissue elements to adipose cells (fatty metaplasia).

Adrenal Gland: Medullary hyperplasia was observed at an increased incidence in high dose female rats; pheochromocytomas were also observed in vehicle control and dosed females (Table 16). Pheochromocytomas or malignant pheochromocytomas (combined) in male rats occurred with a significant positive trend; the incidence in the high dose group was significantly greater than that in the vehicle controls.

TABLE 15. SPLENIC FIBROSIS AND PRIMARY SARCOMAS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF ρ -CHLOROANILINE HYDROCHLORIDE (a)

	Vehicle Control	2 mg/kg	6 mg/kg	18 mg/kg
MALE				
Fibrosis				
Overall Rates	3/49 (6%)	11/50 (22%)	12/50 (24%)	41/50 (82%)
Fibroma				
Overall Rates	0/49 (0%)	0/50 (0%)	0/50 (0%)	2/50 (4%)
Fibrosarcoma (b)				
Overall Rates	0/49 (0%)	1/50 (2%)	2/50 (4%)	17/50 (34%)
Adjusted Rates	0.0%	2.7%	5.7%	47.1%
Terminal Rates	0/18 (0%)	0/32 (0%)	1/32 (3%)	5/21 (24%)
Day of First Observation	,	687	702	522
Life Table Tests	P<0.001	P=0.570	P = 0.364	P<0.001
Logistic Regression Tests	P<0.001	P=0.523	P = 0.293	P<0.001
Osteosarcoma (b)				
Overall Rates	0/49 (0%)	0/50 (0%)	1/50 (2%)	19/50 (38%)
Adjusted Rates	0.0%	0.0%	3.1%	62.8%
Terminal Rates	0/18 (0%)	0/32 (0%)	1/32 (3%)	11/21 (52%)
Day of First Observation	0,20 (0,0)	V.O. (3 /0)	730	495
Life Table Tests	P<0.001	(c)	P=0.615	P<0.001
Logistic Regression Tests	P<0.001	(c)	P = 0.615	P<0.001
Hemangiosarcoma (d)				
Overall Rates	0/49 (0%)	0/50 (0%)	0/50 (0%)	4/50 (8%)
Adjusted Rates	0.0%	0.0%	0.0%	12.0%
Terminal Rates	0/18 (0%)	0/32 (0%)	0/32 (0%)	0/21 (0%)
Day of First Observation	0/10 (0 /0)	0/02 (0/0)	0/02 (0/0)	618
Life Table Tests	P-0.002	(a)	(c)	P = 0.095
	P = 0.002	(c)	* * * *	
Logistic Regression Tests	P = 0.002	(c)	(c)	P = 0.068
Fibrosarcoma, Osteosarcoma, or		1/50 (00)	0/50/000	00/50/50%
Overall Rates	0/49 (0%)	1/50 (2%)	3/50 (6%)	38/50 (76%)
Adjusted Rates	0.0%	2.7%	8.7%	87.9%
Terminal Rates	0/18 (0%)	0/32 (0%)	2/32 (6%)	16/21 (76%)
Day of First Observation		687	702	494
Life Table Tests	P<0.001	P = 0.570	P = 0.236	P<0.001
Logistic Regression Tests	P<0.001	P = 0.485	P = 0.140	P<0.001
FEMALE (e)				
Fibrosis	4.000 20	A.M.A. (/ E-1)	0.000 (0.00)	40/80/04:3
Overall Rates	1/50 (2%)	2/50 (4%)	3/50 (6%)	42/50 (84%)
Fibrosarcoma	0/50 (0%)	0/20/04/	100000	0.00 (00)
Overall Rates	0/50 (0%)	0/50 (0%)	1/50 (2%)	0/50 (0%)
Osteosarcoma	0.180 (0.23)	0.00.70	0.00.00	1/50/02
Overall Rates	0/50 (0%)	0/50 (0%)	0/50 (0%)	1/50 (2%)

⁽a) The statistical analyses used are discussed in Section II (Statistical Methods) and Table A3 (footnotes); all doses calculated as milligrams p-chloroaniline per kilogram body weight.

⁽b) Historical incidence of all sarcomas in water gavage vehicle controls (mean \pm SD): 1/298 (0.3% \pm 0.8%); historical incidence in untreated controls in NTP studies: 8/1,906 (0.4% \pm 0.8%); no benign tumors, fibrosarcomas, or osteosarcomas have been observed in untreated controls.

⁽c) No P value is reported because no tumors were observed in the vehicle control and dosed groups.

⁽d) Historical incidence of hemangiomas or hemangiosarcomas (combined, for all organs) in water gavage vehicle controls (mean \pm SD): 2/300 (0.7% \pm 2%); historical incidence in untreated controls in NTP studies: 12/1,936 (0.6% \pm 1%)

⁽e) Historical incidence of sarcomas in water gavage vehicle controls: 0/297; historical incidence of sarcomas in untreated controls in NTP studies: 1/1,961 (mean \pm SD) $(0.05\% \pm 0.4\%)$; no fibrosarcomas or osteosarcomas have been observed.

TABLE 16. ADRENAL MEDULLARY LESIONS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF ρ -CHLOROANILINE HYDROCHLORIDE (a)

	Vehicle Control	2 mg/kg	6 mg/kg	18 mg/kg
MALE				
Hyperplasia				n
Overall Rates	15/49 (31%)	21/48 (44%)	15/48 (31%)	17/49 (35%)
Pheochromocytoma				
Overall Rates	13/49 (27%)	14/48 (29%)	14/48 (29%)	25/49 (51%)
Adjusted Rates	53.8%	40.3%	40.7%	79.5%
Terminal Rates	8/18 (44%)	11/31 (35%)	12/32 (38%)	15/21 (71%)
Day of First Observation	633	651	476	618
Life Table Tests	P<0.001	P = 0.158N	P = 0.134N	P = 0.061
Logistic Regression Tests	P = 0.003	P = 0.358N	P = 0.504N	P = 0.028
Malignant Pheochromocytoma				
Overall Rates	1/49 (2%)	0/48 (0%)	1/48 (2%)	1/49 (2%)
Pheochromocytoma or Malignan	t Pheochromocytoma (b)			
Overall Rates	13/49 (27%)	14/48 (29%)	15/48 (31%)	26/49 (53%)
Adjusted Rates	53.8%	40.3%	43.6%	82.9%
Terminal Rates	8/18 (44%)	11/31 (35%)	13/32 (41%)	16/21 (76%)
Day of First Observation	633	651	476	618
Life Table Tests	P<0.001	P = 0.158N	P = 0.175N	P = 0.041
Logistic Regression Tests	P = 0.001	P = 0.358N	P = 0.586N	P = 0.017
FEMALE				
Hyperplasia				
Overall Rates	4/50 (8%)	4/50 (8%)	7/50 (14%)	24/50 (48%)
Pheochromocytoma (c)				
Overall Rates	2/50 (4%)	3/50 (6%)	1/50 (2%)	6/50 (12%)
Adjusted Rates	6.2%	7.7%	2.8%	16.2%
Terminal Rates	1/27 (4%)	3/39 (8%)	1/36 (3%)	6/37 (16%)
Day of First Observation	557	729	729	729
Life Table Tests	P = 0.091	P = 0.650	P = 0.415N	P = 0.248
Logistic Regression Tests	P = 0.077	P = 0.553	P = 0.488N	P = 0.192

⁽a) All doses calculated as milligrams p-chloroaniline per kilogram body weight

⁽b) Historical incidence in water gavage vehicle controls (mean \pm SD): 121/299 (40% \pm 16%); historical incidence in untreated controls in NTP studies: 489/1,915 (26% \pm 14%)

⁽c) Historical incidence of pheochromocytomas or malignant pheochromocytomas (combined) in water gavage vehicle controls (mean \pm SD): 20/295 (7% \pm 2%); historical incidence in untreated controls in NTP studies: 99/1,968 (5% \pm 4%)

Testis: The incidences of interstitial cell adenomas in the dosed groups of male rats were greater than that in the vehicle controls (vehicle control, 36/49; low dose, 44/46; mid dose, 44/50; high dose, 46/50). These marginal increases were not considered to be related to chemical exposure.

Bone Marrow: Femoral hyperplasia was observed at increased incidences in high dose male and mid and high dose female rats (male: vehicle control, 26/49; low dose, 36/50; mid dose, 35/49; high dose, 46/50; female: 11/50; 12/48; 21/50; 37/47). Femoral reticular cell hyperplasia was observed at increased incidences in mid and high dose female rats (male: 0/49; 0/50; 3/49; 0/50; female: 1/50; 2/48; 7/50; 7/47).

Liver: Hemosiderin pigmentation was observed at an increased incidence in high dose male rats

(male: vehicle control, 1/49; low dose, 0/50; mid dose, 0/49; high dose, 26/49; female: 0/50; 0/50; 0/50; 1/50).

Hematopoietic System: Mononuclear cell leukemia in male and female rats occurred with significant negative trends; the incidences in the dosed groups were significantly lower than those in the vehicle controls (Table 17).

Anterior Pituitary Gland: Cysts of the pars distalis were observed at increased incidences in female rats (male: vehicle control, 3/47; low dose, 0/18; mid dose, 0/19; high dose, 1/46; female: 2/50; 3/33; 7/35; 12/50). The incidence of adenomas in high dose male rats was significantly lower than that in vehicle controls (20/47; 13/18; 11/19; 11/46; P = 0.027).

TABLE 17. MONONUCLEAR CELL LEUKEMIA IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF p-CHLOROANILINE HYDROCHLORIDE (a)

	Vehicle Control	2 mg/kg	6 mg/kg	18 mg/kg
MALE (b)		<u> </u>		
Overall Rates	21/49 (43%)	3/50 (6%)	2/50 (4%)	3/50 (6%)
Adjusted Rates	59.7%	8.7%	5.2%	9.8%
Ferminal Rates	5/18 (28%)	2/32 (6%)	1/32 (3%)	1/21 (5%)
Day of First Observation	466	674	498	615
ife Table Tests	P = 0.001N	P<0.001N	P<0.001N	P<0.001N
ogistic Regression Tests	P<0.001N	P<0.001N	P<0.001N	P<0.001N
FEMALE (c)				
Overall Rates	10/50 (20%)	2/50 (4%)	1/50 (2%)	1/50 (2%)
Adjusted Rates	27.2%	4.6%	2.6%	2.7%
Terminal Rates	2/27 (7%)	0/39 (0%)	0/36 (0%)	1/37 (3%)
Day of First Observation	529	617	711	729
ife Table Tests	P = 0.010N	P = 0.005N	P = 0.003N	P = 0.002N
ogistic Regression Tests	P = 0.013N	P = 0.015N	P = 0.004N	P = 0.004N

⁽a) All doses calculated as milligrams p-chloroaniline per kilogram body weight

⁽b) Historical incidence of leukemia in water gavage vehicle controls at study laboratory (mean \pm SD): 120/300 (40% \pm 16%); historical incidence in untreated controls in NTP studies: 636/1,936 (33% \pm 15%)

⁽c) Historical incidence of leukemia in water gavage vehicle controls at study laboratory (mean \pm SD): 75/299 (25% \pm 15%); historical incidence in untreated controls in NTP studies: 383/1,983 (19% \pm 7%)

SIXTEEN-DAY STUDIES

Deaths occurred in all dosed groups (Table 18). The final mean body weights of dosed and vehicle control mice were comparable. Cyanosis was

indicated by the bluish extremities of dosed mice. Compound-related lesions at 100 mg/kg included diffuse hemosiderosis of the liver Kupffer cells and diffuse congestion of the spleen in 2/2 males and 2/2 females.

TABLE 18. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE SIXTEEN-DAY GAVAGE STUDIES OF ρ -CHLOROANILINE HYDROCHLORIDE

		Mean	Body Weight:	Final Weight Relative	
Dose (a) (mg/kg)	Survival (b)	Initial (c)	Final	Change (d)	to Vehicle Controls (percent)
MALE					
0	5/5	24.4	27.0	+2.6	
25	(e) 4/5	24.2	28.2	+4.0	104.4
50	(f) 4/5	22.8	27.7	+4.9	102.6
100	(g) 4/5	24.2	27.7	+3.5	102.6
200	(h) 0/5	24.0	(i)	(i)	(i)
400	(j) 0/5	18.8	(i)	(i)	(i)
FEMALE					
0	5/5	18.4	20.4	+2.0	
25	(k) 3/5	18.4	21.0	+2.6	102.9
50	(1) 4/5	17.6	21.0	+3.4	102.9
100	(m) 3/5	18.0	21.3	+3.3	104.4
200	(j) 0/5	14.0	(i)	(i)	(i)
400	(n) 0/5	13.8	(i)	(i)	(i)

⁽a) All doses calculated as milligrams p-chloroaniline per kilogram body weight

⁽b) Number surviving/number initially in group; laboratory report states that three of the deaths were probably gavage related.

⁽c) Initial group mean body weight

⁽d) Mean body weight change of the survivors

⁽e) Day of death: 16 (f) Day of death: 7 (g) Day of death: 3

⁽h) Day of death: 3,3,4,4,6

⁽i) No data are reported due to the 100% mortality in this group.

⁽j) Day of death: 2,2,2,2,3 (k) Day of death: 2,8 (l) Day of death: 5 (m) Day of death: 7,8 (n) Day of death: all 2

THIRTEEN-WEEK STUDIES

Two male mice that received 120 mg/kg, three female mice that received 60 mg/kg, one female mouse that received 30 mg/kg, and one female vehicle control mouse died before the end of the studies (Table 19). Deaths were attributed to pneumonia. The pneumonia was generally confined to the terminal bronchioles and surrounding alveoli and was characterized by necrosis of bronchiolar and alveolar epithelium, suppurative inflammation, fibrosis, and varying degrees of hyperplasia of the remaining epithelium, sometimes leading to bronchiolization of alveoli. Epithelial cells in one affected animal contained intracytoplasmic inclusions. The mice were positive for Sendai titer, and the appearance of the pneumonia was compatible with Sendai virus infection. The final mean body weights of dosed and vehicle control mice were similar. The heart weights of male mice at 30 mg/kg or more, the lung weights of male mice at 60 and 120 mg/kg, the spleen weights of all groups of dosed male mice, and the spleen weights of

female mice at 30 mg/kg or more were significantly greater than those of vehicle controls (Figure 8; Table F2). The hematocrit value and the erythrocyte count for almost all dosed groups of mice were significantly lower than those for vehicle controls (Table 20; Figures 9 and 10). The methemoglobin concentration for all groups of male mice and female mice dosed at 15 mg/kg or more was significantly greater than those for vehicle controls. Compound-related increases were seen for the hemoglobin concentration, the number of segmented neutrophils (females only), the mean corpuscular hemoglobin, the mean corpuscular hemoglobin concentration, the mean corpuscular volume, and the number of nucleated erythrocytes. Erythrocytes from male and female mice in the mid (30 mg/kg) and high (120 mg/kg) dose groups had moderate to marked numbers of Heinz bodies (inclusions of denatured hemoglobin). Related findings included moderate to marked polychromasia and poikilocytosis (presence of erythrocytes with abnormal shapes).

TABLE 19. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE THIRTEEN-WEEK GAVAGE STUDIES OF p-CHLOROANILINE HYDROCHLORIDE

		Mean	Body Weights	Final Weight Relative	
Dose (a) (mg/kg)	Survival (b)	Initial (c)	Final	Change (d)	to Vehicle Controls (percent)
MALE					
0	10/10	23.2 ± 0.5	31.9 ± 1.3	$+8.7 \pm 1.2$	
7.5	10/10	23.5 ± 0.5	33.3 ± 1.0	$+9.8 \pm 0.9$	104.4
15	10/10	24.3 ± 0.5	32.4 ± 1.0	$+8.1 \pm 0.8$	101.6
30	10/10	23.1 ± 0.6	33.6 ± 0.6	$+10.5 \pm 0.6$	105.3
60	10/10	23.3 ± 0.4	32.5 ± 0.7	$+9.2 \pm 0.5$	101.9
120	(e) 8/10	23.7 ± 0.5	31.8 ± 1.0	$+8.4 \pm 0.9$	99.7
FEMALE					
0	(f) 9/10	18.6 ± 0.2	26.6 ± 0.5	$+7.9 \pm 0.4$	
7.5	10/10	18.2 ± 0.2	25.7 ± 0.4	$+7.5 \pm 0.4$	96.6
15	10/10	19.1 ± 0.3	25.3 ± 0.7	$+6.2 \pm 0.5$	95.1
30	(g) 9/10	18.1 ± 0.2	25.2 ± 0.7	$+7.1 \pm 0.7$	94.7
60	(f) 7/10	18.2 ± 0.3	25.9 ± 0.7	$+7.4 \pm 0.5$	97.4
120	10/10	18.7 ± 0.3	26.1 ± 0.4	$+7.4 \pm 0.2$	98.1

⁽a) All doses calculated as milligrams p-chloroaniline per kilogram body weight

⁽b) Number surviving/number initially in group

⁽c) Initial group mean body weight \pm standard error of the mean. Subsequent calculations are based on animals surviving to the end of the study.

⁽d) Mean body weight change of the survivors ± standard error of the mean

⁽e) Week of death: 2,3

⁽f) Week of death: all 2

⁽g) Week of death: 6

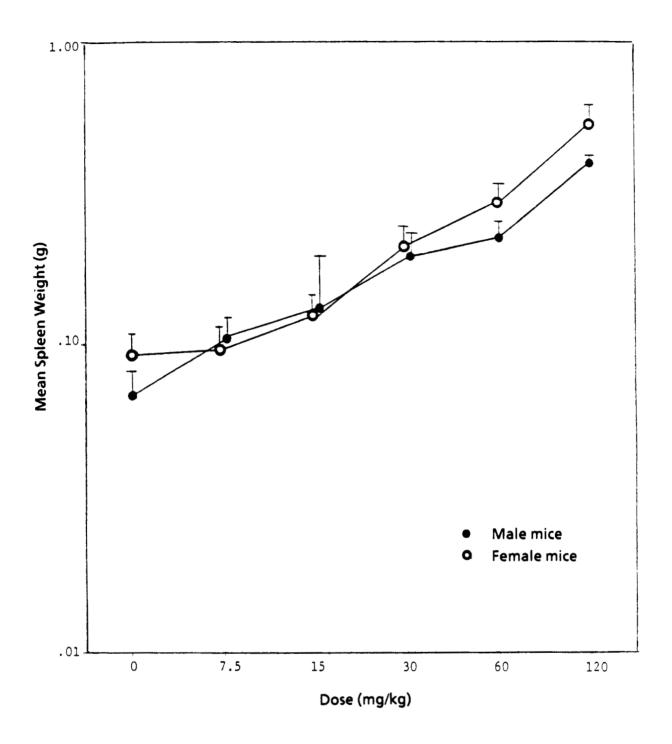
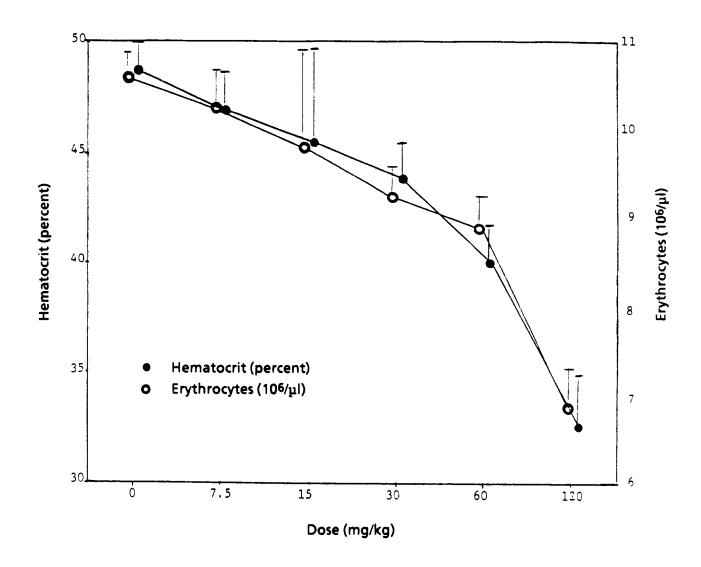
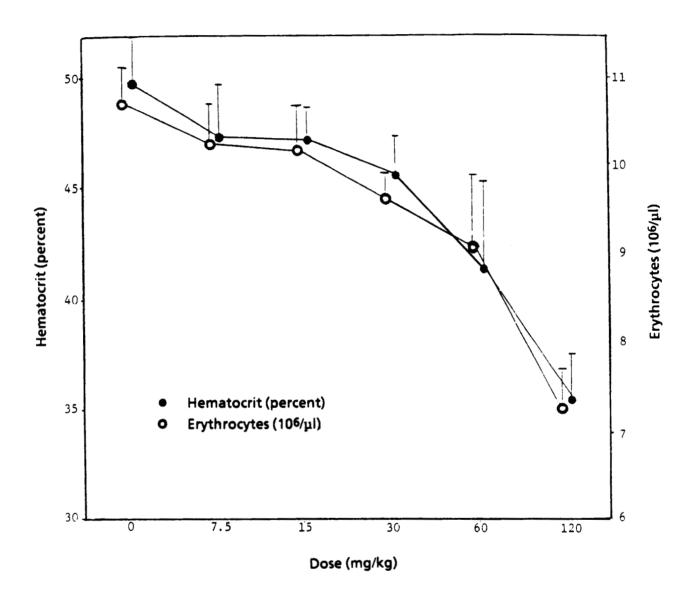


FIGURE 8. SPLEEN WEIGHTS (MEAN AND STANDARD DEVIATION) OF MICE IN THE THIRTEEN-WEEK GAVAGE STUDIES OF p-CHLOROANILINE HYDROCHLORIDE


TABLE 20. HEMATOLOGY FOR MICE IN THE THIRTEEN-WEEK GAVAGE STUDIES OF p-CHLOROANILINE HYDROCHLORIDE (a)

	Vehic Contr		7. mg	-	1 mg/	-	3 mg/	-	60 mg/k	g	12 mg/	
MALE						· · · · · · · · · · · · · · · · · · ·						
No. examined	10		10		10		10		10		8	
Leukocytes (1,000/mm ³)	8.27 ±	0.516	6.92 ±	0.533	(b) 5.44 ±	0.697	7.15 ±	0.747	9.26 ±	0.795	8.99 ±	1,284
Lymphocytes (1,000/mm ³)	6.01 ±	0.349	(b) 3.76 ±	0.209	(b) 3.83 ±	0.686	4.90 ±	0.696	6.06 ±	0.751	5.54 ±	0.711
Segmented neutrophils												
(1,000/mm ³)	2.07 ±	0.331	3.07 ±	0.613	1.46 ±	0.341	2.07 ±	0.293	3.10 ±	0.496	3.35 ±	1.005
Monocytes (1,000/mm ³)	0.01 ±	0.009	0.04 ±	0.020	0.03 ±	0.017	0.04 ±	0.015	0.03 ±	0.015	0.02 ±	0.021
Eosinophils (1,000/mm ³)	0.18 ±	0.055	0.05 ±	0.022	0.11 ±	0.026	0.15 ±	0.047	0.06 ±	0.023	0.08 ±	0.032
Hematocrit (percent)	48.70 ±	0.400	46.90 ±	0.530	(e) 45.50 ±	1.340	(c) 43.80 ±	0.530	(c) 40.40 ±	0.400	(c) 32.63 ±	0.820
Hemoglobin (g/dl)	16.7 ±	0.10	15.9 ±	0.15	16.1 ±	0.61	16.3 ±	0.28	(b) 18.4 ±	0.24	(b) 17.2 \pm	0.31
MCH (pg)	15.7 ±	0.04	15.5 ±	0.18	(b) $16.5 \pm$	0.25	(c) 17.6 ±	0.25	(c) 20.9 ±	0.29	(c) 25.1 ±	0.21
MCHC (g/dl)	34.2 ±	0.09	34.0 ±	0.15	35.4 ±	0.53	(c) 37.3 ±	0.39	(c) 45.3 ±	0.71	(c) 52,6 ±	0.65
MCV (cubic microns)	45.7 ±	0.15	45.9 ±	0.69	46.5 ±	0.48	47.2 ±	0.44	46.3 ±	0.30	(c) 47.9 ±	0.44
Methemoglobin (percent												
of hemoglobin)	0.63 ±	0.075	(c) 1.72 ±	0.194	(c) 1.77 ±	0.140	(c) 2.36 ±	0.174	(c) 2.84 ±	0.388	(c) 3.80 ±	0.201
Nucleated erythrocytes												
$(1,000/mm^3)$	0.00 ±	0.000	0.00 ±	0.000	0.20 ±	0.200	0.30 ±	0.153	0.50 ±	0.307	(c) 3.13 ±	0.833
Erythrocytes (10 ⁶ /mm ³)	10.66 ±	0.070	10.24 ±	0.130	(c) $9.79 \pm$	0.350	(c) 9.26 \pm	0.100	(c) $8.78 \pm$	0.090	(c) $6.86~\pm$	0.160
FEMALE												
No. examined	9		10		10		9		7		10	
Leukocytes (1,000/mm ³)	6.13 ±	0.681	5.10 ±	0.428	6.48 ±	0.334	7.39 ±	0.644	9.37 ±	0.929	7.13 ±	1.022
Lymphocytes (1,000/mm ³)	4.87 ±	0.553	4.16 ±	0.332	5.06 ±	0.236	5.70 ±	0.522	7.36 ±	0.870	5.23 ±	0.935
Segmented neutrophils												
(1,000/mm ³)	1.13 ±	0.190	0.83 ±	0.146	1.30 ±	0.184	1.60 ±	0.214	(b) 1.89 \pm	0.238	(b) $1.75 \pm$	0.149
Monocytes (1,000/mm ³)	0.04 ±	0.012	0.01 ±	0.007	0.00 ±	0.000	0.00 ±	0.000	$0.08 \pm$	0.038	0.05 ±	0.031
Eosinophils (1,000/mm ³)	0.09 ±	0.038	0.10 ±	0.025	$0.12 \pm$	0.029	0.08 ±	0.025	0.05 ±	0.030	0.11 ±	0.028
Hematocrit (percent)	49.78 ±	0.720	(b) 47.30 \pm	0.750	(b) 47.20 \pm	0.470	(c) 45.67 \pm	0.530	(c) 41.43 \pm	1.460	(c) 35.40 \pm	0.650
Hemoglobin (g/dl)	16.8 ±	0.22	16.1 ±	0.22	16.6 ±	0.17	17.1 ±	0.22	(c) 19.6 ±	0.56	(c) 18.1 \pm	0.22
MCH (pg)	15.7 ±	0.07	15.7 \pm	0.08	16.3 ±	0.13	(c) 17.8 \pm	0.17	(c) 22.0 \pm	0.59	(c) 25.0 \pm	0.43
MCHC (g/dl)	33.9 ±	0.16	34.1 \pm	0.13	35.1 ±	0.19	(c) $37.5 \pm$	0.36	(c) 47.2 \pm	1.12	(c) 51.3 \pm	0.80
MCV (cubic microns)	46.3 ±	0.33	46.0 ±	0.26	46.4 ±	0.37	47.6 ±	0.24	46.9 ±	0.63	(c) 48.8 \pm	0.44
Methemoglobin (percent												
of hemoglobin)	0.29 ±	0.071	$0.30 \pm$	0.112	(c) 1.65 \pm	0.189	(c) $2.88 \pm$	0.360	(c) $3.22 \pm$	0.146	(c) $3.32~\pm$	0.257
Nucleated erythrocytes												
(1,000/mm ³)	$0.22 \pm$	0.147	0.00 ±	0.000	0.10 ±	0.100	0.00 ±	0.000	0.86 ±	0.404	(c) $5.80 \pm$	1.218
Crythrocytes (106/mm3)	10.69 ±	0.150	10.30 ±	0.160	(b) 10.18 ±	0.150	(c) 9.63 ±	0.100	(c) 8.93 ±	0.330	(c) $7.26 \pm$	0.156


⁽a) Mean ± standard error. MCH = mean corpuscular hemoglobin; MCHC = mean corpuscular hemoglobin concentration; MCV = mean corpuscular volume; P values are vs. the vehicle controls; Dunnett's test was used when a nonsignificant result was obtained by the Jonckheere trend test; otherwise Williams' test was used (Dunnett, 1980; Jonckheere, 1954; Williams, 1971, 1972); doses calculated as p-chloroaniline.

⁽b) P < 0.05 vs. vehicle controls

⁽c) P < 0.01 vs. vehicle controls

FIGURE 9. PERCENTAGE HEMATOCRIT AND ERYTHROCYTE COUNT (AND STANDARD DEVIATION) FOR MALE MICE IN THE THIRTEEN-WEEK GAVAGE STUDIES OF ρ -CHLOROANILINE HYDROCHLORIDE

FIGURE 10. PERCENTAGE HEMATOCRIT AND ERYTHROCYTE COUNT (AND STANDARD DEVIATION) FOR FEMALE MICE IN THE THIRTEEN-WEEK GAVAGE STUDIES OF p-CHLOROANILINE HYDROCHLORIDE

Compound-related effects in the 13-week studies included increased incidences of pigmentation (hemosiderin) of the kidney and Kupffer cells of the liver and hematopoiesis of the spleen (Table 21). The severity of the hematopoiesis increased as the dose increased.

Dose Selection Rationale: Major compound-related effects observed in mice were hemolytic anemia, methemoglobinemia, and splenomegaly. The hemolytic anemia and splenomegaly responses were dose related. Methemoglobin levels ranged from 0.3% to 3.8% in dosed groups compared with 0.3% to 0.6% in vehicle controls. It was judged that doses higher than 30 mg/kg for the 2-year studies might produce severe anemia in animals because hematocrit and erythrocyte values were reduced substantially in the 13-week studies at doses of 60 and 120 mg/kg.

Furthermore, the magnitude of splenomegaly was thought to be too great for selection of doses higher than 30 mg/kg. Based on this information, 30 mg/kg was selected as the high dose and 3 and 10 mg/kg as the low and mid doses, respectively. This dose regimen was expected to achieve a no-effect level at the low dose and some effects on the hematopoietic system at the mid dose in the 2-year studies.

TWO-YEAR STUDIES

Body Weights and Clinical Signs

Mean body weights of high dose male and female mice were generally within 5% of those of vehicle controls throughout the studies (Table 22 and Figure 11). No compound-related clinical signs were observed.

TABLE 21. NUMBER OF MICE WITH SELECTED LESIONS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF ρ-CHLOROANILINE HYDROCHLORIDE (a)

						,=
Site/Lesion	0	7.5	Dose	(mg/kg) 30	60	120
ALE						
lney Hemosiderosis	0	0	0	0	0	9
r Iemosiderosis of Kupffer cells	0	0	0	2	10	9
een Hematopoiesis	0	8	10	10	10	8
MALE						
ney Gemosiderosis	0	0	0	0	4	10
emosiderosis of Kupffer cells	0	0	0	0	7	10
n ematopoiesis	2	9	10	9	8	10

⁽a) Ten animals in each group examined; all doses calculated as milligrams p-chloroaniline per kilogram body weight.

TABLE 22. MEAN BODY WEIGHTS OF MICE IN THE TWO-YEAR GAVAGE STUDIES OF ρ -CHLOROANILINE HYDROCHLORIDE

Weeks		Control		3 mg/kg		A	10 mg/kg	NT -	A as ATTA	30 mg/kg	N-
on Study	Av. Wt. (grams)	No. Weighed	Av. Wt. (grams)	Wt. (percent of veh. controls)	No. Weighed	Av. Wt. (grams)	Wt. (percent of veh. controls)	No. Weighed	Av. Wt. (grams)	Wt. (percent of veh. controls)	No. Weighed
MALE		······································									
1	21.9	50	21.8	99.5	50	22.5	102.7	50	21.6	98.6	50
2	23.3	50	23.8	102.1	50	24.0	103.0	50	23.7	101.7	50
3	24.0	50	24.9	103.8	50	25.1	104.6	50 50	24.8 26.6	103.3 104.3	50 50
4 5	25.5 27.7	50 50	26.2 27.6	102.7 99.6	50 50	26.7 28.4	104.7 102.5	50 50	28.0	101.1	50 50
6	28.6	50	28.0	97.9	50	29.0	101.4	50	28.2	98.6	50
7	28.5	50	28.6	100.4	50	29.7	104.2	50	28.6	100.4	50
8	28.9	50	29.6	102.4	50	30.5	105.5	50	29.3	101.4	50
9 10	30.2 30.3	50 50	30.9 29.4	102.3 97.0	50 50	31.2 30.2	103.3 99.7	50 50	29.9 28.8	99.0 95.0	50 50
11	31.2	50	31.6	101.3	50	31.9	102.2	50	31.0	99.4	50
12	31.0	50	30.6	98.7	50	32.3	104.2	50	31.8	102.6	50
13	32.0	50	31.4	98.1	50	31.7	99.1	50	31.7	99.1	50
$\frac{17}{22}$	33.5 35.2	50 50	34.3 34.9	102.4 99.1	50 49	34.3 35.1	102.4 99.7	50 50	33.1 35.2	98. 8 100.0	50 50
26	35.7	50 50	35.3	98.9	49	36.2	101.4	50	35.9	100.6	50
30	37.5	50	36.7	97.9	49	37.9	101.1	50	37.0	98.7	50
34	38.7	50	37.3	96.4	49	38.6	99.7	50	38.2	98.7	50
38 42	42.8 44.4	50 50	41.3 43.4	96.5 97.7	48 48	42.8 44.7	100.0 100.7	50 50	42.2 44.1	98.6 99.3	50 50
42 46	43.7	50 50	43.4 42.5	97.7 97.3	48	43.8	100.7	50	42.0	96.1	50
50	41.6	50	37.8	90.9	48	41.5	99.8	50	41.7	100.2	50
54	42.9	50	40.9	95.3	48	42.8	99.8	50	42.9	100.0	50
58	43.1	50	42.8	99.3	47	44.5	103.2	49 48	44.2 44.9	102.6 99.8	49 49
62 66	45.0 45.1	50 50	43.8 43.9	97.3 97.3	47 46	44.0 44.4	97.8 98.4	(a) 28	44.9	100.9	49
70	44.8	50	43.8	97.8	45	43.9	98.0	47	44.6	99.6	49
74	44.9	48	43.0	95.8	45	43.2	96,2	45	45.6	101.6	47
78	44.9	47	43.6	97.1	45	43.8	97.6	44	44.6	99.3	46
82 86	45.4 45.6	47 46	43.9 43.5	96.7 95.4	45 45	44.6 44.4	98.2 97.4	(a) 38 43	45.3 44.8	99.8 98.2	(a) 44 46
90	44.3	46	43.5	95.4 97.3	45 45	43.4	98.0	43 43	44.0	99.3	45
94	44.9	(a) 44	42.6	94.9	(a) 43	42.5	94.7	(a) 40	43.1	96.0	(a) 41
98	44.2	43	42.6	96.4	40	42.8	96.8	34	42.4	95.9	(a) 41
102	42.9	43	42.2	98.4	37	41.8	97.4	30	41.1	95.8	37
FEMAL		* 0		22.0	**	17.1	101.0	70	17.3	103.0	50
$\frac{1}{2}$	16.8 17.1	50 49	16.3 17.9	97.0 104.7	50 47	17.1 18.2	101.8 106.4	50 50	18.3	107.0	50 50
3	19.1	49	18.7	97.9	47	19.3	101.0	50	19.5	102.1	50
4	20.0	49	19.9	99.5	47	20.4	102.0	50	20.7	103.5	50
5	20.6	49	21.3	103.4	47	21.5	104.4	50	21.5	104.4	50
6 7	21.2 22.0	49 49	21.6 22.2	101.9 100.9	47 47	21.9 22.1	103.3 100.5	50 50	21.5 21.9	101. 4 99.5	50 50
8	22.0 22.2	49	22.2	101.8	47	22.1	103.2	50 50	23.1	104.1	50
9	23.2	49	23.2	100.0	47	23.7	102.2	50	23.8	102.6	50
10	22.7	49	22.7	100.0	47	22.6	99.6	50	24.5	107.9	50
11	23.4	49	23.6	100.9	47	23.4	100.0	50 50	23.4 23.7	100.0 100.4	50 50
12 13	23.6 24.0	49 49	23.6 23.7	100.0 98.8	47 47	23.9 24.2	101.3 100.8	50 50	24.6	102.5	50
17	25.4	49	25.2	99.2	47	25.5	100.4	50	25.9	102.0	50
22	26.7	48	26.7	100.0	47	27.2	101.9	50	27.2	101.9	50
26	28.1	48	27.7	98.6	47	27.7	98.6	50	28.2	100.4	50
30	28.5	48	28.2	98.9 97.0	47 47	28.9 29.8	101.4 97.7	50 50	29.4 29.3	103.2 96.1	50 50
34 38	30.5 31.7	48 48	29.6 31.5	97.0 99.4	47	32.5	102.5	50	31.8	100.3	50
42	33.4	48	32.9	98.5	47	34.0	101.8	50	32.9	98.5	50
46	33.7	48	33.8	100.3	47	34.4	102.1	50	33.0	97.9	50
50	34.7	48	34.3	98.8	47	34.4	99.1	50 50	33. 4 35.5	96.3 98.1	50 50
54 58	36.2 36.9	48 48	35.2 36.8	97.2 99.7	47 47	35.3 37.2	97.5 100.8	50 50	36.8	99.7	50 50
62	39.0	48	37.9	97.2	47	39.5	101.3	50	38.0	97.4	50
66	40.7	48	39.1	96.1	46	40.4	99.3	50	38.6	94.8	49
70	41.0	47	39.9	97.3	46	41.3	100.7	50	39.0	95.1 97.1	49
74 78	40.9 40.1	47 46	38.8 39.5	94.9 98.5	46 45	41.8 41.5	102.2 103.5	50 48	39.7 40.3	97.1 100.5	49 4 9
82	41.8	(a) 45	41.5	99.3	45	42.0	100.5	(a) 46	41.5	99.3	(a) 47
86	42.3	46	42.3	100.0	45	42.9	101.4	48	42.2	99.8	48
90	43.1	46	42.6	98.8	45	43.1	100.0	47	41.3	95.8	46
94 98	43.4 44.2	46 44	42.6 44.0	98.2 99.5	(a) 43 44	43.6 45.2	100.5 102.3	47 44	41.8 43.1	96.3 97.5	45 44
102	44.4	42	43.9	98.9	43	45.2	101.8	44	43.5	98.0	42
102	44.4	42	43.9	98.9	43	45.2	101.8	44	43.5	98.0	

⁽a) The number of animals weighed was lower than the number of animals surviving.

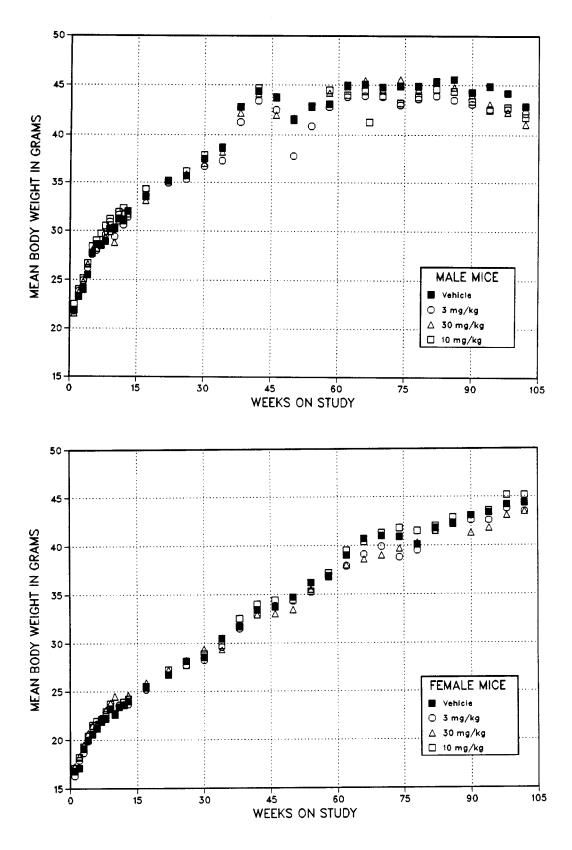


FIGURE 11. GROWTH CURVES FOR MICE ADMINISTERED p-CHLOROANILINE HYDROCHLORIDE BY GAVAGE FOR TWO YEARS

Survival

Estimates of the probabilities of survival for male and female mice administered p-chloroaniline hydrochloride at the doses used in these studies and for vehicle controls are shown in Table 23 and in the Kaplan and Meier curves in Figure 12. The survival of the mid dose group of male mice was significantly lower than that of the vehicle controls after week 99. No other significant differences in survival were observed between any groups of males or females.

Pathology and Statistical Analyses of Results

This section describes the statistically significant or biologically noteworthy changes in the incidences of mice with neoplastic or nonneoplastic lesions of the liver, circulatory system, hematopoietic system, and kidney.

Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary tumors that occurred with an incidence of at least 5% in at least one animal group, and historical control incidences for the neoplasms mentioned in this section are presented in Appendixes C and D for male and female mice, respectively.

TABLE 23. SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIES OF ρ-CHLOROANILINE HYDROCHLORIDE (a)

	Vehicle Control	3 mg/kg	10 mg/kg	30 mg/kg
MALE (b)	- Property and the residence of the second s			
Animals initially in study	50	50	50	50
Nonaccidental deaths before termination (c)	7	13	21	15
Animals missing	0	1	0	0
Killed at termination	43	36	29	35
Survival P values (d)	0.295	0.211	0.005	0.110
FEMALE (b)				
Animals initially in study	50	50	50	50
Nonaccidental deaths before termination (c)	10	5	6	9
Accidentally killed	1	3	0	0
Killed at termination	39	42	44	41
Survival P values (d)	0.875	0.298	0.408	0.966

⁽a) All doses calculated as milligrams p-chloroaniline per kilogram body weight

⁽b) First day of termination period: 728 (week 104)

⁽c) Includes animals killed in a moribund condition

⁽d) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons with the vehicle controls are in the dosed columns.

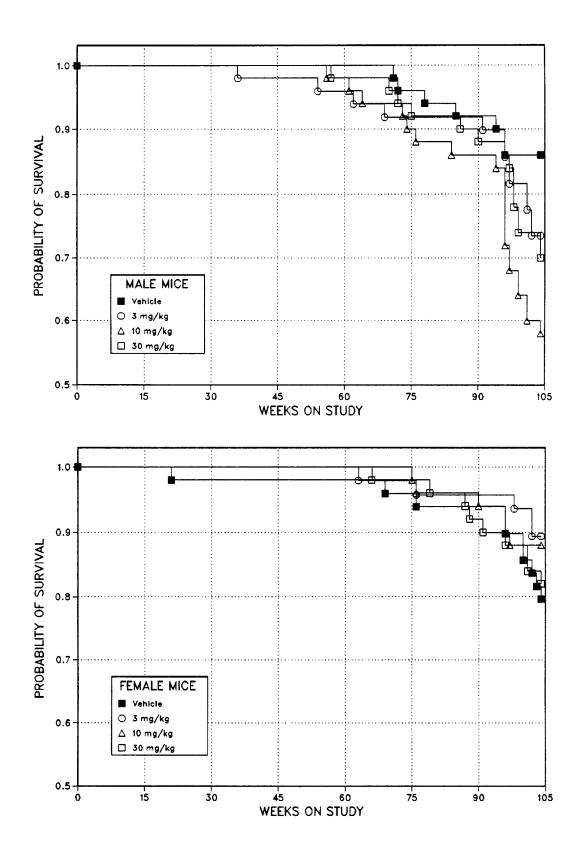


FIGURE 12. KAPLAN-MEIER SURVIVAL CURVES FOR MICE ADMINISTERED \$\rho\$-CHLOROANILINE HYDROCHLORIDE BY GAVAGE FOR TWO YEARS

Liver: Pigmentation (hemosiderin) of the Kupffer cells was observed in high dose mice (male: vehicle control, 0/50; low dose, 0/49; mid dose, 0/50; high dose, 50/50; female: 0/50; 0/50; 1/50; 46/50). Hepatocellular adenomas in male mice occurred with a significant negative trend, and hepatocellular carcinomas in male mice occurred with a significant positive trend (Table 24). The incidences of hepatocellular carcinomas in mid and high dose males and of

hepatocellular adenomas or carcinomas (combined) in low, mid, and high dose males were significantly greater than those in vehicle controls. Hepatocellular carcinomas metastasized to the lung in 1/50 vehicle control, 1/49 low dose, 2/50 mid dose, and 9/50 high dose male mice. Hepatocellular adenomas or carcinomas (combined) were observed in 6/50 vehicle control, 9/50 low dose, 8/50 mid dose, and 11/50 high dose female mice.

TABLE 24. HEPATOCELLULAR TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF p-CHLOROANILINE HYDROCHLORIDE (a)

	Vehicle Control	3 mg/kg	10 mg/kg	30 mg/kg
Adenoma (b)				
Overall Rates	9/50 (18%)	15/49 (31%)	10/50 (20%)	4/50 (8%)
Adjusted Rates	20.9%	36.0%	29.1%	11.4%
Terminal Rates	9/43 (21%)	10/36 (28%)	7/29 (24%)	4/35 (11%)
Day of First Observation	728	432	443	728
Life Table Tests	P = 0.044N	P = 0.060	P = 0.205	P = 0.209N
Logistic Regression Tests	P = 0.020N	P = 0.097	P = 0.478	P = 0.209N
Carcinoma (c)				
Overall Rates	3/50 (6%)	7/49 (14%)	11/50 (22%)	17/50 (34%)
Adjusted Rates	7.0%	16.3%	25.9%	37.9%
Terminal Rates	3/43 (7%)	2/36 (6%)	1/29 (3%)	8/35 (23%)
Day of First Observation	728	637	514	490
Life Table Tests	P<0.001	P = 0.127	P = 0.011	P<0.001
Logistic Regression Tests	P<0.001	P = 0.149	P = 0.034	P<0.001
Metastatic to Lung	1/50	1/49	2/50	9/50
Adenoma or Carcinoma (d)				
Overall Rates	11/50 (22%)	21/49 (43%)	20/50 (40%)	21/50 (42%)
Adjusted Rates	25.6%	46.4%	47.0%	47.1%
Terminal Rates	11/43 (26%)	12/36 (33%)	8/29 (28%)	12/35 (34%)
Day of First Observation	728	432	443	490
Life Table Tests	P = 0.081	P = 0.012	P = 0.007	P = 0.010
Logistic Regression Tests	P = 0.117	P = 0.019	P = 0.045	P = 0.027

⁽a) The statistical analyses used are discussed in Section II (Statistical Methods) and Table C3 (footnotes); all doses calculated as milligrams p-chloroaniline per kilogram body weight.

⁽b) Historical incidence in water gavage vehicle controls (mean \pm SD): 54/347 (16% \pm 4%); historical incidence in untreated controls in NTP studies: 259/2,032 (13% \pm 7%)

⁽c) Historical incidence in water gavage vehicle controls (mean \pm SD): 56/347 (16% \pm 8%); historical incidence in untreated controls in NTP studies: 379/2,032 (19% \pm 7%)

⁽d) Historical incidence in water gavage vehicle controls (mean \pm SD): 106/347 (31% \pm 6%); historical incidence in untreated controls in NTP studies: 609/2,032 (30% \pm 8%)

Circulatory System: The incidence of hemangiosarcomas in high dose male mice was marginally increased relative to that in vehicle controls (Table 25). Nearly all of the hemangiosarcomas occurred in the liver or spleen (liver: vehicle control, 2/50; low dose, 2/49; mid dose, 1/50; high dose, 6/50; spleen: 3/50; 2/49; 0/50; 5/50). One vehicle control male mouse and three high dose male mice had liver neoplasms with characteristics of hepatocellular carcinomas but which also contained vascular elements similar to those of hemangiosarcomas; both hepatocellular carcinomas and hepatic hemangiosarcomas were diagnosed in each of these animals. However, it is not uncommon for hepatocellular carcinomas to contain prominent, dilated, vascular spaces or areas of necrosis and hemorrhage with reactive endothelial cells and fibroblasts that resemble a vascular neoplasm. For these lesions, it is difficult to determine if two distinctly different primary neoplasms are present.

TABLE 25. HEMANGIOSARCOMAS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ-CHLOROANILINE HYDROCHLORIDE (a)

	Vehicle Control	3 mg/kg	10 mg/kg	30 mg/kg
Liver Overall Rates	2/50 (4%)	2/50 (4%)	1/50 (2%)	6/50 (12%)
Spleen Overall Rates	3/50 (6%)	2/50 (4%)	0/50 (0%)	5/50 (10%)
All Sites (b)				
Overall Rates	4/50 (8%)	4/49 (8%)	1/50 (2%)	10/50 (20%
Adjusted Rates	9.3%	9.7%	3.4%	23.9%
Terminal Rates	4/43 (9%)	2/36 (6%)	1/29 (3%)	5/35 (14%)
Day of First Observation	728	479	728	39 9
Life Table Tests	P = 0.011	P = 0.560	P = 0.315N	P = 0.047
Logistic Regression Tests	P = 0.014	P = 0.639N	P = 0.313N	P = 0.083

⁽a) All doses calculated as milligrams p-chloroaniline per kilogram body weight

⁽b) Historical incidence of hemangiomas or hemangiosarcomas (combined) in water gavage vehicle controls (mean ± SD):

^{11/350 (3%} \pm 3%); historical incidence in untreated controls in NTP studies: 98/2,040 (5% \pm 4%)

Hematopoietic System: Proliferation of hematopoietic cells in the liver was observed at increased incidences in dosed female mice (male: vehicle control, 7/50; low dose, 4/49; mid dose, 7/50; high dose, 5/50; female: 15/50; 29/50; 24/50; 31/50). The incidences of malignant lymphomas in low and high dose males and in mid and high dose females were significantly lower

than those in vehicle controls (Table 26).

Kidney: Multifocal renal tubular pigmentation (hemosiderin) was observed in high dose female mice (male: vehicle control, 0/50; low dose, 0/6; mid dose, 0/10; high dose, 4/49; female: 0/50; 0/7; 0/4; 38/49).

TABLE 26. MALIGNANT LYMPHOMAS IN MICE IN THE TWO-YEAR GAVAGE STUDIES OF p-CHLOROANILINE HYDROCHLORIDE (a)

	Vehicle Control	3 mg/kg	10 mg/kg	30 mg/kg
MALE (b)			<u> </u>	
Overall Rates	10/50 (20%)	3/49 (6%)	9/50 (18%)	3/50 (6%)
Adjusted Rates	21.6%	7.7%	23.9%	8.0%
Terminal Rates	7/43 (16%)	1/36 (3%)	4/29 (14%)	2/35 (6%)
Day of First Observation	496	674	423	682
Life Table Tests	P = 0.149N	P = 0.072N	P = 0.443	P = 0.074N
Logistic Regression Tests	P = 0.095N	P = 0.037N	P=0.397N	P=0.034N
FEMALE (c)				
Overall Rates	19/50 (38%)	12/50 (24%)	5/50 (10%)	10/50 (20%)
Adjusted Rates	41.3%	27.8%	10.3%	23.0%
Terminal Rates	12/39 (31%)	11/42 (26%)	2/44 (5%)	8/41 (20%)
Day of First Observation	666	528	521	609
Life Table Tests	P = 0.082N	P = 0.083N	P = 0.001N	P = 0.041N
Logistic Regression Tests	P = 0.071 N	P = 0.104N	P = 0.001 N	P = 0.032N

⁽a) All doses calculated as milligrams p-chloroaniline per kilogram body weight

⁽b) Historical incidence of lymphomas or leukemia (combined) in water gavage vehicle controls (mean \pm SD): 42/350

^{(12%} \pm 6%); historical incidence in untreated controls in NTP studies: 252/2,040 (12% \pm 7%)

⁽c) Historical incidence of lymphomas or leukemia (combined) in water gavage vehicle controls (mean ± SD): 122/350

 $^{(35\% \}pm 10\%)$; historical incidence in untreated controls in NTP studies; $636/2.040 (31\% \pm 13\%)$

III. RESULTS: GENETIC TOXICOLOGY

Mutagenic activity for p-chloroaniline was observed by two laboratories in strain TA98 in the presence of Aroclor 1254-induced male Sprague Dawley rat or Syrian hamster S9, and one laboratory noted an increase in revertant colonies in strain TA100 in the presence of hamster S9 only (Table 27). No mutagenic activity was reported in strains TA97, TA1535, or TA1537. Trifluorothymidine resistance was observed in cultured mouse L5178Y lymphoma cells both with and without Aroclor 1254-induced male F344 rat liver S9 (Table 28). p-Chloroaniline induced sister chromatid exchanges (SCEs) both in the presence and absence of Aroclor 1254-induced

male Sprague Dawley rat liver S9; tests performed at Environmental Health Research and Testing (EHRT) found an increase in SCEs only in the absence of S9 (Table 29). Chromosomal aberration studies conducted at Litton Bionetics, Inc. (LBI), showed a significant increase in aberrations in the presence of S9 (Table 30). No significant increase in aberrations in either the presence or absence of S9 was observed in a study conducted by EHRT; however, the maximum doses of p-chloroaniline used in this study were lower than the doses that produced positive responses in the LBI study.

TABLE 27. MUTAGENICITY OF p-CHLOROANILINE IN SALMONELLA TYPHIMURIUM (a)

Strain Dose (µg/plate))		Revertan	its/Plate (b)		
Study performed	at SRI Internati	ional				·····
		· S9	+ S9 (ha	<u>ımster)</u>	<u>+ S9</u>	(rat)
TA100 0	131 ±	8.3	169 ±	9.5	172 ±	5.3
33	128 ±		158 ±		164 ±	
100		12.5	151 ±	6.1	161 ±	
333	113 ±		148 ±	5.2	163 ±	
1,000	120 ±		170 ±	9.8	173 ±	
1,666	To		160 ±	6.4	155 ±	
Frial summary	Neg	ative	Nega	tive	Neg	ative
Positive control(c)	510 ±	11.1	2,285 ±	42.7	1,053 ±	75.0
TA1535 0						
	23 ± 18 ±		5 ±	0.9	8 ±	
33			11 ±	1.5	10 ±	
100	16 ±		9 ±	1.5	8 ±	
333	22 ±		8 ±	1.3	10 ±	
1,000	22 ±		11 ±	3.1	10 ±	
1,666	(d) 0 ±	0.0	11 ±	1.0	9 ±	2.3
Crial summary Positive	Neg	ative	Nega	tive	Neg	ative
control(c)	451 ±	26.8	600 ±	17.8	232 ±	9.2
TA07 0	100 ±	7.7	180 ±	10.7	100 ±	
Γ Α97 0	166 ±		178 ±		193 ±	
33	173 ±		171 ±		207 ±	3.1
100	170 ±		186 ±		190 ±	
333	162 ±		206 ±		205 ±	2.9
1,000	126 ±		202 ±		203 ±	3.7
1,666	To	ric	185 ±	1.2	(d) 95 \pm	5.0
Frial summary Positive	Neg	ative	Nega	tive	Neg	ative
control(c)	1,615 ±	55.6	1,466 ±	12.8	1,235 ±	24.1
			amster)		(rat)	
	Trial 1	Trial 1	Trial 2	Trial 1	Trial 2	
Γ Α98 0	21 ± 1.5	24 ± 2.1	36 ± 1.5	28 ± 1.7	27 ± 2.6	
33	23 ± 1.7	36 ± 4.0	39 ± 1.8	30 ± 2.3	31 ± 3.8	
100	23 ± 0.9	38 ± 7.2	34 ± 3.2	41 ± 5.2	35 ± 4.3	
333	22 ± 3.8	53 ± 6.7	44 ± 3.1	56 ± 8.4	49 ± 5.1	
666		••	76 ± 3.2		65 ± 5.5	
1,000	24 ± 1.7	93 ± 1.9	69 ± 2.9	80 ± 2.4	88 ± 6.9	
1,666	Toxic	83 ± 7.0		55 ± 8.1		
rial summary	Negative	Positive	Positive	Positive	Positive	
Positive control (c)	1,626 ± 93.3					

TABLE 27. MUTAGENICITY OF p-CHLOROANILINE IN SALMONELLA TYPHIMURIUM (Continued)

Strain	Dose (µg/plate)					Re	verta	nts/Plate (l	b)				
Study p	performed	at Microl	oiologi	cal Assoc	iates								-
		_	S9				+ S9	(hamster)		-			
				5	%	109	o	30	%	30)%		
TA100	0 33 100 333 1,000 1,500 2,000	99 ± 103 ± 97 ± 102 ± (d) 90 ± (d) 33 ±	1.3	92 ± 83 ± 92 ± 83 ± 96 ± (d) 57 ±	3.2 4.4 5.2 6.1 9.2 13.0	86 ± 94 ± 97 ± 100 ± 106 ± (d) 85 ±	3.3 4.9 3.2 7.9 3.2 7.5	109 ± 144 ± 142 ± 149 ± 178 ± (d) 100 ±	5.5	114 ± 115 ± 134 ± 160 ± 174 ± (d) 158 ±	0.7 8.9 10.8		
Trial sui	,	Nega		Neg	ative	Negat	ive			Weakly	positiv	re	
Positive control		453 ±		1,714 ±									
00110101	(0)	100 =	2.0	-,		9 (rat)	0,-						
		5	%	10	<u> </u>	30%	6	30	1%				
TA100	0 33 100 333 1,000 1,500	87 ± 98 ± 84 ± 93 ± 105 ± (d) 69 ±	3.8 5.0 6.4 0.3 1.2 2.3	98 ± 99 ± 99 ± 99 ± 107 ± (d) 78 ±	9.7 3.5 4.9 9.0 3.2 1.5	130 ± 136 ± 144 ± 146 ± 162 ±	8.6	121 ± 102 ± 107 ± 111 ± 130 ± (d) 129 ±	0.3 7.0 2.3 3.5 6.1 2.7				
	2,000					(d) 98 ±	15.3						
Trial sur Positive	•	Nega		Neg		_		_					
control	(c)	1,043 ±	29.3	993 ±	84.3	729 ±	7.1	859 ±	3.3				
			<u>S9</u>		%	10%	 -	+S9 (hams		30	1%	30%	,
TA98	0 33 100 333 1,000 1,500 2,000	38 ± 39 ± 37 ± 37 ± 26 ± (d) 8 ±	5.8 1.2 6.5 8.4 0.6	26 ± 35 ± 26 ± 39 ± 50 ± (d) 32 ±	1.7 1.9 3.0 1.9 2.8 3.0	29 ± 27 ± 28 ± 47 ± 73 ± (d) 61 ±	2.0 2.5 2.2 3.8 6.4 3.8	55 ± 49 ± 57 ± 63 ± (d) 90 ± (d) 21 ±	2.3 5.2 1.8 3.5 7.1	26 ± 25 ± 24 ± 44 ± 42 ± (d) 60 ±	1.8 1.8 1.0 2.4 6.2 7.5	24 ± 23 ± 29 ± 30 ± 66 ± (d) 57 ±	0.6 1.9 1.8 1.9 4.4 1.5
Trial sur	mmary	Nega	ative	Weakly	positi	ve Posit	ive	Equivo	cal	Weakly pe	ositive	Weakly pe	sitive
Positive control		205 ±	12.8	107 ±	12.0	77 ±	7.9	111 ±	5.7	142 ±	5.5	70 ±	4.0
			%	10)%	+ S9 30%	(rat)	30	%	30	1%		
T 4 00	Δ.								3.2	27 ±			
TA98	0 33 100 333 1,000 1,500 2,000	23 ± 29 ± 31 ± 45 ± 63 ± (d) 30 ±	5.3 2.7 3.8 2.8 6.5 2.1	26 ± 31 ± 31 ± 41 ± 71 ± (d) 46 ±	1.5 1.5 5.6 2.5 4.5 3.5	51 ± 54 ± 53 ± 66 ± 86 ± (d) 12 ±	3.5 0.6 1.7 4.7 1.5	30 ± 28 ± 33 ± 42 ± 81 ± (d) 83 ±	1.8 5.6 0.6 6.6 9.7	27 ± 26 ± 21 ± 30 ± 50 ± (d) 51 ±			
Trial sur	•	Posit	ive	Posit	ive	Equi	vocal	Posit	ive	Positi	ve		
Positive control		382 ±	4.9	316 ±	25.1	169 ±	16.3	169 ±	17.2	171 ±	5.2		

TABLE 27. MUTAGENICITY OF p-CHLOROANILINE IN SALMONELLA TYPHIMURIUM (Continued)

Strain Dose Revertants/Plate (b) (µg/plate) Study performed at Case Western Reserve University -S9 +S9 (hamster) + S9 (rat) **TA100** 97 ± 122 ± 11.6 121 ± 6.8 6.8 10 104 ± 8.0 165 ± 9.6 125 ± 5.1 33 94 ± 166 ± 13.9 143 ± 5.7 5.0 107 ± 157 ± 11.2 146 ± 100 6.44.2 333 90 ± 150 ± 9.5 143 ± 12.1 4.7 1.000 93 ± 130 ± 13.9 135 ± 3.2 4.5 3,333 Trial summary Negative Negative Negative Positive control(c) 459 ± 23.9 $1,818 \pm 296.3$ $1,057 \pm 174.4$ **TA1535** 6 ± 6 ± 6 ± 0.9 3.0 2.1 10 4 ± 2 ± 0.7 0.6 5 ± 5 ± 4 ± 0.3 33 1.9 0.7 100 4 ± 1.2 3 ± 0.7 2 ± 0.7 333 5 ± 4 ± 7 ± 2.3 1.2 1.3 6 ± 1,000 3 ± 7 ± 2.6 1.5 0.9 3,333 1 ± 1.3 Trial summary Negative Negative Negative Positive 212 ± 33.8 30 ± 38 ± 2.1 control(c) 3.7 **TA1537** 6 ± O 2 ± 1.2 6 ± 0.0 1.2 10 6 ± 0.6 10 ± 2.0 7 ± 8 ± 33 3 ± 0.9 0.7 0.9 100 2 ± 9 ± 0.3 6 ± 0.7 0.9 333 3 ± 3 ± 10 ± 1.3 1.9 1.5 2 ± 5 ± 1,000 4 ± 0.3 1.7 1.5 3,333 Toxic Trial summary Negative Negative Negative Positive 398 ± 32.0 control(c) 107 ± 1.8 109 ± 2.3 **TA98** 0 15 ± 2.3 19 ± 0.6 22 ± 1.2 10 14 ±3.2 25 ± 2.9 8 ± 1.2 21 ± 33 2.6 23 ± 3.0 100 13 ± 1.2 $25 \pm$ 3.8 25 ± 2.0 333 13 ± 21 ± 30 ± 2.2 2.4 3.5 1,000 10 ± 24 ± 1.7 17 ± 3.6 0.9 3,333 8 ± 5.8 Trial summary Negative Negative Negative Positive control(c) 278 ± 25.4 984 ± 100.2 626 ± 139.2

⁽a) The detailed protocol is presented by Mortelmans et al. (1986). Cells and study compound or solvent (dimethyl sulfoxide) were incubated in the absence of exogenous metabolic activation (-S9) or with Aroclor 1254-induced S9 from male Syrian hamster liver or male Sprague Dawley rat liver. High dose was limited by toxicity or solubility but did not exceed 10 mg/plate; 0 ug/plate dose is the solvent control.

⁽b) Revertants are presented as mean ± standard error from three plates.

⁽c) Positive control; 2-aminoanthracene was used on all strains in the presence of S9. In the absence of metabolic activation, 4-nitro-o-phenylenediamine was used with TA98, sodium azide was used with TA100 and TA1535, and 9-aminoacridine was used with TA97 and TA1537.

⁽d) Slight toxicity

TABLE 28. MUTAGENICITY OF p-CHLOROANILINE IN MOUSE L5178Y LYMPHOMA CELLS (a,b)

Compound	Concentration (µg/ml)	Cloning Efficiency (percent)	Relative Total Growth (percent)	Tft-Resistant Cells	Mutant Fraction (c)
Study performed at Inveresk l	Research Interna	ational			
S9					
Ethanol (d)		77.8 ± 2.8	99.8 ± 1.8	180.5 ± 15.7	77.3 ± 6.0
p-Chloroaniline	50 100 200 400 600	54.0 ± 6.7 67.0 ± 3.5 65.7 ± 5.6 58.3 ± 0.9 Lethal	62.3 ± 4.3 56.3 ± 1.7 39.7 ± 3.8 12.3 ± 1.2	232.0 ± 18.1 333.3 ± 22.8 330.0 ± 36.2 452.0 ± 20.5	(e) 145.0 ± 7.8 (e) 166.3 ± 11.0 (e) 170.3 ± 24.8 (e) 260.0 ± 11.7
Ethyl methanesulfonate (f)	250	74.0 ± 0.0	94.5 ± 5.5	660.5 ± 81.5	(e) 296.5 ± 36.5
+S9 (g)					
Trial 1					
Methanol (d)		83.0 ± 8.4	100.0 ± 1.9	144.0 ± 11.8	58.3 ± 1.7
p-Chloroaniline (f)	25 50 100 200	63.5 ± 4.5 70.0 ± 15.0 49.5 ± 2.5 Lethal	62.5 ± 2.5 44.0 ± 8.0 14.5 ± 3.5	594.0 ± 5.0 637.0 ± 38.0 926.5 ± 23.5	(e) 314.0 ± 25.0 (e) 315.0 ± 50.0 (e) 627.0 ± 54.0
Methylcholanthrene (f)	2.5	45.0 ± 3.0	20.0 ± 1.0	884.5 ± 41.5	667.0 ± 77.0
Trial 2					
Methanol (d)		59.3 ± 3.4	100.0 ± 9.7	139.5 ± 6.6	79.0 ± 5.1
p-Chloroaniline (f)	9.375 18.75 37.5 75 150	52.0 ± 7.0 44.0 ± 3.0 50.0 ± 11.0 31.5 ± 0.5 Lethal	59.5 ± 4.5 49.0 ± 2.0 30.0 ± 4.0 7.5 ± 0.5	205.5 ± 10.5 215.5 ± 13.5 472.0 ± 88.0 402.5 ± 67.5	(e) 132.5 ± 11.5 (e) 165.5 ± 21.5 (e) 318.0 ± 14.0 (e) 427.0 ± 78.0
Methylcholanthrene (f)	2.5	31.5 ± 2.5	25.5 ± 4.5	413.0 ± 11.0	441.5 ± 25.5
Study performed at Litton Bior	netics, Inc.				
S9					
Trial 1					
Dimethyl sulfoxide (d)		83.0 ± 9.0	100.0 ± 9.0	98.8 ± 4.7	40.8 ± 4.4
p-Chloroaniline	(h) 31.3 (f) 62.5 (h) 125 (f) 250 (f) 375 (i) 500 1,000	115 82.5 ± 2.5 78 89.0 ± 14.0 88.5 ± 20.5 81 Lethal	$ \begin{array}{c} 117 \\ 88.5 \pm 2.5 \\ 82 \\ 62.0 \pm 9.0 \\ 19.0 \pm 5.0 \\ 12 \end{array} $	81 90.5 ± 17.5 87 134.0 ± 7.0 199.0 ± 3.0 244	$\begin{array}{c} 24 \\ 36.0 \pm & 6.0 \\ 37 \\ 51.0 \pm & 5.0 \\ \text{(e) } 80.0 \pm & 20.0 \\ 100 \\ \end{array}$
Ethyl methanesulfonate (f)	500	49.5 ± 2.5	37.0 ± 0.0	952.0 ± 31.0	(e) 645.0 ± 13.0

TABLE 28. MUTAGENICITY OF ρ -CHLOROANILINE IN MOUSE L5178Y LYMPHOMA CELLS (Continued)

Compound	Concentration (µg/ml)	Cloning Efficiency (percent)	Relative Total Growth (percent)	Tft-Resistant Cells	Mutant Fraction (c)
-S9 (Continued)					
Trial 2					
Dimethyl sulfoxide (d)		86.3 ± 4.0	100.0 ± 5.7	40.3 ± 5.3	15.8 ± 2.1
p-Chloroaniline	(f) 200 300 400 450 500 550	$\begin{array}{cccc} 46.0 \pm & 8.0 \\ 52.0 \pm & 5.5 \\ 58.0 \pm & 10.4 \\ 74.3 \pm & 10.2 \\ 88.7 \pm & 6.6 \\ 75.0 \pm & 10.5 \end{array}$	48.0 ± 2.0 28.7 ± 6.3 16.0 ± 6.2 25.7 ± 2.7 18.0 ± 2.1 14.3 ± 3.9	$\begin{array}{c} 26.5 \pm & 6.5 \\ 37.0 \pm & 7.4 \\ 39.0 \pm & 5.3 \\ 60.0 \pm & 11.5 \\ 67.0 \pm & 5.0 \\ 61.3 \pm & 10.5 \end{array}$	$\begin{array}{cccc} 19.0 \pm & 1.0 \\ 24.0 \pm & 4.2 \\ 22.7 \pm & 1.7 \\ \text{(e) } 26.3 \pm & 1.7 \\ \text{(e) } 25.3 \pm & 1.2 \\ \text{(e) } 27.3 \pm & 1.9 \\ \end{array}$
Ethyl methanesulfonate	500	34.0 ± 6.0	26.3 ± 1.2	379.3 ± 53.1	(e) 378.3 ± 21.5
Trial 3					
Dimethyl sulfoxide (d)		65.8 ± 1.3	100.0 ± 5.0	30.3 ± 3.3	15.5 ± 1.7
p-Chloroaniline	100 200 300 (j) 400 (k) 500 (k) 550 600	48.0 ± 3.1 43.7 ± 2.6 29.7 ± 0.7 35.5 ± 6.5 50 38 Lethal	$\begin{array}{c} 49.7 \pm 2.2 \\ 32.3 \pm 3.4 \\ 10.7 \pm 1.3 \\ 5.0 \pm 0.0 \\ 6 \\ 4 \\ \end{array}$	49.7 ± 4.3 41.0 ± 3.0 28.0 ± 2.3 35.5 ± 4.5 43 30	(e) 34.7 ± 1.8 (e) 31.7 ± 1.2 (e) 31.7 ± 2.7 (e) 35.0 ± 10.0 29 26
Ethyl methanesulfonate (f)	500	16.0 ± 3.0	11.0 ± 1.0	500.5 ± 34.5	(e) 1,075.0 ±120.0
+S9 (g)					
Trial 1					
Dimethyl sulfoxide (d)		76.8 ± 4.5	99.8 ± 4.3	84.5 ± 7.7	36.5 ± 1.3
p-Chloroaniline (f)	7.8 15.6 31.3 62.5 125	65.0 ± 3.0 74.0 ± 4.0 67.0 ± 16.0 74.0 ± 8.0 61.5 ± 1.5	67.0 ± 2.0 55.5 ± 7.5 43.0 ± 8.0 30.5 ± 2.5 21.0 ± 0.0	$ \begin{array}{cccc} 106.5 \pm & 6.5 \\ 144.5 \pm & 0.5 \\ 122.5 \pm & 8.5 \\ 174.0 \pm & 42.0 \\ 188.5 \pm & 0.5 \\ \end{array} $	$\begin{array}{ccc} 55.0 \pm & 6.0 \\ \text{(e) } 65.5 \pm & 3.5 \\ \text{(e) } 63.5 \pm & 10.5 \\ \text{(e) } 77.0 \pm & 11.0 \\ \text{(e) } 102.5 \pm & 3.5 \end{array}$
Methylcholanthrene (f)	5	38.0 ± 1.0	19.5 ± 1.5	396.5 ± 24.5	(e) 353.0 ± 31.0
Trial 2					
Dimethyl sulfoxide (d)		80.5 ± 3.5	100.0 ± 4.5	108.8 ± 7.4	45.0 ± 1.2
p-Chloroaniline (f)	31.3 62.5 83.4 125 166.7	79.0 ± 6.0 75.0 ± 3.0 78.5 ± 8.5 72.5 ± 6.5 75.0 ± 8.0	37.0 ± 3.0 26.5 ± 3.5 21.0 ± 0.0 16.0 ± 1.0 15.0 ± 0.0	$122.0 \pm 18.0 \\ 151.0 \pm 21.0 \\ 151.5 \pm 11.5 \\ 190.0 \pm 16.0 \\ 152.5 \pm 33.5$	$\begin{array}{cccc} 51.0 \pm & 4.0 \\ 68.0 \pm & 12.0 \\ 64.5 \pm & 1.5 \\ \text{(e)} \ 87.5 \pm & 0.5 \\ 67.0 \pm & 8.0 \end{array}$
Methylcholanthrene (f)	5	48.0 ± 7.0	26.5 ± 2.5	347.5 ± 30.5	(e) 244.0 ± 16.0

TABLE 28. MUTAGENICITY OF ρ-CHLOROANILINE IN MOUSE L5178Y LYMPHOMA CELLS (Continued)

Compound	Concentration (µg/ml)	Clonin Efficien (percer	icy	Relative Total Growth (percent)	Tft-Resistant Cells	Mutan Fraction	
+ S9 (g) (Continued)					· · · · · · · · · · · · · · · · · · ·	, . 	
Trial 3							
Dimethyl sulfoxide (d)		87.8 ±	6.4	100.0 ± 7.2	57.0 ± 5.8	21.8 ±	1.3
<i>p</i> -Chloroaniline	75 100 125 150 166.7 200	83.0 ± 74.7 ± 83.3 ± 88.3 ± 76.0 ± 65.7 ±	1.5 4.9 3.8 1.7 5.5 3.9	35.0 ± 2.6 29.0 ± 2.3 29.0 ± 1.2 23.3 ± 0.9 15.3 ± 1.2 17.0 ± 1.2	$\begin{array}{cccc} 95.7 \pm & 3.2 \\ 90.7 \pm & 11.2 \\ 136.7 \pm & 12.7 \\ 132.7 \pm & 4.9 \\ 114.7 \pm & 10.8 \\ 118.7 \pm & 9.9 \end{array}$	(e) 38.7 ± (e) 40.7 ± (e) 54.7 ± (e) 50.0 ± (e) 50.3 ± (e) 60.7 ±	4.3 2.7 2.6 3.3
Methylcholanthrene	5	52.0 ±	2.5	39.7 ± 3.2	291.3 ± 23.8	(e) 187.0 ±	19.

⁽a) The experimental protocol is presented in detail by Myhr et al. (1985) and follows the basic format of Clive et al. (1979). The highest dose of study compound is determined by solubility or toxicity and may not exceed 5 mg/ml. All doses are tested in triplicate; the average for the three tests is presented in the table. Cells $(6 \times 10^5/\text{ml})$ were treated for 4 hours at 37° C in medium, washed, resuspended in medium, and incubated for 48 hours at 37° C. After expression, 3×10^6 cells were plated in medium and soft agar supplemented with trifluorothymidine (Tft) for selection of Tft-resistant cells, and 600 cells were plated in nonselective medium and soft agar to determine the cloning efficiency.

(b) Mean \pm standard error from replicate trials of approximately 1×10^6 cells each. All data are evaluated statistically for

⁽b) Mean \pm standard error from replicate trials of approximately 1×10^6 cells each. All data are evaluated statistically for both trend and peak response (P<0.05 for at least one of the three highest dose sets). Both responses must be significantly (P<0.05) positive for a chemical to be considered capable of inducing Tft resistance. If only one of these responses is significant, the call is "equivocal"; the absence of both trend and peak response results in a "negative" call.

⁽c) Mutant fraction (frequency) is a ratio of the Tft-resistant cells to the cloning efficiency, divided by 3 (to arrive at MF per 1×10^6 cells treated); MF = mutant fraction.

⁽d) Data presented are the average of four tests.

⁽e) Significant positive response; occurs when the relative mutant fraction (average MF of treated culture/average MF of solvent control) is greater than or equal to 1.6.

⁽f) Data presented are the average of two tests.

⁽g) Tests conducted with metabolic activation were performed as described in (a) except that S9, prepared from the liver of Aroclor 1254-induced F344 rats, was added at the same time as the study chemical and/or solvent.

⁽h) Data presented are for one test.

⁽i) Data presented are for one test. The dose in one test was lethal.

 $[\]label{eq:control_problem} \textbf{(j) Data presented are the average of two tests. The dose in one test was lethal.}$

⁽k) Data presented are for one test. The dose in two tests was lethal.

TABLE 29. INDUCTION OF SISTER CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS BY $\rho\text{-}CHLOROANILINE (a)$

Compound	Dose (µg/ml)	Total Cells	No. of Chromo- somes	No. of SCEs	SCEs/ Chromo- some	SCEs/ Cell	Hours in BrdU	Relative SCEs/Cell (percent) (b)
Study performed at Litton	Bionetics, Inc	·.						
-S9 (c)								
Trial 1Summary: Positiv	7 e							
Dimethyl sulfoxide		50	1,048	449	0.43	9.0	25.5	
p-Chloroaniline	16.7 50 167 500	50 50 50 0	1,039 1,043 1,044	589 586 773	0.57 0.56 0.74	11.8 11.7 15.5	25.5 25.5 (d) 33.5	131.1 130.0 172.2
Mitomycin C	0.001 0.01	50 5	1,050 105	692 259	0.66 2.47	13.8 51.8	25.5 25.5	153.3 575.6
Trial 2Summary: Positiv	re							
Dimethyl sulfoxide		50	1,046	497	0.48	9.9	25.8	••
p-Chloroaniline	150 175 200	50 50 50	1,050 1,043 1,047	769 736 843	0.73 0.71 0.81	15.4 14.7 16.9	(d) 35.3 (d) 35.3 (d) 35.3	155.6 148.5 170.7
Mitomycin C	0.001 0.01	50 5	1,049 105	695 302	0.66 2.88	13.9 60.4	25.8 25.8	140.4 610.1
+S9 (e) Summary: Positive								
Dimethyl sulfoxide		50	1,048	478	0.46	9.6	25.8	
p-Chloroaniline	900 1,000 1,100 1,200	50 50 50 0	1,043 1,036 1,043	656 823 794	0.63 0.79 0.76	13.1 16.5 15.9	25.8 (d) 35.3 (d) 35.3	136.5 171.9 165.6
Cyclophosphamide	0.35 2	50 5	1,046 104	725 210	0.69 2.02	14.5 42.0	25.8 25.8	151.0 437.5
Study performed at Enviro	nmental Heal	th Rese	arch & Test	ing, Inc.				
- S9 (c)					-			
Trial 1Summary: Equivo	ocal							
Dimethyl sulfoxide		50	1,046	432	0.41	8.6	26.0	
p-Chloroaniline	0.5 1.6 5 16 50 160 500	50 50 50 50 50 50 0	1,041 1,041 1,037 1,035 1,046 1,041	437 406 405 495 443 524	0.42 0.39 0.39 0.48 0.42 0.50	8.7 8.1 8.1 9.9 8.9 10.5	26.0 26.0 26.0 26.0 26.0 26.0 26.0	101.2 94.2 94.2 115.1 103.5 122.1
Mitomycin C	0.005 0.01	50 50	1,047 1,033	1,399 1,964	1.34 1.90	28.0 39.3	26.0 26.0	325.6 457.0

TABLE 29. INDUCTION OF SISTER CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS BY ρ -CHLOROANILINE (Continued)

Compound	Dose (μg/ml)	Total Cells	No. of Chromo- somes	No. of SCEs	SCEs/ Chromo- some	SCEs/ Cell	Hours in BrdU	Relative SCEs/Cell (percent) (b)
-S9 (Continued)				7,2				
Trial 2Summary: Weakly p	ositive							
Dimethyl sulfoxide		50	1,042	431	0.41	8.6	28.0	
p-Chloroaniline	50 100 200 300 400 500	50 50 50 0 0	1,043 1,050 1,042	453 521 550	0.43 0.50 0.53	9.1 10.4 11.0	28.0 28.0 28.0	105.8 120.9 127.9
Mitomycin C	0.005	50 50	1,034	1,2 4 6 1,912	1.21 1.84	24.9 38.2	28.0 28.0	289.5 444.2
Trial 3Summary: Positive	0.01	50	1,040	1,912	1.04	30.2	26.0	444.2
Dimethyl sulfoxide		50	1,042	431	0.41	8.6	28.0	
p-Chloroaniline	50 100 200 300 400 500	50 50 50 50 0	1,025 1,036 1,029 1,029	504 503 582 604	0.49 0.49 0.57 0.59	10.1 10.1 11.6 12.1	(d) 37.0 (d) 37.0 (d) 37.0 (d) 37.0	117.4 117.4 134.9 140.7
Mitomycin C	0.005 0.01	50 50	1,034 1,040	1,246 1,912	1.21 1.84	24.9 38.2	28.0 28.0	289.5 444.2
+ S9 (e)								
Trial 1Summary: Negative								
Dimethyl sulfoxide		50	1,047	410	0.39	8.2	26.0	
p-Chloroaniline	1.6 5 16 50 160 500 1,600	50 50 50 50 50 50	1,047 1,043 1,046 1,045 1,045 1,043	467 447 453 479 469 472	0.45 0.43 0.43 0.46 0.45	9.3 8.9 9.1 9.6 9.4 9.4	26.0 26.0 26.0 26.0 26.0 26.0 26.0	113.4 108.5 111.0 117.1 114.6 114.6
Cyclophosphamide	1.5	50	1,044	1,593	1.53	31.9	26.0	389.0
Trial 2Summary: Equivoca	l							
Dimethyl sulfoxide		50	1,034	434	0.42	8.7	26.0	
p-Chloroaniline	100 200 300 400 500 600	50 50 50 50 50 50	1,033 1,029 1,038 1,033 1,031 1,036	492 521 476 465 482 480	0.48 0.51 0.46 0.45 0.47	9.8 10.4 9.5 9.3 9.6 9.6	26.0 26.0 26.0 26.0 26.0 26.0	112.6 119.5 109.2 106.9 110.3 110.3
Cyclophosphamide	1.5 2	50 50	1,035 1,038	1,918 2,959	1.85 2.85	38.4 59.2	26.0 26.0	441.4 680.5

TABLE 29. INDUCTION OF SISTER CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS BY ρ-CHLOROANILINE (Continued)

(a) SCE = sister chromatid exchange; BrdU = bromodeoxyuridine. A detailed description of the SCE protocol is presented by Galloway et al. (1985). Briefly, Chinese hamster ovary cells were incubated with study compound or solvent (dimethyl sulfoxide) as described in (c) or (e) below and cultured for sufficient time to reach second metaphase division. Cells were then collected by mitotic shake-off, fixed, air-dried, and stained.

(b) SCEs/cell in treated culture expressed as a percent of the SCEs/cell in the control culture

(c) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent for 2 hours at 37° C. Then BrdU was added, and incubation was continued for 24 hours. Cells were washed, fresh medium containing BrdU and colcemid was added, and incubation was continued for 2-3 hours.

(d) Because some chemicals induce a delay in the cell division cycle, harvest times are occasionally extended to maximize the proportion of second division cells available for analysis.

(e) In the presence of S9, cells were incubated with study compound or solvent for 2 hours at 37° C. Then cells were washed, and medium containing BrdU was added. Cells were incubated for a further 26 hours, with colcemid present for the final 2-3 hours. S9 was from the liver of Aroclor 1254-induced male Sprague Dawley rats.

TABLE 30. INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS BY $\rho\text{-}CHLOROANILINE (a)$

		-S9 (b)					+ S9 (c)		
Dose (µg/ml)	Total Cells	No. of Abs	Abs/ Cell	Percent Cells with Abs	Dose (µg/ml)	Total Cells	No. of Abs	Abs/ Cell	Percent Cells with Ab
Study perfor	med at L	itton Bione	tics, Inc. (e	i)					
Dimethyl sulfe	oxide				Dimethyls	sulfoxide			
	100	4	0.04	3.0		100	4	0.04	4.0
p-Chloroanilir					p-Chloroan	silina			
400	100	19	0.19	10.0	<i>p</i> -Cilioroai 800	100	5	0.05	5.0
450	100	8	0.13	7.0	900	100	27	0.27	21.0
500	100	$\ddot{2}$	0.02	2.0	1,000	50	35	0.70	38.0
600	0	2	0.02	2.0	1,000	00	00	0.70	00.0
Su	mmary: No	egative				Summary	: Positive		
Mitomycin C					Cyclophos	nhamida			
0.062	50	52	1.04	58.0	10	50	19	0.38	24.0
Study perfor	med at E	nvironment	al Health	Research & Te	esting, Inc.				
Frial 1 (e)									
Dimethyl sulfo	xide				Dimethyl s	ulfoxide			
,	100	0	0.00	0.0	y	100	0	0.00	0.0
-Chloroanilin					p-Chloroar	niline			
30	100	0	0.00	0.0	1.6	100	0	0.00	0.0
100	100	ŏ	0.00	0.0	5	100	ŏ	0.00	0.0
160	100	i	0.01	1.0	16	100	Ō	0.00	0.0
300	100	Ō	0.00	0.0	50	100	Ō	0.00	0.0
400	100	Ō	0.00	0.0	160	100	0	0.00	0.0
500	100	3	0.03	3.0	500	100	0	0.00	0.0
600	0	_			800	0			
Sw	mmary: No	egative				Summary	: Negative		
Mitomycin C					Cyclophosi	ohamide			
0.25	100	26	0.26	24.0	50	100	125	1.25	59.0
0.5	100	42	0.42	33.0					
Γrial 2 (f)									
Dimethyl sulfo	xide				Dimethyl s	ulfoxide			
	100	0	0.00	0.0		100	0	0.00	0.0
-Chloroanilin	e				p-Chloroan	iline			
100	100	0	0.00	0.0	100	100	0	0.00	0.0
200	100	Ŏ	0.00	0.0	200	100	Ö	0.00	0.0
300	100	2	0.02	2.0	300	100	0	0.00	0.0
400	100	0	0.00	0.0	400	100	0	0.00	0.0
500	100	4	0.04	4.0	500	100	0	0.00	0.0
550	100	6	0.06	6.0	550	100	3	0.03	3.0
					600	100	0	0.00	0.0
Sur	nmary: W	eakly positiv	e			Summary	Negative		
litomycin C					Cyclophosp	hamida			
0.5	100	58	0.58	39.0	50	100	115	1.15	61.0
0.0	100	98	0.08	ა შ .∪	อบ	100	119	1.15	01.0

TABLE 30. INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS BY p-CHLOROANILINE (Continued)

- (a) Abs = aberrations. A detailed presentation of the technique for detecting chromosomal aberrations is presented by Galloway et al. (1985). Briefly, Chinese hamster ovary cells were incubated with study compound or solvent (dimethyl sulfoxide) as indicated in (b) or (c). Cells were arrested in first metaphase by addition of colcemid and harvested by mitotic shake-off, fixed, and stained in 6% Giemsa.
- (b) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent (dimethyl sulfoxide) for 8-10 hours at 37° C. Cells were then washed, and fresh medium containing colcemid was added for an additional 2-3 hours followed by harvest.
- (c) In the presence of S9, cells were incubated with study compound or solvent (dimethyl sulfoxide) for 2 hours at 37°C. Cells were then washed, medium was added, and incubation was continued for 8-10 hours. Colcemid was added for the last 2-3 hours of incubation before harvest. S9 was from the liver of Aroclor 1254-induced male Sprague Dawley rats.
- (d) Harvest time, 23.0 hours; because of significant chemically induced cell cycle delay, incubation time before addition of colcemid was lengthened to provide sufficient metaphases at harvest.
- (e) Harvest time, 12.0 hours
- (f) Harvest time, 13.0 hours

IV. DISCUSSION AND CONCLUSIONS

Toxicity
Carcinogenicity
Possible Mechanisms of Splenic Toxicity and Carcinogenicity
Audit
Conclusions

Toxicity

The current p-chloroaniline hydrochloride 13week studies in rats and mice revealed that the hematopoietic system was the major target of pchloroaniline hydrochloride toxicity. Methemoglobin formation and the accompanying hemolytic anemia, extramedullary hematopoiesis, and splenomegaly were indicative of erythrocyte toxicity induced by p-chloroaniline hydrochloride. In the 2-year studies, results of hematologic analyses in rats and the occurrence of nonneoplastic lesions in the spleen and liver in both rats and mice and the kidney in mice showed that the hematopoietic system was also affected by long-term administration of p-chloroaniline hydrochloride. Erythrocyte toxicity as expressed by methemoglobin formation is the dominant toxic effect seen in laboratory animals and humans exposed to a number of amino and nitro aromatic compounds (Beard and Noe, 1981; Beutler, 1985). Methemoglobin formation in evthrocytes results from the change of heme iron from the ferrous to ferric state. The brown pigment formed is called methemoglobin, a derivative of hemoglobin that is physiologically inactive. Acute methemoglobinemia may be life threatening when the level of methemoglobin exceeds half of the total circulating hemoglobin (Beutler, 1972).

Short-term exposure of humans to p-chloroaniline produces cyanosis, a manifestation of methemoglobin formation. Long-term exposure may result in reversible anemia (Linch, 1974). The methemoglobin can be reduced to hemoglobin in mammalian species by a NADH-dependent methemoglobin reductase located in the erythrocytes. A tenfold difference exists in the activity of this enzyme among various species. Enzymic activity in rat and mouse erythrocytes is 5 and 10 times higher, respectively, than that in human erythrocytes (Smith, 1986), suggesting that humans are more susceptible to this particular toxic effect of aniline and its homologs. The formation of methemoglobin by aromatic nitro and amino compounds, mechanism(s) of formation, and toxicologic implications have been reviewed extensively (Kiese, 1966; Beard and Noe, 1981). There is convincing evidence that an N-hydroxy metabolite is the reactive species responsible for this toxic effect (Selkirk, 1980; Weisburger, 1983). The p-chloroaniline hydrochloride-induced erythrocyte toxicity seen in the current studies also could be due to an N-hydroxy derivative, since p-chloroaniline was shown to be metabolized to its Nhydroxy derivative by the hepatic microsomal mono-oxygenase system of guinea pigs, rabbits, hamsters, mice, and rats (Smith and Gorrod. 1978; Uehleke and Hellmer, 1971). According to Bus and Popp (1987), the N-oxidation pathway of aniline, an analog of p-chloroaniline, is inconsequential for rat liver, as liver rapidly reduces N-oxidized metabolites back to the parent compound. On the contrary, the small amount of N-phenylhydroxylamine taken up by the erythrocytes is rapidly oxidized by oxyhemoglobin to nitrosobenzene, with concurrent formation of methemoglobin. The metabolism and pattern of erythrocyte toxicity of p-chloroaniline hydrochloride suggest that the mechanisms of methemoglobin formation by aniline and its analog pchloroaniline have common characteristics.

In the 13-week studies, a dose-related increase in splenic weights was observed for both rats and mice. A similar enlargement in the spleen was seen in rats dosed with aniline (Gralla et al. 1979). Bus (1983) suggested that splenic weight increases in aniline-dosed rats were due to excessive deposition of damaged erythrocytes as a result of aniline toxicity and thus that splenomegaly is a secondary effect of erythrocyte toxicity. Results of the current studies support this contention, as rats and mice in the 13-week pchloroaniline hydrochloride studies did not show any degenerative changes in the spleen. The increases in spleen weight were probably a result of increased vascular engorgement in response to methemoglobinemia.

Carcinogenicity

Recent carbon-13 nuclear magnetic resonance studies on relationships between chemical structure and carcinogenicity of chlorinated monocyclic aromatic compounds predicted that p-chloroaniline would be carcinogenic (Sakamoto and Watanabe, 1986). The results of previous 2-year studies on p-chloroaniline were strongly suggestive of carcinogenicity because several rare fibromas and sarcomas of the spleen were found in exposed male rats (NCI, 1979c). The results

from those studies have been substantiated by results from the current studies, which show that p-chloroaniline hydrochloride is carcinogenic for male rats, based on the increased incidence of splenic sarcomas in high dose male rats (see Table 15). The possibility exists that in the first set of studies p-chloroaniline was administered to animals at less than target concentrations due to the instability of the chemical in feed. The target concentrations in feed for that study were approximately equivalent to 15 and 30 mg/kg body weight of rats, compared with 2, 6, and 18 mg/kg in the current gavage studies. The different modes of oral administration (single dose per day by gavage and continuous dosing by feed) could possibly have resulted in differences in pharmacokinetics and might have been responsible for quantitative differences seen between the results of these two studies. The dose response for splenic tumors in male rats in the current studies was nonlinear with increases in dose; although the high dose was 3 times the mid dose, the incidence of sarcomas in the high dose group was 12 times that in the mid dose group. The doses used in these studies apparently did not saturate the metabolic and excretory pathways, as evidenced by disposition studies on p-chloroaniline and p-chloroaniline hydrochloride conducted by the NTP (Appendix H).

Other structurally related aniline compounds seem to exhibit nonlinear responses for the occurrence of splenic tumors in male rats (Table 31). The carcinogenesis study conducted by the Chemical Industry Institute of Toxicology (CIIT) on aniline hydrochloride administered to male rats at 0, 10, 30, or 100 mg/kg body weight (0, 200, 600, or 2,000 ppm) in feed also showed a similar type of nonlinearity in tumor response (Bus and Popp, 1987). In that study, an apparent no-observable-effect level of 10 mg/kg aniline was found, whereas in the current studies with p-chloroaniline hydrochloride, no apparent no-observable-effect level for splenic tumors in male rats was reached. The female rats were less sensitive than the males to p-chloroaniline hydrochloride induction of splenic neoplasms, since neoplasms were seen in only one mid dose and one high dose female rat in the NTP studies. Table 31 shows that similar sex differences in the incidences of splenic tumors were seen with

other aniline compounds, except for azobenzene and o-toluidine hydrochloride studies in which female rats were equally sensitive. In the current studies, the incidences of splenic fibrosis in high dose male and female rats were 41/50 and 42/50, respectively. Fibrosis of the spleen is a potential preneoplastic lesion that may progress to fibrosarcomas (Goodman et al., 1984).

The incidence of adrenal gland pheochromocytomas in male rats occurred with a positive trend (see Table 16). Medullary hyperplasia was observed at an increased incidence in high dose female rats; pheochromocytomas were seen in 2/50 vehicle control and 10/150 dosed females. Examination of Table 31 shows that aniline hydrochloride was the only structurally related chemical studied by the NCI/NTP that clearly caused an increase in the incidences of these neoplasms in dosed male rats and, to a lesser extent, in females. The incidences of adrenal gland tumors in the current studies may have been related to p-chloroaniline administration.

For mice, the body weights and survival in the current 2-year studies were in general not affected by the administration of p-chloroaniline hydrochloride. No splenic fibrosarcomas or osteosarcomas were observed in mice of either sex. The species differences between rats and mice in aromatic amine-induced neoplasms were reviewed by Weisburger (1983). None of the aromatic amines studied for carcinogenic potential by the NCI/NTP caused increased incidences of splenic tumors in mice. However, induction of liver tumors by those chemicals was frequently observed in mice. The tumor incidences in mice administered p-chloroaniline hydrochloride in the current studies followed the pattern reported by Weisburger (1983), with the incidences of hepatocellular carcinomas being increased in dosed male mice. Even though the incidence of hepatocellular carcinomas in vehicle controls is much lower than that in historical water gavage controls (6% versus 16%), the strong doseresponse relationship and the metastasis to the lung of the carcinomas are additional evidence for a chemically related effect. Also, there was a marginal increase in the incidence of hemangiosarcomas in the liver in high dose male mice. The significance of the increased incidences of neoplasms in dosed male mice was further

TABLE 31. INCIDENCES OF SPLEEN AND ADRENAL GLAND NEOPLASMS IN RATS INDUCED BY ANILINE HYDROCHLORIDE AND STRUCTURALLY RELATED CHEMICALS STUDIED BY THE NCI/NTP

					Spleen		Adrena	al Gland
S	structure/Chemical	Concentration			Hemangio	sarcomas		
	CAS Number (Reference)	in Feed (ppm)	<u>Sarce</u> Male	omas (a) Female		sarcomas Female		mocytomas Female
NH ₂	.HCl	0	0/25	0/23	0/25	0/23	2/24	1/24
1	Aniline hydrochloride	3,000	7/50	0/50	19/50	1/50	6/50	0/50
	CAS No. 142-04-1 (NCI TR 130, 1978a)	6,000	9/46	3/50	20/46	3/50	12/44	5/48
	Azobenzene	0	0/20	0/20	0/20	0/20	1/20	0/20
	CAS No. 103-33-3	200	4/49	3/50	1/49	1/50	1/49	0/50
	(NCI TR 154, 1979a)	400	10/49	12/50	4/49	4/50	1/50	1/50
	$N = N - \left(\begin{array}{c} \\ \\ \end{array} \right)$							
NH ₂	p-Chloroaniline	0	0/20	(b)	0/20	0/20	3/19	
1	CAS No. 106-47-8	250	0/49		0/49	0/48	4/46	
	(NCI TR 189, 1979c)	500	3/49		1/49	1/50	3/49	
ال ي	Current studies on	0 mg/kg		0/50	0/50		13/49	2/50
Y	p-chloroaniline	2 mg/kg		0/50	0/50		14/48	3/50
ĊΙ	hydrochloride (c)	6 mg/kg 18 mg/kg		1/50 1/50	0/50 4 /50		15/48 26/49	1/50 6/50
	D & C Red No. 9	0	0/50				17/48	3/48
	CAS No. 5160-02-1 (NTP TR 225, 1982a)	1,000 3,000	0/50 26/48				14/50 14/48	4/49 5/50
CH:	$\begin{array}{c} OH \\ \hline \\ SO_3H \end{array}$	Ba						
	Dapsone	0	0/14					
	CAS No. 80-08-0	600 1,200	0/34					
H₂N—⟨	(NCI TR 20, 1977a)	≻_NH ₂	6/32					
NH ₂ •F	o-Toluidine	0	0/20	0/20	0/20	0/20	0/20	0/20
1 -	0.031 440 044	3,000 6,000	1/49 4/42	2/49 4/49	7/49 0/42	7/49 9/49	3/50 2/49	4/49 2/49
	CH ₃ CAS No. 142-04-1 (NCI TR 153, 1979b)	3,000	a, 324	2/20	V/ = 2	J. 20	ωι ⊀V	w. EV

⁽a) Includes fibrosarcomas, osteosarcomas, and sarcomas, NOS (b) -- denotes no tumors reported (c) Gavage studies in water

supported by the apparent reduction in the latency period for liver neoplasms. The first day of observation of these neoplasms in vehicle controls was 728; in dosed groups, it ranged from day 432 to day 490. Table 32 gives the incidence of hepatocellular neoplasms in mice dosed with those aniline compounds shown to also cause splenic neoplasms in male rats. Administration of all the aniline compounds listed seemed to result in some increase in the incidences of hepatocellular neoplasms in male or female mice.

In the current studies, p-chloroaniline hydrochloride was carcinogenic for rats and mice, but the sites of compound-related neoplasia were different. The species differences between rats and mice with regard to splenic and liver neoplasms could be due to differences in metabolism and disposition of p-chloroaniline. Perry et al. (1981a) studied the disposition of 14C-labeled pchloroaniline or p-chloroaniline hydrochloride in F344 rats, mongrel dogs, and A/J and Swiss Webster mice. They showed that the initial decay constants for p-chloroaniline clearance from whole blood in both strains of mice were 10 times greater than those in dogs and rats. The p-chloroaniline clearance in mice was too rapid to permit calculation of kinetic parameters.

The differences in the metabolism and disposition of aniline have also been suggested as the reason for differences in the carcinogenicity of aniline in rats and mice. The larger concentrations of the putative reactive metabolite N-phenylhydroxylamine in rats were considered to be responsible for the production of splenic tumors in rats (McCarthy et al., 1985). If excessive methemoglobin formation in dosed animals and the subsequent progression to splenic sarcomas constitute one of the mechanisms of action of aniline compounds, then methemoglobin reductase activity or diaphorase activity, which is two times greater in mice than in rats, may be another reason for a species difference.

Decreases were seen in the incidences of certain neoplasms in p-chloroaniline hydrochloride-dosed animals and were considered related to chemical administration. The incidences of mononuclear cell leukemia in rats and malignant lymphomas in mice were decreased in

dosed animals of each sex. Such decreases were not seen in animals exposed to other aniline compounds listed in Table 31.

Possible Mechanisms of Splenic Toxicity and Carcinogenicity

The unusual and rare tumors of the spleen induced in F344 rats by a number of structurally related aniline compounds led some workers to study the pathogenesis of splenic lesions and to perform disposition studies of 14C-labeled aniline to explain the possible mechanism(s) of action of these chemicals. Goodman et al. (1984) studied splenic lesions from male rats in the NCI/NTP studies listed in Table 31 and proposed that fibrosis of the splenic parenchyma was a potential preneoplastic lesion. They postulated that methemoglobin bound with aniline compounds or their reactive metabolites is broken down in the red pulp of the spleen and reactive metabolites are released which bind to splenic mesenchymal tissues, resulting in fibrosis that progresses to formation of splenic tumors. Weinberger et al. (1985) proposed a similar hypothesis with their detailed analysis of splenic tumors in NCI/NTP studies on D & C Red No. 9 (NTP, 1982a) and aniline hydrochloride (NCI, 1978a). Bus and Popp (1987) reviewed splenic tumors caused by administration of the chemicals listed in Table 31, CIIT-sponsored aniline carcinogenesis studies in rats, and their own disposition studies on 14C-labeled aniline in rats and mice. They proposed several possible mechanisms for splenic-directed toxicity of aniline compounds. The scheme proposed for these possible mechanisms is reproduced in Figure 13. According to this scheme, the occurrence of splenic tumors in rats may be the result of erythrocyte toxicity. The authors suggest that there is strong evidence for the nongenetic mechanism in the formation of splenic tumors. However, there is a possibility that a direct-acting genotoxic mechanism is involved in the induction of the neoplasms, as shown by McCarthy et al. (1985), who found that in rats and mice, [14C]aniline binds to a greater extent to the kidney, small intestine, large intestine, and spleen than to other tissues. Protein and RNA were major macromolecular targets for [14C]aniline binding; DNA binding occurred to a lesser extent. The possibility for

TABLE 32. INCIDENCES OF LIVER NEOPLASMS IN MICE INDUCED BY ANILINE HYDROCHLORIDE AND STRUCTURALLY RELATED CHEMICALS STUDIED BY THE NCI/NTP

	Structure/Chemical CAS Number	Concentration in Feed	Hepato Adenomas or Male	cellular Carcinomas (a) Female	
***************************************	(Reference)	(ppm)	Mate	remaie	
NH_2		0 6,000	12/39 9/ 4 9	1/46 5/48	
	Aniline hydrochloride CAS No. 142-04-1 (NCI TR 130, 1978a)	12,000	7/ 4 9	5/48	
	Azobenzene	0	9/20	•••••	
	CAS No. 103-33-3 (NCI TR 154,	200 400	18/49 2/48		
//	1979a)	0 208		0/20 2/47	
<u>_</u>		545		0/36	
ŅH ₂	p-Chloroaniline	0	3/19	0/18	
	CAS No. 106-47-8 (NCI TR 189, 1979c)	2,500 5,000	7/49 2/49	1/49 6/41	
	Current studies on p-chloroaniline	0 mg/kg 3 mg/kg	11/50 21/49	6/50 9/50	
CI	hydrochloride (c)	10 mg/kg 30 mg/kg	20/50 21/50	8/50 11/50	
	D & C Red No. 9	0	8/50	5/50	• • • • • • • • • • • • • • • • • • • •
	CAS No. 5160-02-1 (NTP TR 225, 1982a)	1,000 2,000	13/50 15/50	3/50 6/49	
CI	$\begin{array}{c} 3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Ba 2			
	Dapsone CAS No. 80-08-0	0 500	0/11 6/33	(b) 	
	(NCI TR 20, 1977a)	1,000	2/31		
H ₂ N —	SO ₂ —	∕—NH ₂			
NH ₂ •	HCl o-Toluidine hydrochloride CAS No. 636-21-5 (NCI TR 153, 1979b)	0 1,000 3,000	6/19 19/50 14/50	0/20 4/49 13/50	

⁽a) Includes neoplastic nodules, hepatocellular adenomas, and hepatocellular carcinomas

⁽b) -- denotes no tumors reported (c) Gavage studies in water

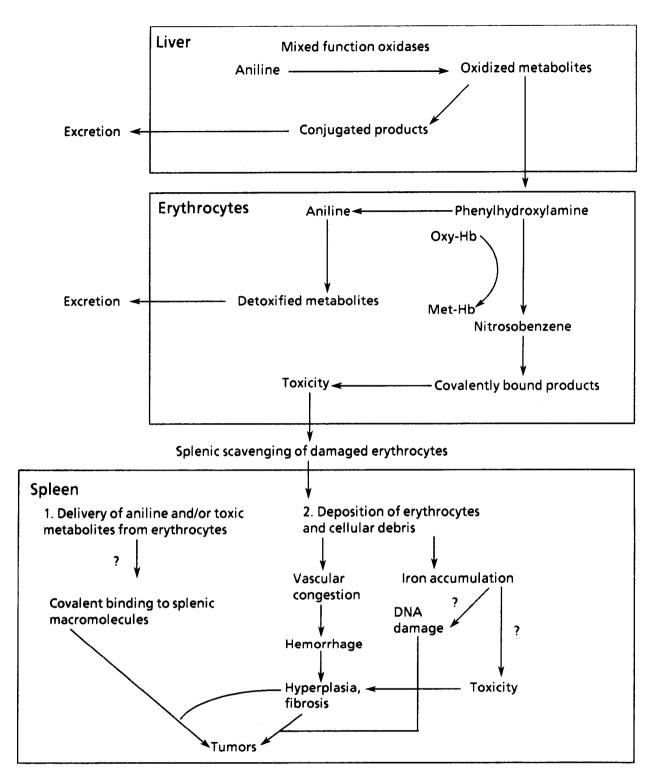


FIGURE 13. PROPOSED MECHANISTIC SCHEME FOR THE SPLEEN-DIRECTED TOXICITY OF ANILINE AND STRUCTURALLY RELATED COMPOUNDS

(Taken from Bus and Popp, 1987)

involvement of genotoxic mechanisms is further supported by Parodi et al. (1982a,b), who showed that aniline induces DNA damage in vivo in the liver and kidney of rats. Also, aniline was clearly positive in induction of sister chromatid exchanges (SCEs) in vivo in male Swiss mice. The damage to DNA seen in the liver, kidney, and bone marrow was absent in male Swiss mice.

The patterns of p-chloroaniline hydrochlorideinduced splenic toxicity and carcinogenicity and results of disposition studies suggest that the mechanism(s) of p-chloroaniline hydrochloride toxicity and carcinogenicity could likely follow the scheme proposed by Bus and Popp (1987). However, whether the mechanism of carcinogenesis is mediated through genotoxic or nongenotoxic events is unresolved. p-Chloroaniline is clearly genotoxic in vitro. In the Salmonella assay and the test for chromosomal aberrations in Chinese hamster ovary cells, p-chloroaniline was mutagenic only in the presence of S9 metabolizing enzymes. p-Chloroaniline also increased the fraction of cultured mouse lymphoma cells exhibiting trifluorothymidine resistance and the frequency of SCEs in Chinese hamster ovary cells, both in the presence and absence of S9. Thus, the in vitro genotoxic activity of p-chloroaniline appears to be dependent on metabolism for its full expression. Experimental evidence indicates that p-chloroaniline undergoes oxidative transformations as a reactive amine, with the probable formation of electrophilic intermediates that could be stablized by the chlorine. For example, p-chloro-N-hydroxyaniline (Von Jagow et al., 1966), which may be formed through a nitronium ion intermediate in the presence of oxidative enzymes, and p-aminophenol (Ichikawa et al., 1969), which may be formed via an arene oxide intermediate possibly in the absence of metabolizing enzymes, have been reported as metabolites of p-chloroaniline in the rabbit. Both of these intermediates are potential electrophiles and could covalently bind macromolecules.

Audit

The experimental and tabulated data for the NTP Technical Report on p-chloroaniline hydrochloride were examined for accuracy, consistency, completeness, and compliance with Good Laboratory Practice regulations. As summarized in Appendix I, the audit revealed no major problems with the conduct of the studies or with collection and documentation of the experimental data. No discrepancies were found that influenced the final interpretation of the results of these studies.

Conclusions

Under the conditions of these 2-year water gavage studies, there was clear evidence of carcinogenic activity* of p-chloroaniline hydrochloride for male F344/N rats, as indicated by increased incidences of uncommon sarcomas of the spleen. Pheochromocytomas of the adrenal gland may also have been associated with chemical administration. There was equivocal evidence of carcinogenic activity of p-chloroaniline hydrochloride for female F344/N rats, as indicated by the presence of uncommon sarcomas of the spleen in one mid and one high dose animal and the increased incidence of pheochromocytomas of the adrenal gland. There was some evidence of carcinogenic activity of p-chloroaniline hydrochloride for male B6C3F₁ mice, as indicated by increased incidences of hepatocellular neoplasms and of hemangiosarcomas of the liver or spleen. There was no evidence of carcinogenic activity of p-chloroaniline hydrochloride for female B6C3F1 mice administered 3, 10, or 30 mg/kg by gavage for 2 vears.

The incidences of mononuclear cell leukemia in male and female rats and of malignant lymphomas in male and female mice were decreased by administration of *p*-chloroaniline hydrochloride. Compound-related splenic fibrosis was present in male and female rats.

^{*}Explanation of Levels of Evidence of Carcinogenic Activity is on page 7.

A summary of the Peer Review comments and the public discussion on this Technical Report appears on page 10.

V. REFERENCES

- 1. Amacher, D.E.; Turner, G.N. (1982) Mutagenic evaluation of carcinogens and non-carcinogens in the L5178Y/TK assay utilizing postmitochondrial fractions (S9) from normal rat liver. Mutat. Res. 97:49-65.
- 2. American Conference of Governmental Industrial Hygienists (ACGIH) (1988-89) Aniline and its homologs. Threshold Limit Values and Biological Exposure Indices for 1988-1989, p. 11.
- 3. Ames, B.N.; McCann, J.; Yamasaki, E. (1975) Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat. Res. 31:347-364.
- 4. Armitage, P. (1971) Statistical Methods in Medical Research. New York: John Wiley & Sons, Inc., pp. 362-365.
- 5. Ashby, J.; Lefevre, P.A; Callander, R.D. (1983) The possible role of azoreduction in the bacterial mutagenicity of 4-dimethylaminoazobenzene (DAB) and 2 of its analogs (6BT and 5I). Mutat. Res. 116:271-279.
- 6. Beard, R.R.; Noe, J.T. (1981) Aromatic nitro and amino compounds. Clayton, G.D.; Clayton, F.E., Eds.: Patty's Industrial Hygiene and Toxicology. New York: John Wiley & Sons, Inc., pp. 2A:2413-2489.
- 7. Beutler, E. (1972) Methemoglobinemia and sulfhemoglobinemia. Williams, W.J., Ed.: Hematology. City: McGraw-Hill, pp. 409-412.
- 8 Beutler, E. (1985) Chemical toxicity of the erythrocyte. Irons, R.D., Ed.: Toxicology of the Blood and Bone Marrow. New York: Raven Press, p. 39.
- 9. Boorman, G.A.; Montgomery, C.A., Jr.; Eustis, S.L.; Wolfe, M.J.; McConnell, E.E.; Hardisty, J.F. (1985) Quality assurance in pathology for rodent carcinogenicity studies. Milman, H.; Weisburger, E., Eds.: Handbook of Carcinogen Testing. Park Ridge, NJ: Noyes Publications, pp. 345-357.
- 10. Bus, J.S. (1983) Aniline and nitrobenzene: Erythrocyte and spleen toxicity. CIIT Activities 3:1,6.

- 11. Bus, J.S.; Popp, J.A. (1987) Perspectives on the mechanism of action of the splenic toxicity of aniline and structurally-related compounds. Food Chem. Toxicol. 25:619-626.
- 12. Chung, K.-T.; Fulk, G.E.; Andrews, A.W. (1981) Mutagenicity testing of some commonly used dyes. Appl. Environ. Microbiol. 42:641-648.
- 13. Ciarlone, A.E.; Gangarosa, L.P.; Fong, B.C. (1976) Detection of *p*-chloroaniline in chlorhexidine solutions using thin-layer chromatography. J. Dent. Res. 55:918-.
- 14. Clive, D.; Johnson, K.O.; Spector, J.F.S.; Batson, A.G.; Brown, M.M.M. (1979) Validation and characterization of the L5178Y/TK^{+/-} mouse lymphoma mutagen assay system. Mutat. Res. 59:61-108.
- 15. The Colour Index (1956) 2nd ed. Bradford, England: The Society of Dyers and Colourists.
- 16. Corbett, M.D.; Chipko, B.R.; Batchelor, A.O. (1980) The action of chloride peroxidase on 4-chloroaniline. *N*-Oxidation and ring halogenation. Biochem. J. 187:893-903.
- 17. Cox, D.R. (1972) Regression models and life tables. J. R. Stat. Soc. B34:187-220.
- 18. De Flora, S. (1981) Study of 106 organic and inorganic compounds in the *Salmonella*/microsome test. Carcinogenesis 2:283-298.
- 19. Degawa, M.; Shoji, Y.; Masuko, K.; Hashimoto, Y. (1979) Mutagenicity of metabolites of carcinogenic aminoazo dyes. Cancer Lett. 8:71-76.
- 20. Demers, F.X.; Yates, R.L. (1977) Antimicrobials: Identification of 3,4,4'-trichlorocarbanilide and 4,4'-dichloro-3-(trifluoromethyl)carbanilide in deodorant bars. J. Soc. Cosmet. Chem. 28:659-666.
- 21. Dinse, G.E.; Haseman, J.K. (1986) Logistic regression analysis of incidental-tumor data from animal carcinogenicity experiments. Fundam. Appl. Toxicol. 6:44-52.

- 22. Dinse, G.E.; Lagakos, S.W. (1983) Regression analysis of tumour prevalence data. J. R. Stat. Soc. C32:236-248.
- 23. Dunkel, V.C.; Zeiger, E.; Brusick, D.; McCoy, E.; McGregor, D.; Mortelmans, K.; Rosenkranz, H.S.; Simmon, V.F. (1985) Reproducibility of microbial mutagenicity assays. II. Testing of carcinogens and noncarcinogens in Salmonella typhimurium and Escherichia coli. Environ. Mutagen. 7(Suppl. 5):1-248.
- 24. Dunnett, C.W. (1980) Pairwise multiple comparisons in the unequal variance case. J. Am. Stat. Assoc. 75:796-800.
- 25. Ernst, W. (1969) Metabolism of substituted dinitrophenols and ureas in mammals and methods for the isolation and identification of metabolites. J. S. Afr. Chem. Inst. 22:S79-S88.
- 26. Evelyn, K.A.; Malloy, H.T. (1938) Microdetermination of oxyhemoglobin, methemoglobin and sulfhemoglobin in a single sample of blood. J. Biol. Chem. 126:655.
- 27. Freitag, D.; Scheunert, I.; Klein, W.; Korte, F. (1984) Long-term fate of 4-chloroaniline-14C in soil and plants under outdoor conditions. A contribution to terrestrial ecotoxicology of chemicals. J. Agric. Food Chem. 32:203-207.
- 28. Galloway, S.M.; Bloom, A.D.; Resnick, M.; Margolin, B.H.; Nakamura, F.; Archer, P.; Zeiger, E. (1985) Development of a standard protocol for in vitro cytogenetic testing with Chinese hamster ovary cells: Comparison of results for 22 compounds in two laboratories. Environ. Mutagen. 7:1-51.
- 29. Galloway, S.M.; Armstrong, M.J.; Reuben, C.; Colman, S.; Brown, B.; Cannon, C.; Bloom, A.D.; Nakamura, F.; Ahmed, M.; Duk, S.; Rimpo, J.; Margolin, B.H.; Resnick, M.A.; Anderson, B.; Zeiger, E. (1987) Chromosome aberration and sister chromatid exchange tests in vitro in Chinese hamster ovary cells: Evaluations of 108 chemicals. Environ. Molec. Mutagen. 10(Suppl. 10):1-175.
- 30. Garner, R.C.; Nutman, C.A. (1977) Testing of some azo dyes and their reduction products for mutagenicity using Salmonella typhimurium TA1538. Mutat. Res. 44:9-19.

- 31. Gart, J.J.; Chu, K.C.; Tarone, R.E. (1979) Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62:957-974.
- 32. Gibaldi, M.; Perrier, D. (1975) Pharmaco-kinetics. New York: M. Dekker.
- 33. Gilbert, P.; Saint-Ruf, G.; Poncelet, F.; Mercier, M. (1980) Genetic effects of chlorinated anilines and azobenzenes on Salmonella typhimurium. Arch. Environ. Contam. Toxicol. 9:533-541.
- 34. Golly, I.; Hlavica, P. (1983) The role of hemoglobin in the N-oxidation of 4-chloroaniline. Biochim. Biophys. Acta 760:69-76.
- 35. Golly, I.; Hlavica, P.; Wolf, J. (1984) The role of lipid peroxidation in the *N*-oxidation of 4-chloroaniline. Biochem. J. 224:415-421.
- 36. Goodman, D.G.; Ward, J.M.; Reichardt, W.D. (1984) Splenic fibrosis and sarcomas in F344 rats fed diets containing aniline hydrochloride, p-chloroaniline, azobenzene, o-toluidine hydrochloride, 4,4'-sulfonyldianiline, or D & C Red No. 9. J. Natl. Cancer Inst. 73:265-273.
- 37. Gosselin, R.E.; Smith, R.P.; Hodge, H.C.; Braddock, J.E. (1984) Clinical Toxicology of Commercial Products, 5th ed. Baltimore: Williams & Wilkins, p. II-208.
- 38. Gralla, E.J.; Bus, J.S.; Reno, F.; Cushman, J.R.; Ulland, B.N. (1979) Studies of aniline HCl in rats. Toxicol. Appl. Pharmacol. 48:A97.
- 39. Hargesheimer, E.E.; Coutts, R.T.; Pasutto, F.M. (1981) Gas-liquid chromatographic determination of aniline metabolites of substituted urea and carbamate herbicides in aqueous solution. J. Assoc. Off. Anal. Chem. 64:833-840.
- 40. Haseman, J.K. (1984) Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. Environ. Health Perspect. 58:385-392.
- 41. Haseman, J.K.; Huff, J.; Boorman, G.A. (1984) Use of historical control data in carcinogenicity studies in rodents. Toxicol. Pathol. 12:126-135.

- 42. Haseman, J.K.; Huff, J.; Rao, G.N.; Arnold, J.; Boorman, G.A.; McConnell, E.E. (1985) Neoplasms observed in untreated and corn oil gavage control groups of F344/N rats and (C57BL/6N \times C3H/HeN)F₁ (B6C3F₁) mice. J. Natl. Cancer Inst. 75:975-984.
- 43. Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W.; Zeiger, E. (1983) Salmonella mutagenicity test results for 250 chemicals. Environ. Mutagen. Suppl. 1:3-142.
- 44. Hayward, N.K.; Lavin, M.F.; Craswell, P.W. (1982) Inhibition of DNA synthesis and alteration to DNA structure by the phenacetin analog p-aminophenol. Biochem. Pharmacol. 31:1425-1429.
- 45. Hlavica, P. (1984) On the function of cytochrome b_5 in the cytochrome P-450-dependent oxygenase system. Arch. Biochem. Biophys. 228:600-608.
- 46. Ichikawa, Y.; Yamano, T.; Fujishima, H. (1969) Relationship between the interconversion of cytochrome P-450 and P-420 and its activities in hydroxylations and demethylations by P-450 oxidase systems. Biochim. Biophys. Acta 171:32-36.
- 47. International Agency for Research on Cancer (IARC) (1974) IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man. Some Aromatic Amines, Hydrazine and Related Substances, N-Nitroso Compounds and Miscellaneous Alkylating Agents, Vol. 4. Lyon, France: World Health Organization, IARC, pp. 65-77.
- 48. Jonckheere, A. (1954) A distribution-free k-sample test against ordered alternatives. Biometrika 41:133-145.
- 49. Kaplan, E.L.; Meier, P. (1958) Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53:457-481.
- 50. Kaufman, D.D.; Plimmer, J.R.; Klingebiel, U.I. (1973) Microbial oxidation of 4-chloroaniline. J. Agr. Food Chem. 21:127-132.
- 51. Kiese, M. (1966) The biochemical production of ferrihemoglobin-forming derivatives from aromatic amines, and mechanisms of ferrihemoglobin formation. Pharmacol. Rev. 18:1091-1161.

- 52. Lamb, J.C.; Huff, J.E.; Haseman, J.K.; Murthy, A.S.K.; Lilja, H. (1986) Carcinogenesis studies of 4,4'-methylenedianiline dihydrochloride given in drinking water to F344/N rats and B6C3F₁ mice. J. Toxicol. Environ. Health 18:325-337.
- 53. Linch, A.L. (1974) Biological monitoring for industrial exposure to cyanogenic aromatic nitro and amino compounds. Am. Ind. Hyg. Assoc. J. 7:426-432.
- 54. Liu, Z.; Franklin, M.R. (1984) Cytochrome P-450 metabolic--Intermediate complex formation from p-aminobenzoic acid esters and other arylamines. Eur. J. Drug Metab. Pharmacokinet. 9:155-159.
- 55. Maronpot, R.R.; Boorman, G.A. (1982) Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. Toxicol. Pathol. 10:71-80.
- 56. Matthews, H.B.; Anderson, M.W. (1975) The distribution and excretion of 2,4,5,2',5'-pentachlorobiphenyl in the rat. Drug Metab. Dispos. 3:211.
- 57. McCarthy, D.J.; Waud, W.R.; Struck, R.F.; Hill, D.L. (1985) Disposition and metabolism of aniline in Fischer 344 rats and C57BL/6 \times C3H F₁ mice. Cancer Res. 45:174-180.
- 58. McConnell, E.E. (1983a) Pathology requirements for rodent two-year studies. I. A review of current procedures. Toxicol. Pathol. 11:60-64.
- 59. McConnell, E.E. (1983b) Pathology requirements for rodent two-year studies. II. Alternative approaches. Toxicol. Pathol. 11:65-76.
- 60. McConnell, E.E.; Solleveld, H.A.; Swenberg, J.A.; Boorman, G.A. (1986) Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. J. Natl. Cancer Inst. 76:283-289
- 61. McKnight, B.; Crowley, J. (1984) Tests for differences in tumor incidence based on animal carcinogenesis experiments. J. Am. Stat. Assoc. 79:639-648.

- 62. McLean, S.; Starmer, G.A.; Thomas, J. (1969) Methaemoglobin formation by aromatic amines. J. Pharm. Pharmacol. 21:441-450.
- 63. McQueen, C.A.; Maslansky, C.J.; Crescenzi, S.B.; Williams, G.M. (1981) Genotoxicity of 4,4'-methylenebis-2-chloroaniline in rat, mouse, and hamster hepatocytes. Toxicol. Appl. Pharmacol. 58:231-235.
- 64. The Merck Index (1983) 10th ed. Rahway, NJ: Merck & Co., Inc., p. 297.
- 65. Metzler, C.M. (1969) A User's Manual for NON-LIN. Technical Report No. 7297/69/7292/005. Kalamazoo, MI: Upjohn Co.
- 66. Miller, M.J.; Carter, L.E.; Sipes, I.G. (1982) Pharmacokinetics of acrylamide in Fischer-344 rats. Toxicol. Appl. Pharmacol. 63:36-44.
- 67. Mitchell, A.D.; Rudd, C.J.; Caspary, W.J. (1989) Evaluation of the L5178Y mouse lymphoma cell mutagenesis system: Results of assays of 63 coded chemicals tested at SRI International. Environ. Mutagen. (in press).
- 68. Mitra, A.B.; Manna, G.K. (1971) Effect of some phenolic compounds on chromosomes of bone marrow cells of mice. Indian J. Med. Res. 59:1442-1447.
- 69. Mortelmans, K.; Haworth, S.; Lawlor, T.; Speck, W.; Tainer, B.; Zeiger, E. (1986) Salmonella mutagenicity tests. II. Results from the testing of 270 chemicals. Environ. Mutagen. 8(Suppl. 7):1-119.
- 70. Myhr, B.C.; Caspary, W.J. (1989) Evaluation of the L5178Y mouse lymphoma cell mutagenesis system: Results of assays of 63 coded chemicals tested at Litton Bionetics, Inc. Environ. Mutagen. (in press).
- 71. Myhr, B.C.; Bowers, L.; Caspary, W.J. (1985) Assays for the induction of gene mutations at the thymidine kinase locus in L5178Y mouse lymphoma cells in culture. Prog. Mutat. Res. 5:555-568.

- 72. National Cancer Institute (NCI) (1976) Guidelines for Carcinogen Bioassay in Small Rodents. NCI Technical Report No. 1. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. 65 p.
- 73. National Cancer Institute (NCI) (1977a) Bioassay of Dapsone for Possible Carcinogenicity. NCI Technical Report No. 20. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. 97 p.
- 74. National Cancer Institute (NCI) (1977b) Bioassay of Chloramben for Possible Carcinogenicity. NCI Technical Report No. 25. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. 90 p.
- 75. National Cancer Institute (NCI) (1978a) Bioassay of Aniline Hydrochloride for Possible Carcinogenicity. NCI Technical Report No. 130. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. 95 p.
- 76. National Cancer Institute (NCI) (1978b) Bioassay of 2-Chloro-p-phenylenediamine Sulfate for Possible Carcinogenicity. NCI Technical Report No. 113. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. 87 p.
- 77. National Cancer Institute (NCI) (1978c) Bioassay of 3-Chloro-p-toluidine for Possible Carcinogenicity. NCI Technical Report No. 145. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. 81 p.
- 78. National Cancer Institute (NCI) (1978d) Bioassay of 4-Chloro-o-phenylenediamine for Possible Carcinogenicity. NCI Technical Report No. 63. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. 52 p.

- 79. National Cancer Institute (NCI) (1978e) Bioassay of 4-Chloro-m-phenylenediamine for Possible Carcinogenicity. NCI Technical Report No. 85. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. 46 p.
- 80. National Cancer Institute (NCI) (1979a) Bioassay of Azobenzene for Possible Carcinogenicity. NCI Technical Report No. 154. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. 112 p.
- 81. National Cancer Institute (NCI) (1979b) Bioassay of o-Toluidine Hydrochloride for Possible Carcinogenicity. NCI Technical Report No. 153. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. 131 p.
- 82. National Cancer Institute (NCI) (1979c) Bioassay of p-Chloroaniline for Possible Carcinogenicity. NCI Technical Report No. 189. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. 53 p.
- 83. National Cancer Institute (NCI) (1979d) Bioassay of 5-Chloro-o-toluidine for Possible Carcinogenicity. NCI Technical Report No. 187. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. 44 p.
- 84. National Cancer Institute (NCI) (1979e) Bioassay of 4-Chloro-o-toluidine Hydrochloride for Possible Carcinogenicity. NCI Technical Report No. 165. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. 104 p.
- 85. National Institutes of Health (NIH) (1978) Open Formula Rat and Mouse Ration (NIH-07). Specification NIH-11-1335. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

- 86. National Toxicology Program (NTP) (1982a) Carcinogenesis Bioassay of D & C Red No. 9 in F344 Rats and B6C3F₁ Mice. NTP Technical Report No. 225. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Bethesda, MD. 168 p.
- 87. National Toxicology Program (NTP) (1982b) Carcinogenesis Bioassay of 2,6-Dichloro-p-phenylenediamine in F344 Rats and B6C3F₁ Mice. NTP Technical Report No. 219. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Bethesda, MD. 121 p.
- 88. National Toxicology Program (NTP) (1988) Toxicology and Carcinogenesis Studies of Monuron in F344/N Rats and B6C3F₁ Mice. NTP Technical Report No. 266. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. 166 p.
- 89. Oberly, T.J.; Bewsey, B.J.; Probst, G.S. (1984) An evaluation of the L5178Y TK +/- mouse lymphoma forward mutation assay using 42 chemicals. Mutat. Res. 125:291-306.
- 90. Pai, V.; Bloomfield, S.F.; Jones, J.; Gorrod, J.W. (1978) Mutagenicity testing of nitrogenous compounds and their N-oxidized products using trp^+ reversion in *E. coli*. Biol. Oxid. Nitrogen, 2nd Int. Symp. Proc., 1977, pp. 375-382.
- 91. Parodi, S.; Pala, M.; Russo, P.; Zunino, A.; Balbi, C.; Albini, A.; Valerio, F.; Cimberle, M.R.; Santi, L. (1982a) DNA damage in liver, kidney, bone marrow, and spleen of rats and mice treated with commercial and purified aniline as determined by alkaline elution assay and sister chromatid exchange induction. Cancer Res. 42:2277-2283.
- 92. Parodi, S.; Taningher, M.; Boero, P.; Santi, L. (1982b) Quantitative correlations amongst alkaline DNA fragmentation, DNA covalent binding, mutagenicity in the Ames test, and carcinogenicity, for 21 compounds. Mutat. Res. 93:1-24.

- 93. Parodi, S.; Zunino, A.; Ottagio, L.; De Ferrari, M.; Santi, L. (1983) Lack of correlation between the capability of inducing sister-chromatid exchanges *in vivo* and carcinogenic potency, for 16 aromatic amines and azo derivatives. Mutat. Res. 108:225-238.
- 94. Perry, D.F.; Carter, D.E.; Sipes, I.G. (1981a) Distribution and disposition of p-chloroaniline in Fischer-344 rats. Presented at Society of Toxicology 20th Annual Meeting, San Diego, CA.
- 95. Perry, D.F.; Carter, D.E.; Sipes, I.G. (1981b) Distribution and excretion of ¹⁴C-parachloroaniline in the rat. Toxicologist 1:14.
- 96. Poirier, L.A.; Weisburger, J.H. (1972) N-Hydroxylation and carcinogenesis. Fifth International Congress on Pharmacology. Symposium: Mechanisms of Toxicity by Therapeutic and Environmental Agents, pp. 208-209.
- 97. Prasad, I. (1970) Mutagenic effects of the herbicide 3',4'-dichloropropionanilide and its degradation products. Can. J. Microbiol. 16: 369-372.
- 98. Probst, G.S.; McMahon, R.E.; Hill, L.E.; Thompson, C.Z.; Epp, J.K.; Neal, S.B. (1981) Chemically-induced unscheduled DNA synthesis in primary rat hepatocyte cultures: Comparison with bacterial mutagenicity using 218 compounds. Environ. Mutagen. 3:11-32.
- 99. Rosenkranz, H.S.; Leifer, Z. (1980) Determining the DNA-modifying activity of chemicals using DNA polymerase-deficient *Escherichia coli*. Chemical Mutagens: Principles and Methods for Their Detection, 6th ed. New York: Plenum Press, pp. 109-147.
- 100. Rosenkranz, H.S.; Poirier, L.A. (1979) Evaluation of the mutagenicity and DNA-modifying activity of carcinogens and noncarcinogens in microbial systems. J. Natl. Cancer Inst. 67:873-892.
- 101. Rubino, G.F.; Scansetti, G.; Piolatto, G.; Pira, E. (1982) The carcinogenic effect of aromatic amines: An epidemiological study on the role of o-toluidine and 4,4'-methylene bis (2-methylaniline) in inducing bladder cancer in man. Environ. Res. 27:241-254.

- 102. Sadtler Standard Spectra. IR No. 1317; NMR No. 10490M. Philadelphia: Sadtler Research Laboratories.
- 103. Sakamoto, Y.; Watanabe, S. (1986) On the relationship between the chemical structure and the carcinogenicity of polycyclic and chlorinated monocyclic aromatic compounds as studied by means of ¹³C NMR. Bull. Chem. Soc. Jpn. 59:3033-3038.
- 104. Schauerte, W.; Lay, J.P.; Klein, W.; Korte, F. (1982) Long-term fate of organochlorine xenobiotics in aquatic ecosystems. Distribution, residual behavior, and metabolism of hexachlorobenzene, pentachloronitrobenzene, and 4-chloroaniline in small experimental ponds. Ecotoxicol. Environ. Safety 6:560-569.
- 105. Selkirk, J.K. (1980) Chemical carcinogenesis: A brief overview of the mechanism of action of polycyclic hydrocarbons, aromatic amines, nitrosamines, and aflatoxins. Carcinogenesis 5:1-31.
- 106. Seuferer, S.L.; Braymer, H.D.; Dunn, J.J. (1979) Metabolism of diflubenzuron by soil microorganisms and mutagenicity of the metabolites. Pestic. Biochem. Physiol. 10:174-180.
- 107. Shapiro, S.L.; Ross, I.M.; Freedman, L. (1959) α-Hydroxyamides and related compounds. J. Am. Chem. Soc. 81:6322.
- 108. Simmon, V.F. (1979) In vitro mutagenicity assays of chemical carcinogens and related compounds with Salmonella typhimurium. J. Natl. Cancer Inst. 62:893-899.
- 109. Smith, M.R.; Gorrod, J.W. (1978) The microsomal N-oxidation of some primary aromatic amines. Gorrod, J.W., Ed.: Biological Oxidation of Nitrogen. Elsevier/North-Holland Biomedical Press, pp. 65-70.
- 110. Smith, R.P. (1986) Toxic responses of the blood. Klaassen, C.D.; Amdur, M. O.; Doull, J., Eds.: Casarett and Doull's Toxicology. The Basic Science of Poisons, 3rd ed. New York: Macmillan Publishing Co., pp. 223.

- 111. Smyth, H.F., Jr.; Carpenter, C.P.; Weil, C.S.; Pozzani, U.C.; Striegel, J.A. (1962) Range-finding toxicity data: List VI. Am. Ind. Hyg. Assoc. J. 23:95-107.
- 112. Suss, A.; Fuchsbichler, G.; Eben, C. (1978) Abbau von Anilin, 4-Chloranilin und 3,4-Dichloranilin in verschiedenen Boden. Z. Pflanzenernaehr. Bodenkd. 141:57-66.
- 113. Takehisa, S.; Kanaya, N. (1982) SCE induction in human lymphocytes by combined treatment with aniline and norharman. Mutat. Res. 101:165-172.
- 114. Tarone, R.E. (1975) Tests for trend in life table analysis. Biometrika 62:679-682.
- 115. Thompson, C.Z.; Hill, L.E.; Epp, J.K.; Probst, G.S. (1983) The induction of bacterial mutation and hepatocyte unscheduled DNA synthesis by monosubstituted anilines. Environ. Mutagen. 5:803-811.
- 116. Tohda, H.; Tada, M.; Sugawara, R.; Oikawa, A. (1983) Actions of amino-beta-carbolines on induction of sister-chromatid exchanges. Mutat. Res. 116:137-147.
- 117. Topham, J.C. (1980) The detection of carcinogen-induced sperm head abnormalities in mice. Mutat. Res. 69:149-155.
- 118. Uehleke, H.; Hellmer, K.H. (1971) Competitive inhibition of the microsomal N-hydroxylation of 4-chloroaniline by metyrapone and cyclohexane. N. S. Arch. Pharmakol. 268:242-246.
- 119. U.S. Environmental Protection Agency (USEPA) (1978) 4-Chloro-2-methylaniline. TSCA Inventory.
- 120. U.S. Environmental Protection Agency (USEPA) (1986) 4-Chloro-2-methylaniline. TSCA Inventory.
- 121. Valencia, R.; Mason, J.M.; Woodruff, R.C.; Zimmering, S. (1985) Chemical mutagenesis testing in Drosophila: III. Results of 48 coded compounds tested for the National Toxicology Program. Environ. Mutagen. 7:325-348.

- 122. Von Jagow, R.; Kiese, M.; Renner, G. (1966) Urinary excretion of N-hydroxy derivatives of some aromatic amines by rabbits, guinea pigs, and dogs. Biochem. Pharmacol. 15:1899-1910.
- 123. Weinberger, M.A.; Albert, R.H.; Montgomery, S.B. (1985) Splenotoxicity associated with splenic sarcomas in rats fed high doses of D & C Red No. 9 or aniline hydrochloride. J. Natl. Cancer Inst. 75:681-690.
- 124. Weisburger, E.K. (1983) Species differences in response to aromatic amines. USEPA Research Division. PB83-NO220137. Langenbach, R.; Nesnow, S.; Rice, J., Eds.: Organ and Species Specificity in Chemical Carcinogenesis, pp. 23-47.
- 125. Weisburger, J.H.; Weisburger, E.K. (1973) Biochemical formation and pharmacological, toxicological, and pathological properties of hydroxylamines and hydroxamic acids. Pharmacol. Rev. 25:1-66.
- 126. Wild, D.; Eckhardt, K.; Gocke, E.; King, M.T. (1980) Comparative results of short-term in vitro and in vivo mutagenicity tests obtained with selected environmental chemicals. Short-Term Test Syst. Detect. Carcinog. Proc. Symp., pp. 170-178.
- 127. Williams, D.A. (1971) A test for differences between treatment means when several dose levels are compared with a zero dose control. Biometrics 27:103-117.
- 128. Williams, D.A. (1972) The comparison of several dose levels with a zero dose control. Biometrics 28:519-531.
- 129. Williams, G.M. (1981) Mammalian culture systems for the study of genetic effects of N-substituted aryl compounds. Natl. Cancer Inst. Monogr. 58:237-242.
- 130. Williams, G.M.; Laspia, M.F.; Dunkel, V.C. (1982) Reliability of the hepatocyte primary culture/DNA repair test in testing of coded carcinogens and noncarcinogens. Mutat. Res. 97:359-370.

- 131. Wilmer, J.L.; Kligerman, A.D.; Erexson, G.L. (1981) Sister chromatid exchange induction and cell cycle inhibition by aniline and its metabolites in human fibroblasts. Environ. Mutagen. 3:627-638.
- 132. Zeiger, E.; Anderson, B.; Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W. (1987) Salmonella mutagenicity tests. III. Results from the testing of 255 chemicals. Environ. Mutagen. 9(Suppl. 9):1-110.
- 133. Zeiger, E.; Anderson, B.; Haworth, S.; Lawlor, T.; Mortelmans, K. (1988) Salmonella mutagenicity tests: IV. Results from the testing of 300 chemicals. Environ. Molec. Mutagen. 11(Suppl. 12):1-158.
- 134. Zimmer, D.; Mazurek, J.; Petzold, G.; Bhuyan, B.K. (1980) Bacterial mutagenicity and mammalian cell DNA damage by several substituted anilines. Mutat. Res. 77:317-326.

APPENDIX A

SUMMARY OF LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF p-CHLOROANILINE HYDROCHLORIDE

		PAGE
TABLE A1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWOYEAR GAVAGE STUDY OF $p\text{-}\text{CHLOROANILINE}$ HYDROCHLORIDE	103
TABLE A2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF p -CHLOROANILINE HYDROCHLORIDE	108
TABLE A3	ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF p -CHLOROANILINE HYDROCHLORIDE	126
TABLE A4a	HISTORICAL INCIDENCE OF SPLENIC CONNECTIVE TISSUE TUMORS IN MALE F344/N RATS	130
TABLE A4b	HISTORICAL INCIDENCE OF CIRCULATORY SYSTEM TUMORS IN MALE F344/N RATS	131
TABLE A4c	HISTORICAL INCIDENCE OF ADRENAL MEDULLARY TUMORS IN MALE F344/N RATS	132
TABLE A4d	HISTORICAL INCIDENCE OF TESTICULAR INTERSTITIAL CELL TUMORS IN MALE F344/N RATS	133
TABLE A4e	HISTORICAL INCIDENCE OF LEUKEMIA IN MALE F344/N RATS	134
TABLE A4f	HISTORICAL INCIDENCE OF ANTERIOR PITUITARY GLAND TUMORS IN MALE F344/N RATS	135
TABLE A5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF p-CHLOROANILINE HYDROCHLORIDE	136

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF $\rho\text{-}CHLOROANILINE HYDROCHLORIDE}$

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
nimals initially in study	50		50		50		50	
nimals removed	50		50		50		50	
nimals examined histopathologically	49		50		50		50	
LIMENTARY SYSTEM		J						
Intestine large, cecum	(46)		*(50)		*(50)		(44)	
Colon, rectum, osteosarcoma, metasta spleen	,						1	(2%)
Intestine large, rectum	(47)		*(50)		*(50)		(44)	
Mesothelioma malignant	1	(2%)						
Intestine small, duodenum	(48)		*(50)		*(50)		(46)	
Fibrosarcoma, metastatic, spleen							2	(4%)
Osteosarcoma, metastatic, spleen							3	(7%)
Ileum, jejunum, osteosarcoma, metast	atic,							
spleen								(2%)
Intestine small, jejunum	(46)		*(50)		*(50)		(41)	
Adenocarcinoma			1	(2%)				
Osteosarcoma, metastatic, spleen							1	(2%)
Polyp adenomatous						(2%)		
Liver	(49)		(50)		(49)		(49)	
Fibrosarcoma, metastatic, spleen							4	(8%)
Hepatocellular carcinoma	1	(2%)	1	(2%)	1	(2%)		
Hepatocellular carcinoma, multiple					1	(2%)		
Leukemia mononuclear	21	(43%)	3	(6%)	2	(4%)	3	(6%)
Mesothelioma malignant			1	(2%)				
Neoplastic nodule			5	(10%)	3	(6%)		
Osteosarcoma, metastatic, spleen							8	(16%
Mesentery	*(49)		*(50)		*(50)		*(50)	
Fibrosarcoma, metastatic, spleen					1	(2%)		(18%
Leukemia mononuclear	8	(16%)						(4%)
Mesothelioma malignant	1	(2%)	2	(4%)				(4%)
Osteosarcoma, metastatic, spleen Pheochromocytoma malignant, metas				,				(22%
adrenal gland					1	(2%)		
Sarcoma			1	(2%)				
Pancreas	(48)		*(50)	\=·•/	*(50)		(47)	
Fibrosarcoma, metastatic, spleen	• '					(2%)		(13%
Leukemia mononuclear	4	(8%)	1	(2%)	-	,	•	, _ 5 ,0
Mesothelioma malignant		(2%)		(4%)			1	(2%)
Osteosarcoma, metastatic, spleen	-	.= /	-	,/				(21%)
Acinus, adenoma	1	(2%)						(== 70
Salivary glands	(49)		*(50)		*(50)		(49)	
Leukemia mononuclear		(2%)	, ()		,		`/	
Stomach, forestomach	(47)		*(50)		*(50)		(46)	
Leukemia mononuclear		(2%)	,		,		\ /	
Osteosarcoma, metastatic, spleen Glandular, osteosarcoma, metastatic,		•						$(2\%) \\ (2\%)$
Stomach, glandular	(48)		*(50)		*(50)		(45)	(270)
Fibrosarcoma, metastatic, spleen	(10)		(00)		(00)			(2%)
Leukemia mononuclear	1	(2%)					•	(20 10)
Osteosarcoma, metastatic, spleen		(= 10)					1	(2%)
Tongue	*(49)		*(50)		*(50)		*(50)	(4 /0)
Papilloma squamous		(4%)		(2%)	(00)			(2%)
•	*(49)	(= 10)	*(50)	(270)	*(50)		*(50)	(2/0)
Tooth	T(4W)							

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

`	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
CARDIOVASCULAR SYSTEM							-	
Blood vessel	*(49)		*(50)		*(50)		*(50)	
Pulmonary artery, fibrosarcoma,	,		,		(/		(,	
metastatic, spleen							1	(2%)
Heart	(49)		*(50)		*(50)		(50)	
Leukemia mononuclear	3	(6%)			1	(2%)		
Osteosarcoma, metastatic, bone	1	(2%)						
ENDOCRINE SYSTEM			-					
Adrenal gland, cortex	(49)		(49)		(49)		(49)	
Adenoma		(2%)	(10)		(10)		(40)	
Leukemia mononuclear		(29%)	1	(2%)	1	(2%)	1	(2%)
Capsule, fibrosarcoma, metastatic, spleer		(20,0)	-	(= /0 /	-	(2,0)		(2%)
Capsule, osteosarcoma, metastatic, spleet	1							(2%)
Medulla, fibrosarcoma, metastatic, spleen								(2%)
Adrenal gland, medulla	(49)		(48)		(48)		(48)	,_ ,
Leukemia mononuclear		(29%)		(2%)		(2%)		(2%)
Pheochromocytoma malignant		(2%)	=	•		(2%)		(2%)
Pheochromocytoma benign		(20%)	12	(25%)	9	(19%)		(27%)
Bilateral, pheochromocytoma benign		(6%)		(4%)		(10%)		(25%)
Islets, pancreatic	(48)		*(50)		*(50)		(46)	
Adenoma	3	(6%)					1	(2%)
Carcinoma							1	(2%)
Fibrosarcoma, metastatic, spleen								(9%)
Osteosarcoma, metastatic, spleen							7	(15%)
Parathyroid gland	(48)		*(50)		*(50)		(45)	
Adenoma			1	(2%)			1	(2%)
Leukemia mononuclear	1	(2%)						
Pituitary gland	(47)		*(50)		*(50)		(46)	
Leukemia mononuclear		(2%)						
Pars distalis, adenoma		(40%)	13	(26%)	11	(22%)		(22%)
Pars distalis, adenoma, multiple	1	(2%)					1	(2%)
Pars distalis, carcinoma		_			1	(2%)		
Pars intermedia, adenoma		(2%)						
Thyroid gland	(48)		*(50)		*(50)		(45)	
Leukemia mononuclear		(4%)						
C-cell, adenoma		(17%)	2	(4%)			9	(20%)
C-cell, adenoma, multiple		(2%)	_					
C-cell, carcinoma	1	(2%)		(2%)			1	(2%)
Follicular cell, adenocarcinoma				(2%)				
Follicular cell, adenoma			1	(2%)				
ENERAL BODY SYSTEM								
Tissue, NOS Osteosarcoma, metastatic, spleen	*(49)		*(50)		*(50)		*(50) 1	(2%)
HENITAL SYSTEM		·		<u>-</u> -				
Epididymis	(49)		*(50)		*(50)		(50)	
Fibrosarcoma, metastatic, spleen	(40)		(00)		(00)			(4%)
Leukemia mononuclear	1	(2%)					۷	(-2 70)
Mesothelioma malignant		(2%)	1	(2%)	1	(2%)		
Osteosarcoma, metastatic, spleen		(= 10)		(4 /0)	1	(4/0)	3	(6%)
Sarcoma								(2%)
				(2%)				
Bilateral, mesothelioma malignant				(270)				
Bilateral, mesothelioma malignant Bilateral, osteosarcoma, metastatic, splee	n		1	(2%)				(2%) (2%)
Bilateral, mesothelioma malignant Bilateral, osteosarcoma, metastatic, splee Penis	n *(49)		*(50)	(2%)	*(50)			(2%)

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
GENITAL SYSTEM (Continued)				<u> </u>				
Preputial gland	(46)		*(50)		*(50)		(48)	
Adenocarcinoma							1	(2%)
Adenoma	1	(2%)	7	(14%)	4	(8%)	2	(4%)
Leukemia mononuclear	1	(2%)						
Prostate	(49)		*(50)		*(50)		(48)	
Fibrosarcoma, metastatic, spleen							1	(2%)
Leukemia mononuclear	1	(2%)						
Osteosarcoma, metastatic, spleen							3	(6%)
Seminal vesicle	*(49)		*(50)		*(50)		*(50)	
Osteosarcoma, metastatic, spleen							2	(4%)
Testes	(49)		*(50)		*(50)		(50)	
Mesothelioma malignant	1	(2%)	2	(4%)	1	(2%)	2	(4%)
Osteosarcoma, metastatic, spleen							3	(6%)
Bilateral, mesothelioma malignant			1	(2%)				
Bilateral, interstitial cell, adenoma	25	(51%)	38	(76%)	33	(66%)	40	(80%)
Interstitial cell, adenoma	11	(22%)	6	(12%)	11	(22%)	6	(12%
HEMATOPOIETIC SYSTEM								
Blood	*(49)		*(50)		*(50)		*(50)	
Leukemia mononuclear		(39%)		(6%)		(2%)		(6%)
Bone marrow	(49)	(3370)	(50)	(070)	(49)	(270)	(50)	(0%)
Leukemia mononuclear	(43)		(30)			(2%)	(30)	
Osteosarcoma, metastatic, spleen					1	(270)	1	(2%)
Femoral, leukemia mononuclear	e	(12%)			1	(2%)	1	(270)
Lymph node	(49)	(1270)	*(50)		*(50)	(270)	(49)	
Axillary, leukemia mononuclear		(2%)	(00)		(00)		(40)	
Deep cervical, leukemia mononuclear	1	1_11						
Inguinal, leukemia mononuclear		(8%)						
Lumbar, leukemia mononuclear		(2%)						
Mediastinal, fibrosarcoma, metastatic, s		(270)					2	(4%)
Mediastinal, leukemia mononuclear		(33%)			1	(2%)	3	(6%)
Mediastinal, osteosarcoma, metastatic,		(00 %)			•	(270)	6	(12%)
Mediastinal, pancreatic, fibrosarcoma,	spicen						v	(12/0
metastatic, spleen							1	(2%)
Pancreatic, leukemia mononuclear	1	(2%)	1	(2%)				(270)
· · · · · · · · · · · · · · · · · · ·	1	(270)	1	(270)			1	(2%)
Pancreatic, mesothelioma malignant Renal, leukemia mononuclear	1	(2%)						(2%)
Lymph node, mandibular	(48)	(470)	*(50)		*(50)			(470)
Lymph node, mandibular Leukemia mononuclear		(35%)		(9%)		(2%)	(48)	(6%)
Lymph node, mesenteric		(3070)		(2%)	*(50)	(470)		(070)
• . •	(10)	(70%)	*(50)	(90%)	(00)		(10)	(200
Leukemia mononuclear		((0%)	1	(2%)				(30%)
Mediastinal, osteosarcoma, metastatic, s								(10%)
Pancreatic, fibrosarcoma, metastatic, sp Spleen			(EA)		(EO)			(10%)
Fibroma	(49)		(50)		(50)		(50)	(ACI)
			1	(20%)	0	(40%)		(4%)
Fibrosarcoma			1	(2%)	2	(4%)		(34%)
Hemangiosarcoma	0.1	(490)	0	(001)	_	(40)		(8%)
Leukemia mononuclear		(43%)		(6%)	2	(4%)		(6%)
Mesothelioma malignant	1	(2%)	Z	(4%)	_	(001)		(2%)
Osteosarcoma	(40)		*/50,		*/50	(2%)		(38%)
Thymus	(43)	(10%)	*(50)		*(50)	(00)	(36)	
Leukemia mononuclear	8	(19%)			1	(2%)		(6%)
Osteosarcoma, metastatic, spleen				/O.W.\			1	(3%)
Thymoma benign			1	(2%)				

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
INTEGUMENTARY SYSTEM								
Mammary gland	(32)		*(50)		*(50)		(36)	
Fibroadenoma		(3%)	/	(4%)		(6%)	,	(8%)
Skin	(47)	(370)	*(50)	(470)	*(50)		(49)	(070)
Basal cell adenoma	(41)			(2%)	(30)		(43)	
Basosquamous tumor benign	1	(2%)		(2%)				
Keratoacanthoma		(4%)		(2%)	1	(2%)	1	(2%)
Leukemia mononuclear		(2%)	1	(270)	1	(270)	1	(270)
Papilloma squamous	1	(270)			1	(2%)		
Squamous cell carcinoma			1	(2%)		(270)		
Sebaceous gland, adenoma			1	(270)	1	(2%)		
Subcutaneous tissue, fibroma	2	(6%)	9	(10%)		(2%)	4	(90%)
Subcutaneous tissue, fibrosarcoma		(2%)		(4%) (4%)			4	(8%)
Subcutaneous tissue, librosarcoma	1	(270)	4	(4%)	1	(2%)		
MUSCULOSKELETAL SYSTEM								
Bone	(48)		*(50)		*(50)		(50)	
Cranium, osteosarcoma	, -5,			(2%)	(55)		(00)	
Rib, osteosarcoma	1	(2%)	-	(2,0)				
Skeletal muscle	*(49)	(270)	*(50)		*(50)		*(50)	
Leukemia mononuclear		(2%)	(00)		(00)		(00)	
Osteosarcoma, metastatic, bone		(2%)	1	(2%)				
Osteosarcoma, metastatic, spleen	•	(270)	_	(270)			9	(4%)
Diaphragm, fibrosarcoma, metastatic,	nloon							
Diaphragm, mesothelioma malignant		(2%)					ა	(6%)
Diaphragm, osteosarcoma, metastatic,		(270)					0	(4%)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								(1/0)
NERVOUS SYSTEM	440		****		±.=0			
Brain	(49)		*(50)		*(50)		(50)	
Astrocytoma benign		(2%)						
Ependymoma malignant		(2%)						
Leukemia mononuclear	1	(2%)						
Cerebellum, meningioma malignant					1	(2%)		
RESPIRATORY SYSTEM	<u></u>							
Lung	(49)		*(50)		*(50)		(50)	
Alveolar/bronchiolar adenoma		(2%)	(00)		(00)		(50)	
Fibrosarcoma, metastatic, spleen	1	(470)					-	(1000)
Hemangiosarcoma, metastatic, spleen								(10%)
	00	(410)			_	(0%)		(2%)
Leukemia mononuclear	20	(41%)		(O.W.)	1	(2%)	3	(6%)
Osteosarcoma, metastatic, bone			1	(2%)			_	(0~)
Osteosarcoma, metastatic, spleen						.a.~:	3	(6%)
Squamous cell carcinoma	****		4/20			(2%)		
Nose	*(49)	(OG)	*(50)		*(50)		(46)	
Leukemia mononuclear		(2%)						
Polyp		(2%)						_
Nasolacrimal duct, squamous cell carci	noma						1	(2%)
SPECIAL SENSES SYSTEM								
Eye	*(49)		*(50)		*(50)		*(50)	
Bilateral, leukemia mononuclear		(2%)	(00)		(00)		(00)	
DUNIERNI JEUKEMIN MANAANIICIAAF								

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

,	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
URINARY SYSTEM								
Kidney	(48)		(50)		(49)		(50)	
Fibrosarcoma, metastatic, spleen						(2%)	3	(6%)
Leukemia mononuclear	18	(38%)	2	(4%)	1	(2%)	3	(6%)
Mesothelioma malignant	1	(2%)						
Osteosarcoma, metastatic, bone			1	(2%)				
Osteosarcoma, metastatic, spleen							6	(12%)
Renal tubule, adenoma							1	(2%)
Ureter	*(49)		*(50)		*(50)		*(50)	
Leukemia mononuclear	1	(2%)					**	
Urethra	*(49)		*(50)		*(50)		*(50)	
Leukemia mononuclear	ĺ	(2%)	\/		,		,/	
Urinary bladder	(47)	/	*(50)		*(50)		(46)	
Fibrosarcoma, metastatic, spleen	. ,		(,		,			(4%)
Leukemia mononuclear	1	(2%)					_	(- / - /
Mesothelioma malignant		(2%)						
Osteosarcoma, metastatic, spleen	-	(= /0 /					1	(2%)
Papilloma					1	(2%)	_	(-,-,
SYSTEMIC LESIONS Multiple organs Leukemia mononuclear Mesothelioma malignant Hemangiosarcoma	_	(43%) (2%)		(6%) (6%)	_	(4%) (2%)	2	(6%) (4%) (8%)
ANIMAL DISPOSITION SUMMARY					· · · · 			
Animals initially in study	49		50		50		50	
Dead	5		5		9		18	
Terminal sacrifice	18		32		32		20	
Dosing accident					2		1	
Moribund	26		13		7		11	
TUMOR SUMMARY								
Total animals with primary neoplasms **	46		49		49		49	
Total primary neoplasms	125		112		98		159	
Total animals with benign neoplasms	44		49		47		47	
Total benign neoplasms	97		96		85		107	
Total animals with malignant neoplasms	28		14		12		43	
	28		16		13		52	
			10		10		J4	
Total malignant neoplasms Total animals with secondary neoplasms ***			1		2		23	

^{*} Number of animals receiving complete necropsy examinations; all gross lesions including masses examined microscopically.

** Primary tumors: all tumors except secondary tumors

*** Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE: VEHICLE CONTROL

STUDY OF p-CI	iloko	Ar	VIL.	11/1	e r	1 Y I	JK	UC	нг	ıOı	KIL.	ıĿ:	VI	SH.	ICI	LE	CC) IN I	rke	JL					
WEEKS ON STUDY	0 1 1	0 3 8	0 4 8	0 6 5	0 6 7	0 7 4	0 7 5	0 8 0	0 8 2	0 8 3	0 8 4	0 9 0	0 9 0	0 9 0	0 9 1	0 9 1	0 9 2	0 9 3	0 9 4	0 9 4	0 9 5	0 9 7	0 9 8	9	9
CARCASS ID	3 8 2	3 5 2	3 8 1	3 3 4	3 4 2	4 0 1	3 2 1	3 8 4	3 4 1	3 7 2	4 0 4	3 2 4	3 7 5	3 6 5	3 2 5	3 3 1	3 4 4	3 9 5	3 3 3	3 5 1	3 5 4	3 9 1	0 3	3 7 4	3 9 3
ALIMENTARY SYSTEM																									
Esophagus Intestine large	+ A	+	+	+	+	+	+	+	+ A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
ntestine large, cecum	Â	+	+	+	+	+	+	M	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ntestine large, colon	A	+	+	+	+	M	+	+	Ā	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
ntestine large, rectum Mesothelioma malignant	A	+	+	+	+	+	+	÷	A	+	+	+	+	+	+	+	+	+	+	4	+	+	+	+	+
ntestine small	A	+	+	+	+	+	+	+	+	+	-	+	+	+	_	_	X	_	_	_	_	_	_	_	4
ntestine small, duodenum	A	+	+	+	+	+	÷	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
ntestine small, ileum	A	+	+	+	+	+	+	-	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
ntestine small, jejunum liver	A	+	+	A	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Hepatocellular carcinoma		-		-		-	т		-		т.	_	7		~	Τ.			7				_	_	
Leukemia mononuclear					X			X			X					Х		Х	X	X	X	X	X	Х	1
lesentery Leukemia mononuclear		+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+ X	*	+	+	
Mesothelioma malignant]																X	X	X		А	Х		Х	
ancreas	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Leukemia mononuclear																X			Х			+ X			
Mesothelioma maiignant Acinus, adenoma																	Х								
alivar y glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lenkemia mononuclear																			X			,			
omach	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
omach, forestomach Leukemia mononuclear	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X X	+	+	+	+	+	
omach, glandular	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Λ +	+	+	+	+	+	
Leukemia mononuclear																			X						
ongue Papilloma squamous																	+								
ooth	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4	4	X	4	_	_	_	4	4	4	
	'						,	,	'	,	,	,	'	'	T	*	-	-	-	т-	т.	т.	т	-	
ARDIOVASCULAR SYSTEM																									_
lood vessel eart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Leukemia mononuclear	+		т	т	7	_	+	+	_	+	+	+	+	+	+	X	+	+	X	*	+	+	+	+	
Osteosarcoma, metastatic, bone														X					••	••					
NDOCRINE SYSTEM																									_
drenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
drenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Ad≙noma Leukemia mononuclear								v			v							**	••	••			••	X	
drenal gland, medulla	+	+	+	+	+	+	+	X +	+	+	A	+	+	+	+	+	+	X	X	X	X	X	X	X	
Leukemia mononuclear								X			*X							X	*X	+ X	*X	*X	*	X	
Pheachromocytoma malignant Pheachromocytoma benign																.,					**				
Bilateral, pheochromocytoma benign																X				X	Х				
lets, pancreatic	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adenoma															Х										
arathyroid gland Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	X	+	+	+	+	+	
tuitary gland	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	M	+	+	+	+	+	
Leukemia mononuclear											X												•		
Pars distalis, adenoma Pars distalis, adenoma, multiple				Х		Х	Х					X		Х	Х			Х				X	X		
Pars intermedia, adenoma	1														v										
ayroid gland	A	+	+	+	+	+	+	+	+	+	+	+	+	+	X	+	+	+	+	+	+	+	+	+	
Leukemia mononuclear																X			X						
C-cell, adenoma C-cell, adenoma, multiple	İ							Х																	
S-cell, carcinoma												х													
												4													
NERAL BODY SYSTEM																									
NITAL SYSTEM																									_
ididymis eukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	
fesothelioma malignant											А						x								
eputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
idenoma Jeukemia mononuclear																									
HUKHIDIA MODODNICIAAF			5	,	,	,	,	,					,	,					X						
ostate	"	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X	+	+	+	+	+	
ostate		4	+	+	+	+	+		+	+	+		+		+	+	+		M	+		+		+	
ostate Leukemia mononuclear minal vesicle							4	_	1	1	1	_	-	+	+	+	+	+	+	+	+	+	_	+	
ostate Leukemia mononuclear minal vesicle stes	+	÷	+	+	+	~	т.		~	T	т												-		
ostate Leukemia mononuclear minal vesicle stesochelioma malignant	+	÷	+	+	+	Τ.	т	,	T	т	т	v					X			v	v	v	v	v	
ostate .eukemia mononuclear minal vesicle stes	+	÷	+	+	+ X	Τ.	т	x	x	т	x	x	x	x		x	X	х		x	x	x	x	x	

^{+:} Tissue examined microscopically
: Not examined
-: Present but not examined microscopically
I: Insufficient tissue

M: Missing
 A: Autolysis precludes examination
 X: Incidence of listed morphology

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: VEHICLE CONTROL (Continued)

WEEKS ON STUDY	1 0 1	1 0 1	1 0 2	1 0 2	1 0 3	1 0 4	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	mom.,
CARCASS ID	3 9 2	4 0 2	3 8 3	3 1 2	3 3 2	4 0 5	3 1 1	3 2 3	3 6 3	3 1 5	3 4 3	3 5 3	3 6 1	3 6 4	3 9 4	3 1 3	3 1 4	3 2 2	3 7 1	3 8 5	3 3 5	3 4 5	3 6 2	3 7 3	TOTAL TISSUE TUMOR
LIMENTARY SYSTEM	-																								
sophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
ntestine large	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47 46
ntestine large, cecum ntestine large, colon	 	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	46
ntestine large, rectum	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Mesothelioma malignant	١.																								1
ntestine small ntestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48 48
ntestine small, ileum	+	M	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	÷	+	+	+	46
ntestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
iver Hepatocellular carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	49 1
Leukemia mononuclear	X		Х		Х	X			Х					X	Х	**	X				X				21
fesentery	+	+	+	+	+	+	+	+	+	+	+	+	+	X + X	X + X	+	+	+	+	+	+	+	+	+	47
Leukemia mononuclear Mesothelioma malignant			А											Х	х										8
ancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	*X	+	+	+	+	+	+	+	+	+	+	48
Leukemia mononuclear														X											4
Mesothelioma malignant Acinus, adenoma															X										1 1
alivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Leukemia mononuclear																									1
tomach tomach, forestomach	1 ‡	+	+	+	+	+	+	+	+	+	+	+	+	+ M	+	+	+	+	+	+	+	+	+	+	48 47
Leukemia mononuclear		-	т	_	7		_	Ψ.	7	т	т	Ŧ	Τ.	TAT	~	т	_	т	-	Ψ.			т	т	1 1
tomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Leukemia mononuclear																									$\frac{1}{2}$
ongue Papilloma squamous					X																				2
ooth	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
ARDIOVASCULAR SYSTEM																									
lood vessel	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4	49
[eart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Leukemia mononuclear Osteosarcoma, metastatic, bone																									3
NDOCRINE SYSTEM																									
drenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
drenal gland, cortex Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	, +	+	+	+	+	+	+	+	49
Leukemia mononuclear	X		X			X									Х										14
drenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X + X	+	+	+	+	+	+	+	+	+	49
Leukemia mononuclear Pheochromocytoma malignant	X	Х	А			А									А										14
Pheochromocytoma benign	X	X					Х		Х				X	Х						X					10
Bilateral, pheochromocytoma benign	١.															X					X		X		3
slets, pancreatic Adenoma	+	+	+	+	+	+	+	+	+	X	+	X	+	+	+	+	+	+	+	+	+	+	+	+	48
arathyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Leukemia mononuclear	1.																								1 1
ituitary gland Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Pars distalis, adenoma			X	X	X	X		X		X		X							X		X		X		19
Pars distalis, adenoma, multiple													X] 1
Pars intermedia, adenoma hyroid gland	+	+	+	+	+	+	+	+	+	+	4	+	+	+	+	+	4	+	+	4	+	+	+	+	1 48
Leukemia mononuclear	'	,			,			,		'	r				,		-	,	,	,	,	,		,	2
C-cell, adenoma						Х	Х			Х						Х		Х		Х				X	, 8
													X												1 1
C-cell, adenoma, multiple C-cell, carcinoma																									
C-cell, carcinoma																									
C-cell, carcinoma ENERAL BODY SYSTEM	-																								
C-cell, carcinoma ENERAL BODY SYSTEM None ENITAL SYSTEM																									_
C-cell, carcinoma ENERAL BODY SYSTEM None ENITAL SYSTEM pididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
C-cell, carcinoma ENERAL BODY SYSTEM None ENITAL SYSTEM pididy mis Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1
C-cell, carcinoma ENERAL BODY SYSTEM None ENITAL SYSTEM pididymis Leukemia mononuclear Mesothelioma malignant reputial gland	+	+ +	+	+	+	+ +	+ M	+	+	+	+	+	+	+	+	+	+ M	+	+ M	+	+	+	+	+	
C-cell, carcinoma ENERAL BODY SYSTEM None ENITAL SYSTEM pididymis Leukemia mononuclear Mesothelioma malignant eputial gland Adenoma	+	+ +	+	+	+	+	+ M	+	+	+	+ +	+	+	+ + X	+	+	+ M	+	+ M	+	+	+	+	+	1 1 46 1
C-cell, carcinoma ENERAL BODY SYSTEM None ENITAL SYSTEM pididymis Leukemia mononuclear Mesothelioma malignant reputial gland Adenoma Leukemia mononuclear	+	+ +	+	+	+	+ +	+ M	+	+	+	+ +	+ +	+ +	+ *	+ +	+	+ M	+ +	+ M	+	+	+	+	+	1 1 46 1 1
C-cell, carcinoma ENERAL BODY SYSTEM None ENITAL SYSTEM pididymis Leukemia mononuclear Mesothelioma malignant reputial gland Adenoma Leukemia mononuclear rostate	+ +	+ + +	+ + +	+ + +	+ +	+ + +	+ M +	+ + +	+ + +	+ +	+ + +	+ + +	+ +	+ * X +	+ + +	+ + +	+ M +	+ +	+ M +	+ + +	+ +	+ + +	+ + +	+ + +	1 46 1 1 49
C-cell, carcinoma ENERAL BODY SYSTEM None ENITAL SYSTEM pididymis Leukemia mononuclear Mesothelioma malignant reputial gland Adenoma Leukemia mononuclear rostate Leukemia mononuclear minal vesicle	+ + + +	+ + +	+ +	+ + + +	+ + + +	+ + + +	+ M + +	+ + + M	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ * X +	+ + + +	+ + + +	+ M + +	+ + + +	+ M + +	+ +	+ + + +	+ + + +	+ + + +	+ + + + +	1 46 1 49 1 36
C-cell, carcinoma ENERAL BODY SYSTEM None ENITAL SYSTEM pididymis Leukemia mononuclear Mesothelioma malignant reputial gland Adenoma Leukemia mononuclear rostate Leukemia mononuclear eminal vesicle estes	+ + + +	+ + +	+ + + +	+ + + +	+ + + + +	+ + + +	+ M + +	+	+ + + +	+ + + + +	+ + + +	+ + + + +	+ + + +	+ *X + +	+ + + + + +	+ + + + +	+ M + + +	+ + + + +	+ M + + +	+ + + +	+ + + + + +	+ + + + + +	+ + + + +	+ + + + +	1 46 1 49 1 36 49
C-cell, adenoma, multiple C-cell, carcinoma ENERAL BODY SYSTEM None ENITAL SYSTEM pididymis Leukemia mononuclear Mesothelioma malignant reputial gland Adenoma Leukemia mononuclear rostate Leukemia mononuclear eminal vesicle estes Mesothelioma malignant Bilateral, interstitial cell, adenoma	+ + + +	+ + + x	+ + + X	+ + + +	+ + + +	+ + + +	+ + +	+ M +	+ + + X	+ + + + *	+ + + + + *	+ + + + +	+ + + + +	+++	+ + + + + x	+ + + + + x	+ M + + X	+++	+++	+	+ + + + +	+ + + + +	+ + + + X	+	1 46 1 49 1 36

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: VEHICLE CONTROL (Continued)

					(C	OII		ueo	.,																
WEEKS ON STUDY	0 1 1	0 3 8	0 4 8	0 6 5	0 6 7	0 7 4	0 7 5	0 8 0	0 8 2	0 8 3	0 8 4	0 9 0	9 0	0 9 0	0 9 1	0 9 1	0 9 2	9	0 9 4	0 9 4	0 9 5	0 9 7	0 9 8	9 9	0 9 9
CARCASS ID	3 8 2	3 5 2	3 8 1	3 3 4	3 4 2	0 1	3 2 1	3 8 4	3 4 1	3 7 2	4 0 4	3 2 4	3 7 5	3 6 5	3 2 5	3 3 1	3 4 4	3 9 5	3 3 3	3 5 1	3 5 4	3 9 1	0 3	3 7 4	3 9 3
HEMATOPOIETIC SYSTEM Blood	_	+	+			+	+			+	+	+	+		+	+	+	+	+	+	+	+	+	+	+
Leukemia mononuclear Bone marrow	+	+	+	+	+	+	+	X	+	+	X +	+	+	+	+	X +	+	X +	* X +	* *	X +	X +	X +	X +	X +
Femoral, leukemia mononuclear Lymph node Axillary, leukemia mononuclear	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	X	+	+	X + X	+	X +	+	+	X +	+
Deep cervical, leukemia mononuclear Inguinal, leukemia mononuclear								x											X X X X						
Lumbar, leukemia mononuclear Mediastinal, leukemia mononuclear Pancreatic, leukemia mononuclear					X			X			X					Х		X	X X	X	Х		Х	X	X
Renal, leukemia mononuclear Lymch node, mandibular Leukemia mononuclear	+	+	+	+	* X	+	+	+ X	+	+	*X	+	+	+	+	* X	+	+ X	+ X	*X	M	*X	+ X	*X	* X
Lymph node, mesenteric Leukemia mononuclear Spleen		_	_	_	+ X +	_	_	_	_	_	_	_	_	_	_	_	+	+	+ X +	+	_	_	_	X	_
Leukemia mononuclear Mesothelioma malignant		_	_	7	X	_	Τ	X	_	_	X +	т.	т	т	_	*X	Х	X	Х	X	X	X	X	X	X
Thyrous Leukemia mononuclear	+	M	+	M	x +	+	+	*X	+	+	X,	M	+	+	+	+	+	M	*	+	+	+	+	X	+
INTEGUMENTARY SYSTEM Mammary gland	M	M	М	М	+	+	+	+	+	+	+	+	M	+	+	+	М	+	+	+	M	+	+	+	+
Fibroadenoma Skin Basosquamous tumor benign	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	*X	+	+	+	+	+
Kenatoacanthoma Leukemia mononuclear Subrutaneous tissue, fibroma Subrutaneous tissue, fibrosarcoma																			x				X		
MUSCULOSKELETAL SYSTEM Bone	_	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+
Rib, osteosarcoma Skeletal muscle	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	4	+	+	+	+	+	+	+	+	+
Leukemia mononuclear Osteosarcoma, metastatic, bone Diaphragm, mesothelioma malignant														X			x		Х						
NERVOUS SYSTEM Brain	_ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Astrocytoma benign Ependymoma malignant Leukemia mononuclear			x																x						
Peripaeral nerve Spinal cord			+	+						+									Λ				+		
RESPIRATORY SYSTEM Lung	_ _	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Alveolar/bronchiolar adenoma Leukemia mononuclear Nose		_	_	_	X			X		_	X	_	_	_	_	X	_	X	X	X	X	X	X	X	X
Leukemia mononuclear Polyp		-		_			7	,		_	141	•	_	7	-	r		,	X	,		,	,	_	,
Trachéa SPECIAL SENSES SYSTEM	_ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+
Eye Bilateral, leukemia mononuclear Harderian gland	+	+	+	+	+	+	+	+		+	+ M	+	+	+	+	+	+	+	+ X +	+	+	+	+	+	+
URINARY SYSTEM Kidney			+	+		+	+		+	+		+	+	+		+	+	+	+	+		+			+
Leukemia mononuclear Mesothelioma malignant	1				*X		,	X		•	*X		,	'	,	X	x	X	X	X	X	X	X	X	X
Ureter Leukemia mononuclear Urethra	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* X +	+	+	+	+	+	+
Levkemia mononuclear Urinary bladder	A	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	_	+	+	+	+
Leukemia mononuclear Mesothelioma malignant																	X		X						

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: VEHICLE CONTROL (Continued)

								(0	ont	.1110	ieu	,													
WEEKS ON STUDY	1 0 1	1 0 1	1 0 2	1 0 2	1 0 3	1 0 4	1 0 5	0 5	1 0 5	mom. 1															
CARCASS ID	3 9 2	4 0 2	3 8 3	3 1 2	3 3 2	4 0 5	3 1 1	3 2 3	3 6 3	3 1 5	3 4 3	3 5 3	3 6 1	3 6 4	3 9 4	3 1 3	3 1 4	3 2 2	3 7 1	3 8 5	3 3 5	3 4 5	3 6 2	3 7 3	TOTAL: TISSUES TUMORS
HEMATOPOIETIC SYSTEM Blood Leukemia mononuclear	+ X +	+	* X	+	+ X	+ X	+	+	+ X	+	+	+	+		+ X	+	+ X	+	+	+	+	+	+	+	44 19 49
Bone marrow Femoral, leukemia mononuclear Lymph node Axillary, leukemia mononuclear Deep cervical, leukemia mononuclear	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	6 49 1
Ingunal, leukemia mononuclear Ingunal, leukemia mononuclear Lumbar, leukemia mononuclear Mediastinal, leukemia mononuclear Pancreatic, leukemia mononuclear Renal, leukemia mononuclear	x		X X			x			x					X X											1 16 1
Lymph node, mandibular Leukemia mononuclear Lymph node, mesenteric Leukemia mononuclear	* X + X	+	+ X + X	+	+	* X + X	+	+	*X	+	+	+	+	*	* X + X	+	+	+	+	+	+	+	+	+	48 17 10 7
Spleen Leukemia mononuclear Mesothelioma malignant Thymus	X +	+	* *	+	* *	* X +	+	+	+ X +	+	+	+	+	* *	* *	+	* *	+	+	+ M	* *	+	+	+ M	49 21 1 43
Leukemia mononuclear INTEGUMENTARY SYSTEM Mammary gland	X M		X +	+	+	M	M	+		м	м	M	м	+	+	+	M	+	+	+	+	M	+	+	32
Fibroadenoma Skin Basosquamous tumor benign Keratoacanthoma Leukemia mononuclear Subcutaneous tissue, fibroma	+	+	+ Х Х	+	+	+	M	+ X	+	+	+	+	+	+ X	+	+	M	+	+	+	+	+	+	+	1 47 1 2 1 3
Subcutaneous tissue, fibrosarcoma MUSCULOSKELETAL SYSTEM Bone	_				_							+				+				_			+	X +	48
Rib, osteosarcoma Skeletal muscle Leukemia mononuclear Osteosarcoma, metastatic, bone Diaphragm, mesothelioma malignant	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	47 1 1 1
NERVOUS SYSTEM Brain Astrocytoma benign Ependymoma malignant Leukemia mononuclear Peripheral nerve Spinal cord	+	+	+	+	+	+	, X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1 1 1 1 4
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	49
Leukemia mononuclear Nose Leukemia mononuclear Polyp	X +	+	X +	+	+	X +	+	+	*	+	+	+	+ X	X +	X +	+	X +	+	+	+	X	+	+	+	20 48 1 1
Trachea SPECIAL SENSES SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Eye Bilateral, leukemia mononuclear Harderian gland	+	+	+	+	+	+ M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	7 1 46
URINARY SYSTEM Kidney Leukemia mononuclear Mesothelioma malignant	+ X	+	* X	+	+	* X	+	+	*	+	+	+	+	+	* X	+	+	+	+	+	* X	+	+	+	48 18 1
Ureter Leukemia mononuclear	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Urethra Leukemia mononuclear Urinary bladder Leukemia mononuclear Mesothelioma malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	21 47 1 1

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE: LOW DOSE

WENTA AND				_							_					-									
WEEKS ON STUDY	0 7 0	0 7 6	0 8 0	0 9 0	9 0	0 9 3	0 9 3	0 9 3	0 9 4	0 9 4	9 4	0 9 7	0 9 7	9 9	9 9	$\begin{matrix} 1 \\ 0 \\ 2 \end{matrix}$	1 0 3	0 3	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5
CARCASS ID	2 2 5	2 7 1	2 3 4	6 4	2 8 3	2 2 3	2 5 1	2 8 2	2 6 5	2 7 4	9 2	2 4 4	3 0 2	2 3 3	2 2 4	3 0 4	2 1 5	2 1 3	2 2 1	2 4 2	6 2	2 6 3	7 5	9 3	2 1 2
ALIMENTARY SYSTEM																									
Esophagus Intestine large	++	+	+	+	+														٠						
Intestine large, cecum	+	+	+	+	+														•						
Intestine large, colon	+	+	+	+	+																				
Intestine large, rectum Intestine small	+	+	+	+	+		+																		
Intestine small, duodenum	+ + + +	+	+	+	+																				
Intestine small, ileum Intestine small, jejunum	+	++	+	+	+		_																		
Adenocarcinoma		т	7	т	-		X																		
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Hepatocellular carcinoma Leukemia mononuclear													х						x						
Mesothelioma malignant	1												21			Х			Λ						
Neoplastic nodule	Ι.																				X				X
Mesentery Mesothelioma malignant	+	+	+	+	+		+	X								*X									
Sarroma																									
Pancreas Leukemia mononuclear	M	+	+	+	+			+					X			+									
Mesothelioma malignant								X					Λ.			Х									
Salivary glands	+	+	+	+	+			+																	
Stomach Stomach, forestomach	++	+	++	+	+						++														
Stomach, glandular	+	+	+	+	+						+														
Tongue																									
Papilloma squamous Tooth	1	+	4	+	_																				
CARDIOVASCULAR SYSTEM Blood vessel	+	_	_	1	+																				
Hear;	+	+	+	+	+			+							+	+	+	+			+				+
ENDOCRINE SYSTEM																									
Adrenal gland	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adrenal gland, cortex	+		+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+
Leukemia mononuclear Adrenal gland, medulla	+		_	_	+		_		_	_	_	_	X	_	_	_	_	_	_	_		_	_	_	_
Leukemia mononuclear	"			-	Ψ.	τ.	т	~	+	_		Τ	X X		_	_			Τ.	_	-				
Phaochromocytoma benign						Х							X		X								X	X	X
Bilateral, pheochromocytoma benign Islets, pancreatic	M	+	+	+	+																				
Islets, pancreatic Parathyroid gland	+	+	+	÷	+													+	+						
Adenoma Pituitary gland	Ι.	X																							
Pars distalis, adenoma	X X	+	+	+	M				X		+ X					+ X	*					*	X		*
Thyroid gland	+	+	+	+	+						••					••	••	Α	*X			••			•••
C-cell, adenoma C-cell, carcinoma																			Х						
Follicular cell, adenocarcinoma Follicular cell, adenoma	X																								
Follicular cell, adenoma																									
GENERAL BODY SYSTEM																									
Nor.e																									
GEN"TAL SYSTEM																									_
Epididymis	+	+	+	+	+		+								+	*X			+		+				+
Mesothelioma malignant Bilateral, mesothelioma malignant																X									
Preputial gland	+	+	+	+	+	+				+		+		+			+								
Adenoma				Х		X				X		X		X											
Prostate Semunal vesicle	+	+	+	+	++											+									
restes .	+	+	+	+	+	+	+	*	+	+		+	+	+	+	*		+	+	+	+	+	+	+	+
								x								Y									
Mesothelioma malignant																42									
					х		х	x	x	x		х	х	х	х	X		х	х	х	x	х	х	x	x

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

								(0	one	unı	uea	.,														
WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL:
CARCASS ID	3	2 5 2	2 8 4	8 5	9 5	3 0 5	2 3 2	2 4 1	2 4 3	2 5 4	2 6 1	$\begin{array}{c} 2 \\ 7 \\ 2 \end{array}$	7 3	9 1	3 0 3	2 1 1	2 1 4	2 2 2	2 3 5	2 4 5	2 5 3	5 5	2 8 1	9 4	3 0 1	TUMOR
LIMENTARY SYSTEM Isophagus Intestine large, cecum Intestine large, colon Intestine large, colon Intestine large, colon Intestine small, duodenum Intestine small, leum Intestine small, leum Intestine small, leum Intestine small, leum Intestine small, jejunum Adenocarcinoma Leukemia mononuclear Intestine small, jejunum I	+	+	+	+	+	+ + X	+	+	+ X	+	+	+	+ X	+ X X	+	+	+	+	+ X	+	+	+	+	+	+	57 55 55 65 55 65 10 13 11 21 81 22 66 66
tomach, glandular tomach, glandular ongue Papilloma squamous ooth																					* X					6 1 1 5 5
Rood vessel Heart	+				+			+		+	+		+			+								+		8 18
INDOCRINE SYSTEM direnai gland direnai gland, cortex Leukemia mononuclear direnal gland, medulla Leukemia mononuclear Pheochromocytoma benign Bilateral, pheochromocytoma benign slets, pancreatic arathyroid gland Adenoma 'Eutitary gland Pars distalis, adenoma 'hyroid gland C-cell, adenoma C-cell, carcinoma C-lolicular cell, adenoma Follicular cell, adenoma Follicular cell, adenoma	+ + + X	+ + + X	+ + M	+ + + +	+ + + X	+ + + +	+ + +	+ + + X	+ + +	++++	+ + + X	+ + + X	+ + +	+ + +	+ + + X	++++	++++	+ + X	+ + x x	+ + + X	+++++	+ + + +	+ + + +	+ + + x	+ + x x	49 49 11 48 11 12 2 4 7 7 118 18 13 8 2 1
None ENITAL SYSTEM pididymis Mesothelioma malignant Bilateral, mesothelioma malignant reputial gland Adenoma rostate seminal vesicle lestes Mesothelioma malignant Bilateral, mesothelioma malignant	+	+	+	+	+	+ X + X X	* *	+	+			+	+	+	+	+	+	+	+	+	+	+	+	* X	+	20 1 1 12 7 6 3 46 2
Bilateral, interstitial cell, adenoma Interstitial cell, adenoma	X	X	X	X	X	X	x	X	X			Х	Х	X	X	X	X	X	Х	Х	X	X	Х	X	Х	38 6

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

					(0	···		ueu	.,																
WEEKS ON STUDY	0 7 0	0 7 6	0 8 0	0 9 0	0 9 0	0 9 3	0 9 3	0 9 3	0 9 4	0 9 4	0 9 4	0 9 7	0 9 7	0 9 9	0 9 9	1 0 2	1 0 3	1 0 3	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5
CARCASS ID	2 2 5	7 1	2 3 4	2 6 4	2 8 3	2 2 3	2 5 1	2 8 2	2 6 5	2 7 4	9 2	2 4 4	3 0 2	2 3 3	2 2 4	3 0 4	2 1 5	2 1 3	$\begin{array}{c} 2 \\ 2 \\ 1 \end{array}$	2 4 2	2 6 2	6 3	2 7 5	9 3	2 1 2
HEMATOPOIETIC SYSTEM Blood Leukemia mononuclear Bone marrow Lymph node Pancreatic, leukemia mononuclear Lymph node, mandibular Leukemia mononuclear Lymph node, mesenteric Leukemia mononuclear Splieen Fitrosarcoma Leukemia mononuclear	+ + + + +	+ + + +	+ + + + +	+ + + +	+ + + +	+	+++++++	+ + + +	+ +	+ +	+ + +	+ + +	+ X + + X + X	+ + X	+ + + + +	+ + +	+	+	+ X + + X + X	+ +	+ + +	+ +	+ + +	+ +	+ + +
Mesothelioma malignant Thymus Thymoma benign	+	М	+	M	+			X								X									
INTEGUMENTARY SYSTEM Mammary gland Fioroadenoma Skiin Basal cell adenoma Basosquamous tumor benign Keratoacanthoma Squamous cell carcinoma Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma	+ +	+	+	м + х	M +					+ X		+ X		+	+ X	+	+			+ X			*X		
MUSICULOSKELETAL SYSTEM Bone Cranium, osteosarcoma Skeletal muscle Osteosarcoma, metastatic, bone	+	* * *	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain Pempheral nerve	++	+	+	+	+																				
RESPIRATORY SYSTEM Lung Osteosarcoma, metastatic, bone Nose Trachea	+ + +	+ X + +	+ + +	+ +	+ + +		+	+		<u>-</u>					•										
SFECIAL SENSES SYSTEM Eye Harderian gland	+			+				+			-						+					+			+
URINARY SYSTEM Kidrey Leukemia mononuclear Osteosarcoma, metastatic, bone Ureter Urethra Urinary bladder	+ + + +	+ X + + +	+ + +	+ + +	+ + +	+	+	+	+	+	+	+	*X	+	+	+ + + +	+	+	+ X +	+	+	+	+	+	+

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

								ν.	OIL	VIII.		.,														
WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL:													
CARCASS ID	2 3 1	5 2	8 4	8 5	9 5	3 0 5	3 2	4	4 3	2 5 4	6 1	7 2	7 3	9	3 0 3	1	1 4	2 2 2	3 5	4 5	5 3	5 5	8	9	0	TUMORS
HEMATOPOIETIC SYSTEM Blood Leukemia mononuclear Bone marrow Lymph node Pancreatic, leukemia mononuclear Lymph node, mandibular Leukemia mononuclear Lymph node, mesenteric Leukemia mononuclear	+ +	+	+ + +	+	+	+	+	+ + +	+	+	+ +	+	+	+ X + + + X	+	+ + +	+	+	+	+ + + +	+ +	+	+	+ +	+ +	45 3 50 16 1 7
Spleen Fibrosarcoma Leukemia mononuclear Mesothelioma malignant Thymus Thymus	+	+	+	+	+	+	+	+ *	+	+	+	+	+	X	+	+	+	+	+	+	+	+	+	+	+	50 1 3 2 5
INTEGUMENTARY SYSTEM Mammary gland Fibroadenoma Skin Basal cell adenoma Basosquamous tumor benign Keratoacanthoma Squamous cell carcinoma Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma			+ X				* X +					+ X				+ X +								+		6 2 18 1 1 1 2 2
MUSCULOSKELETAL SYSTEM Bone Cranium, osteosarcoma Skeletal muscle Osteosarcoma, metastatic, bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 6
NERVOUS SYSTEM Brain Peripheral nerve													•													5 1
RESPIRATORY SYSTEM Lung Osteosarcoma, metastatic, bone Nose Trachea																										7 1 5 5
SPECIAL SENSES SYSTEM Eye Harderian gland	+		+	+	+						+		+		***	+								+		11 4
URINARY SYSTEM Kidney Leukemia mononuclear Osteosarcoma, metastatic, bone Ureter Urethra Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ + +	+	+	+	+	+	50 2 1 24 3 7

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE: MID DOSE

WEEKS ON STUDY	0 4 9	0 5 2	0 6 8	0 6 8	0 7 2	0 7 5	0 7 7	0 7 9	0 8 2	0 8 2	0 8 3	0 9 8	1 0 1	1 0 2	1 0 2	1 0 3	1 0 3	1 0 4	1 0 5						
CARCASS ID	2 0 1	1 1 1	1 3 2	2 0 3	2 0 5	1 5 4	1 5 3	1 3 1	1 9 3	1 5 5	1 6 4	1 6 5	1 7 3	1 3 3	1 9 5	1 2	7 1	1 3 5	1 1 3	1 1 5	1 2 2	1 2 5	1 3 4	1 4 1	1 4 4
ALIMENTARY SYSTEM	_						—-						-												
Esophagus Intestine large	+	+	+	+	+	+	+	+	+	+	+							+							
Intestine large, cecum	A	+	À	À	+	M	Α	+	A	+	+														
Intestine large, colon	(+	+ M	A	+	+	+	Ą	+	+	+	+														
Intestine large, rectum Intestine small	+	+	+	++	+	++	+	A +	A +	+	+	+													
Intestine small, duodenum	+	+	À	+	+	+	+	+	+	+	+														
Intestine small, ileum	+	+	Ą	A	+	+	Ą	+	A	+	A	L													
Intestine small, jejunum Polyp adenomatous	+	+	+	A	+	+	A	A	A	+	~	X													
Liver	+	+	+	+	+	+	+	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+
Hepatocellular carcinoma Hepatocellular carcinoma, multiple																Х									
Leukemia mononuclear Neoplastic nodule					X																				
Mesentery	+	+		+	+	+		+	+	+	+		+			+									
Fibrosarcoma, metastatic, spleen Pheochromocytoma malignant,													X												
metastatic, adrenal gland Panereas		_	Δ	_	_	X	4	_	4	4	+		+			+									
Fibrosarcoma, metastatic, spleen		-	Λ	т-	-	-	-	-	-				x			,									
Salivary glands	+	+	Ą	+	+	+	+	+	+	+	+							+							
Stomach Stomach, forestomach	+	+	A	+	+	+	+	+	+	+	+					+									
Stomach, glandular	+	+	A	+	+	+	+	+	+	+	+					+									
Tooth	+	+	+	+	+	+	+	+	+	+															
CAFDIOVASCULAR SYSTEM	-																								
Blood vessel	+	+	+	+	+	++	+	+	+	+	+							+							
Heart Leukemia mononuclear	+	+	+	+	*X	+	+	+	+	+	+					+	+	+		+					
ENDOCRINE SYSTEM																									
Adrenal gland	++	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+
Adrenal gland, cortex	+	+	+	+	+ X	+	+	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+
Leukemia mononuclear Adrenal gland, medulla	+	+	+	+	А + X	+	+	+	+	+	+	Α	+	+		+	+	+	+	+	+	+	+	+	+
Leukemia mononuclear					X																				
Pheochromocytoma malignant Pheochromocytoma benign			х															Х		х			x	X	
Bi ateral, pheochromocytoma benign			1																	••					
Islets, pancreatic	+	+	A M	+	+	+	+	+	+	+	+														
Parathyroid gland Pituitary gland	+	+	M. A	+	+	+	+	+	+	+	+			+	+	+	+			+		+			
Pars distalis, adenoma					X		X			*	X				X	X X	X,			*X		X +			
Pars distalis, carcinoma Thyroid gland		_	Δ	_		_	_	_	_	_	_			X											
GENERAL BODY SYSTEM	_	,																							—
None																									
GENITAL SYSTEM	_	_																							
Epididymis Mesothelioma malignant	+	+	+	+	+	+	+	+	+	+	+				+	+ X	+			+					
Penis					+											л									
Leukemia mononuclear Preputial gland	+	+	+	+	X +	+	+	+	M	+	+								+			+			
Adenoma																			X			X			
Prostate Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+		+							+					
Testes	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Mesothelioma malignant Bilateral, interstitial cell, adenoma												v	v			X	х	х		v	х	х	х	v	
DI SINTE INTERCTIFICATION AND MANAGEMENT				Х		Х				Х		Х	Х	х	Х	A	Λ	А	X	X	Λ	Λ	Λ	Х	Х

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: MID DOSE (Continued)

								• -				•														
WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL													
CARCASS ID	1 8 5	2 0 2	1 1 4	1 2 1	1 6 3	1 7 4	1 4 2	1 4 3	1 5 1	1 5 2	1 7 5	1 8 2	1 9 4	1 2 3	1 2 4	1 4 5	1 6 1	1 6 2	1 7 2	1 8 1	1 8 3	1 8 4	1 9 1	1 9 2	2 0 4	TISSUES TUMORS
ALIMENTARY SYSTEM F sophagus Intestine large, cecum Intestine large, colon Intestine large, colon Intestine small, duodenum Intestine small, duodenum Intestine small, ileum Hoply adenomatous I ver Hepatocellular carcinoma Hepatocellular carcinoma Hepatocellular carcinoma Hepatocellular carcinoma Neoplastic nodule Mesentery Fibrosarcoma, metastatic, spleen Pheochromocytoma malignant, metastatic, adrenal gland Pancreas	+	+	+	+	+	+ X	+ +	+	+ X	+	+ + +	+ X	+	+	+	+ X	+	+	+	+	+	+ x	+	+	+	13 12 6 9 8 12 10 6 8 1 1 49 1 1 2 3 11 1
Fibrosarcoma, metastatic, spleen Salivary glands Stomach Stomach forestomach Stomach, glandular Tooth																										1 11 11 11 11 11 10
CARDIOVASCULAR SYSTEM Blood vessel Heart Leukemia mononuclear	+		+				+			+					+				+	+			+			12 23 1
FNDOCRINE SYSTEM Adrenal gland Adrenal gland, cortex Leukemia mononuclear adrenal gland, medulla Leukemia mononuclear Pheochromocytoma malignant Pheochromocytoma benign Bilateral, pheochromocytoma benign I lets, pancreatic Farathyroid gland Pittutary gland Pars distalis, adenoma Pars distalis, carcinoma Thyroid gland	++++	+ + +	+ + X	+ + + +	+ + x	+ + x	+ + +	+ + +	+ + +	+ + +	+ + x	+ + +	+ + +	+ + + X	+ + +	+ + +	+ + +	+ + X	+ + + X	+ + x	+ + +	+ + + +	+ + + x	+ + + X	+ + x	49 49 1 48 1 1 9 5 10 10 10 11 11 1 10
CENERAL BODY SYSTEM None CENITAL SYSTEM pididyms Mesothelioma malignant l'enis Leukemia mononuclear Preputial gland Adenoma rostate Seminal vesicle Festes	+	+ X +	+	+ X +	+	+	+	+	+	+	+	+	+	+	+ + +	+	+	+	+	+	+	+	+	+	+	26 1 1 1 15 4 13 5 5
Mesothelioma malignant Bilateral, interstitial cell adenoma Interstitial cell adenoma	х	X	x	х	x	х	х	х	x	х	х	х	x	х	x	х	X	х	х	х	х	х	x	х	х	33 11

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: MID DOSE (Continued)

																_									
WEEKS ON STUDY	0 4 9	0 5 2	0 6 8	0 6 8	$\frac{0}{7}$	0 7 5	0 7 7	0 7 9	0 8 2	0 8 2	0 8 3	9	1 0 1	$\begin{matrix} 1 \\ 0 \\ 2 \end{matrix}$	$\begin{matrix} 1 \\ 0 \\ 2 \end{matrix}$	1 0 3	1 0 3	1 0 4	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5
CARCASS ID	2 0 1	1 1 1	1 3 2	2 0 3	2 0 5	1 5 4	1 5 3	1 3 1	1 9 3	1 5 5	1 6 4	1 6 5	7 3	1 3 3	1 9 5	1 1 2	1 7 1	1 3 5	1 1 3	1 1 5	$\frac{1}{2}$	1 2 5	1 3 4	1 4 1	1 4 4
HEMATOPOIETIC SYSTEM																						_			
Blood _Leukemia mononuclear		+			X X								+	+	+	+	+		+	+	+	+	+	+	+
Bone marrow Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+
Femoral, leukemia mononuclear Lymph node	+	+	+	+	X +	+	+	+	+	+	+							+							
Mediastinal, leukemia mononuclear Lymph node, mandibular	+	+	A	+	X +	+	+	+	+	+	+							+							
Leukemia mononuclear Lymph node, mesenteric					Х	+																			
Spleen Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+
Leusemia mononuclear Osteosarcoma					X																				
Phymus Leukemia mononuclear	+	+	+	+	+ X	+	M	+	+	+	+							+							
NTEGUMENTARY SYSTEM																_									
Mammary gland Fibroadenoma	+	M	+	+	M	+	+	+	+	+	M								+			+		+ X	
kin Keratoacanthoma	+	+	+	+	+	+	+	+	+	+	+				+ X	+			+			+		+	
Papi loma squamous Sebaceous gland, adenoma Sub-utaneous tissue, fibroma		v													••	x									
Subrutaneous tissue, fibrosarcoma		Х																							
MUSCULOSKELETAL SYSTEM Bone Sketetal muscle	++	+	+	+	+	+	++	++	+	++	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+
VERVOUS SYSTEM								-											~						
Brain Cerebellum, meningioma malignant Spinal cord	* X +	+	A	+	+	+	+	+	+	+	+														
RESP'RATORY SYSTEM	+					+			+		+						+							-	
Leukemia mononuclear Soue mous cell carcinoma	1		ľ	•	X +				,	,	,						x								
Vose Pranhea	+ +	+	+	++	+	+	+	+	+	+	M						Λ	+							
PECTAL SENSES SYSTEM	-			·	<u>.</u>				·																
Sye Hardeman gland	+	+	+	÷	+	+	+	+	+	М			+							+		+			
JRINARY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+
Fibrosarcoma, metastatic, spleen Leukemia mononuclear					X								X												
Jreter Jrethra	+	+	+	+	+	+	+	+	+		+		+	+	+		+			+				+	
Jrinary bladder Papilloma	+	+	+	+	+	+	*	+	+	+	+									+					

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: MID DOSE (Continued)

WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL
CARCASS ID	1 8 5	2 0 2	1 1 4	1 2 1	6 3	1 7 4	1 4 2	1 4 3	1 5 1	1 5 2	1 7 5	1 8 2	1 9 4	1 2 3	1 2 4	1 4 5	6 1	1 6 2	1 7 2	1 8 1	8 3	1 8 4	1 9 1	1 9 2	2 0 4	TISSUES
HEMATOPOIETIC SYSTEM Blood Leukemia mononuclear Bone marrow Leukemia mononuclear Femoral, leukemia mononuclear Lymph node Mediastinal, leukemia mononuclear Lymph node, mandibular Leukemia mononuclear Lymph node, mesenteric Spleen Fibrosarcoma Leukemia mononuclear Osteosarcoma Thymus Leukemia mononuclear	+ + +	+ + +	+ + +	+ +	+ +	+ + X	+ + + X +	+ + +	+ + +	+ + +	+ + + + +	+ +	+ + +	+ + +	+ + X	+ + +	+ + +	+ +	+ + + +	+ +	+ +	+ +	+ +	+ +	+ + +	39 1 49 1 1 15 1 12 1 2 50 2 2 1 13 1
INTEGUMENTARY SYSTEM Mammary gland Fibroadenoma Skin Keratoacanthoma Papilloma squamous Sebaceous gland, adenoma Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma			•		+ X									+ X +	+ X +											13 3 19 1 1 1 1
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	49
NERVOUS SYSTEM Brain Cerebellum, meningioma malignant Spinal cord					************																					10 1 2
RESPIRATORY SYSTEM Lung Leukemia mononuclear Squamous cell carcinoma Nose Trachea							+																			11 1 1 10 13
SPECIAL SENSES SYSTEM Eye Harderian gland		+	+	+	+	+					+			+	+	+		+								13 9
URINARY SYSTEM Kidney Fibrosarcoma, metastatic, spleen Leukemia mononuclear Ureter Urethra Unnary bladder Papilloma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1 1 27 1 12 1

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF $\rho\text{-}CHLOROANILINE HYDROCHLORIDE: HIGH DOSE$

WEEKS ON	0	0	0	0	0	0	8	0	8	0	0	0	0	9	9	0	9	0	0	0	0	1	1 0	1	1
STUDY	6 0	8	1	5	7	8	4	8	9	9	0	1	5	5	7	7	7	8	8	8	9	ő	2	3	3
CARCASS ID	1 0 4	0 1 5	0	0 4 2	0 4 5	0 5 4	0 5 3	0 8 3	0 3 5	0 2 4	0 5 1	0 1 2	0 6 4	0 9 1	0 3 1	0 3 2	0 8 1	0 5 5	0 2 1	0 5 2	0 5	0 4 1	0 2 2	1 0 2	0 8 2
ALIMENTARY SYSTEM	_ -		+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+
ntest.ne large	+	Á	+	+	+	+	+	+	A	A	+	+	+	+	÷	+	+	+	+	+	+	À	+	+	+
ntestine large, cecum Colon, rectum, osteosarcoma, metastatic,	+	A	+	+	+	+	+	+	A	A	A	+	+	+	+	+	+	+	+	+	Α	A	+	+	+
spleen	1		X																						
ntest ne large, colon ntest ne large, rectum	+ +	A A		+	+	+	+	+	A. A	A	+	+	+	+	+	+	+	+	+	+	+	A	+	+	+ M
ntestine small	+	Α	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+
ntest ne small, duodenum Fibmsarcoma, metastatic, spleen Osteosarcoma, metastatic, spleen Ileum, jejunum, osteosarcoma,	+	A	+	*	+	+	M	+	A	_	+	+	+	+	+	+	+	+	+	X	+	A	+	X	+
metastatic, spleen ntestine small, ileum	٠.	A	X	+	+	+	+	A	A	A	A	M	+	+	+	A	+	+	+	+	A	A	+	+	+
ntestine small, jejunum	+ +	A		+	+	+	+	Ä	A	A	+	A	+	+	+	A	+	+	+	+	+	A	+	+	+
Osteosarcoma, metastatic, spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+
Fibrosarcoma, metastatic, spleen	i					X												v	Х	X				X	
Leukemia mononuclear Osteosarcoma, metastatic, spleen							X	X							X			X							
Mesentery	+		+	+	+	+	+	+	+		+	*	+	*	+	+	+	+	+	+	+	+	+	+	+
Fibrosarcoma, metastatic, spleen Leukemia mononuclear				X		Х		X				х		А				Х	Х	X				Х	
Mesothelioma malignant			v				v				Х		v		v							v			
Osteosarcoma, metastatic, spleen	i +	Α	A +	+	+	+	A +	M	+	+	M	+	X +	+	A +	+	+	+	+	+	+	+	+	+	+
Fibrosarcoma, metastatic, spleen				X								X							X	Х				X	
Mesothelioma malignant Osteosarcoma, metastatic, spleen			X										X		X							X			
alivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
tomach tomach, forestomach	+	A	+	+	+	+	+	+	A	A A	+	+	+	+	+	+	+	+	+	+	+	A	+	+	4
Osteosarroma, metastatic, spieen Glandular, osteosarroma, metastatic, spleen		••					•	·	••	••		·			·		,			·	•	••			
tomach, glandular	+	Α	+	-	+	+	+	+	Α	A	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+
Fibrosarcoma, metastatic, spleen Osteosarcoma, metastatic, spleen			X																					Х	
ongue .			••											+											
Papilloma squamous Cooth		+			+	+	4	+	+	+	+	+	+	X	+	+	+	M	+	+	+	+	+	+	4
Gingiva, squamous cell carcinoma		·												•				212							
ARDIOVASCULAR SYSTEM																									_
Blood vessel	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Pulmonary artery, fibrosarcoma, metastatic, spleen																								х	
leart .	, +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NDOCRINE SYSTEM																									
dreral gland	ı +	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ą	+	+	4
idrenal gland, cortex Leukemia mononuclear	+	+	+	-	+	+	+	X	+	+	+	+	+	+	+	+	+	+	+	+	+	A	+	+	4
Capsule, fibrosarcoma, metastatic,																									
spleen Capsule, osteosarcoma, metastatic,																								Y	
spleen			X																						
Medulla, fibrosarcoma, metastatic, spleen												X													
drenal gland, medulla	+	+	+	+	+	+	+	*X	+	+	+		+	+	+	+	+	+	+	+	+	Α	+	+	4
Leukemia mononuclear Pheochromocytoma malignant																									
Pheochromocytoma benign Bi ateral, pheochromocytoma benign									X	x				X		x	Х				x			X	N
slets pancreatic	+	A	-	+	-	+	+	M	+	-	M	+	+	+	+	÷	7	+	+	+	+	+	+	+	-
Aderoma Carrinoma																							Х		
Fibrosarcoma, metastatic, spleen	4											Х								X				X	
Osteosarcoma, metastatic, spleen arethyroid gland													X		X							X			
Aceroma		_		_	_				_	_	~	M	т.	_	-	_	_	-	_		+	-		+	V
htuntary gland Pars, distalis, adenoma	٠ +	+	+	+	+	+	+	+	-	+	+	+	+	M	+	+	+	M	+	M	+	+	+	+	4
Par, distalis, adenoma Par, distalis, adenoma, multiple	i											X	X								X	X	X		
hyro d gland C-e l, adenoma	, +	+	+	+	+	+	+	+	+	A	+	+	+	+	+	A	+	+	+	+	A	A	+	+	A
C-reil, carcinoma	1																			X			Х		
ENERAL BODY SYSTEM							-																		
Osteosarcoma, metastatic, spleen							X																		

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: HIGH DOSE (Continued)

								(0	on	V1111	400	.,														
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL.
CARCASS ID	0 1 1	0 3 3	0 3 4	0 9 3	0 6 5	0 7 3	0 8 4	0 9 2	0 1 3	0 2 3	0 4 3	0 4 4	0 6 1	0 7 1	1 0 3	0 2 5	0 6 2	0 6 3	0 7 4	0 8 5	0 9 4	0 1 4	7 2	0 7 5	0 9 5	TOTA TISSUI TUMO
LIMENTARY SYSTEM	-															-										ļ
sophagus itestine large itestine large, cecum	++++	+++	+++	+++++++++++++++++++++++++++++++++++++++	++++	+++	+++	+++	+++	+++	+++	++++	+++	++++	+++	+++	+++	+++	++	+++	++++	+++	+++	+++	+++	50 46 44
Colon, rectum, osteosarcoma, metastatic spleen	·•																									1
itestine large, colon itestine large, rectum	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45 44
testine small testine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	47 46
Fibrosarcoma, metastatic, spleen Osteosarcoma, metastatic, spleen Ileum, jejunum, osteosarcoma,		X										x									X					3
metastatic, spleen testine small, ileum	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	39
testine small, jejunum Osteosarcoma, metastatic, spleen	+	+	+	+	+	+ X	+	+	+	+	+	Ā	+	+	+	+	+	+	+	+	+	+	+	+	+	41
ver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Fibrosarcoma, metastatic, spleen Leukemia mononuclear Osteosarcoma, metastatic, spleen	x	X						X	X			x							X		X					3 8
esentery Fibrosarcoma, metastatic, spleen Leukemia mononuclear	+	+	X	X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48 9 2
Mesothelioma malignant Osteosarcoma, metastatic, spleen uncreas	X +	X +	+	+	+	X +	+	+	+	+	+	X +	+	+	+	+	+	X +	+	X +	X +	+	+	+	+	11 47
Tibrosarcoma, metastatic, spleen Mesothelioma malignant				Х																x						6
Osteosarcoma, metastatic, spleen llivary glands	X +	X +	+	+	+	X +	+	+	X +	+	+	X +	+	+		+	+	+	+	+	X +	+	+	+	+	10 49
omach omach, forestomach	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46 46
Osteosarcoma, metastatic, spleen Flandular, osteosarcoma, metastatic, spleen		x										X														1
omach, glandular Fibrosarcoma, metastatic, spleen Osteosarcoma, metastatic, spleen	+	••	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45 1 1
ngue Papilloma squamous																										1
ooth Gingiva, squamous cell carcinoma	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
ARDIOVASCULAR SYSTEM	-			-	-						-															·
ood vessel Pulmonary artery, fibrosarcoma,	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
metastatic, spleen eart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
NDOCRINE SYSTEM drenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
irenal gland, cortex Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Capsule, fibrosarcoma, metastatic, spleen																										1
Capsule, osteosarcoma, metastatic, spleen																										1
Medulla, fibrosarcoma, metastatic, spleen																										1
irenal gland, medulla Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Pheochromocytoma malignant Pheochromocytoma benign				x	X		x		v	х	X			X		X			х	х					x	13
Bilateral, pheochromocytoma benign	М		X		Α.		Α.			Α.			X		X	Α.		X	Ĩ.	^		X	X	Х		12 46
ets, pancreatic denoma	TAT	т	т	т.	т	7	т	_	т	т	_	_	т		_	Τ.	_	_	_	T		т		т	7	1
arcinoma ibrosarcoma, metastatic, spleen		••		X																X						1 4
Osteosarcoma, metastatic, spleen rathyroid gland	+	X +	+	+	+	X +	+	+	+	+	+	X +	+	+	+	+	+	+	+	M	X +	M	+	+	М	7 45
Adenoma cuitary gland	+	X +	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	1 46
Pars distalis, adenoma Pars distalis, adenoma, multiple			X				X				X		X		X							X				10
yroid gland C-cell, adenoma C-cell, carcinoma	+	* X	+	+	+	+	+	+	+	+	X +	+	+	+	*	+	x	*X	+	+	*	X	*	+	+	45 9 1
ENERAL BODY SYSTEM																										
ssue, NOS Osteosarcoma, metastatic, spleen																										1

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: HIGH DOSE (Continued)

					(C	on	unı	ueo	1)																
WEEKS ON STUDY	0 6 0	0 6 8	0 7 1	0 7 5	0 7 7	0 8 0	0 8 4	0 8 8	0 8 9	0 8 9	0 9 0	0 9 4	0 9 5	0 9 5	0 9 7	0 9 7	0 9 7	0 9 8	0 9 8	0 9 8	9	1 0 0	1 0 2	1 0 3	1 0 3
CARCASS ID	1 0 4	0 1 5	1 0 1	0 4 2	0 4 5	0 5 4	0 5 3	0 8 3	0 3 5	0 2 4	0 5 1	0 1 2	0 6 4	0 9 1	0 3 1	0 3 2	0 8 1	0 5 5	0 2 1	0 5 2	1 0 5	0 4 1	0 2 2	1 0 2	0 8 2
CENITAL SYSTEM	-																								
Epididymis Fibrosarcoma, metastatic, spleen Osteosarcoma, metastatic, spleen	+	+	x	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	X ×	+	*	+ X
Sarcoma Bilateral, mesothelioma malignant Bilateral, osteosarcoma, metastatic, spleen							¥																		Α.
Special Specia	+	+	+	+	*X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	A	+	+	+
Prostate Fibrosarcoma, metastatic, spleen	+	+	+	+ X	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Osteosarcoma, metastatic, spleen Seminai vesicle Osteosarcoma, metastatic, spleen	+	+	X + X	+	+	+		M	+	+	+			+				+				+ X	+		+
Testes Mesothelioma malignant	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Osteosarcoma, metastatic, spleen Bilateral, interstitial cell, adenoma Interstitial cell, adenoma	х				x	x	X	X	X	X	x	X	X	X	x	X	X	X	X	X	X	X		X	X
HEMATOPOIETIC SYSTEM					+	+		+					+	+				+	+				+	+	
Leukemia mononuclear Bone marrow Osteosarcoma, metastatic, spleen	+	+	+	+	+	+	+ X	X +	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+
Lymph node Mediastinal, fibrosarcoma, metastatic, spleen	+	+-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+ X	+		+	+	+
Mediastinal, leukemia mononuclear Mediastinal, osteosarcoma, metastatic, spleen			х					X							х			X	••						
Mediastinal, pancreatic, fibrosarcoma, metastatic, spleen Pancreatic, mesothelioma malignant															••									x	
Renai, leukemia mononuclear Lymph node, mandibular Leukemia mononuclear	+	+-	+	+	+	+	+	Х + Х	+	+	+	+	+	+	+	+	+	+ X	+	+	+		+	+	+
Lymph node, mesenteric Leukemia mononuclear Mediastinal, osteosarcoma, metastatic,						+		X X				+			M			+ X							
spieen Pancreatic, fibrosarcoma, metastatic, spieen												х													
Spleen Fibroma Fibrosarcoma	+	+	+	+ X	+	+ X	+	+	+	+	+	+ X	+	+ X	+	+	+ X	*	+ X	+ X	+	+	+	+ X	+
Hemangiosarcoma Leukemia mononuclear				Λ.		Λ		x	X	X	X	Λ.		^			Λ.	x	Λ	^			X	Λ	
Mescthelioma malignant Osteosarcoma Thymus	м		X M	М	+	+	X	+	+	+	+	+	X	+	X M	X M	+	M	+	+	+	X	+	+	+
Leukemia mononuclear Osteosarcoma, metastatic, spleen							X	Х																	
INTEGUMENTARY SYSTEM Mammary gland	—	+	М	+	M	М	M	+	+	+	+	М	М	+	+	+	+	+	+	+	М	M	+	+	М
Fibroadenoma Skin Keratoacanthoma	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X	+	+	+	+	+	+	+
Subcutaneous tissue, fibroma MUSCULOSKELETAL SYSTEM					-											X	X								
Bone Skeletal muscle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	++	+	+	+	+	+	+	++
Osteosarcoma, metastatic, spleen Diaphragm, fibrosarcoma, metastatic, spleen												х			Х				х			X		X	
Diaphragm, osteosarcoma, metastatic, spleen							x																		
NERVOUS SYSTEM Brain	_ _		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Peripheral nerve Spinal cord	+																								
RESPERATORY SYSTEM Lung Fibrosarcoma, metastatic, spleen	_ +	+	+	+ X	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+ Y	+ Y	+	+	+	+ X	+
Hemangiosarcoma, metastatic, spleen Leukemia mononuclear				А				X		X		Λ.						x	Λ.	Α.				Α.	
Osteosarcoma, metastatic, spleen Nose Nasclacrimal duct, squamous cell	+	A	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	M	+	+	+	A	+	+	+
carcinoma Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	I	+	+	+	+	+	+	+	+

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: HIGH DOSE (Continued)

								(C	oni	tinı	ued	()														
WEEKS ON STUDY	1 0 4	1 0 4	1. 0 4	1 0 4	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL
CARCASS ID	0 1 1	3	0 3 4	0 9 3	0 6 5	0 7 3	0 8 4	0 9 2	0 1 3	0 2 3	0 4 3	0 4 4	0 6 1	0 7 1	1 0 3	0 2 5	0 6 2	0 6 3	0 7 4	0 8 5	0 9 4	0 1 4	0 7 2	0 7 5	0 9 5	TOTAL: TISSUES TUMORS
GENITAL SYSTEM Epididymis Fibrosarcoma, metastatic, spleen Osteosarcoma, metastatic, spleen	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 2 3
Sarroma Bilateral, mesothelioma malignant Bilateral, osteosarroma, metastatic, spleen																				X						1 1
Preputial gland Adenocarcinoma Adenoma	+	+	+	+	+	+	+	+	+	+	+ X	+	M	+	+	+	+	+	+	+	+	+	+ X	+	+	48 1 2
Prostate Fibrosarcoma, metastatic, spleen Osteosarcoma, metastatic, spleen Seminal vesicle Osteosarcoma, metastatic, spleen	+	M M	+	+	+	+ X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X +	+	+	+	+	48 1 3 23 2
Testes Mesothelioma malignant Osteosarcoma, metastatic, spleen Bilateral, interstitial cell, adenoma Interstitial cell, adenoma	+ X	X X	+ X	+ X	+ X	+ X	x	+ X	+ X	+ X	+ X	X X	+ X	+ X	+ X	+ X	+ X	+ X	+ X	x X	+ X	+ X	+ x	+ X	+ X	50 2 3 40 6
TEMATOPOIETIC SYSTEM		+						_					+				_	_				_	_	+		31
Leukemia mononuclear Bone marrow	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	3 50
Osteosarcoma, metastatic, spleen Lymph node Mediastinal, fibrosarcoma, metastatic,	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
spleen Mediastinal, leukemia mononuclear Mediastinal, osteosarcoma, metastatic, spleen Mediastinal, pancreatic, fibrosarcoma,	x	x				x		X				X														2 3 6
metastatic, spleen Pancreatic, mesothelioma malignant Renal, leukemia mononuclear Lymph node, mandibular Leukemia mononuclear	+	+	+	+	+	+	+	+ X	+	М	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	1 1 1 48 3
Lymph node, mesenteric Leukemia mononuclear Mediastinal, osteosarcoma, metastatic, spleen Pancreatic, fibrosarcoma, metastatic,								+ X					+				+			+	+ X		+			10 3
spleen Spleen Fibroma Fibrosarcoma Hemangiosarcoma	+	+	+ X X	+ X	+	+	+	+	+	+ X	+ X	+	+ X	x	+	+	+	+	+	+ X	+	+	+ X	+	+	1 50 2 17 4
Leukemia mononuclear Mesothelioma malignant Osteosarcoma Thymus Leukemia mononuclear	X +	X M	M	+	X +	X M	X M	* * * * * * * * * * * * * * * * * * *	X +	+	+	X +	+	+	+	X +	+	X M	X +	x +	X +	X +	+	+	X M	3 1 19 36
Osteosarcoma, metastatic, spleen								Α													_					1
INTEGUMENTARY SYSTEM Mammary gland Fibroadenoma Skin Keratoacanthoma	M + X	+	+	+	+	+	+	* X +	+	+	* X +	+	M +	+	+	M +	+	+	+	M +	+	+	+	+	+	36 3 49
Subcutaneous tissue, fibroma											X														X	1 4
MUSCULOSKELETAL SYSTEM Bone Bone Skeletal muscle Osteosarcoma, metastatic, spleen Diaphragm, fibrosarcoma, metastatic,	+++	+	++	+	+	++	++	++	++	++	++	+	++	+	+	+	++	+	+	++	++	++	+	++	++	50 50 2
spleen Diaphragm, osteosarcoma, metastatic, spleen																					x					3 2
NERVOUS SYSTEM Brain Peripheral nerve Spinal cord	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 1
RESPIRATORY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Fibrosarcoma, metastatic, spleen Hemangiosarcoma, metastatic, spleen Leukemia mononuclear Osteosarcoma, metastatic, spleen Nose	x	J.	,,	,ı		J		X	,	,	.4	X								1						5 1 3 3
Nasolacrimal duct, squamous cell carcinoma Frachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X +	+	+	+	+	+	+	+	46 1 49

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: HIGH DOSE (Continued)

WEEKS ON STUDY	0 6 0	0 6 8	0 7 1	0 7 5	0 7 7	0 8 0	0 8 4	0 8 8	0 8 9	0 8 9	0 9 0	0 9 4	0 9 5	0 9 5	0 9 7	0 9 7	0 9 7	0 9 8	0 9 8	0 9 8	9 9	1 0 0	1 0 2	1 0 3	1 0 3
CARCASS ID	1 0 4	0 1 5	1 0 1	0 4 2	0 4 5	0 5 4	0 5 3	0 8 3	0 3 5	0 2 4	0 5 1	0 1 2	0 6 4	0 9 1	0 3 1	0 3 2	0 8 1	0 5 5	0 2 1	0 5 2	1 0 5	0 4 1	0 2 2	1 0 2	0 8 2
SPECIAL SENSES SYSTEM Ear Eye Harderian gland	+	м	+	М	++	+	+	М	+	+	+	+	+	М	+	+	+	м	+	+	+	A	++	+	+
URIN ARY SYSTEM Kidney Fibrosarcoma, metastatic, spleen Leukemia mononuclear Ostebsarcoma, metastatic, spleen Renal tubule, adenoma	+	+	+ X	+	+	+	+	+ X	+	+	+	* X	+	+	+ x	+	+	+ X	+	*	+	+	+	+	+
renal tubule, adenoma Uretr- Urethra Urinamy bladder Fiorosarcoma, metastatic, spleen Osteosarcoma, metastatic, spleen	+ +	М	+ + X	+ *	+	+	++++	М	+	+	+	+	+++	+	++++	+	+	+	+	+	+	A A	+ + +	+ + X	+

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: HIGH DOSE (Continued)

WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL:
CARCASS ID	0 1 1	0 3 3	0 3 4	9 3	0 6 5	0 7 3	0 8 4	0 9 2	0 1 3	0 2 3	0 4 3	0 4 4	0 6 1	7 1	1 0 3	0 2 5	0 6 2	0 6 3	0 7 4	0 8 5	0 9 4	0 1 4	0 7 2	0 7 5	0 9 5	TISSUES
SPECIAL SENSES SYSTEM Ear Eye Harderian gland	+ + +	м	+	+	++	++	++	+	++	++	+	+	+	+	+	++	++	+	+	+	+	<u>+</u>	+	++	++	1 14 43
URINARY SYSTEM Kidney Fibrosarcoma, metastatic, spleen Leukemia mononuclear Osteosarcoma, metastatic, spleen	+	+ X	+	+ X	+	+ X	+	+ X	+	+	+	+ x	+	+	+	+	+	+	+	+	+ X	+	+	+	+	50 3 3
Ureter Urethra Urinary bladder Fibrosarcoma, metastatic, spleen Osteosarcoma, metastatic, spleen	+ +	л + М	+++	+	+	++	+++	+	X +	++++	+	+ + +	++++	+	+	+	+	+	+	+	++	+	+ + +	+	+	1 44 11 46 2 1

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF $\rho\text{-}CHLOROANILINE HYDROCHLORIDE$

Vehicle Control	l 2 mg/kg	6 mg/kg	18 mg/kg
			·
13/49 (27%)	14/48 (29%)	14/48 (29%)	25/49 (51%)
53.8%	40.3%	40.7%	79.5%
8/18 (44%)	11/31 (35%)	12/32 (38%)	15/21 (71%)
633	651	476	618
P<0.001	P = 0.158N	P = 0.134N	P = 0.061
P = 0.003	P = 0.358N	P = 0.504N	P = 0.028
P = 0.003			
	P = 0.475	P = 0.475	P = 0.011
Malignant Pheoch			
13/49 (27%)	14/48 (29%)	15/48 (31%)	26/49 (53%)
53.8%	40.3%	43.6%	82.9%
8/18 (44%)	11/31 (35%)	13/32 (41%)	16/21 (76%)
			618
			P = 0.041
	P = 0.358N	P = 0.586N	P = 0.017
P = 0.002	D 0 :==	D 0000	D 0000
	P=0.475	P=0.386	P = 0.006
1/40/00/	/ \ F(10 / F0 / F	(.) A/1 E (OFFO)	9/49 (40)
* *	(e) 7/12 (58%)	(e) 4/15 (27%)	2/48 (4%)
			10.0%
			2/20 (10%) 729
129			
			P = 0.602 P = 0.602
			P = 0.502 P = 0.516
cinoma			
1/46 (2%)	(e) 7/12 (58%)	(e) 4/15 (27%)	3/48 (6%)
6.7%			12.0%
1/15 (7%)			2/20 (10%)
729			535
			P = 0.393
			P = 0.348
			P = 0.325
3/48 (6%)	(e) 0/4 (0%)	(e) 0/10 (0%)	1/46 (2%)
13.7%			3.6%
2/18 (11%)			0/21 (0%)
633			712
			P = 0.243N
			P = 0.274N
			P = 0.325N
1a	044 40=1	() 0/40/2523	0/40/47
. ,	(e) 0/4 (0%)	(e) 0/10 (0%)	2/46 (4%)
			8.2%
			1/21 (5%)
633			712
			P = 0.418N
			P = 0.451N
			P = 0.520N
	13/49 (27%) 53.8% 8/18 (44%) 633 P<0.001 P=0.003 P=0.003 * Malignant Pheoch 13/49 (27%) 53.8% 8/18 (44%) 633 P<0.001 P=0.001 P=0.002 1/46 (2%) 6.7% 1/15 (7%) 729 cinoma 1/46 (2%) 6.7% 1/15 (7%) 729 3/48 (6%) 13.7% 2/18 (11%) 633	13/49 (27%) 14/48 (29%) 53.8% 40.3% 8/18 (44%) 11/31 (35%) 633 651 P<0.001 P=0.158N P=0.003 P=0.358N P=0.003 P=0.475 * Malignant Pheochromocytoma 13/49 (27%) 14/48 (29%) 53.8% 40.3% 8/18 (44%) 11/31 (35%) 633 651 P<0.001 P=0.158N P=0.001 P=0.358N P=0.002 P=0.475 1/46 (2%) (e) 7/12 (58%) 6.7% 1/15 (7%) 729 cinoma 1/46 (2%) (e) 7/12 (58%) 6.7% 1/15 (7%) 729 3/48 (6%) (e) 0/4 (0%) 13.7% 2/18 (11%) 633	13/49 (27%) 14/48 (29%) 14/48 (29%) 53.8% 40.3% 40.7% 8/18 (44%) 11/31 (35%) 12/32 (38%) 633 651 476 P<0.001 P=0.158N P=0.134N P=0.003 P=0.475 P=0.504N P=0.003 P=0.475 P=0.475 **Malignant Pheochromocytoma 13/49 (27%) 14/48 (29%) 15/48 (31%) 53.8% 40.3% 43.6% 8/18 (44%) 11/31 (35%) 13/32 (41%) 633 651 476 P<0.001 P=0.158N P=0.175N P=0.001 P=0.358N P=0.175N P=0.001 P=0.358N P=0.586N P=0.002 P=0.475 P=0.386 1/46 (2%) (e) 7/12 (58%) (e) 4/15 (27%) 6.7% 1/15 (7%) 729 cinoma 1/46 (2%) (e) 7/12 (58%) (e) 4/15 (27%) 6.7% 1/15 (7%) 729 3/48 (6%) (e) 0/4 (0%) (e) 0/10 (0%) 13.7% 2/18 (11%) 633

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle Contro	l 2 mg/kg	6 mg/kg	18 mg/kg
Liver: Neoplastic Nodule				
Overall Rates (a)	0/49 (0%)	5/50 (10%)	3/49 (6%)	0/49 (0%)
Adjusted Rates (b)	0.0%	15.6%	9.4%	0.0%
Terminal Rates (c)	0.0%	5/32 (16%)	3/32 (9%)	0.0%
Day of First Observation	0/18(0%)	729	729	0/21 (070)
Life Table Tests (d)	P = 0.190N	P = 0.103	P = 0.238	(f)
Logistic Regression Tests (d)	P = 0.190N	P = 0.103	P = 0.238	(f)
Cochran-Armitage Trend Test (d)	P = 0.178N	1 -0.103	r = 0.236	(1)
Fisher Exact Test (d)	F = 0.17614	P = 0.030	P = 0.121	(f)
	lular Carcinoma			
Overall Rates (a)	1/49 (2%)	6/50 (12%)	5/49 (10%)	0/49 (0%)
Adjusted Rates (b)	5.6%	18.8%	15.0%	0.0%
Terminal Rates (c)		6/32 (19%)	4/32 (13%)	
	1/18 (6%)		· · ·	0/21 (0%)
Day of First Observation	729	729 P=0.106	716 D = 0.270	D = 0.40037
Life Table Tests (d)	P = 0.106N	P=0.196	P=0.279	P=0.469N
Logistic Regression Tests (d)	P = 0.084N	P = 0.196	P = 0.241	P = 0.469N
Cochran-Armitage Trend Test (d)	P = 0.102N	D 0.050	D 0100	n 0 50033
Fisher Exact Test (d)		P = 0.059	P = 0.102	P = 0.500N
Mammary Gland: Fibroadenoma	140/075	0.50	0/80/2003	A 18 A 1 A 44 .
Overall Rates (a)	1/49 (2%)	2/50 (4%)	3/50 (6%)	3/50 (6%)
Adjusted Rates (b)	2.6%	6.3%	9.4%	12.3%
Terminal Rates (c)	0/18 (0%)	2/32 (6%)	3/32 (9%)	2/21 (10%)
Day of First Observation	626	729	729	680
Life Table Tests (d)	P = 0.231	P = 0.655	P = 0.469	P = 0.356
Logistic Regression Tests (d)	P = 0.297	P = 0.558	P = 0.364	P = 0.344
Cochran-Armitage Trend Test (d)	P = 0.292			
Fisher Exact Test (d)		P = 0.508	P = 0.316	P = 0.316
Pituitary Gland/Pars Distalis: Adenoma				
Overall Rates (a)	20/47 (43%)	(e) 13/18 (72%)	(e,g) 11/19 (58%)	11/46 (24%
Adjusted Rates (b)	61.4%			38.7%
Terminal Rates (c)	7/18 (39%)			5/20 (25%)
Day of First Observation	455			654
Life Table Test (d)				P = 0.023N
Logistic Regression Test (d)				P = 0.027N
Fisher Exact Test (d)				P = 0.045N
subcutaneous Tissue: Fibroma				
Overall Rates (a)	3/49 (6%)	2/50 (4%)	1/50 (2%)	4/50 (8%)
Adjusted Rates (b)	13.2%	5.2%	3.1%	14.7%
Terminal Rates (c)	1/18 (6%)	1/32 (3%)	1/32 (3%)	2/21 (10%)
Day of First Observation	680	626	729	676
Life Table Tests (d)	P = 0.277	P = 0.314N	P = 0.150N	P = 0.605
Logistic Regression Tests (d)	P = 0.318	P = 0.425N	P = 0.222N	P = 0.584
Cochran-Armitage Trend Test (d)	P=0.310			- 0.001
Fisher Exact Test (d)		P = 0.490N	P=0.301N	P = 0.511
ubcutaneous Tissue: Fibroma or Fibro	osarcoma			
Overall Rates (a)	4/49 (8%)	4/50 (8%)	2/50 (4%)	4/50 (8%)
Adjusted Rates (b)	18.3%	9.8%	5.1%	14.7%
Terminal Rates (c)	2/18 (11%)	1/32 (3%)	1/32 (3%)	2/21 (10%)
Day of First Observation	680	626	361	
Life Table Tests (d)	P=0.566			676
		P=0.407N	P = 0.164N	P = 0.533N
Logistic Regression Tests (d)	P=0.586	P=0.568N	P = 0.328N	P = 0.552N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.586	P = 0.631N	P = 0.329N	P = 0.631N

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle Control	2 mg/kg	6 mg/kg	18 mg/kg
Spleen: Fibrosarcoma				
Overall Rates (a)	0/49 (0%)	1/50 (2%)	2/50 (4%)	17/50 (34%)
Adjusted Rates (b)	0.0%	2.7%	5.7%	47.1%
Terminal Rates (c)	0/18 (0%)	0/32 (0%)	1/32 (3%)	5/21 (24%)
Day of First Observation	0,10 (0,10)	687	702	522
Life Table Tests (d)	P<0.001	P = 0.570	P = 0.364	P<0.001
Logistic Regression Tests (d)	P<0.001	P = 0.523	P = 0.293	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001			
Fisher Exact Test (d)		P = 0.505	P = 0.253	P<0.001
Spleen: Fibroma or Fibrosarcoma				
Overall Rates (a)	0/49 (0%)	1/50 (2%)	2/50 (4%)	19/50 (38%)
Adjusted Rates (b)	0.0%	2.7%	5.7%	51.9%
Terminal Rates (c)	0/18 (0%)	0/32 (0%)	1/32 (3%)	6/21 (29%)
Day of First Observation		687	702	522
Life Table Tests (d)	P<0.001	P = 0.570	P = 0.364	P<0.001
Logistic Regression Tests (d)	P<0.001	P = 0.523	P = 0.293	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001			
Fisher Exact Test (d)	- 12.73	P = 0.505	P = 0.253	P<0.001
Spleen: Osteosarcoma				
Overall Rates (a)	0/49 (0%)	0/50 (0%)	1/50 (2%)	19/50 (38%)
Adjusted Rates (b)	0.0%	0.0%	3.1%	62.8%
Terminal Rates (c)	0/18 (0%)	0/32 (0%)	1/32 (3%)	11/21 (52%)
Day of First Observation		,	729	494
Life Table Tests (d)	P<0.001	(f)	P = 0.615	P<0.001
Logistic Regression Tests (d)	P<0.001	(f)	P=0.615	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001	(-)	1 0.010	1 10.001
Fisher Exact Test (d)	1 < 0.001	(f)	P = 0.505	P<0.001
Spleen: Fibrosarcoma or Osteosarcoma				
Overall Rates (a)	0/49 (0%)	1/50 (2%)	3/50 (6%)	36/50 (72%)
Adjusted Rates (b)	0.0%	2.7%	8.7%	87.1%
Terminal Rates (c)	0/18 (0%)	0/32 (0%)	2/32 (6%)	16/21 (76%)
Week of First Observation		687	702	494
Life Table Tests (d)	P<0.001	P = 0.570	P = 0.236	P<0.001
Incidental Tumor Tests (d)	P<0.001	P = 0.485	P = 0.140	P<0.001
Cochran-Armitage Trend Test (d)				
Fisher Exact Test (d)	P<0.001	P = 0.505	P = 0.125	P<0.001
Spleen: Fibrosarcoma, Osteosarcoma, or	Hemangiosarcoma			
Overall Rates (a)	0/49 (0%)	1/50 (2%)	3/50 (6%)	38/50 (76%)
Adjusted Rates (b)	0.0%	2.7%	8.7%	87.9%
Terminal Rates (c)	0/18 (0%)	0/32 (0%)	2/32 (6%)	16/21 (76%)
Week of First Observation		687	702	494
Life Table Tests (d)	P<0.001	P = 0.570	P = 0.236	P<0.001
Incidental Tumor Tests (d)	P<0.001	P = 0.485	P = 0.140	P<0.001
Cochran-Armitage Trend Test (d)				
Fisher Exact Test (d)	P<0.001	P = 0.505	P = 0.125	P<0.001
Testis: Interstitial Cell Adenoma	2242/77			
Overall Rates (a)	36/49 (73%)	44/46 (96%)	44/50 (88%)	46/50 (92%)
Adjusted Rates (b)	94.4%	100%	100.0%	100.0%
Terminal Rates (c)	16/18 (89%)	30/30 (100%)	32/32 (100%)	21/21 (100%
Day of First Observation	466	556	476	415
Life Table Tests (d)	P = 0.064	P = 0.096N	P = 0.064N	P = 0.376
Logistic Regression Tests (d)	P = 0.082	P = 0.059	P = 0.084	P = 0.048
Cochran-Armitage Trend Test (d)	P = 0.073			
Fisher Exact Test (d)		P = 0.003	P = 0.056	P = 0.014

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF p-CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle Cont	rol 2 mg/kg	6 mg/kg	18 mg/kg
Thyroid Gland: C-Cell Adenoma				
Overall Rates (a)	9/48 (19%)	(e) 2/8 (25%)	(e) 0/10 (0%)	9/45 (20%)
Adjusted Rates (b)	43.5%			36.1%
Terminal Rates (c)	7/18 (39%)			6/21 (29%)
Day of First Observation	554			686
Life Table Test (d)				P = 0.440N
Logistic Regression Test (d)				P = 0.507N
Fisher Exact Test (d)				P = 0.543
Thyroid Gland: C-Cell Adenoma or Car	rcinoma			
Overall Rates (a)	10/48 (21%)	(e) 3/8 (38%)	(e) 0/10 (0%)	9/45 (20%)
Adjusted Rates (b)	45.0%	. , , ,	,,	36.1%
Terminal Rates (c)	7/18 (39%)			6/21 (29%)
Day of First Observation	554			686
Life Table Test (d)				P = 0.341N
Logistic Regression Test (d)				P = 0.422N
Fisher Exact Test (d)				P = 0.563N
Sirculatory System: Hemangiosarcoma				
Overall Rates (a)	0/49 (0%)	0/50 (0%)	0/50 (0%)	4/50 (8%)
Adjusted Rates (b)	0.0%	0.0%	0.0%	12.0%
Terminal Rates (c)	0/18 (0%)	0/32 (0%)	0/32 (0%)	0/21 (0%)
Day of First Observation				618
Life Table Tests (d)	P = 0.002	(f)	(f)	P = 0.095
Logistic Regression Tests (d)	P = 0.002	(f)	(f)	P = 0.068
Cochran-Armitage Trend Test (d)	P = 0.002			
Fisher Exact Test (d)		(f)	(f)	P = 0.061
Hematopoietic System: Mononuclear L	eukemia			
Overall Rates (a)	21/49 (43%)	3/50 (6%)	2/50 (4%)	3/50 (6%)
Adjusted Rates (b)	59.7%	8.7%	5.2%	9.8%
Terminal Rates (c)	5/18 (28%)	2/32 (6%)	1/32 (3%)	1/21 (5%)
Day of First Observation	466	674	498	615
Life Table Tests (d)	P = 0.001 N	P<0.001N	P<0.001N	P<0.001N
Logistic Regression Tests (d)	P<0.001N	P<0.001N	P<0.001N	P<0.001N
Cochran-Armitage Trend Test (d)	P<0.001N			
Fisher Exact Test (d)		P<0.001N	P<0.001N	P<0.001N
All Sites: Malignant Mesothelioma				
Overall Rates (a)	1/49 (2%)	3/50 (6%)	1/50 (2%)	2/50 (4%)
Adjusted Rates (b)	3.0%	8.0%	2.9%	7.1%
Terminal Rates (c)	0/18 (0%)	1/32 (3%)	0/32 (0%)	1/21 (5%)
Day of First Observation	639	651	716	624
Life Table Tests (d)	P=0.570	P=0.478	P = 0.679N	P = 0.543
Logistic Regression Tests (d)	P = 0.587	P = 0.333	P = 0.749N	P = 0.512
Cochran-Armitage Trend Test (d)	P=0.581			- 5.5-2
Fisher Exact Test (d)		P = 0.316	P = 0.747N	P = 0.508

⁽a) Number of tumor-bearing animals/number of animals examined at the site; doses calculated as p-chloroaniline.

⁽b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

⁽c) Observed tumor incidence at terminal kill

⁽d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

⁽e) Incomplete sampling of tissues

⁽f) No P value is reported because no tumors were observed in the dosed and vehicle control groups.

⁽g) A carcinoma was observed in a 12th animal.

TABLE A4a. HISTORICAL INCIDENCE OF SPLENIC CONNECTIVE TISSUE TUMORS IN MALE F344/N RATS (a)

Study	Incidence in Controls
Historical Incidence for All Water Gavage Veh	icle Controls (b)
Iodinated glycerol	0/50
Malonaldehyde, sodium salt	0/50
Chlorpheniramine maleate	0/49
Tetrakis(hydroxymethyl)phosphonium chloride	0/50
Tetrakis(hydroxymethyl)phosphonium sulfate	0/49
Methyl carbamate	(c) 1/50
TOTAL	1/298 (0.3%)
SD(d)	0.82%
Range (e)	
High	1/50
Low .	0/50
Overall Historical Incidence for Untreated Cor	atrols
TOTAL	(f) 8/1,906 (0.4%)
SD(d)	0.84%
Range (e)	
High	1/45
Low	0/50

⁽a) Data as of April 29, 1987, for studies of at least 104 weeks

⁽b) The methyl carbamate study was conducted at Microbiological Associates, and the iodinated glycerol study was conducted at EG&G Mason Research Institute; all other studies were performed by Battelle Columbus Laboratories.

⁽c) Fibrosarcoma

⁽d) Standard deviation

⁽e) Range and SD are presented for groups of 35 or more animals.

⁽f) Sarcoma, NOS; no fibrosarcomas, osteosarcomas, or benign tumors have been observed.

TABLE A4b. HISTORICAL INCIDENCE OF CIRCULATORY SYSTEM TUMORS IN MALE F344/N RATS (a)

Study	Incidence of Hemangiomas or Hemangiosarcomas in Controls	
Historical Incidence for All Water Gavage Vehi	cle Controls (b)	
odinated glycerol	0/50	
Malonaldehyde, sodium salt	0/50	
Chlorpheniramine maleate	(c) 2/50	
l'etrakis(hydroxymethyl)phosphonium chloride	0/50	
l'etrakis(hydroxymethyl)phosphonium sulfate	0/50	
Methyl carbamate	0/50	
TOTAL	2/300 (0.7%)	
SD(d)	1.63%	
Range (e)		
High	2/50	
Low	0/50	
Overall Historical Incidence for Untreated Conf	trols	
TOTAL	(f) 12/1,936 (0.6%)	
SD (d)	1.23%	
Range (e)		
High	2/50	
Low	0/50	

⁽a) Data as of April 29, 1987, for studies of at least 104 weeks

⁽b) The methyl carbamate study was conducted at Microbiological Associates, and the iodinated glycerol study was conducted at EG&G Mason Research Institute; all other studies were performed by Battelle Columbus Laboratories.

⁽c) Hemangiomas

⁽d) Standard deviation

⁽e) Range and SD are presented for groups of 35 or more animals.

⁽f) Includes two hemangiomas

TABLE A4c. HISTORICAL INCIDENCE OF ADRENAL MEDULLARY TUMORS IN MALE F344/N RATS (a)

	Incidence in Controls						
Study	Pheochromocytoma	Malignant Pheochromocytoma	Pheochromocytoma or Malignant Pheochromocytoma				
Historical Incidence for All Water Gavag	e Vehicle Controls (b)		, <u>, , , , , , , , , , , , , , , , , , </u>				
Iodinated glycerol	23/50	5/50	28/50				
Malonaldehyde, sodium salt	5/50	0/50	5/50				
Chlorpheniramine maleate	21/49	0/49	21/49				
l'etrakis(hydroxymethyl)phosphonium chloride	e 19/50	0/50	19/50				
Tetrakis(hydroxymethyl)phosphonium sulfate	22/50	1/50	23/50				
Methyl carbamate	23/50	4/50	25/50				
TOTAL	113/299 (37.8%)	10/299 (3.3%)	121/299 (40.5%)				
SD(c)	13.94%	4.50%	16.14%				
Range (d)							
High	23/50	5/50	28/50				
Low	5/50	0/50	5/50				
Overall Historical Incidence for Untreate	d Controls						
TOTAL	459/1,915 (24.0%)	37/1,915 (1.9%)	489/1,915 (25.5%)				
SD(c)	13.30%	2.70%	13.65%				
Range (d)							
High	31/49	6/50	32/49				
Low	2/50	0/50	3/50				

⁽a) Data as of April 29, 1987, for studies of at least 104 weeks
(b) The methyl carbamate study was conducted at Microbiological Associates, and the iodinated glycerol study was conducted at EC&G Mason Research Institute; all other studies were performed by Battelle Columbus Laboratories.

⁽c) Standard deviation

⁽d) Range and SD are presented for groups of 35 or more animals.

TABLE A4d. HISTORICAL INCIDENCE OF TESTICULAR INTERSTITIAL CELL TUMORS IN MALE F344/N RATS (a)

Study	Incidence in Controls	
Historical Incidence for All Water Gavage Vehi	cle Controls (b)	
odinated glycerol	46/50	
Malonaldehyde, sodium salt	40/50	
Chlorpheniramine maleate	44/49	
Setrakis(hydroxymethyl)phosphonium chloride	44/50	
Cetrakis(hydroxymethyl)phosphonium sulfate	40/50	
Methyl carbamate	43/50	
TOTAL	257/299 (86.0%)	
SD(c)	5.03%	
Range (d)		
High	46/50	
Low	40/50	
Overall Historical Incidence for Untreated Con	trols	
TOTAL	1,677/1,910 (87.8%)	
SD(c)	7.70%	
Range (d)		
High	49/50	
Low	32/50	

⁽a) Data as of April 29, 1987, for studies of at least 104 weeks

⁽b) The methyl carbamate study was conducted at Microbiological Associates, and the iodinated glycerol study was conducted at EG&G Mason Research Institute; all other studies were performed by Battelle Columbus Laboratories.

⁽c) Standard deviation

⁽d) Range and SD are presented for groups of 35 or more animals.

TABLE A4e. HISTORICAL INCIDENCE OF LEUKEMIA IN MALE F344/N RATS (a)

Study	Incidence in Controls	
Historical Incidence for All Water Gavage Vehicle	Controls (b)	
odinated glycerol	16/50	
Malonaldehyde, sodium salt	7/50	
Chlorpheniramine maleate	25/50	
Tetrakis(hydroxymethyl)phosphonium chloride	19/50	
Tetrakis(hydroxymethyl)phosphonium sulfate	30/50	
Methyl carbamate	23/50	
TOTAL	120/300 (40.0%)	
SD(c)	16.00%	
Range (d)		
High	30/50	
Low	7/50	
Overall Historical Incidence for Untreated Contro	ls	
TOTAL	636/1,936 (32.9%)	
SD(c)	14.62%	
Range (d)		
High	36/50	•
Low	5/50	

⁽a) Data as of April 29, 1987, for studies of at least 104 weeks

⁽c) The methyl carbamate study was conducted at Microbiological Associates, and the iodinated glycerol study was conducted at EG&G Mason Research Institute; all other studies were performed by Battelle Columbus Laboratories.

(c) Standard deviation

⁽d) Range and SD are presented for groups of 35 or more animals.

TABLE A4f. HISTORICAL INCIDENCE OF ANTERIOR PITUITARY GLAND TUMORS IN MALE F344/N RATS (a)

	Incidence in Controls							
Study	Adenoma	Carcinoma	Adenoma or Carcinoma					
Historical Incidence All Water Gavage Ve	hicle Controls (b)							
odinated glycerol	25/48	1/48	26/48					
Malonaldehyde, sodium salt	20/47	0/47	20/47					
Chlorpheniramine maleate	12/50	0/50	12/50					
Cetrakis(hydroxymethyl)phosphonium chloride	17/50	1/50	18/50					
Cetrakis(hydroxymethyl)phosphonium sulfate	21/50	0/50	21/50					
Methyl carbamate	26/50	3/50	29/50					
TOTAL	121/295 (41.0%)	5/295 (1.7%)	126/295 (42.7%)					
SD(c)	10.82%	2.34%	12.33%					
Range (d)								
High	25/48	3/50	29/50					
Low	12/50	0/50	12/50					
Overall Historical Incidence for Untreated	l Controls							
TOTAL (e	417/1,830 (22.8%)	(f) 42/1,830 (2.3%)	(e,f) 459/1,830 (25.1%)					
SD(c)	10.75%	2.85%	10.32%					
Range (d)								
High	24/46	5/45	25/46					
Low	2/39	0/50	2/39					

⁽a) Data as of April 29, 1987, for studies of at least 104 weeks

⁽b) The methyl carbamate study was conducted at Microbiological Associates, and the iodinated glycerol study was conducted at EG&G Mason Research Institute; all other studies were performed by Battelle Columbus Laboratories.

⁽c) Standard deviation
(d) Range and SD are presented for groups of 35 or more animals.

⁽e) Includes 32 chromophobe adenomas and 1 acidophil adenoma

⁽f) Includes seven chromophobe carcinomas and one adenocarcinoma, NOS

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
animals initially in study	50		50		50		50	
Animals removed	50		50		50		50	
nimals examined histopathologically	49		50		50		50	
LIMENTARY SYSTEM				······································				
Esophagus	(49)		(5)		(13)		(50)	
Foreign body	1	(2%)				(15%)		(2%)
Inflammation, necrotizing				(20%)		(15%)	1	(2%)
Intestine large, cecum	(46)		(5)		(6)		(44)	(901)
Dilatation Inflammation, chronic active								(2%) $(2%)$
Parasite metazoan							1	(2%)
Intestine large, colon	(46)		(5)		(9)		(45)	(270)
Parasite metazoan		(2%)	(0)		(3)			(4%)
Intestine large, rectum	(47)		(5)		(8)		(44)	(- / 0 /
Inflammation, chronic active		(4%)	(0)		(3)		(/	
Parasite metazoan		(4%)			1	(13%)	4	(9%)
Intestine small, ileum	(46)		(5)		(6)	•	(39)	
Dilatation							1	(3%)
Inflammation, chronic active							1	(3%)
Intestine small, jejunum	(46)		(6)		(8)		(41)	
Dilatation							1	(2%)
Metaplasia, osseous				(17%)	1	(13%)		
Necrosis	(40)			(17%)	(40)		(40)	
Liver	(49)		(50)	(00)	(49)	(400)	(49)	
Angiectasis	1.4	(90%)		(2%)		(4%)	01	(400)
Basophilic focus Clear cell focus	14	(29%)	23	(46%)	31	(63%)		(43%) (4%)
Degeneration, cystic	10	(20%)	16	(32%)	10	(20%)		(24%)
Eosinophilic focus	3		10	(3270)		(20%)		(4%)
Hematopoietic cell proliferation	Ū	(0,0)	1	(2%)	•	(2,0)	ī	
Hepatodiaphragmatic nodule	3	(6%)		(16%)	2	(4%)		(4%)
Inflammation, chronic		(16%)	_	(30%)		(39%)		(18%)
Inflammation, necrotizing	4	(8%)		(4%)		(10%)	4	(8%)
Necrosis, coagulative	6	(12%)	4	(8%)	3	(6%)	9	(18%)
Pigmentation, hemosiderin	1	(2%)					26	(53%)
Vacuolization cytoplasmic		(12%)		(8%)		(18%)	1	(2%)
Bile duct, hyperplasia		(84%)		(90%)		(88%)		(96%)
Mesentery	(47)		(11)		(11)		(48)	(0 ×)
Ectopic tissue		(10%)		(FEW.)		(100)	1	(2%)
Inflammation, chronic Necrosis		(13%)		(55%) (36%)	2	(18%)	5	(10%)
Pigmentation, hemosiderin	J	(6%)	4	(30%)	1	(9%)	1	(2%)
Pancreas	(48)		(8)		(14)	(0 10)	(47)	(2 /0)
Inflammation, chronic	(10)		(0)		(11)			(2%)
Pigmentation, hemosiderin			1	(13%)	1	(7%)	-	(= ,0,
Acinus, atrophy	18	(38%)		(38%)		(21%)	13	(28%)
Acinus, hyperplasia					1	(7%)	1	(2%)
Duct, ectasia		(2%)	1	(13%)				
Salivary glands	(49)		(6)		(11)		(49)	
Granuloma		(2%)						
Stomach, forestomach	(47)	(00)	(6)		(11)	(00()	(46)	(00)
Acanthosis		(2%)				(9%)		(2%)
Hyperkeratosis Inflammation, chronic active		(2%) (4%)				(9%) (18%)	1	(2%)
Inflammation, chronic active Inflammation, necrotizing	Z	(4 70)	1	(17%)	2	(1070)		
Stomach, glandular	(48)		(6)	(1170)	(11)		(45)	
Inflammation, chronic active		(2%)	(0)			(9%)	(40)	
Mineralization		(2%)			•	,		
Necrosis, coagulative		(2%)	9	(33%)			4	(9%)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
ALIMENTARY SYSTEM (Continued)								
Tongue	(2)		(1)				(1)	
Foreign body	2	(100%)					1	(100%)
Inflammation, chronic active	2	(100%)	1	(100%)			1	(100%)
Tooth	(49)		(5)		(10)		(49)	
Peridontal tissue, foreign body							1	(2%)
Peridontal tissue, inflammation, chronic		(40)						(401)
active	Z	(4%)					Z	(4%)
CARDIOVASCULAR SYSTEM								
Blood vessel	(49)		(8)		(12)		(50)	
Mesenteric artery, inflammation, chroni			(-/					(2%)
Mesenteric artery, necrosis, fibrinoid								(2%)
Mesenteric artery, intima, proliferation	1	(2%)						
Pulmonary artery, thrombus			1	(13%)				
Heart	(49)		(18)		(23)		(50)	
Cardiomyopathy, chronic	44	(90%)	15	(83%)	22	(96%)		(84%)
Mineralization								(2%)
Atrium, thrombus		(10%)	1	(6%)			8	(16%)
Endocardium, proliferation	1	(2%)						
ENDOCRINE SYSTEM								
Adrenal gland, cortex	(49)		(49)		(49)		(49)	
Degeneration, fatty	10	(20%)	10	(20%)	10	(20%)	16	(33%)
Hematocyst							1	(2%)
Hematopoietic cell proliferation							1	(2%)
Hyperplasia	17	(35%)		(27%)	19	(39%)	17	(35%)
Hypertrophy		(2%)		(2%)				
Necrosis, coagulative		(4%)		(2%)		(2%)		
Adrenal gland, medulla	(49)		(48)		(48)		(48)	
Cyst					1	(2%)	_	
Hematopoietic cell proliferation								(2%)
Hyperplasia		(31%)	21	(44%)	15	(31%)	17	(35%)
Mineralization		(2%)	445		(10)		. 10	
Islets, pancreatic	(48)	(90)	(4)		(10)		(46)	
Degeneration		(2%)	(17)	•	(10)		(45)	
Parathyroid gland Hyperplasia	(48)		(7)	(1.40()	(10)		(45)	
Pituitary gland	(47)		_	(14%)	(19)		(40)	
Craniopharyngeal duct, cyst	(47)		(18)		(19)		(46)	(90%)
Pars distalis, angiectasis			1	(6%)	1	(5%)	1	(2%)
Pars distalis, cyst	3	(6%)	•	(0,0)	•	(070)	1	(2%)
Pars distalis, hemorrhage, acute	Ů	(0,0)			1	(5%)	•	(2 /0)
Pars distalis, hyperplasia	11	(23%)	2	(11%)		(11%)	13	(28%)
Pars distalis, pigmentation, hemosiderin		- /	1	(6%)	-	• •	-5	/
Pars intermedia, angiectasis			_	(6%)				
Thyroid gland	(48)		(8)		(10)		(45)	
Inflammation, necrotizing								(2%)
Ultimobranchial cyst	1	(2%)						
C-cell, hyperplasia	19	(40%)	4	(50%)	4	(40%)	24	(53%)
Follicular cell, hyperplasia							2	(4%)

GENERAL BODY SYSTEM

None

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

Ve	hicle	Control	Low	Dose	Mid	Dose	High	Dose
ENITAL SYSTEM	_		····	· · · · · · · · · · · · · · · · · · ·	·			
Epididymis	(49)		(20)		(26)		(50)	
Atrophy, diffuse		(2%)	(20)		(20)		(00)	
Penis	1	(270)			(1)			
Concretion						(100%)		
Preputial gland	(46)		(12)		(15)	(100%)	(48)	
Hyperplasia	,	(4%)	(12)			(7%)	3	(6%)
			6	(50%)		(47%)		(90%)
Inflammation, chronic active Prostate		(98%)		(50%)		(4170)	(48)	(30%)
	(49)		(6)		(13)			(90%)
Abscess	00	(0 ° 0′)		(0770)		(050)		(2%)
Inflammation, chronic active		(65%)	4 (0)	(67%)		(85%)		(60%)
Seminal vesicle	(36)		(3)		(5)		(23)	
Inflammation, chronic active		(8%)					/=a\	
Testes	(49)		(46)		(50)		(50)	
Interstitial cell, hyperplasia	26	(53%)	29	(63%)		(46%)		(50%)
Seminiferous tubule, atrophy	33	(67%)	44	(96%)	39	(78%)	46	(92%)
EMATOPOIETIC SYSTEM								
Blood	(44)		(45)		(39)		(31)	
Leukocytosis		(2%)	(40)		(66)		(01)	
Neutrophilia	1	(470)	ດ	(4%)	1	(3%)	e	(19%)
Bone marrow	(49)		(50)	(4.70)	(49)	(370)	(50)	(1570)
	(49)		(00)			(2%)		(4%)
Hyperplasia Thrombus					1	(270)		
	9.0	(F0M)	0.0	(70%)	25	(710)		(2%)
Femoral, hyperplasia	26	(53%)	36	(72%)		(71%)	46	(92%)
Femoral, hyperplasia, reticulum cell		(00)			3	(6%)		
Femoral, myelofibrosis		(2%)	(10)		(1.5)		(40)	
Lymph node	(49)		(16)		(15)		(49)	(40)
Mediastinal, cyst								(4%)
Mediastinal, edema								(2%)
Mediastinal, hemorrhage, acute							1	(2%)
Mediastinal, hyperplasia, plasma cell			1	(6%)		.=		
Mediastinal, infiltration cellular, mast cell					1	(7%)	_	(2%)
Mediastinal, infiltration cellular, histiocyti	С							(2%)
Mediastinal, pigmentation, hemosiderin								(4%)
Pancreatic, ectopic tissue							1	(2%)
Pancreatic, infiltration cellular, histiocytic							2	(4%)
Pancreatic, pigmentation, hemosiderin							2	(4%)
Renal, cyst			1	(6%)			1	(2%)
Lymph node, mandibular	(48)		(7)		(12)		(48)	
Cyst	4	(8%)					4	(8%)
Ectasia			1	(14%)	1	(8%)		
Lymph node, mesenteric	(10)		(5)		(2)		(10)	
Cyst	2	(20%)		(40%)		(50%)	2	(20%)
Ectasia		(,		(,,,		(50%)		(==,
Fibrosis			1	(20%)	-	(00,0)		
Infiltration cellular, histiocytic				(20%)			1	(10%)
Pigmentation, hemosiderin			•	(20 70)				(10%)
Spleen	(49)		(50)		(50)		(50)	(10/0)
Cyst	(40)		(00)		(00)			(2%)
Fibrosis	Q	(6%)	11	(22%)	19	(24%)		(82%)
Granuloma	J	(0/0)	11	(2270)	14	(47/0)		(2%)
Hematopoietic cell proliferation	91	(62%)	40	(0,60%)	40	(9.4%)		(52%)
		(63%)	40	(96%)	42	(84%)		
Infarct, acute	T	(2%)						(2%)
Infiltration cellular, lipocyte	077	(TCM)	00	(700)	40	(0.00)		(48%)
Pigmentation, hemosiderin	37	(76%)	39	(78%)	48	(96%)		(42%)
Sinusoid, ectasia	(40)				/4.0			(2%)
Thymus	(43)	/o~:	(5)		(13)		(36)	
Cyst Inflammation, chronic active	1	(2%)						(3%)
Intlanamantiam abnomia activa							1	(3%)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -chloroaniline hydrochloride (Continued)

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
INTEGUMENTARY SYSTEM								
Mammary gland	(32)		(6)		(13)		(36)	
Hyperplasia, cystic	25	(78%)	6	(100%)	10	(77%)	29	(81%)
Skin	(47)		(18)		(19)		(49)	
Inflammation, chronic active	1	(2%)			1	(5%)		
Inflammation, necrotizing			1	(6%)				
Inflammation, suppurative			1	(6%)				
MUSCULOSKELETAL SYSTEM								
Bone	(48)		(50)		(49)		(50)	
Femur, fibrous osteodystrophy			1	(2%)				
NERVOUS SYSTEM								
Brain	(49)		(5)		(10)		(50)	
Compression	4	(8%)			2	(20%)	1	(2%)
Hemorrhage, acute	1	(2%)			1	(10%)		
Hydrocephalus		(10%)	1	(20%)	1	(10%)	2	(4%)
Infarct, chronic	1	(2%)						
Mineralization								(2%)
Spinal cord	(4)				(2)		(1)	
Degeneration	1	(25%)						
RESPIRATORY SYSTEM								
Lung	(49)		(7)		(11)		(50)	
Granuloma	_						1	(2%)
Hemorrhage, acute		(6%)		(1.40%)				(00)
Inflammation, chronic	2	(4%)	1	(14%)				(8%)
Inflammation, suppurative	•	(00)					Z	(4%)
Pigmentation, hemosiderin		(2%)					9	(4%)
Alveolar epithelium, hyperplasia		(6%)		(1.40()				(2%)
Mediastinum, inflammation, chronic a	active (48)		(5)	(14%)	(10)		(46)	(2%)
Inflammation, chronic active	,	(13%)	(3)		(10)			(17%)
Inflammation, chronic active	0	(13%)	1	(20%)				(2%)
Nasolacrimal duct, inflammation, chr	onic activo		1	(40 10)				(2%)
Nasolacrimal duct, inflammation, cur Nasolacrimal duct, inflammation, sur		(8%)			1	(10%)		(7%)
Septum, thrombus, multiple	-	(2%)				(10/0)	J	(170)
Trachea	(49)	(270)	(5)		(13)		(49)	
Inflammation, necrotizing	(* 0)		(0)			(15%)		(2%)
SPECIAL SENSES SYSTEM								
Eye	(7)		(11)		(13)		(14)	
Hemorrhage, acute	,			(9%)	(-0)		\= -/	
Inflammation, chronic			-	·- ·- ·			1	(7%)
Cornea, inflammation, chronic active			1	(9%)			•	, . , . ,
Lens, cataract	4	(57%)		(100%)	12	(92%)	13	(93%)
Retina, atrophy		(71%)		(100%)		(100%)		(93%)
Harderian gland	(46)	(,	(4)	,200,07	(9)	(20070)	(43)	(23,0)
Inflammation, chronic	(=0)		(4)		(0)			(7%)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

,	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
URINARY SYSTEM			•					
Kidney	(48)		(50)		(49)		(50)	
Inflammation, hemorrhagic			1	(2%)				
Nephropathy, chronic	46	(96%)	50	(100%)	48	(98%)	46	(92%)
Renal tubule, degeneration			1	(2%)				
Renal tubule, pigmentation, hemosiderin	47	(98%)	49	(98%)	47	(96%)	50	(100%
Urethra	(21)		(3)		(1)		(11)	
Inflammation, hemorrhagic			1	(33%)				
Transitional epithelium, hyperplasia					1	(100%)		
Urinary bladder	(47)		(7)		(12)		(46)	
Dilatation	, ,			(14%)			1	(2%)
Hemorrhage, acute	1	(2%)						
Inflammation, chronic active		•					2	(4%)
Inflammation, hemorrhagic			1	(14%)				
Transitional epithelium, hyperplasia				, ,			1	(2%)

APPENDIX B

SUMMARY OF LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF p-CHLOROANILINE HYDROCHLORIDE

		PAGE
TABLE B1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWOYEAR GAVAGE STUDY OF p -CHLOROANILINE HYDROCHLORIDE	142
TABLE B2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF p -CHLOROANILINE HYDROCHLORIDE	146
TABLE B3	ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF p -CHLOROANILINE HYDROCHLORIDE	160
TABLE B4a	HISTORICAL INCIDENCE OF SPLENIC SARCOMAS IN FEMALE F344/N RATS	163
TABLE B4b	HISTORICAL INCIDENCE OF ADRENAL MEDULLARY TUMORS IN FEMALE F344/N RATS	164
TABLE B4c	HISTORICAL INCIDENCE OF LEUKEMIA IN FEMALE F344/N RATS	165
TABLE B5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF p -CHLOROANILINE HYDROCHLORIDE	166

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
Animals initially in study	50		50		50		50	
Animals removed	50		50		50		50	
Animals examined histopathologically	50		50		50		50	
ALIMENTARY SYSTEM								
Intestine large, cecum	(40)		*(50)		*(50)		(46)	
Leukemia mononuclear			1	(2%)				
Intestine large, colon	(47)		*(50)		*(50)		(46)	
Leukemia mononuclear				(2%)				
Intestine small, duodenum	(49)		*(50)		*(50)		(48)	
Adenocarcinoma, metastatic, uterus		(2%)						
Intestine small, ileum	(40)		*(50)		*(50)		(45)	
Leukemia mononuclear			1	(2%)				
Liver	(50)		(50)		(50)		(50)	
Leukemia mononuclear		(20%)	2	(4%)	1	(2%)	1	(2%)
Neoplastic nodule	1	(2%)	1	(2%)				
Sarcoma, metastatic, skin							1	(2%)
Artery, adenocarcinoma, metastatic, u	terus 1	(2%)						
Mesentery	*(50)		*(50)		*(50)		*(50)	
Adenocarcinoma, metastatic, uterus	1	(2%)					1	(2%)
Leukemia mononuclear	5	(10%)	2	(4%)				
Lipoma					1	(2%)		
Pancreas	(50)		*(50)		*(50)		(49)	
Adenocarcinoma, metastatic, uterus		(2%)					1	(2%)
Leukemia mononuclear	2	(4%)	1	(2%)				
Salivary glan ds	(50)		*(50)		*(50)		(49)	
Carcinoma, metastatic, Zymbal gland			1	(2%)				
Leukemia mononuclear		(2%)						
Stomach, forestomach	(50)		*(50)		*(50)		(48)	
Leukemia mononuclear		(2%)	1	(2%)				
Stomach, glandular	(50)		*(50)		*(50)		(48)	
Adenocarcinoma, metastatic, uterus		(2%)						
_ Leukemia mononuclear		(2%)	1	(2%)				
Tongue	*(50)		*(50)		*(50)		*(50)	
Papilloma squamous	2	(4%)			1	(2%)		
CARDIOVASCULAR SYSTEM								
Heart	(50)		*(50)		*(50)		(50)	
Leukemia mononuclear	1	(2%)	1	(2%)				
ENDOCRINE SYSTEM								
Adrenal gland, cortex	(50)		(50)		(50)		(50)	
Adenoma			1	(2%)				
Leukemia mononuclear	4	(8%)		(2%)	1	(2%)	1	(2%)
Capsule, adenocarcinoma, metastatic,	uterus 1	(2%)						
Adrenal gland, medulla	(50)		(50)		(50)		(50)	
Leukemia mononuclear		(8%)		(2%)		(2%)		(2%)
Pheochromocytoma benign		(4%)		(6%)		(2%)		(12%
Islets, pancreatic	(50)		*(50)		*(50)		(48)	
Adenoma		(2%)	,		,			(2%)
Leukemia mononuclear		(2%)					-	- /
	(50)		*(50)		*(50)		(50)	
Pituitary gland	(00)							
Pituitary gland Leukemia mononuclear		(2%)						
• 0	1	(2%) (40%)		(26%)	17	(34%)	20	(40%
Leukemia mononuclear	1 20			(26%)	17	(34%)		(40%) (6%)

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF p-CHLOROANILINE HYDROCHLORIDE (Continued)

ehicle	Control	Low	Dose	Mid	Dose	High	Dose
		*					
(49)		*(50)		*(50)		(48)	
	(2%)			,,			
1	(2%)						
4	(8%)			1	(2%)	5	(10%
1	(2%)			1	(2%)	1	(2%)
						1	(2%)
<u> </u>		**					
			·				
(45)		*(50)		*(50)		(48)	
1	(2%)		(2%)		(2%)		(8%)
		_	,	_		_	
(50)		*(50)		*(50)		(49)	
		2	(4%)				
3	(6%)	1	(2%)				
	(2%)						
				*(50)			
1	(2%)	1	(2%)				(2%)
	(40)					1	(2%)
		c	(190)	7	(1.40)	c	(190
		б	(12%)	1	(14%)	ď	(12%
	(270)	*(50)		*(50)		*(50)	
(00)		(00)		(00)			(2%)
							
*(50)		*(50)		*(50)		*(50)	
	(8%)		(4%)	(00)			(2%)
	(0,0)		(2,0)	(50)			(=,0,
	(4%)		(2%)		(2%)	()	
(50)		*(50)		*(50)	,	(50)	
	(2%)	/		,,		(==/	
1	(2%)					1	(2%)
7	(14%)	1	(2%)				
						. 1	(2%)
	(2%)						
				*(50)		(49)	
	(10%)		(2%)				
	(00~)			*(50)		(9)	
	(29%)		(4%)			/24:	
	(0%)	(50)		(50)			·0~:
1	(2%)				(90%)	1	(2%)
10	(20%)	o	(10%)			,	(90)
10	(20%)	2	(4%)	1	(2%)		(2%)
(42)		*(50)		*(50)		(44)	(2%)
						(44)	
	(49) 1 1 4 1 (45) 1 (50) 3 1 (50) 1 *(50) 1 *(50) 1 1 (49) 5 (7) 2 (50) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 (2%) 1 (2%) 4 (8%) 1 (2%) 4 (8%) 1 (2%) (45) 1 (2%) (50) 3 (6%) 1 (2%) (50) 1 (2%) 2 (4%) 4 (8%) 1 (2%) *(50) *(50) 2 (4%) (50) 2 (4%) (50) 1 (2%) *(50) 1 (2%) 1 (2%) (50) 1 (2%) (50) 1 (2%) (7) 2 (29%) (50) 1 (2%) 10 (20%)	(49) *(50) 1 (2%) 4 (8%) 1 (2%) 4 (8%) 1 (2%) 1 (2%) (50) *(50) 2 (3 (6%) 1 (2%) (50) *(50) 1 (2%) 4 (8%) 4 (8%) 4 (8%) 4 (8%) 5 (1 (2%) *(50) *(50) *(50) *(50) *(50) *(50) *(50) *(50) 4 (8%) 5 (10%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) *(50) 1 (2%) 1 (2%) *(50) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) (50) 1 (2%) 1 (2%) (50) 1 (2%) 1 (2%) (50) 1 (2%) 2 (29%) 2 (50) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%)	(49) *(50) 1 (2%) 4 (8%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) (50) *(50) 2 (4%) 3 (6%) 1 (2%) 1 (2%) (50) *(50) 1 (2%) 4 (8%) 6 (12%) 2 (4%) 4 (8%) 6 (12%) 1 (2%) *(50) *(50) *(50) *(50) 1 (2%) *(50) *(50) 1 (2%) *(50) *(50) 1 (2%) 1 (2%) *(50) *(50) 1 (2%) 1 (2%) 1 (2%) (50) 1 (2%) 1 (2%) 1 (2%) (50) 1 (2%) 1 (2%) (50) 5 (10%) 1 (2%) (7) 2 (29%) (50) 1 (2%) (50) (50) 1 (2%) (10 (20%) 2 (4%)	(49) *(50) *(50) 1 (2%) 4 (8%) 1 1 (2%) 1 (2%) 1 1 (2%) 1 1 (2%) 1 1 (2%) (50) *(50) *(50) 1 (2%) 1 1 (2%) 1 (2%) *(50) *(50) 2 (4%) 3 (6%) 1 (2%) 1 (2%) 1 (2%) *(50) *(50) 2 (4%) 4 (8%) 6 (12%) 7 1 (2%) *(50) *(50) *(50) *(50) *(50) *(50) *(50) (48) (50) 2 (4%) (1 (2%) *(50) *(50) (48) (50) 1 (2%) *(50) *(50) *(50) 1 (2%) 1	(49) *(50) *(50) 1 (2%) 1 4 (8%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) (50) *(50) *(50) *(50) 1 (2%) *(50) *(50) 1 (2%) *(50) *(50) 2 (4%) 1 (2%) 2 (4%) 4 (8%) 6 (12%) 7 (14%) 1 (2%) *(50) *(50) *(50) *(50) *(50) *(50) *(50) *(50) *(50) *(50) *(50) *(50) 1 (2%) 1 (2%) *(50)	(49) *(50) *(50) (48) 1 (2%) 1 (2%) 1 (2%) 5 1 (2%) 1 (2%) 1 (2%) 1 1 (2%) 1 (2%) 1 (2%) 1 1 (2%) 1 (2%) 4 4 1 (2%) *(50) *(50) (49) 3 (6%) 1 (2%) 1 2% (50) *(50) *(50) (50) (50) 1 (2%) 1 (2%) 1 1 2 (4%) 1 (2%) 1 1 4 (8%) 6 (12%) 7 (14%) 6 6 1 (2%) *(50) *(50) *(50) *(50) *(50) *(50) *(50) *(50) *(50) *(50) *(50) 1 1 (2%) 1 (2%) 1 (2%) 1

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
INTEGUMENTARY SYSTEM								***
Mammary gland	(49)		*(50)		*(50)		(50)	
Adenoma	1	(2%)	1	(2%)			3	(6%)
Fibroadenoma	6	(12%)	8	(16%)	12	(24%)	6	(12%)
Fibroadenoma, multiple	2	(4%)	2	(4%)	1	(2%)		
Leukemia mononuclear	1	(2%)						
Sarcoma, metastatic, skin		,					1	(2%)
Skin	(50)		*(50)		*(50)		(50)	
Basosquamous tumor benign		(2%)	,					
Leukemia mononuclear	1	(2%)						
Subcutaneous tissue, fibroma	2	(4%)	2	(4%)			2	(4%)
Subcutaneous tissue, fibrosarcoma			1	(2%)				
Subcutaneous tissue, neurofibroma			1	(2%)				
Subcutaneous tissue, sarcoma							1	(2%)
MUSCULOSKELETAL SYSTEM								
Skeletal muscle	*(50)		* (50)		*(50)		*(50)	
Leukemia mononuclear	1	(2%)						
Sarcoma, metastatic, skin							1	(2%)
NERVOUS SYSTEM								
Brain	(50)		*(50)		*(50)		(50)	
Astrocytoma benign	1	(2%)						
RESPIRATORY SYSTEM								
Lung	(49)		*(50)		*(50)		(50)	
Adenocarcinoma, metastatic, uterus	1	(2%)					1	(2%)
Leukemia mononuclear	9	(18%)	1	(2%)			1	(2%)
Sarcoma, metastatic, skin							1	(2%)
Nose	(49)		*(50)		*(50)		(49)	
Leukemia mononuclear	1	(2%)						
Osteosarcoma					1	(2%)		
SPECIAL SENSES SYSTEM		·						
Zymbal gland	*(50)		*(50)		*(50)		*(50)	
Carcinoma			2	(4%)				
JRINARY SYSTEM	•	.,			5			
Kidney	(50)		(50)		(50)		(50)	
Adenocarcinoma, metastatic, uterus	1	(2%)					1	(2%)
Leukemia mononuclear	6	(12%)	1	(2%)	1	(2%)		
Lipoma				(2%)				
SYSTEMIC LESIONS								
Multiple organs	*(50)		*(50)		*(50)		*(50)	
Leukemia mononuclear		(20%)		(4%)		(2%)	1	(2%)
ANIMAL DISPOSITION SUMMARY								
Animals initially in study	50		50		50		50	
	27		39		36		37	
Terminal sacrifice	41							
Terminal sacrifice Dead	15		5		11		8	

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle Control	Low Dose	Mid Dose	High Dose
TUMOR SUMMARY			······································	
Total animals with primary neoplasms **	37	30	34	40
Total primary neoplasms	63	48	46	65
Total animals with benign neoplasms	32	27	31	36
Total benign neoplasms	51	42	42	59
Total animals with malignant neoplasms	10	6	4	6
Total malignant neoplasms	12	6	4	6
Total animals with secondary neoplasms **	• 1	1		2
Total secondary neoplasms	11	1		11

^{*} Number of animals receiving complete necropsy examinations; all gross lesions including masses examined microscopically.
** Primary tumors: all tumors except secondary tumors

^{***} Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF p-CHLOROANILINE HYDROCHLORIDE: VEHICLE CONTROL

WEEKS ON	0	0	_	_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	_
WEEKS ON STUDY	1 2	2 7	2 9	3	5 3	5 8	6 9	7 5	7 6	7 7	7 8	8 0	8 7	8	8 9	9	9	9 4	9 5	0 1	0 2	0 4	0 4	0 5	
CARCASS	8	7	7	-8	7	8	7	7	8	7	8	7	7	8	7	8	7	8	7	7	7	7	7	7	
ID	3	4	8	3 2	8	2	5 4	4	0 5	6	0	4 2	9	0	4 5	0	7	2 5	9 4	8	7 5	8 5	6 3	6 4	
LIMENTARY SYSTEM																									_
sophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
testine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	A	+	
testine large, cecum	+	+	+	A	A	A	A	+	+	A.	Ā	+	+	A	+	+	+	A	+	+	+	M	Ā	+	
testine large, colon	‡	+	++	+	+	+ A	+	+	+	†	A +	++	++	++	+	+	+	+ A	+	+	+	A M	A	+	
tessine large, rectum tessine small		+	Ŧ	+	Ŧ	+	Ŧ	Ŧ	+	7	Ŧ	Ŧ	Ŧ	+	Ŧ	Ŧ	Ŧ	7	Ŧ	Ŧ	+	+	7	Ŧ	
testine small, duodenum	1 ∔	+	+	·	÷	÷	÷	M	÷	÷	÷	÷	+	÷	÷	÷	÷	÷	÷	÷	+	+	+	÷	
Adenocarcinoma, metastatic, uterus	l i					•						·								X					
testine small, ileum	+	+	+	Ą	+	A	Ą	A	+	Ą	+	+	+	Ą.	+	+	+	Ą.	A	+	+	Ą	M	+	
testine small, jejunum	+	+	+	Ą	+	+	A +	+	+	A	+	+	+	Ą	+	+	+	A	+	+	+	A	Ą	+	
ver eukemia mononuciear	+	+	+	+	+	+	+	+	+	+	*	*	+	+	+	+	+	*	*	+ X	*	+	*	+	
leanke mia mononuciear leaplastic nodule									Λ		•	Λ						Λ	Λ	Λ.	•		Λ.		
artery, adenocarcinoma, metastatic,																									
unerus																				Х					
esentery	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
denocarcinoma, metastatic, uterus																				X	_				
enkemia mononuclear											X							Х		X	X		X		
ncreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
denocarcinoma, metastatic, uterus																		v		X	Х				
eukemia mononuclear arvnx																		X			А				
arynx livary glands	ΙI	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
eukemia mononuclear	'	,	,	,	,	,	•	'	,	'	-	'	•	,	'			χ̈́	,		,		,		
oniach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
musch, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
eukemia mononuclear																		X							
mach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
denocarcinoma, metastatic, uterus																				X					
eukemia mononuclear																		X							
ngue	+														*					*					
apilloma squamous oth	1	_	_	_	_	_	_		_	_	_	_	_	_	1	_	_	_	_	- 2	_	_	_	_	
1,7 G L	["			,		•		,	F		F	r	r	•	,		,		1	,	,	'	,	,	
RIDIOVASCULAR SYSTEM						-																			_
ood vessel	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
eart:	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Jeukemia mononuclear									Х																
MANAGE STORES																									_
VDOCRINE SYSTEM		_	_	_	_	_	_	_	_	_	4	_	_	_	_	_		_	_	_	_	_	_	_	
renal gland renal gland, cortex	I	Ι	Ι	I	I	Ι	Ι	I	Ι	Τ	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	
eukemia mononuclear	1			,		-	4.		,	т-	χ̈́		'	'	,	'	,	χ̈́	,	1	*	'	×	'	
Capsule, adenocarcinoma, metastatic,																									
uterus																				X					
renal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
eukemia mononuclear											Х							Х			Х		Х		
Pheochromocytoma benign												Х													
ets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	
Adenoma																		X				Λ			
eukemia mononuclear rathyroid gland	1 1	_	M	M		M	M	M	_	M	_	_	_	_	_	_	_	1	_	_	_	_	_	_	
uitary gland	1 1	+	+	+	+	+	+	+	+	+	+	1	į.	<u>,</u>	÷	÷	÷	+	+	+	+	4	+	+	
eukemia mononuclear	1 '		,		•				,	•		•		•				,		•	•	,	X		
ars distalis, adenoma	İ						X		X				X	X	X	X	X		X			X			
'ars distalis, adenoma, multiple	l																								
yroid gland	+	+	M	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	
eukemia mononuclear											х														
ilateral, c-cell, adenoma																								X	
Coell, adenoma										X											х				
-cen, carcinoma																									
NERAL BODY SYSTEM																									-
one																									
NITAL SYSTEM																									-
toral gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	
denoma	1																								
eukemia mononuclear	1										X +														
ary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
eukemia mononuclear	1										X							X			X				
Silateral, adenocarcinoma, metastatic,	l																			v					
aterus iduct		Д.		.1.		4		4.	J.,		3.4	1	M	ħ.F		M		٠.	,L	A			.1.	.1.	
ICUCT Brus	1 I	+	_		_	+	+	+	+	1	M	+	+ M	TAT	+	147	+	+	I	I	Ţ	1	T	+	
denocarcinoma	1 "		,		,	•							•	•			,	,	,	x			,	,	
eukemia mononuclear	- 1										Х							Х							
olyp stromal	I								X							X				X					

^{+:} Tissue examined microscopically
: Not examined
-: Present but not examined microscopically
l: Insufficient tissue

Missing
 Autolysis precludes examination
 Incidence of listed morphology

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: VEHICLE CONTROL (Continued)

								(C	on	un	ued	1)														
WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	
CARCASS ID	7 9	8	8	7 5	7	7	7 9	8	8	8	7 5	7 5	7	7 8	7	8	7	7 5	7	8	8	8	8 2	8 2	8	TOTAL: TISSUES TUMORS
	3	3	5	2	1	3	1	1	3	4	1	5	5	2	5	5	3	3	4	2	3	4	2	4	1	
LIMENTARY SYSTEM																										7.0
sophagus ntestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 49
ntestine large, cecum	+	+	+	+	÷	÷	+	÷	+	+	+	÷	+	+	+	+	÷	+	+	+	+	+	+	+	+	40
ntestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47 45
ntestine large, rectum ntestine small	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ntestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adenocarcinoma, metastatic, uterus ntestine small, ileum	+	_		_	_	_	_	_	_	_	_	+	+	+		_	_	_	_	_	_	_	_	_	+	40
ntestine small, jejunum	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	43
iver	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	50
Laukemia mononuclear Neoplastic nodule Artery, adenocarcinoma, metastatic, uterus												х		Х										x		10 1
lesentery Adenocarcinoma, metastatic, uterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1 5
Loukemia mononuclear ancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenocarcinoma, metastatic, uterus Leukemia mononuclear Pharynx																										1 2 1
alivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Leukemia mononuclear tomach tomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 50
Leukemia mononuclear	T		_	т	т	т		т	т.	_		т		т	т	т.	т	т	т	Τ.	т	т	т	т	*	1
tomach, glandular Adenocarcinoma, metastatic, uterus Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 1 3
on gue Papillo ma squamous ooth	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ARDIOVASCULAR SYSTEM																										40
lood vessel leart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	+	+	49 50
Leukemia mononuclear	ļ .	·	,		·		•		•	,	•	•								·		,				i
NDOCRINE SYSTEM																				_						·
drenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
drenal gland, cortex Leukemia mononuclear Capsule, adenocarcinoma, metastatic,	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 4
iterus drenal gland, medulla Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 4
Pheochromocytoma benign slets, pancreatic Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	50 1
Leukemia mononuclear																										1
arathyroid gland ituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	42 50
Leukemia mononuclear	-		_			_		~	_	Τ.	Ŧ	т.	_	Τ.		-	т		т.		-	т	_	т	т	1
Pars distalis, adenoma	X		X	43	X		X							X	X	X				X	X			X	X	20
Pars distalis, adenoma, multiple hyroid gland	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 49
Leukemia mononuclear																								•		1
B:lateral, c-cell, adenoma C cell, adenoma C-cell, carcinoma											X								X			X				1 4 1
ENERAL BODY SYSTEM																										
ENITAL SYSTEM litoral gland Adenoma	+	+	+	+	+ X	+	М	+	+	M	+	+	+	+	M	+	+	+	+	+	+	+	+	М	+	45
Adenoma Leukemia mononuclear					Λ																					1
vary Leukemia mononuclear Bilateral, adenocarcinoma, metastatic,	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 3
nterus viduct	_		.1.			_	.4	_		.1	_	_		_	_	_	_	_	_	_	_	_	_	_	+	1 38
lterus .	Į Į	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	÷	50
Adenocarcinoma	1																									1 2
Leukemia mononuclear Polyp stromal Polyp stromal, multiple										X					x											4 1

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: VEHICLE CONTROL (Continued)

1 4		• •		_	_	_	_~						_		~	_	_							
1 2	2 7	9	3	5 3	5 8	6 9	7 5	7 6	7	7 8	8	8 7	8	8 9	9	9	9	9 5	0 1	0 2	0 4	0 4	5	0 5
8 3 3	7 4 4	7 8 3	8 3 2	7 8 1	8 2 1	7 5 4	7 4 1	8 0 5	7 6 2	8 0 4	7 4 2	7 9 2	8 0 1	7 4 5	8 0 2	7 7 1	8 2 5	7 9 4	7 8 4	7 7 5	7 8 5	7 6 3	7 6 4	7 7 2
-	+	+						+ X				•		+						+ X			+	+
+	+	+	+	+	+	+	+	*	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X	+	+	+	+
								x		x							X	X	X	X		X		
+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	*	X	+	* X +	+	*	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	X +	+	+
+	+	+	+	+	+	+	+	X M	M	X + X	X	+	+	+	+	+	X M	X +	X +	X + X	+	X M	+	+
+	+	+	+	+	+ X	+	+	+	+	+	+	* X	+	+	+	+	+	+	+	+	+ X	+	+	M
+	+	+	+	+	+	+	+	+	+	х + х	*	+	+	+	+	+	+	+	+	+	+	+	+	+
++	++	++	++	++	++	+++	++	++	++	+ + X	+++	+++	++	+	+	++	+	++	+	++	+++	+ +	++	++
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	+	+ +	++	+	++																			
+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+
+	+	+	+	+	+	+	+	X +	+	X +	X +	+	+	+	+	+	X +	X +	X	X +	+	X +		+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	м	+	м	+	+ M	м	м	+	+	+	м	+	++	+	+	+	+	+	+	+ M	+
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
																			X X					
	2 8 3 3 3 + + + + + + + + + + + + + + + +	2 7 8 7 3 4 + + + + + + + + + + + + + + + + + + +	2 7 9 8 7 7 3 4 8 3 4 8 + + + + + + + + + + + + + + + + + + +	2 7 9 0 8 7 7 8 3 4 8 3 3 4 3 2 +	2 7 9 0 3 8 7 7 8 7 3 4 8 3 8 7 4 3 2 1 + + + + + + + + + + + + + + + + + +	2 7 9 0 3 8 8 7 7 8 7 8 3 4 8 3 8 2 1 + + + + + + + + + + + + + + + + + + +	2 7 9 0 3 8 9 8 7 7 8 7 8 7 3 4 8 3 8 2 5 3 4 3 2 1 1 4 +	2 7 9 0 3 8 9 5 8 7 7 8 7 8 7 7 3 4 8 3 8 2 5 4 3 4 3 2 1 1 4 1 + + + + + + + + + + + + + + + + + +	2 7 9 0 3 8 9 5 6 8 7 7 8 7 8 7 8 7 7 8 3 4 8 3 8 2 5 4 0 3 4 3 2 1 1 4 1 5 + + + + + + + + + + + + + + + + + +	2 7 9 0 3 8 9 5 6 7 8 7 7 8 7 8 7 8 7 7 8 7 3 4 8 3 8 2 5 4 0 6 + + + + + + + + + + + + + + + + + +	2 7 9 0 3 8 9 5 6 7 8 8 7 7 8 7 8 7 8 7 7 8 7 8 3 4 8 3 8 2 5 4 0 6 0 + + + + + + + + + + + + + + + + + +	2 7 9 0 3 8 9 5 6 7 8 0 8 7 7 8 7 8 7 7 8 7 8 7 8 8 7 3 4 8 3 8 2 5 4 0 6 0 4 3 4 3 2 1 1 4 1 5 2 4 2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +	2 7 9 0 3 8 9 5 6 7 8 0 7 8 7 7 8 7 8 7 8 7 7 8 7 8 7 8 8 7 7 3 4 8 3 8 2 5 4 0 6 0 4 9 + + + + + + + + + + + + + + + + + +	2 7 9 0 3 8 9 5 6 7 8 0 7 8 8 7 7 8 7 8 7 8 7 7 8 7 8 7 8 8 7 7 8 3 4 8 3 8 2 5 4 0 6 0 4 9 0 + + + + + + + + + + + + + + + + + +	2 7 9 0 3 8 9 5 6 7 8 0 7 8 9 8 7 7 8 7 8 7 8 7 7 8 7 8 7 8 7 7 8 7 3 4 8 3 8 2 5 4 0 6 0 4 9 0 4 + + + + + + + + + + + + + + + + + +	2 7 9 0 3 8 9 5 6 7 8 0 7 8 9 0 8 7 7 8 7 8 7 8 7 7 8 7 8 7 8 7 8 7 8	2 7 9 0 3 8 9 5 6 7 8 0 7 8 9 0 1 8 7 7 8 7 8 7 8 7 7 8 7 8 7 8 7 8 7 8	2 7 9 0 3 8 9 5 6 7 8 0 7 8 9 0 1 4 8 7 7 8 7 8 7 8 7 8 7 7 8 7 8 7 8 7 8	2 7 9 0 3 8 9 5 6 7 8 0 7 8 9 0 1 4 5 8 7 7 8 7 8 7 8 7 7 8 7 8 7 8 7 8 7 8	2 7 9 0 3 8 9 5 6 7 8 0 7 8 9 0 1 4 5 1 8 7 7 8 7 8 7 8 7 7 8 7 8 7 7 8 7 8 7	2 7 9 0 3 8 9 5 6 7 8 0 7 8 9 0 1 4 5 1 2 8 7 7 8 7 8 7 8 7 7 8 7 8 7 7 8 7 8 7	2 7 9 0 3 8 9 5 6 7 8 0 7 8 9 0 1 4 5 1 2 4 8 7 7 8 7 8 7 8 7 7 8 7 8 7 7 8 7 8 7	2 7 9 0 3 8 9 5 6 7 8 0 7 8 9 0 1 4 5 1 2 4 4 8 7 7 8 7 8 7 7 8 7 8 7 7 8 7 8 7 7 8 7 8 7 8 7 7 7 7 7 7 7 7 8 7 8 8 9 0 1 4 5 5 3	2 7 9 0 3 8 9 5 6 7 8 0 7 8 9 0 1 4 5 1 2 4 4 5 8 7 7 8 7 8 7 7 8 7 8 7 7 8 7 8 7 7 8 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 8 7 8 8 3 8 2 5 4 0 6 0 4 9 0 4 0 7 2 9 8 7 8 6 6 6 3 4 3 2 1 1 4 1 5 2 4 2 2 1 5 2 1 5 4 4 5 5 3 4 + + + + + + + + + + + + + + + + + +

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: VEHICLE CONTROL (Continued)

												•														
WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL:
CARCASS ID	7 9 3	8 0 3	8 1 5	7 5 2	7 6 1	7 7 3	7 9 1	8 1 1	8 2 3	8 3 4	7 5 1	7 5 5	7 6 5	7 8 2	7 9 5	8 3 5	7 4 3	7 5 3	7 7 4	8 1 2	8 1 3	8 1 4	8 2 2	8 2 4	8 3 1	TISSUES
HEMATOPOIETIC SYSTEM Blood Leukemia mononuclear Bone marrow Femoral, leukemia mononuclear Lymph node	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+++	+ + +	* * +	+ + +	+ X +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	32 4 50 2 50
Inguinal, leukemia mononuclear Mediastinal, adenocarcinoma, metastatic, uterus Mediastinal, leukemia mononuclear Renal, leukemia mononuclear Lymph node, mandibular Leukemia mononuclear Lymph node, mesenteric Leukemia mononuclear Spleen	+	+	+	+	+	M +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ + +	+	1 7 1 49 5 7 2
Adenocarcinoma, metastatic, uterus Leukemia mononuclear Thymus Leukemia mononuclear	+	+	+	+	+	M	+	M	+	+	+	X +	+	X +	+	+	M	M	+	+	+	+	+	+	+	1 10 42 2
INTEGUMENTARY SYSTEM Mammary gland Adenoma Fibroadenoma Fibroadenoma, multiple Leukemia mononuclear Skin Basosquamous tumor benign Leukemia mononuclear Subcutaneous tissue, fibroma	+ X +	+	+	+	+	+ X +	+ + x	+	+	+	+	+	+	+	+ x +	+ X +	+ + x	+	+	+ X +	+	+	+	+ X +	+	49 1 6 2 1 50 1 1 2
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle Leukemia mononuclear	++	+ +	++	++	+	++	+	++	++	++	++	++	++	+	+++	++	+++	++	+	++	+ +	+ M	++	+	· + +	50 49 1
NERVOUS SYSTEM Brain Astrocytoma benign Peripheral nerve Spinal cord	+	+	+	+	+	+	* X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 3 5
RESPIRATORY SYSTEM Lung Adenocarcinoma, metastatic, uterus Leukemia mononuclear Nose Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X +	+	+	+	+	+	+	+	+	+	+	+	49 1 9 49
Trachea SPECIAL SENSES SYSTEM Eye Harderian gland	+ + + + + + + + + + + + + + + + + + + +	+	+	+ + + +	+	+ + +	+++	+ + +	+ + +	+ +	+++	+ + +	+++	+ + +	+ + M	+ + +	+ +	+ + +	+	+ +	+	+ +	+++	+ + +	+ +	12 42
IJRINARY SYSTEM Kidney Adenocarcinoma, metastatic, uterus Leukemia mononuclear Ureter	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 6 17
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE: LOW DOSE

WEEKS ON STUDY	0 2 0	0 6 2	0 8 7	0 8 7	0 8 9	0 9 5	9	9 9	1 0 3	1 0 4	1 0 4	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	0 5	1 0 5
CARCASS ID	6 8 3	7 3 4	6 4 4	7 1 1	7 1 4	6 5 4	8 7 4	7 2 3	6 8 4	6 5 3	7 3 3	6 4 1	6 4 2	6 5 5	6 6 1	6 7 5	6 8 2	7 0 2	7 1 2	7 1 3	7 2 1	7 3 1	7 3 5	6 5 1	6 5 2
ALIMENTARY SYSTEM Esophagus Intestine large, cecum Leukemia mononuclear Intestine large, celon Leukemia mononuclear Intestine large, colon Leukemia mononuclear Intestine smail, duodenum Intestine smail, duodenum Intestine smail, ileum Leukemia mononuclear Intestine smail, jejunum Liver Leukemia mononuclear Neoplastic nodule Mesentery Leukemia mononuclear Panureas Leukemia mononuclear Salivary glands Carcinoma, metaetatic, Zymbal gland Stomach Stomach, forestomach Leukemia mononuclear Stomach, glandular Leukemia mononuclear Stomach, glandular Leukemia mononuclear Tooth CARDIOVASCULAR SYSTEM	+ + + + + + + + + + + + + + + + + + +	++A + A+AA ++ + + + + A +	+++ + ++++ + + + + + + + + + + + + + + +	+++ + ++++ ++ + + + + + + + + + + + + +	+++X+X++++X+X+X+X+X+X+X+	+	+	+ + X	+ +	+ *	+++ + * * * * * * * * * * * * * * * * *	+	+	+	+	+	+ +	+	+	+	+	+	+	+	+
CARDIOVASCULAR SYSTEM Blood vessel Heart Leukemia mononuclear	+++	++	++	+	+ + X				++		+											+			
ENDOCRINE SYSTEM Adrenal gland Adrenal gland, cortex Adenoma Leukemia mononuclear Adrenal gland, medulla Leukemia mononuclear Pheochromocytoma benign Islets, pancreatic Parathyroid gland Pituitary gland Pars distalis, adenoma Thyroid gland	+++++++	+ + + + M +	++ + +++ X +	+ + + + + X+	++ + +++	+++++	+ + +	+ + + *	+ + +	+ + +	+ + X + X	+ + +	+ + +	+ + +	+ + + +	++++	++++++++++	+ + + +	+ + +	++++	+ + +	++++	+ + +	+++++	+ + +
GENERAL BODY SYSTEM None GENITAL SYSTEM Clitoral gland Adenoma Ovary Granulosa-theca tumor benign Leukemia mononuclear Ovicuct Uterus Adenocarcinoma Polyp stromal	M + + +	+ +	M + +	+ +	M + X +			+ x			+ + x		+	-	+ x				+ + X			+ +			

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: LOW DOSE (Continued)

								•				•														
WEEKS ON STUDY	1 0 5	1 0 5	0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL:
CARCASS ID	8 6 2	6 7 1	6 8 5	6 9 1	9 2	8 9 5	7 0 3	7 1 5	7 2 4	7 2 5	7 3 2	6 4 3	6 4	6 5	6 7 3	6 8 1	6 9 3	6 9 4	7 0 4	8 4 5	6 3	6 7 2	7 0 1	7 0 5	7 2 2	TISSUES
ALIMENTARY SYSTEM Esophagus Intestine large Intestine large, cecum Leukemia mononuclear Intestine large, colon Leukemia mononuclear Intestine small, intestine small, intestine small, iduodenum Intestine small, ijeum Leukemia mononuclear Intestine small, jejunum Liver Leukemia mononuclear Neoplastic nodule Mesentery Leukemia mononuclear Pancreas Leukemia mononuclear Salivary glands Carcinoma, metastatic, Zymbal gland Stomach Stomach, forestomach Leukemia mononuclear Stomach, forestomach Leukemia mononuclear Stomach, glandular Leukemia mononuclear Tooth	+	+	+	+ +	+	+	+++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	8 7 4 1 6 1 3 5 3 3 1 5 5 2 1 7 2 6 1 8 1 8 1 5 1 8 1 8 1 8 1 8 1 8 1 8 1 8
CARDIOVASCULAR SYSTEM Blood vessel Heart Leukemia mononuclear					+																					8 7 1
ENDOCRINE SYSTEM Adrenal gland, cortex Adenoma Leukemia mononuclear Adrenal gland, medulla Leukemia mononuclear Pheochromocytoma benign Islets, pancreatic Parathyroid gland Pituitary gland Pars distalis, adenoma Thyroid gland	+ + x x	++++++	++++++++++	+ + +	++++	+ + +	+ + + +	+ + + X	+ + + +	+ + X + X	+ + +	+ + + X	+ + +	++++	+++++++++++++++++++++++++++++++++++++++	+ + + X	++++++++	+ + + +	++++	+++	++++++++	+ + x x	++++	+ + +	+ + + +	50 50 1 1 50 1 3 5 4 33 13 6
GENERAL BODY SYSTEM None																										
CENTIAL SYSTEM Clitoral gland Adenoma Ovary Granulosa-theca tumor benign Leuksmia mononuclear Oviduct Uterus Adenocarcinoma Polyp stromal		+		+ X	+			+ X		*X	+				+	+	+ X	+		*	+		+ X + M	+		5 1 15 2 1 10 14 1 6

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: LOW DOSE (Continued)

WEEKS ON STUDY	0 2 0	0 6 2	0 8 7	0 8 7	0 8 9	0 9 5	9	0 9 9	1 0 3	1 0 4	1 0 4	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5
CARCASS ID	6 8 3	7 3 4	6 4 4	7 1 1	7 1 4	6 5 4	6 7 4	7 2 3	6 8 4	6 5 3	7 3 3	6 4 1	6 4 2	6 5 5	6 6 1	6 7 5	6 8 2	7 0 2	7 1 2	7 1 3	7 2 1	7 3 1	7 3 5	6 5 1	6 5 2
HEMATOPOIETIC SYSTEM Blood Leukemia mononuclear Bone marrow Femoral, leukemia mononuclear Lymph node, mandibular Leukemia mononuclear Lymph node, mesenteric Leukemia mononuclear Spleen Leukemia mononuclear Thymus Leukemia mononuclear	+ + + + +	+ + + + +	+ + + + +	+ + + + +	+ X + X + X + X + X + X + X	+ +	+ +	+	+ + + M +	+ + +	+ X + + X + X + X + X + X	+ + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ + +	+ +	+ +	+ +	+ +	+ +
INTEGUMENTARY SYSTEM Mammary gland Adenoma Fibroadenoma Fibroadenoma, multiple Skin Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, neurofibroma	M +	+	+ *	+	+		+ X	+ x		+	+				+ X +						+ X +		+ X +		
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle	+ +	++	++	+	++		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain Peripheral nerve Spinal cord	+	+++	+	+	+									<u>-</u>							•				
RESPIRATORY SYSTEM Lung Leukemia mononuclear Nose Trachea	+ M M	+ + +	+ + +	+ + +	* X + +			+	+		+	_													
SPECIAL SENSES SYSTEM Eye Harderian gland Zymbal gland Carcinoma	-	+	+	+	+		+	+		+ + X		+	+	+	+		+	+	+		+ + X	+		+	+
URINARY SYSTEM Kidney Leekemia mononuclear Lipoma Ureter Urinary bladder	+	+ + +	+	+ + +	* * + +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: LOW DOSE (Continued)

								•																		
WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL;
CARCASS ID	6 6 2	7	6 8 5	6 9 1	6 9 2	6 9 5	7 0 3	7 1 5	7 2 4	7 2 5	7 3 2	6 4 3	6 4	6 6 5	6 7 3	8 1	6 9 3	6 9 4	7 0 4	6 4 5	6 3	6 7 2	7 0 1	7 0 5	7 2 2	TISSUES
HEMATOPOIETIC SYSTEM Blood Leukemia mononuclear Bone marrow Femoral, leukemia mononuclear Lymph node, Mediastinal, leukemia mononuclear Lymph node, mandibular Leukemia mononuclear Lymph node, mesenteric Leukemia mononuclear Spleen Leukemia mononuclear	+ +	+ +	+ +	+ +	+ + +	+ +	+ + + +	+ + +	+ +	+ + + + +	+ +	+ + +	+ + +	+ I	+ + +	+ +	+ +	+ +	+ +	+ + +	+ + +	+ + +	+ +	+ + +	+ + +	45 2 48 1 12 1 7 1 7 1 4 2 50 2 8
Thymus Leukemia mononuclear INTEGUMENTARY SYSTEM Mammary gland Adenoma Fibroadenoma Fibroadenoma, multiple Skin Subcutaneous tissue, fibroma Subcutaneous tissue, neurofibroma Subcutaneous tissue, neurofibroma					+ X +	+ X +	+ X +		+ X +	+		*				+ X +		-	+ X +				+ X +		+ X +	17 1 8 2 20 20 2 1
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle	+	+	+	+	+	+	+	+	+	+	+	+	+	I	+	+	+	+	+	+	+	+	+	+	+	48 5
NERVOUS SYSTEM Brain Peripheral nerve Spinal cord								_						-,-												5 1 1
RESPIRATORY SYSTEM Lung Leukemia mononuclear Nose Trachea					+							-										•				5 1 4 8
SPECIAL SENSES SYSTEM Eye Harderian gland Zymbal gland Carcinoma				+	+	+	+	++	+	+	+	+		+			+	+	+	+			+	+	+	32 6 2 2
URINARY SYSTEM Kidney Leukemia mononuclear Lipoma Ureter Urinary bladder	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 1 1 12 5

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF p-CHLOROANILINE HYDROCHLORIDE: MID DOSE

GAVAGE STUDY	V. (D -C	111	.01	-	7141			11	עו	100	Ų.		<i>)</i> 10.	ועו	· · ·	VAL.			ندد					
WEEKS ON STUDY	0 4 8	0 7 5	0 7 7	0 7 9	0 8 2	0 8 3	0 8 5	0 8 7	0 9 0	0 9 0	0 9 4	1 0 1	0 2	1 0 3	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5
CARCASS ID	6 3 1	5 8 3	6 0 1	5 7 5	5 6 4	5 4 1	6 1 5	5 5 5	6 0 4	5 5 3	5 4 3	5 9 2	5 4 2	5 8 1	5 4 5	5 8 4	5 8 5	5 9 3	6 0 2	6 0 3	6 1 2	6 1 3	6 2 2	6 2 5	6 3 2
ALIMENTARY SYSTEM Esophagus Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum Intestine small, ileum Intestine small, jejunum	+ + A + M + A A	+ + A A	+ + A A A + + M A	+ + A A A A A A A	+ + A + + + + A +	+ + A + + + A A A	++A+++AA	+++++++	+ + + + + + + + + + + + + + + + + + +	++ A ++++ A A	-			-	-	-		-			+ +				
Liver Leukemia mononuclear Mesentery Lipoma	++	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+ X	+	+	+	+
Pancrass Salivary glands Stomach Stomach, forestomach Stomach, glandular Tongue Papilloma squamous Tooth	+++++++++++++++++++++++++++++++++++++++	+ + + + + + +	+ + + A A	++++++	++++++	+ + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++				+							A		+		
CARDIOVASCULAR SYSTEM Blood vessel Heart	++	++	++	++	++	++	+	++	+	++															
ENDOCRINE SYSTEM Adrenal gland, cortex Leukemia mononuclear Adrenal gland, medulla Leukemia mononuclear Pheochromocytoma benign Islets, pancreatic	+ + + + +	+ + +	+++++++	+++++++	+++++++	+ + + + +	+ + + + +	+++++++	+ + + +	+ + + +	+ + +	+ + + +	+ + X + X	+ + +	+ + +	+ + +	+ + + +	+ + +	+ + +	+ + +	++++	++++	++++	+ + +	+ + +
Parathyroid gland Pituitary gland Pars distails, adenoma Thyroid gland C-cell, adenoma C-cell, carcinoma GENERAL BODY SYSTEM	+ +	M + X +	+ X +	+ X + X	++++	+ + +	+ * * +	+ + +	+ + +	+ X +	+	*		*	-			+	+	+ X		+	+	+	+
None GENITAL SYSTEM Clitoral gland Adenoma Ovary Oviduct Uterus Polyp stromal	+ + X	+ + + +	+ + +	+ + + +	+ + + X	+ + X	+ +++	+ X + X	+ + +	+ + + +			+		++				+		+ X	+		+	
HEMATOPOIETIC SYSTEM Blood Bone marrow Femoral, leukemia mononuclear Lymph node Lymph node, mandibular	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	I + + +	++++	+ + +	+ + +	+	*	† + + +	++	+++	+++	++	+ + + +	++	++	++	++	++	++
Lýmph node, mesenteric Spleen Fibrosarcoma Leukemia mononuclear Thymus	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	*
INTEGUMENTARY SYSTEM Mammary gland Fibroadenoma Fibroadenoma, multiple Skin	+	+	* *	+	+	+	* *	+	* * +	+				* X +			* *	* *							
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle	+ +	++	++	++	++	+ +	++	++	++	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain Spinal cord	++	+	+	+	+	+	+	+	+	+					,										
RESPIRATORY SYSTEM Lung Nose Osteosarcoma Trachea	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + +	+++++	++++	+ + +	++++++	+ + +	+ + +	+++++				+ X							•				
SPECIAL SENSES SYSTEM Eye Harderian gland	+	+		+	+	+	+	+	+	+					+	+		+	+	+	+	+	+	+	+
URINARY SYSTEM Kidney Leukemia mononuclear Ureter Urinary bladder	+ + +	+ M	+ + A	+ + +	+	+	+	+ + +	+ + +	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: MID DOSE (Continued)

								• -			uec	•														
WEEKS ON STUDY	0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	0 5	0 5	1 0 5	0 5	0 5	1 0 5	1 0 5	TOTAL:
CARCASS ID	6 3 4	5 5 1	5 6 1	5 6 5	5 7 1	5 7 3	5 9 5	6 2 1	6 2 3	5 4 4	5 5 2	5 5 4	5 6 2	5 6 3	5 7 4	5 9 1	6 0 5	6 1 1	6 2 4	6 3 3	5 7 2	5 8 2	5 9 4	6 1 4	6 3 5	TISSUES
ALIMENTARY SYSTEM Esophagus Intestine large Intestine large, colon Intestine large, colon Intestine large, rectum Intestine small duodenum Intestine small, ileum Intestine small, jejunum Liver Leukemia mononuclear Mesentery Lipoma Pancreas Salivary glands Stomach Stomach, forestomach Stomach, glandular Tongue Papilloma squamous Tooth	+	+	+	+	+	+	+	+	+	+	+	+	+ +	+	+	+ + +	+ *X	+	+	+	+	+	+ +	+	+	12 12 3 8 6 10 8 2 2 50 1 1 1 1 1 2 12 10 9 9 1
CARDIOVASCULAR SYSTEM Blood vessel Heart													+									+				12 10
ENDOCRINE SYSTEM Adrenal gland Adrenal gland, cortex Leukemia mononuclear Adrenal gland, medulla Leukemia mononuclear Pheochromocytoma benign Esiets, pancreatic Parathyroid gland Pituitary gland Pars distalis, adenoma Thyroid gland Ccell, adenoma C-cell, carcinoma GENERAL BODY SYSTEM	+ + +	+ + +	++++++	+ + +	++++	+ + +	+++++++++++++++++++++++++++++++++++++++	+ + + +	+ + x x	+ + *	++++	+ + + +	+ + *	+ + +	+ + +	+ + + +	+ + +	+ + *	+ + +	+++++++++	+ + *	++++	+ + +	+ + + +	+ + + X	50 50 1 50 1 1 9 9 35 17 11 1
None GENITAL SYSTEM Clitoral gland Adenoma Ovary Oviduct Uterus Polyp stromal		+			•	•••	+					+ X	++			+ X			+	+			+ + +	++		11 1 15 8 20 7
HEMATOPOIETIC SYSTEM Blood Bone marrow Femoral, leukemia mononuclear Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Fibrosarcoma Leukemia mononuclear Thymus	+	++++	++++	++++	++++	+++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++++++++++++++++++++++++++++++++++++	+ + + +	+ + +	+ + + + +	++++	++++	+ + + + + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + + + +	+ + +	+ + + +	++++	37 50 1 17 14 1 50 1
INTEGUMENTARY SYSTEM Mammary gland Fibroadenoma Fibroadenoma, multiple Skin		* *			* *					+	* *		* *		* * * * * * * * * * * * * * * * * * *				+ X +	+					* *	22 12 1 21
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 10
NERVOUS SYSTEM Brain Spinal cord											•															10
RESPIRATORY SYSTEM Lung Nose Osteosarcoma Trachea													+				• • • •			+		+				11 11 1 1 13
SPECIAL SENSES SYSTEM Eye Harderian gland	+	+				+	+	+	+	+	+	+	+	+	+		+	++	+	++	+	+	+	+	+	31 11
URINARY SYSTEM Kidney Leukemia mononuclēar Ureter Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+ +	50 1 11 8

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE: HIGH DOSE

WEIGHT ON	T A	^	_	_	~~	_	Λ.	_	~	_	_				_	~					- -		_		
WEEKS ON STUDY	7	7	7	7	8	8	8	8	9	9	9	Ŏ	Ō	Q	ņ	0	ņ	O T	ò	Ò	ò	ò	ō	ō	ò
	3	6	Ġ	9	3	5	8	ğ	2	5	9	ĭ	ž	5	5	5	5	5	5	5	5	5	5	5	5
CARCASS	5	4	_	-	7	- 4	5			_	_	_					-		- 5	- 1	4		<u> </u>	- 4	4
ID ID	lő	ġ	3	2	4	7	3	6	5	2	2	7	8	5	8	9	ŏ	1	1	4	4	5	5	6	7
	5	4	5	2	3	4	2	2	5	4	3	5	5	3	1	1	2	1	5	1	5	1	4	3	2
ALIMENTARY SYSTEM	-																								
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large	+	+	+	+	+	+	Ą	+	A	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large, cecum Intestine large, colon	+	+	+	A A	+	+	A A	+	A	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large, colon Intestine large, rectum	17	++	+	^ +	+	+	Â	+	Â	+	+	+	Â	+	+	+	+	+	+	Ŧ	+	+	+	+	+
Intestine small	+	+	+	+	+	+	+	+	Ā	+	+	+	Ā	+	+	+	+	+	+	+	+	+	+	÷	+
intestine small, duodenum	+	+	+	+	+	+	+	+	Ą	+	+	+	Ą	+	+	+	+	+	+	+	+	+	+	+	+
ntestine small, ileum	++	+	+	A	+	+	+	++	A	+	+	A	Ă	+	+	+	+	+	M +	+	+	+	+	+	+
intestine small, jejunum Liver	∓	+	+	A	+	+	+	Ŧ	A.	+	T	+	A	+	+	+	+	<u>+</u>	+	7	Ţ	+	Ţ	Ŧ	+
Leukemia mononuclear	'		•	•	,	,		•					,	•	•					,	•			,	•
Sarcoma, metastatic, skin										Х															
Mesentery	+	+	+	+			+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenocarcinoma, metastatic, uterus Pancreas	1 +	_		_	_	_	_	_	A	+	+	+	X	_	_	_	_	_	_	_	_	4	_	_	+
Adenocarcinoma, metastatic, uterus	'	,	,	,	,		-	r	42	۲	r	г	X	-	-	r	т	т	т	•	r		r	,	,
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+
Stomach	+	+	+	+	+	+	+	+	Ā	+	+	+	Ą	+	+	+	+	+	+	+	+	+	+	+	+
Stomach, forestomach Stomach, glandular	+	+	+	+	+	+	+	+	A	+	+	+	A A	+	+	+	+	+	+	++	+	+	+	+	+
Cooth	1 +	+	+	+	+	+	+	+	7	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	.																								
ARDIOVASCULAR SYSTEM Blood vessel																									
leart	1 7	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	.		•							•						٠.			,						
NDOCRINE SYSTEM																	_,_								
Adrenal gland Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	<u> </u>	+	+
Leukemia mononuclear	1.	,				'	'	•		-	1			*	r	,		,	,				'	,	
drenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Leukemia mononuclear Pheochromocytoma benign	-																	v		v					
slets, pancreatic	+	+	+	+	+	+	+	+	Α	+	+	+	Α	+	+	+	+	X	+	X +	+	+	+	+	+
Adenoma		•					•	•	••				••	,	•			•	,		•			•	X
arathyroid gland	+	+	+	M	+	M	+	M	+	+	+	+	+	+	+	+	+	M	+	M	M	+	+	+	+
ituitary gland Pars distalis, adenoma	+ X	*	+	+	*	+	+	+	+	*	+ X	X	+	+	+	+	+	+	+	+	+	+	*	+ X	+
Pars distalis, adenoma, multiple	^	Λ			^					Λ	Λ	Λ											Λ	Λ	x
Pars distalis, carcinoma									X A																
hyroid gland C-cell, adenoma	+	+	+	+	+	+	+	+	Α	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+
C-cell, carcinoma																						X		X	
Follicular cell, adenoma			х																						
<u> </u>																									
ENERAL BODY SYSTEM	1																								
10016																									
ENITAL SYSTEM																									
litoral gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+
Adenoma vary	+	_	_	_	_	+	X +	_	Α.		+	L	_			1.	X		1.	_	+		_	_	_
viduct	"	+	+ M	+	+	+	M	+	A	+	+	+	_	+	+	+	+	+	+	+	+	+	+	+	+
terus	+	+	+	+	+	÷	+	+	+	+	++	÷	+	+	+	÷	÷	+	+	+	+	+	÷	÷	+
Adenocarcinoma													X												
Fibroma																		v							
																		Х							
Polyp stromal agina						X																			

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE (Continued)

								(C	OII	CHI1:	ueu	.,														
WEEKS ON STUDY	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	momat
CARCASS ID	4 9 5	5 0 1	5 0 3	5 3 1	4 4 2	4 6 5	7 3	8 2	8 4	5 1 3	5 1 4	5 2 1	5 2 5	5 3 4	4 4	4 5 2	4 6 1	4 6 4	7 1	8 3	4 9 2	9 3	5 0 4	5 1 2	5 3 3	TOTAL TISSUES TUMORS
ALIMENTARY SYSTEM	-		_																							-
E sophagus Intestine large	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 47
Intestine large, cecum	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	46
Intestine large, colon Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	46 47
Intestine small Intestine small, duodenum	++	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	48 48
Ir testine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Ir testine small, jejunum L. ver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47 50
Leukemia mononuclear Sarcoma, metastatic, skin Mesentery			ì							·										· _	X	·	·		· +	1 1 47
Adenocarcinoma, metastatic, uterus	'	'	'	•	•	•		,		'	т	'	•	•	,	'	,		,		,		•	ľ		1
Pancreas Adenocarcinoma, metastatic, uterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Stomach Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48 48
Stomach, glandular	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48 50
Tooth	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
("ARDIOVASCULAR SYSTEM Blood vessel Heart	++	++	+	+	+	++	+	+	+	+	++	+	++	+	+	+	+	+	++	+	+	+	+	+	++	49 50
ENDOCRINE SYSTEM	-																									·
Adrenal gland Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ +	+	50 50
Leukemia mononuclear	'	,		•		•	'	,		,	,		•							•	X		,		•	1
Adrenal gland, medulla Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	50
Pheochromocytoma benign slets, pancreatic Adenoma	+	+	+	+	+	+	+	+	+	X +	+	+	X +	+	+	+	+	+	X +	+	+	+	+	X +	+	6 48 1
Parathyroid gland	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	42
Pituitary gland Pars distalis, adenoma Pars distalis, adenoma, multiple	+	X	+ X	*	*	+	+	+	X	+	+	*	x	+	+	*X	+	*	*	*X	+	*	+	X	X	50 20 3
Pars distalis, carcinoma Thyroid gland C cell, adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	X	+	+	+	+	+	+	+	+	*	+	*	1 48 5
C cell, carcinoma Follicular cell, adenoma												X														1 1
GENERAL BODY SYSTEM None																										-
ENITAL SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	48
Adenoma Ivary	+	+	+	+	+	+	+	X +	+	+	+	+	X	+	+	+	+	+	+	+	+	+	+	+	+	49
Widuct Uterus	1 +	+	+	+	+	+	+	+	+	+	L	+	+	+	+	+	+	+	+	+	+	+	+	+	+	42 50
Adenocarcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		1
Fibroma Polyp stromal						х		x			x			x					х						Х	6
Polyp Polyp						Λ		Λ			А			Λ					Λ.							1 1
	ł																									1

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE (Continued)

								• -				•													
WEEKS ON STUDY	0 7 3	0 7 6	0 7 6	0 7 9	0 8 3	0 8 5	0 8 8	0 8 9	0 9 2	9 5	9	0 1	1 0 2	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5
CARCASS ID	5 0 5	4 9 4	5 3 5	5 2 2	4 3	4 7 4	5 3 2	4 6 2	4 5 5	5 2 4	5 2 3	4 7 5	8 5	4 5 3	8 1	9	5 0 2	5 1 1	5 1 5	4 1	4 5	4 5 1	4 5 4	4 6 3	7 2
HEMATOPOIETIC SYSTEM Blood		+	_																		_	_	_	+	
Leukemia mononuclear Bone marrow Lymph node Mediastinal, adenocarcinoma,	+++	++	++	++	++	++	+	++	A +	++	++	++	++	++	++	++	++	++	++	+++	++	I +	+ +	++	++
metastatic, uterus Mediastinal, sarcoma, metastatic, skin Lymph node, mandibular Lymph node, mesenteric Spieen	+ +	+	+ + +	+	+	+	+	+++	+	X +	+	+	* + + + + + + + + + + + + + + + + + + +	+	+++	+	M +	+	+	+	+	+	+	+	+
Adenocarcinoma, metastatic, uterus Leukamia mononuclear Osteosarcoma Thymus	+	+	+	+	+	+	+	+	+	М	+	+	X M	+	M	+	+	M	+	+	+	+	+	+	+
INTEGUMENTARY SYSTEM Memmary gland Adenoma Fibroadenoma	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+ X	+ X	* X	+
Sarcoma, metastatic, skin Skin Subcutaneous tissue, fibroma Subcutaneous tissue, sarcoma	+	+	*	+	+	+	+	+	+	X + X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle Sarcoma, metastatic, skin	++	+	++	+	++	++	+	++	+	+ + X	+	+	+	+	++	+	++	+	++	++	++	++	+	++	++
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lung Adenocarcinoma, metastatic, uterus Leuksmia mononuclear	+	+	+	+	+	+	+	+	+	+	+	+	* X	+	+	+	+	+	+	+	+	+	+	+	+
Sarcoma, metastatic, skin Nose Trachea	++	++	++	++	+	+	+	++	++	X + +	++	++	+	++	++	++	++	++	++	++	++	++	++	++	++
SPECIAL SENSES SYSTEM Eye Harderian gland	м	м	м	+	+	М	+	++	+	++	++	+	+	+	++	++	++	++	++	+	++	+	++	+ +	+ +
URINARY SYSTEM Kidney Adenocarcinoma, metastatic, uterus Ureter	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	A	+	Ŧ	+	+	+	+	+	+	+	+	÷	+

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE (Continued)

								•				•														
WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL:
CARCASS ID	4 9 5	5 0 1	5 0 3	5 3 1	4 2	4 6 5	7 3	8 2	4 8 4	5 1 3	5 1 4	5 2 1	5 2 5	5 3 4	4 4	4 5 2	4 6 1	4 6 4	4 7 1	8 3	9 2	4 9 3	5 0 4	5 1 2	5 3 3	TISSUES
HEMATOPOIETIC SYSTEM Blood	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	43
Leukemia mononuclear Bone marrow Lymph node	++	++	++	++	+	+	++	++	+	++	++	++	+ +	++	++	+	++	++	M +	+	X + +	++	++	++	++	1 47 50
Mediastinal, adenocarcinoma, metastatic, uterus																										1 1
Mediastinal, sarcoma, metastatic, skin Lymph node, mandibular Lymph node, mesenteric	+	+	++	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 9
Spleen Adenocarcinoma, metastatic, uterus Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	50
Osteosarcoma Thymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	M	+	+	+	+	+	+	M	+	1 44
INTEGUMENTARY SYSTEM Mammary gland Adenoma Fibroadenoma	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+ X	+	+	+	+ x	+ x	50 3 6
Sarcoma, metastatic, skin Skin Subcutaneous tissue, fibroma Subcutaneous tissue, sarcoma	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 2 1
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle Sarcoma, metastatic, skin	+ +	++	++	++	++	++	++	++	+	++	+	++	++	++	++	++	++	+	++	++	++	++	++	++	+	50 50 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
RESPIRATORY SYSTEM Lung Adenocarcinoma, metastatic, uterus Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	50 1 1
Sarcoma, metastatic, skin Nose Trachea	++	++	+	++	+	++	+	+	+	++	+	+	+	++	+	+	+	+	++	+	++	+	++	++	++	49 50
SPECIAL SENSES SYSTEM Eye Harderian gland	++	++	++	++	+	++	+	++	+ M	+	+	+	+	+ M	++	+	+	+	++	++	+	+	+	++	+++	31 44
URINARY SYSTEM Kidney Adenocarcinoma, metastatic, uterus Urster	+	+	+	+	+	+	+	+ +	+	+	+	+	+	+	+ +	+	+	+	+	+	+	+	+	+	+	50 1 9
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49

TABLE B3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE

	Vehicle Contro	l 2 mg/kg	6 mg/kg	18 mg/kg
Adrenal Medulla: Pheochromocytoma				
Overall Rates (a)	2/50 (4%)	3/50 (6%)	1/50 (2%)	6/50 (12%)
Adjusted Rates (b)	6.2%	7.7%	2.8%	16.2%
Terminal Rates (c)	1/27 (4%)	3/39 (8%)	1/36 (3%)	6/37 (16%)
Day of First Observation	557	729	729	729
Life Table Tests (d)	P=0.091	P=0.650	P=0.415N	P = 0.248
Logistic Regression Tests (d)	P=0.077	P=0.553	P=0.488N	P = 0.192
Cochran-Armitage Trend Test (d)	P=0.062	r - 0.000	1 -0.40011	1 -0.132
Fisher Exact Test (d)	r = 0.002	P = 0.500	P = 0.500N	P = 0.134
Clitoral Gland: Adenoma				
Overall Rates (a)	1/45 (2%)	(e) 1/5 (20%)	(e) 1/11 (9%)	4/48 (8%)
Adjusted Rates (b)	4.3%	(=) =(= (= 0 10)	(0) = (0 /0)	10.6%
Terminal Rates (c)	1/23 (4%)			3/35 (9%)
Day of First Observation	729			616
Life Table Test (d)	120			P=0.309
Logistic Regression Test (d)				P = 0.265
Fisher Exact Test (d)				P = 0.201
Mammary Gland: Adenoma	1 (80 / 6 **)	4 18 0 20 21	0/20/04/	0/80/00:
Overall Rates (a)	1/50 (2%)	1/50 (2%)	0/50 (0%)	3/50 (6%)
Adjusted Rates (b)	2.6%	2.6%	0.0%	8.1%
Terminal Rates (c)	0/27 (0%)	1/39 (3%)	0/36 (0%)	3/37 (8%)
Day of First Observation	605	729		729
Life Table Tests (d)	P = 0.155	P = 0.692N	P = 0.475N	P = 0.407
Logistic Regression Tests (d)	P = 0.140	P = 0.769N	P = 0.543N	P = 0.351
Cochran-Armitage Trend Test (d)	P = 0.128	D 0 ==0\tag{-1}	D 0 F0037	D 0000
Fisher Exact Test (d)		P = 0.753N	P = 0.500N	P = 0.309
Mammary Gland: Fibroadenoma				
Overall Rates (a)	8/50 (16%)	10/50 (20%)	13/50 (26%)	6/50 (12%)
Adjusted Rates (b)	26.6%	25.6%	31.8%	15.7%
Terminal Rates (c)	6/27 (22%)	10/39 (26%)	9/36 (25%)	5/37 (14%)
Day of First Observation	400	729	539	688
Life Table Tests (d)	P = 0.138N	P = 0.487N	P = 0.375	P = 0.192N
Logistic Regression Tests (d)	P = 0.174N	P = 0.582	P = 0.233	P = 0.275N
Cochran-Armitage Trend Test (d)	P = 0.229N			
Fisher Exact Test (d)		P = 0.398	P = 0.163	P = 0.387N
Mammary Gland: Adenoma or Fibroade				
Overall Rates (a)	9/50 (18%)	11/50 (22%)	13/50 (26%)	9/50 (18%)
Adjusted Rates (b)	28.5%	28.2%	31.8%	23.6%
Terminal Rates (c)	6/27 (22%)	11/39 (28%)	9/36 (25%)	8/37 (22%)
Day of First Observation	400	729	539	688
Life Table Tests (d)	P = 0.307N	P = 0.457N	P = 0.475	P = 0.342N
Logistic Regression Tests (d)	P = 0.371N	P = 0.572	P = 0.311	P = 0.469N
Cochran-Armitage Trend Test (d)	P = 0.451N			1
Fisher Exact Test (d)		P = 0.402	P = 0.235	P = 0.602N
Pituitary Gland/Pars Distalis: Adenoma				
Overall Rates (a)	21/50 (42%)	(e) 13/33 (39%)	(e) 17/35 (49%)	23/50 (46%
Adjusted Rates (b)	56.9%			53.0%
Terminal Rates (c)	12/27 (44%)			17/37 (46%
Day of First Observation	482			511
Life Table Test (d)	-0-			P = 0.294N
Logistic Regression Test (d)				P = 0.573N
				- 0.0.011

TABLE B3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF p-CHLOROANILINE HYDROCHLORIDE (Continued)

Adjusted Rates (b) 56.9%		Vehicle Contro	ol 2 mg/kg	6 mg/kg	18 mg/kg
Overall Rates (a) 21/50 (42%) (e) 13/33 (39%) (e) 17/35 (49%) 24/50 (48%) Adjusted Rates (b) 56.9% 17/37 (46%) 17/37 (46%) 15/41 (17/37 (17/37 (46%) 15/41 (17/37		na or Carcinoma	 		
Terminal Rates (c) 12/27 (14%) 17/37 (46%) 12/37 (14%) 12/37 (21/50 (42%)	(e) 13/33 (39%)	(e) 17/35 (49%)	24/50 (48%)
Day of First Observation		56.9%			
Life Table Test (d) Logistic Regression Test (d) Fisher Exact Test (d) P=0.507 Fisher Exact Test (d) P=0.507 P=0.344 Subcutaneous Tissue: Fibroma or Neurofibroma Overall Rates (a) Adjusted Rates (b) 7.4% 6.8% 0.0% 4.7% Terminal Rates (c) 12/27 (7%) 1/39 (3%) 0/36 (0%) 1/37 (3%) Day of First Observation 729 605 Cochran-Armitage Tend Test (d) P=0.558N Fisher Exact Test (d) P=0.558N P=0.559N P=0.178N P=0.679N Cochran-Armitage Tend Test (d) P=0.558N P=0.559N P=0.500 P=0.247N P=0.691 Subcutaneous Tissue: Fibroma or Fibrosarcoma Overall Rates (a) 2/50 (4%) 3/50 (6%) 0/50 (0%) 2/50 (6%) 3/50 (6	Terminal Rates (c)	12/27 (44%)			17/37 (46%)
P=0.507	Day of First Observation	482			511
P=0,344					P = 0.353N
Subcutaneous Tissue: Fibroma or Neurofibroma 2/50 (4%) 3/50 (6%) 0/50 (0%) 2/50 (4%) Adjusted Rates (b) 7.4% 6.8% 6.8% 0.0% 4.7% 1/37 (3%) 0/36 (0%) 1/37 (3%) 0/36 (0%) 1/37 (3%) 0/36 (0%) 1/37 (3%) 0/36 (0%) 1/37 (3%) 0/36 (0%) 1/37 (3%) 0/36 (0%) 1/37 (3%) 0/36 (0%) 1/37 (3%) 0/36 (0%) 1/37 (3%) 0/36 (0%) 1/37 (3%) 0/36 (0%) 1/37 (3%) 0/36 (0%) 1/37 (3%) 0/36 (0%) 1/37 (3%) 0/36 (0%) 1/37 (3%) 0/36 (0%) 1/37 (3%) 0/36 (0%) 0/50 (0%)					P = 0.507
Overall Rates (a)	Fisher Exact Test (d)				P = 0.344
Adjusted Rates (b) 7.4% 6.8% 0.0% 4.7% 1/39 (3%) 0/36 (0%) 1/37 (3%) Day of First Observation 729 605 529 1.6 Table Tests (d) P=0.507N P=0.647 P=0.177N P=0.594N Logistic Regression Tests (d) P=0.558N P=0.558N P=0.559N P=0.558N P=0.558N P=0.558N P=0.558N P=0.558N P=0.558N P=0.558N P=0.558N P=0.559N P=0.559N P=0.649N P		ırofibroma			
Terminal Rates (c) 2277 (7%) 1/39 (3%) 0/36 (0%) 1/37 (3%) Day of First Observation 729 605 529	Overall Rates (a)	2/50 (4%)	3/50 (6%)	0/50 (0%)	2/50 (4%)
Day of First Observation 729	Adjusted Rates (b)	7.4%	6.8%	0.0%	4.7%
Day of First Observation	Terminal Rates (c)	2/27 (7%)	1/39 (3%)	0/36 (0%)	1/37 (3%)
Life Table Tests (d) P=0.507N P=0.647 P=0.17TN P=0.594N Coghran-Armitage Trend Test (d) P=0.559N P=0.559 P=0.178N P=0.679N Cochran-Armitage Trend Test (d) P=0.555N P=0.559 P=0.178N P=0.679N Cochran-Armitage Trend Test (d) P=0.555N P=0.500 P=0.247N P=0.691 Subcutaneous Tissue: Fibroma or Fibrosarcoma Overall Rates (a) 2/50 (4%) 3/50 (6%) 0/50 (0%) 2/50 (4%) Adjusted Rates (b) 7.4% 6.8% 0.0% 4.7% Terminal Rates (c) 2/27 (7%) 1/39 (3%) 0/36 (0%) 1/37 (3%) Day of First Observation 729 605 F=0.177N P=0.594N Cochran-Armitage Trend Test (d) P=0.566N P=0.649 P=0.177N P=0.679N Cochran-Armitage Trend Test (d) P=0.555N P=0.557 P=0.178N P=0.679N Cochran-Armitage Trend Test (d) P=0.555N P=0.550 P=0.557 P=0.178N P=0.691N Subcutaneous Tissue: Fibroma, Neurofibroma, Sarcoma, or Fibrosarcoma Overall Rates (a) 2/50 (4%) 4/50 (8%) 0/50 (0%) 3/50 (6%) Adjusted Rates (b) 7.4% 8.9% 0.0% 7.1% Terminal Rates (c) 2/27 (7%) 1/39 (3%) 0/36 (0%) 1/37 (3%) Day of First Observation 729 605 F=0.177N P=0.621 Cochran-Armitage Trend Test (d) P=0.600 P=0.500 P=0.177N P=0.621 Cochran-Armitage Trend Test (d) P=0.549 Fisher Exact Test (d) P=0.540 Fisher Exact Test (d) P=0.540 Fisher Exact Test (d) P=0.540 Fisher Exact Test (d) P=0.540 Fisher Exact Test (d) P=0.540 Fisher Exact Test (d) P=0.540 Fisher Exact Test (d) P=0.540 Fisher Exact Test (d) P=0.540 Fisher Exact Test (d) P=0.540 Fisher Exact Test	Day of First Observation	729	605		529
Logistic Regression Tests (d)		P = 0.507N	P = 0.647	P = 0.177N	P = 0.594N
Cochran-Armitage Trend Test (d) P = 0.555N Fisher Exact Test (d) P = 0.555N P = 0.500 P = 0.247N P = 0.691					
Fisher Exact Test (d)			1	. 0.2,01,	- 0.01011
Overall Rates (a)		2 0,0001	P = 0.500	P = 0.247N	P = 0.691
Overall Rates (a)	Subcutaneous Tissue: Fibroma or Fib	rosarooma			
Adjusted Rates (b) 7.4% 6.8% 0.0% 4.7% Terminal Rates (c) 2/27 (7%) 1/39 (3%) 0/36 (0%) 1/37 (3%) Day of First Observation 729 605 529 Life Table Tests (d) P=0.566N P=0.649 P=0.177N P=0.594N Logistic Regression Test (d) P=0.555N P=0.178N P=0.679N Cochran-Armitage Trend Test (d) P=0.555N P=0.500 P=0.247N P=0.691N Subcutaneous Tissue: Fibroma, Neurofibroma, Sarcoma, or Fibrosarcoma Overall Rates (a) 2/50 (4%) 4/50 (8%) 0/50 (0%) 3/50 (6%) Adjusted Rates (b) 7.4% 8.9% 0.0% 7.1% Terminal Rates (c) 2/27 (7%) 1/39 (3%) 0/36 (0%) 1/37 (3%) Day of First Observation 729 605 529 Life Table Tests (d) P=0.544 P=0.390 P=0.177N P=0.521 Cochran-Armitage Trend Test (d) P=0.549 P=0.339 P=0.247N P=0.500 Thyroid Gland: C-Cell Adenoma Overall Rates (a) 5/49 (10%) (e) 0/6 (0%) (e) 1/11 (9%) 5/48 (10%) Adjusted Rates (b) 16.9% 13.5% Terminal Rates (c) 4/27 (15%) Day of First Observation 537 Terminal Rates (c) P=0.617 P=0.541 P			2/50 (6%)	0/50 (0%)	2/50 (4%)
Terminal Rates (c)		- ' '		*****	
Day of First Observation 729 605 529					
Life Table Tests (d) P=0.506N P=0.649 P=0.177N P=0.594N Cognizer Regression Tests (d) P=0.560N P=0.557 P=0.178N P=0.679N Cochran-Armitage Trend Test (d) P=0.555N P=0.500 P=0.247N P=0.691N P=0.691N P=0.500 P=0.247N P=0.691N P=0.6		• •		0/30 (0%)	
Logistic Regression Tests (d)				D-0 177N	
Cochran-Armitage Trend Test (d)					
Subcutaneous Tissue: Fibroma, Neurofibroma, Sarcoma, or Fibrosarcoma Overall Rates (a) 2/50 (4%) 4/50 (8%) 0/50 (0%) 3/50 (6%) Adjusted Rates (b) 7.4% 8.9% 0.0% 7.1% Terminal Rates (c) 2/27 (7%) 1/39 (3%) 0/36 (0%) 1/37 (3%) Day of First Observation 729 605 529 Life Table Tests (d) P = 0.600 P = 0.500 P = 0.177N P = 0.621 Logistic Regression Tests (d) P = 0.544 P = 0.390 P = 0.178N P = 0.521 Cochran-Armitage Trend Test (d) P = 0.549 P = 0.339 P = 0.247N P = 0.500 Thyroid Gland: C-Cell Adenoma Overall Rates (a) 5/49 (10%) (e) 0/6 (0%) (e) 1/11 (9%) 5/48 (10%) Adjusted Rates (b) 16.9% 13.5% 729 13.5% Terminal Rates (c) 4/27 (15%) 537 729 14/40 Life Table Test (d) P = 0.541N P = 0.541N P = 0.541N P = 0.541N Thyroid Gland: C-Cell Adenoma or Carcinoma Overall Rates (a) 6/49 (12%) (e) 0/6 (0%)			P = 0.557	P = 0.178N	P=0.679N
Overall Rates (a) 2/50 (4%) 4/50 (8%) 0/50 (0%) 3/50 (6%) Adjusted Rates (b) 7.4% 8.9% 0.0% 7.1% Terminal Rates (c) 2/27 (7%) 1/39 (3%) 0/36 (0%) 1/37 (3%) Day of First Observation 729 605 529 Life Table Tests (d) P=0.600 P=0.500 P=0.177N P=0.621 Logistic Regression Tests (d) P=0.544 P=0.390 P=0.178N P=0.521 Cochran-Armitage Trend Test (d) P=0.549 Fisher Exact Test (d) P=0.549 Fisher Exact Test (d) P=0.549 Thyroid Gland: C-Cell Adenoma Overall Rates (a) 5/49 (10%) (e) 0/6 (0%) (e) 1/11 (9%) 5/48 (10%) Adjusted Rates (b) 16.9% 13.5% Terminal Rates (c) 4/27 (15%) 5/37 (14%) Day of First Observation 537 729 Life Table Test (d) P=0.436N Logistic Regression Test (d) P=0.541N Fisher Exact Test (d) P=0.617 Chyroid Gland: C-Cell Adenoma or Carcinoma Overall Rates (a) 6/49 (12%) (e) 0/6 (0%) (e) 2/11 (18%) 6/48 (13%) Adjusted Rates (b) 19.7% 6/37 (16%) Terminal Rates (c) 4/27 (15%) Day of First Observation 537 Terminal Rates (c) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Terminal Rates (e) 4/27 (15%) Terminal Rates (e) 4/27 (15%) Terminal Rates (e) 4/27 (15%) Terminal Rates (e) 4/27 (15%) Terminal Rates (e) 4/27 (15%) Termin		P=0.555N	P = 0.500	P = 0.247N	P = 0.691 N
Overall Rates (a) 2/50 (4%) 4/50 (8%) 0/50 (0%) 3/50 (6%) Adjusted Rates (b) 7.4% 8.9% 0.0% 7.1% Terminal Rates (c) 2/27 (7%) 1/39 (3%) 0/36 (0%) 1/37 (3%) Day of First Observation 729 605 529 Life Table Tests (d) P=0.600 P=0.500 P=0.177N P=0.621 Logistic Regression Tests (d) P=0.544 P=0.390 P=0.178N P=0.521 Cochran-Armitage Trend Test (d) P=0.549 Fisher Exact Test (d) P=0.549 Fisher Exact Test (d) P=0.549 Thyroid Gland: C-Cell Adenoma Overall Rates (a) 5/49 (10%) (e) 0/6 (0%) (e) 1/11 (9%) 5/48 (10%) Adjusted Rates (b) 16.9% 13.5% Terminal Rates (c) 4/27 (15%) 5/37 (14%) Day of First Observation 537 729 Life Table Test (d) P=0.436N Logistic Regression Test (d) P=0.541N Fisher Exact Test (d) P=0.617 Chyroid Gland: C-Cell Adenoma or Carcinoma Overall Rates (a) 6/49 (12%) (e) 0/6 (0%) (e) 2/11 (18%) 6/48 (13%) Adjusted Rates (b) 19.7% 6/37 (16%) Terminal Rates (c) 4/27 (15%) Day of First Observation 537 Terminal Rates (c) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Day of First Observation 537 Terminal Rates (e) 4/27 (15%) Terminal Rates (e) 4/27 (15%) Terminal Rates (e) 4/27 (15%) Terminal Rates (e) 4/27 (15%) Terminal Rates (e) 4/27 (15%) Terminal Rates (e) 4/27 (15%) Termin	Galeria Minara M	6 1	170		
Adjusted Rates (b) 7.4% 8.9% 0.0% 7.1% Terminal Rates (c) 2/27 (7%) 1/39 (3%) 0/36 (0%) 1/37 (3%) Day of First Observation 729 605 529 Life Table Tests (d) P=0.600 P=0.500 P=0.177N P=0.621 Logistic Regression Tests (d) P=0.544 P=0.390 P=0.178N P=0.521 Cochran-Armitage Trend Test (d) P=0.549 Fisher Exact Test (d) P=0.549 Fisher Exact Test (d) P=0.339 P=0.247N P=0.500 Thyroid Gland: C-Cell Adenoma Overall Rates (a) 5/49 (10%) (e) 0/6 (0%) (e) 1/11 (9%) 5/48 (10%) Adjusted Rates (b) 16.9% 13.5% Terminal Rates (c) 4/27 (15%) 5/37 (14%) Day of First Observation 537 729 Life Table Test (d) P=0.410N Fisher Exact Test (d) P=0.541N Fisher Exact Test (d) P=0.541N Fisher Exact Test (d) P=0.617 Thyroid Gland: C-Cell Adenoma or Carcinoma Overall Rates (a) 6/49 (12%) (e) 0/6 (0%) (e) 2/11 (18%) 6/48 (13%) Adjusted Rates (b) 19.7% 16.2% Terminal Rates (c) 4/27 (15%) 5/37 (16%) Day of First Observation 537 729 Life Table Test (d) P=0.410N Logistic Regression Test (d) P=0.410N Logistic Regression Test (d) P=0.410N Logistic Regression Test (d) P=0.410N Logistic Regression Test (d) P=0.410N Logistic Regression Test (d) P=0.515N				0/50 (0%)	2/50 (6%)
Terminal Rates (c)				, ,	
Day of First Observation 729 605 529 Life Table Tests (d) P = 0.600 P = 0.500 P = 0.177N P = 0.621 Logistic Regression Tests (d) P = 0.544 P = 0.390 P = 0.178N P = 0.521 Cochran-Armitage Trend Test (d) P = 0.549 Fisher Exact Test (d) P = 0.549 Fisher Exact Test (d) P = 0.339 P = 0.247N P = 0.500 Thyroid Gland: C-Cell Adenoma Overall Rates (a) 5/49 (10%) (e) 0/6 (0%) (e) 1/11 (9%) 5/48 (10%) Adjusted Rates (b) 16.9% 13.5% Terminal Rates (c) 4/27 (15%) 5/37 (14%) Day of First Observation 537 729 Life Table Test (d) P = 0.436N Fisher Exact Test (d) P = 0.617 Thyroid Gland: C-Cell Adenoma or Carcinoma Overall Rates (a) 6/49 (12%) (e) 0/6 (0%) (e) 2/11 (18%) 6/48 (13%) Adjusted Rates (b) 19.7% 16.2% Terminal Rates (c) 4/27 (15%) 6/37 (16%) Day of First Observation 537 729 Life Table Test (d) P = 0.410N Logistic Regression Test (d) P = 0.410N P = 0.515N P = 0.515N P = 0.515N Day of First Observation P = 0.515N Day of First Observation Day of					
Life Table Tests (d)				0/30 (0%)	
Logistic Regression Tests (d)				D = 0.17737	
Cochran-Armitage Trend Test (d) Fisher Exact Test (d) P=0.549 Fisher Exact Test (d) P=0.549 P=0.339 P=0.247N P=0.500 Thyroid Gland: C-Cell Adenoma Overall Rates (a) Adjusted Rates (b) 16.9% Terminal Rates (c) Day of First Observation Logistic Regression Test (d) Fisher Exact Test (d) Coverall Rates (a) Adjusted Rates (b) 10.9% Fisher Exact Test (d) Fisher Exact Test (d) Fisher Exact Test (d) Coverall Rates (a) Adjusted Rates (b) Terminal Rates (c) Day of First Observation Signal Rates (d) P=0.410N P=0.515N					
Fisher Exact Test (d) P=0.339 P=0.247N P=0.500 Thyroid Gland: C-Cell Adenoma Overall Rates (a) 5/49 (10%) (e) 0/6 (0%) (e) 1/11 (9%) 5/48 (10%) Adjusted Rates (b) 16.9% 13.5% Terminal Rates (c) 4/27 (15%) 5/37 (14%) Day of First Observation 537 Life Table Test (d) P=0.436N Logistic Regression Test (d) P=0.541N Fisher Exact Test (d) P=0.617 Thyroid Gland: C-Cell Adenoma or Carcinoma Overall Rates (a) 6/49 (12%) (e) 0/6 (0%) (e) 2/11 (18%) 6/48 (13%) Adjusted Rates (b) 19.7% 16.2% Terminal Rates (c) 4/27 (15%) 5/37 (16%) Day of First Observation 537 Life Table Test (d) P=0.410N Logistic Regression Test (d) P=0.515N			P = 0.390	P = 0.178N	P = 0.521
Thyroid Gland: C-Cell Adenoma Overall Rates (a) 5/49 (10%) (e) 0/6 (0%) (e) 1/11 (9%) 5/48 (10%) Adjusted Rates (b) 16.9% 13.5% Terminal Rates (c) 4/27 (15%) 5/37 (14%) Day of First Observation 537 729 Life Table Test (d) P=0.436N Logistic Regression Test (d) P=0.541N Fisher Exact Test (d) P=0.617 Thyroid Gland: C-Cell Adenoma or Carcinoma Overall Rates (a) 6/49 (12%) (e) 0/6 (0%) (e) 2/11 (18%) 6/48 (13%) Adjusted Rates (b) 19.7% 16.2% Terminal Rates (c) 4/27 (15%) 6/37 (16%) Day of First Observation 537 729 Life Table Test (d) P=0.410N Logistic Regression Test (d) P=0.515N		P = 0.549	D 0.000	D 0.04837	D 0.500
Overall Rates (a) 5/49 (10%) (e) 0/6 (0%) (e) 1/11 (9%) 5/48 (10%) Adjusted Rates (b) 16.9% 13.5% Terminal Rates (c) 4/27 (15%) 5/37 (14%) Day of First Observation 537 729 Life Table Test (d) P=0.436N Logistic Regression Test (d) P=0.541N Fisher Exact Test (d) P=0.617 Chyroid Gland: C-Cell Adenoma or Carcinoma Overall Rates (a) 6/49 (12%) (e) 0/6 (0%) (e) 2/11 (18%) 6/48 (13%) Adjusted Rates (b) 19.7% 16.2% 16.2% Terminal Rates (c) 4/27 (15%) 6/37 (16%) Day of First Observation 537 729 Life Table Test (d) P=0.410N Logistic Regression Test (d) P=0.515N	risner Exact lest(d)		P = 0.339	P=0.247N	P=0.500
Adjusted Rates (b) 16.9% 13.5% Terminal Rates (c) 4/27 (15%) 5/37 (14%) Day of First Observation 537 729 Life Table Test (d) P=0.436N Logistic Regression Test (d) P=0.541N Fisher Exact Test (d) P=0.617 Thyroid Gland: C-Cell Adenoma or Carcinoma Overall Rates (a) 6/49 (12%) (e) 0/6 (0%) (e) 2/11 (18%) 6/48 (13%) Adjusted Rates (b) 19.7% 16.2% Terminal Rates (c) 4/27 (15%) 6/37 (16%) Day of First Observation 537 729 Life Table Test (d) P=0.410N Logistic Regression Test (d) P=0.515N	Thyroid Gland: C-Cell Adenoma				
Terminal Rates (c) 4/27 (15%) 5/37 (14%) Day of First Observation 537 729 Life Table Test (d) P=0.436N Logistic Regression Test (d) P=0.541N Fisher Exact Test (d) P=0.617 Thyroid Gland: C-Cell Adenoma or Carcinoma Overall Rates (a) 6/49 (12%) (e) 0/6 (0%) (e) 2/11 (18%) 6/48 (13%) Adjusted Rates (b) 19.7% 16.2% Terminal Rates (c) 4/27 (15%) 6/37 (16%) Day of First Observation 537 729 Life Table Test (d) P=0.410N Logistic Regression Test (d) P=0.515N		5/49 (10%)	(e) 0/6 (0%)	(e) 1/11 (9%)	5/48 (10%)
Day of First Observation 537 729 Life Table Test (d) P=0.436N Logistic Regression Test (d) P=0.541N Fisher Exact Test (d) P=0.617 Thyroid Gland: C-Cell Adenoma or Carcinoma Overall Rates (a) 6/49 (12%) (e) 0/6 (0%) (e) 2/11 (18%) 6/48 (13%) Adjusted Rates (b) 19.7% 16.2% Terminal Rates (c) 4/27 (15%) 6/37 (16%) Day of First Observation 537 729 Life Table Test (d) P=0.410N Logistic Regression Test (d) P=0.515N		16.9%			
Life Table Test (d) $P = 0.436N$ Logistic Regression Test (d) $P = 0.541N$ Fisher Exact Test (d) $P = 0.541N$ Fisher Exact Test (d) $P = 0.617$ Thyroid Gland: C-Cell Adenoma or Carcinoma Overall Rates (a) $6/49$ (12%) (e) $0/6$ (0%) (e) $2/11$ (18%) $6/48$ (13%) Adjusted Rates (b) 19.7% 16.2% Terminal Rates (c) $4/27$ (15%) $6/37$ (16%) Day of First Observation 537 729 Life Table Test (d) $P = 0.410N$ Logistic Regression Test (d) $P = 0.515N$		4/27 (15%)			5/37 (14%)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		537			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$					P = 0.436N
Thyroid Gland: C-Cell Adenoma or Carcinoma Overall Rates (a) 6/49 (12%) (e) 0/6 (0%) (e) 2/11 (18%) 6/48 (13%) Adjusted Rates (b) 19.7% 16.2% Terminal Rates (c) 4/27 (15%) 6/37 (16%) Day of First Observation 537 729 Life Table Test (d) P=0.410N Logistic Regression Test (d) P=0.515N					
Overall Rates (a) 6/49 (12%) (e) 0/6 (0%) (e) 2/11 (18%) 6/48 (13%) Adjusted Rates (b) 19.7% 16.2% Terminal Rates (c) 4/27 (15%) 6/37 (16%) Day of First Observation 537 729 Life Table Test (d) P=0.410N Logistic Regression Test (d) P=0.515N	Fisher Exact Test (d)				P = 0.617
Adjusted Rates (b) 19.7% 16.2% Terminal Rates (c) 4/27 (15%) 6/37 (16%) Day of First Observation 537 729 Life Table Test (d) P=0.410N Logistic Regression Test (d) P=0.515N	Thyroid Gland: C-Cell Adenoma or Ca	rcinoma			
Adjusted Rates (b) 19.7% 16.2% Terminal Rates (c) 4/27 (15%) 6/37 (16%) Day of First Observation 537 729 Life Table Test (d) P=0.410N Logistic Regression Test (d) P=0.515N	Overall Rates (a)	6/49 (12%)	(e) 0/6 (0%)	(e) 2/11 (18%)	6/48 (13%)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$. , ,	, (***)	
Day of First Observation 537 729 Life Table Test (d) P=0.410N Logistic Regression Test (d) P=0.515N					
Logistic Regression Test (d) P=0.515N					
					_
	Fisher Exact Test (d)				P = 0.515N P = 0.606

TABLE B3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ-CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle Control	2 mg/kg	6 mg/kg	18 mg/kg
Uterus: Stromal Polyp				
Overall Rates (a)	5/50 (10%)	(e) 6/14 (43%)	(e) 7/20 (35%)	6/50 (12%)
Adjusted Rates (b)	15.0%			16.2%
Terminal Rates (c)	2/27 (7%)			6/37 (16%)
Day of First Observation	529			729
Life Table Test (d)				P = 0.560N
Logistic Regression Test (d)				P = 0.596
Fisher Exact Test (d)				P = 0.500
Hematopoietic System: Mononuclea	r Leukemia			
Overall Rates (a)	10/50 (20%)	2/50 (4%)	1/50 (2%)	1/50 (2%)
Adjusted Rates (b)	27.2%	4.6%	2.6%	2.7%
Terminal Rates (c)	2/27 (7%)	0/39 (0%)	0/36 (0%)	1/37 (3%)
Day of First Observation	529	617	711	729
Life Table Tests (d)	P = 0.010N	P = 0.005N	P = 0.003N	P = 0.002N
Logistic Regression Tests (d)	P = 0.013N	P = 0.015N	P = 0.004N	P = 0.004N
Cochran-Armitage Trend Test (d)	P = 0.012N			
Fisher Exact Test (d)		P = 0.014N	P = 0.004N	P = 0.004N

⁽a) Number of tumor-bearing animals/number of animals examined at the site; doses calculated as p-chloroaniline.

⁽b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

⁽c) Observed tumor incidence at terminal kill

⁽d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

TABLE B4a. HISTORICAL INCIDENCE OF SPLENIC SARCOMAS IN FEMALE F344/N RATS (a)

Historical Incidence for All Water Gavage Vehicle Controls (b)	Study	Incidence in Controls	
Malonaldehyde, sodium salt 0/50 Chlorpheniramine maleate 0/50 Tetrakis(hydroxymethyl)phosphonium chloride 0/50 Tetrakis(hydroxymethyl)phosphonium sulfate 0/49 Methyl carbamate 0/50 TOTAL 0/297 (0.0%) SD (c) 0.00% Range (d) High 0/50 Low 0/50 Overall Historical Incidence for Untreated Controls TOTAL (e) 1/1,961 (0.05%) SD (c) 0.40% Range (d) High 1/40	Historical Incidence for All Water Gavage Vehicle	Controls (b)	
Malonaldehyde, sodium salt 0/50 Chlorpheniramine maleate 0/50 Tetrakis(hydroxymethyl)phosphonium chloride 0/50 Tetrakis(hydroxymethyl)phosphonium sulfate 0/49 Methyl carbamate 0/50 TOTAL 0/297 (0.0%) SD (c) 0.00% Range (d) 0/50 Low 0/50 Overall Historical Incidence for Untreated Controls (e) 1/1,961 (0.05%) SD (c) 0.40% Range (d) 0.40% Range (d) 1/40	lodinated glycerol	0/48	
Chlorpheniramine maleate 0/50 Tetrakis(hydroxymethyl)phosphonium chloride 0/50 Tetrakis(hydroxymethyl)phosphonium sulfate 0/49 Methyl carbamate 0/50 TOTAL 0/297 (0.0%) SD (c) 0.00% Range (d) High 0/50 Low 0/50 Overall Historical Incidence for Untreated Controls TOTAL (e) 1/1,961 (0.05%) SD (c) 0.40% Range (d) High 1/40		0/50	
Tetrakis(hydroxymethyl)phosphonium chloride 0/50 Tetrakis(hydroxymethyl)phosphonium sulfate 0/49 Methyl carbamate 0/50 TOTAL 0/297 (0.0%) SD (c) 0.00% Range (d) 0/50 Low 0/50 Overall Historical Incidence for Untreated Controls (e) 1/1,961 (0.05%) TOTAL (e) 1/1,961 (0.05%) SD (c) 0.40% Range (d) 1/40 High 1/40	Chlorpheniramine maleate	0/50	
Tetrakis(hydroxymethyl)phosphonium sulfate		0/50	
Methyl carbamate 0/50 TOTAL 0/297 (0.0%) SD (c) 0.00% Range (d) 0/50 Low 0/50 Overall Historical Incidence for Untreated Controls TOTAL (e) 1/1,961 (0.05%) SD (c) 0.40% Range (d) 1/40 High 1/40		0/49	
SD (c) 0.00% Range (d) 0/50 1/50 Low 0/50 Overall Historical Incidence for Untreated Controls TOTAL (e) 1/1,961 (0.05%) SD (c) 0.40% Range (d) 1/40		0/50	
Range (d)	TOTAL	0/297 (0.0%)	
High	SD(c)	0.00%	
High	Range (d)		
Overall Historical Incidence for Untreated Controls TOTAL (e) 1/1,961 (0.05%) SD (c) 0.40% Range (d) High 1/40		0/50	
TOTAL (e) 1/1,961 (0.05%) SD (c) 0.40% Range (d) High 1/40	Low	0/50	
SD (c) 0.40% Range (d) High 1/40	Overall Historical Incidence for Untreated Control	s	
SD (c) 0.40% Range (d) High 1/40	TOTAL	(e) 1/1.961 (0.05%)	
High 1/40	- -		
High 1/40	Range (d)		
0		1/40	

⁽a) Data as of April 29, 1987, for studies of at least 104 weeks
(b) The methyl carbamate study was conducted at Microbiological Associates, and the iodinated glycerol study was conducted at EG&G Mason Research Institute; all other studies were performed by Battelle Columbus Laboratories.

⁽c) Standard deviation

⁽d) Range and SD are presented for groups of 35 or more animals.
(e) Sarcoma, NOS; no fibrosarcomas or osteosarcomas have been observed.

TABLE B4b. HISTORICAL INCIDENCE OF ADRENAL MEDULLARY TUMORS IN FEMALE F344/N RATS (a)

Study	Inc	idence in Controls
·	Pheochromocytoma	Pheochromocytoma or Malignant Pheochromocytoma
Historical Incidence for All Water Gavage V	ehicle Controls (b)	
odinated glycerol	1/49	2/49
Malonaldehyde, sodium salt	4/50	5/50
Chlorpheniramine maleate	3/50	3/50
Tetrakis(hydroxymethyl)phosphonium chloride	2/50	2/50
Tetrakis(hydroxymethyl)phosphonium sulfate	4/47	4/47
Methyl carbamate	4/49	4/49
TOTAL	18/295 (6.1%)	20/295 (6.8%)
SD(c)	2.63%	2.49%
Range (d)		
High	4/47	5/50
Low	1/49	2/50
Overall Historical Incidence for Untreated C	ontrols	
TOTAL	92/1,968 (4.7%)	99/1,968 (5.0%)
SD(c)	3.75%	3.70%
Range (d)		
High	8/50	8/50
Low	0/50	0/50

⁽a) Data as of April 29, 1987, for studies of at least 104 weeks
(b) The methyl carbamate study was conducted at Microbiological Associates, and the iodinated glycerol study was conducted at EG&G Mason Research Institute; all other studies were performed by Battelle Columbus Laboratories.

⁽c) Standard deviation

⁽d) Range and SD are presented for groups of 35 or more animals.

TABLE B4c. HISTORICAL INCIDENCE OF LEUKEMIA IN FEMALE F344/N RATS (a)

Incidence in Controls	
Controls (b)	
15/50	
5/50	
17/50	
75/299 (25.1%)	
14.90%	
23/49	
4/50	
ls	
383/1.983 (19.3%)	
6.66%	
15/50	
3/50	
	15/50 5/50 11/50 4/50 23/49 17/50 75/299 (25.1%) 14.90% 23/49 4/50 Is 383/1,983 (19.3%) 6.66%

⁽a) Data as of April 29, 1987, for studies of at least 104 weeks
(b) The methyl carbamate study was conducted at Microbiological Associates, and the iodinated glycerol study was conducted at EG&G Mason Research Institute; all other studies were performed by Battelle Columbus Laboratories.
(c) Standard deviation

⁽d) Range and SD are presented for groups of 35 or more animals.

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
nimals initially in study	50	······································	50	· · · · · · ·	50	.,	50	
nimals removed	50		50		50		50	
nimals examined histopathologically	50		50		50		50	
LIMENTARY SYSTEM	····			· · · · · · · · · · · · · · · · · · ·				
Esophagus	(50)		(8)		(12)		(50)	
Foreign body		(12%)	1	(13%)	3	(25%)		
Inflammation, chronic active		(2%)						
Intestine large, cecum	(40)		(4)		(3)		(46)	
Inflammation, chronic active				(25%)				
Parasite metazoan		(3%)		(25%)	(0)			(2%)
Intestine large, colon	(47)		(6)		(8)		(46)	(0 <i>a</i> ()
Inflammation, chronic active Inflammation, necrotizing					4	(190)	1	(2%)
Parasite metazoan	4	(9%)				(13%) (13%)	o	(70)
Intestine large, rectum	(45)	(370)	(3)		(6)	(1070)	(47)	(7%)
Parasite metazoan		(7%)	(0)		. ,	(17%)		(4%)
Liver	(50)	(170)	(50)		(50)	(11/0)	(50)	(=70)
Basophilic focus	,	(76%)		(90%)		(92%)		(88%
Clear cell focus	-	(,		(2%)		(01,0)		(6%)
Degeneration, cystic				(2%)			-	(-,-,
Degeneration, fatty	1	(2%)						
Fibrosis	1	(2%)						
Hepatodiaphragmatic nodule		(10%)		(4%)	_	(4%)	3	(6%)
Inflammation, chronic		(64%)		(60%)		(64%)		(72%)
Inflammation, necrotizing	1	(2%)	1	(2%)		(6%)		(2%)
Necrosis, coagulative Pigmentation, hemosiderin					2	(4%)		(2%)
Vacuolization cytoplasmic	9	(00)		(CM)				(2%)
Bile duct, hyperplasia		(6%) (16%)		(6%) (6%)		(2%)		(2%)
Portal vein, intima, proliferation	0	(10%)	J	(070)		(2%) (2%)	9	(18%)
Mesentery	(49)		(7)		(11)	(2%)	(47)	
Inflammation, chronic	(40)		2	(29%)		(18%)		(17%)
Necrosis				(29%)	4	(10%)		(2%)
Pancreas	(50)		(6)	(20 /0 /	(12)		(49)	(270)
Ectopic tissue	(30)		(3)		()			(2%)
Inflammation, chronic					2	(17%)		(4%)
Acinus, atrophy	13	(26%)	1	(17%)		(25%)		(31%)
Pharynx	(1)							,,,
Inflammation, chronic active	1	(100%)						
Salivary glands	(50)		(8)		(12)		(49)	
Inflammation, chronic active								(2%)
Stomach, forestomach	(50)	40~X	(5)		(9)		(48)	
Acanthosis		(2%)						
Hyperkeratosis Inflammation, chronic active		(2%) (2%)		(200)				(40%
Stomach, glandular		(2%)		(20%)	(0)			(4%)
Inflammation, chronic active	(50)	(2%)	(4)		(9)		(48)	(90%)
Necrosis, coagulative		(2%) (2%)	1	(25%)			1	(2%)
Tooth	(50)	(270)	(4)	(20 10)	(10)		(50)	
Inflammation, chronic active		(2%)	(=/		140)			(2%)

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
CARDIOVASCULAR SYSTEM								
Blood vessel	(49)		(8)		(12)		(49)	
Mesenteric artery, inflammation, chr			(0)		(12)			(4%)
Heart	(50)		(7)		(10)		(50)	(470)
Cardiomyopathy, chronic		(64%)		(29%)	, ,	(70%)		(88%)
Inflammation, chronic active	0-	(01/0)	,-	(2070)	•	(10,0)		(2%)
Coronary artery, inflammation, chron	nic active 1	(2%)	1	(14%)			•	(2 /0)
Endocardium, proliferation		(2,0)		(14%)				
Valve, inflammation, chronic active	1	(2%)		(==:,				
ENDOCRINE SYSTEM								
Adrenal gland	(50)		(50)		(50)		(50)	
Accessory adrenal cortical nodule	(00)		(00)			(2%)	(00)	
Adrenal gland, cortex	(50)		(50)		(50)	(4 /0)	(50)	
Angiectasis		(4%)	(00)			(2%)	(00)	
Cyst	-	(4/0)	1	(2%)	•	(270)		
Degeneration, fatty	4	(8%)		(20%)	Q	(18%)	11	(22%)
Hyperplasia		(26%)		(46%)	-	(36%)		(40%)
Hypertrophy		(2%)		(4%)	••	(00,0)	20	(40 10)
Necrosis		(6%)		(470)				
Adrenal gland, medulla	(50)	(0,0)	(50)		(50)		(50)	
Hyperplasia		(8%)		(8%)		(14%)		(48%)
Pituitary gland	(50)	(070)	(33)	(070)	(35)	(1470)	(50)	(40 /0)
Pars distalis, angiectasis		(4%)	1	(3%)	(00)		(00)	
Pars distalis, atypical cells		(470)	1	(0 10)	1	(3%)		
Pars distalis, cyst	2	(4%)	3	(9%)	$\overline{7}$	(20%)	12	(24%)
Pars distalis, degeneration, cystic	-	(470)	Ū	(370)	•	(20%)		(2%)
Pars distalis, hyperplasia	17	(34%)	18	(55%)	9	(26%)		(32%)
Pars distalis, inflammation, chronic		(0 = 70)		(00,0)	•	(20,0)		(2%)
Pars nervosa, hyperplasia, glandular								(4%)
Thyroid gland	(49)		(6)		(11)		(48)	(1,0)
Cyst	1	(2%)	(0)		(• •)		(40)	
Inflammation, chronic active	-	(= ///					1	(2%)
C-cell, hyperplasia	25	(51%)	3	(50%)	2	(18%)		(81%)
		(01/0)				(10%)		(01 ///)
GENERAL BODY SYSTEM None								
GENITAL SYSTEM								· · · · · · · · · · · · · · · · · · ·
Clitoral gland	(45)		(5)		(11)		(48)	
Hyperplasia		(4%)		(20%)		(9%)	,	(10%)
Inflammation, chronic active		(18%)		(20%)		(9%)		(15%)
Duct, dilatation	_		_			(9%)	,	/
Ovary	(50)		(15)		(15)		(49)	
Cyst		(8%)				(27%)		(8%)
Uterus	(50)	*	(14)		(20)		(50)	/
Dilatation		(4%)		(14%)		(25%)		(12%)
Hemorrhage, chronic				•	_	,		(2%)
Inflammation, chronic active			1	(7%)	1	(5%)		(2%)
Endometrium, hyperplasia, cystic, gla	ndulan Q	(1001)		(7%)		(15%)	_	(16%)

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

	venicie	Control	Low	Dose	Mid	Dose	High	Dose
HEMATOPOIETIC SYSTEM								
Blood	(32)		(45)		(37)		(43)	
Lymphopenia		(3%)	(/		(,		(/	
Neutropenia		(3%)						
Neutrophilia		(3%)	2	(4%)			3	(7%)
Bone marrow	(50)	(0 %)	(48)	(10)	(50)		(47)	(1,0)
Femoral, atrophy		(2%)		(2%)	(00)		(=1)	
Femoral, hemorrhage, acute	•	(2,0)		(2%)				
Femoral, hyperplasia	11	(22%)		(25%)	21	(42%)	37	(79%)
Femoral, hyperplasia, re cell	11	(22 /0)	12	(20 %)	21	(4270)		(9%)
Femoral, hyperplasia, reticulum cell	1	(2%)	2	(4%)	7	(14%)		(15%)
Lymph node	(50)	(270)	(12)	(470)	(17)	(1470)		(15%)
	(50)		(12)		(17)		(50)	(00)
Bronchial, pigmentation, hemosiderin								(2%)
Mediastinal, cyst								(4%)
Mediastinal, infiltration cellular, histioc	ytıc						2	(4%)
Mediastinal, inflammation, suppurative		(04)			1	(6%)		
Mediastinal, necrosis	1	(2%)						
Pancreatic, pigmentation, hemosiderin							1	(2%)
Renal, cyst						(6%)		
Renal, inflammation, chronic active					1	(6%)		
Lymph node, mandibular	(49)		(7)		(14)		(49)	
Cyst							2	(4%)
Hemorrhage	1	(2%)						
Hyperplasia, plasma cell	1	(2%)					1	(2%)
Infiltration cellular, histiocytic	1	(2%)					_	
Necrosis	1	(2%)						
Lymph node, mesenteric	(7)		(4)		(1)		(9)	
Cyst				(25%)		(100%)	(-)	
Ectasia				(25%)	_	(200,0)		
Edema	2	(29%)	_	(== /-/	1	(100%)		
Hemorrhage		(14%)				(100%)		
Hyperplasia, lymphoid	-	(2270)			•	(100%)	1	(11%)
Infiltration cellular, histiocytic	1	(14%)					•	(11,0)
Necrosis		(14%)						
Spleen	(50)	(1470)	(50)		(50)		(50)	
Cyst	(00)		(00)		(00)			(2%)
Depletion lymphoid	1	(2%)					1	(270)
Fibrosis		(2%)	9	(4%)	0	(6%)	40	10 AM.
Hematopoietic cell proliferation		(2%) (82%)		(4%) (96%)		(6%) (96%)		(84%) $(64%)$
Hyperplasia, lymphoid	41	(0470)		(2%)	40	(3070)	32	(0470)
			1	(470)			11	(00%
Infiltration cellular, lipocyte								(22%)
Inflammation, chronic active		(94)					1	(2%)
Necrosis		(2%)	40	(0.00/ \	40	(0.00/)	40	(000
Pigmentation, hemosiderin	39	(78%)	49	(98%)	49	(98%)		(96%)
Capsule, cyst	(40)		(0)		,			(6%)
Thymus	(42)		(8)		(11)		(44)	
Depletion lymphoid		(2%)						
Necrosis	1	(2%)						
NTEGUMENTARY SYSTEM								
Mammary gland	(49)		(17)		(22)		(50)	
Hyperplasia, cystic		(69%)		(65%)		(77%)		(96%)
Skin	(50)	(50,0)	(20)		(21)		(50)	.0070)
Inflammation, chronic active		(2%)	(40)		(21)		(00)	
Inflammation, necrotizing	-	\ - ~/						

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

v	ehicle	Control	Low	Dose	Mid	Dose	High	Dose
MUSCULOSKELETAL SYSTEM								•
Skeletal muscle	(49)		(5)		(10)		(50)	
Inflammation, chronic active	1	(2%)					1	(2%)
NERVOUS SYSTEM								
Brain	(50)		(5)		(10)		(50)	
Compression	4	(8%)	1	(20%)	4	(40%)	5	(10%)
Hydrocephalus		(6%)	1	(20%)			4	(8%)
Thrombus	1	(2%)						
RESPIRATORY SYSTEM								
Lung	(49)		(5)		(11)		(50)	
Granuloma			. ,				1	(2%)
Hemorrhage, acute	1	(2%)						
Inflammation, chronic active	5	(10%)					1	(2%)
Alveolar epithelium, hyperplasia	1	(2%)					2	(4%)
Mediastinum, inflammation, chronic activ	e 1	(2%)			1	(9%)	1	(2%)
Nose	(49)		(4)		(11)		(49)	
Foreign body	1	(2%)						
Inflammation, chronic active	3	(6%)					11	(22%)
Nasolacrimal duct, inflammation, chronic	active						2	(4%)
Nasolacrimal duct, inflammation, suppure	tive 2	(4%)					4	(8%)
SPECIAL SENSES SYSTEM								
Eye	(12)		(32)		(31)		(31)	
Inflammation, chronic		(8%)			1	(3%)	_	(3%)
Anterior chamber, inflammation, suppura	tive						1	(3%)
Cornea, inflammation, chronic				(3%)				
Lens, cataract		(83%)		(94%)		(97%)		(97%)
Retina, atrophy		(92%)		(100%)		(100%)		(100%)
Harderian gland	(42)		(6)		(11)		(44)	
Atrophy								(2%)
Inflammation, chronic	1	(2%)					6	(14%)
URINARY SYSTEM				**			:	
Kidney	(50)		(50)		(50)		(50)	
Cyst							1	(2%)
Inflammation, chronic active							1	(2%)
Nephropathy, chronic	39	(78%)	39	(78%)	45	(90%)	41	(82%)
Renal tubule, pigmentation, hemosiderin	44	(88%)	48	(96%)	50	(100%)	50	(100%)
Urinary bladder Inflammation, chronic active	(50)		(5)		(8)		(49)	
								(2%)

APPENDIX C

SUMMARY OF LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF p-CHLOROANILINE HYDROCHLORIDE

		PAGE
TABLE C1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWOYEAR GAVAGE STUDY OF $p\text{-}\text{CHLOROANILINE}$ HYDROCHLORIDE	172
TABLE C2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF p -CHLOROANILINE HYDROCHLORIDE	176
TABLE C3	ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF p -CHLOROANILINE HYDROCHLORIDE	190
TABLE C4a	HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN MALE $B6C3F_1$ MICE	193
TABLE C4b	HISTORICAL INCIDENCE OF CIRCULATORY SYSTEM TUMORS IN MALE $B6C3F_1$ MICE	194
TABLE C4c	HISTORICAL INCIDENCE OF HEMATOPOIETIC SYSTEM TUMORS IN MALE ${\tt B6C3F_1}$ MICE	195
TABLE C5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF p -CHLOROANILINE HYDROCHLORIDE	196

TABLE C1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF $\rho\text{-}CHLOROANILINE HYDROCHLORIDE}$

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
Animals initially in study	50		50		50		50	
Animals removed	50		50		50		50	
Animals examined histopathologically	50		49		50		50	
ALIMENTARY SYSTEM								
Gallbladder	(45)		*(49)		*(50)		(47)	
Lymphoma malignant histiocytic	1	(2%)						
Lymphoma malignant lymphocytic					1	(2%)		
Intestine large, colon	(48)		*(49)		*(50)		(48)	
Cholangiocarcinoma, metastatic, liver				(2%)				
Intestine small, duodenum	(48)		*(49)		*(50)		(45)	
Lymphoma malignant lymphocytic						(2%)		
Intestine small, jejunum	(47)		*(49)		*(50)		(47)	
Adenocarcinoma		(2%)						
Lymphoma malignant histiocytic		(2%)				(0.01)		
Lymphoma malignant lymphocytic	1	(2%)			1	(2%)		
Peyer's patch, lymphoma malignant lymphocytic				(0.01)	^	(101)		
	1 0	(400)	1	(2%)	Z	(4%)		(00)
Peyer's patch, lymphoma malignant mix Liver		(4%)	(40)		(E 0)			(2%)
Cholangiocarcinoma	(50)		(49)	(90)	(50)		(50)	
Hemangiosarcoma	0	(4%)		(2%)		(00)	0	(00)
Hemangiosarcoma, multiple	Z	(4%)		(2%)	1	(2%)	3	(6%)
Hepatocellular carcinoma	9	(4%)		(2%)	0	(100)	-	(6%)
Hepatocellular carcinoma, multiple		(2%)	- ((14%)		(16%) (6%)		(26%) (8%)
Hepatocellular adenoma		(14%)	11	(22%)		(16%)	3	(6%)
Hepatocellular adenoma, multiple		(4%)		(8%)		(16%) (4%)		(2%)
Hepatocholangiocarcinoma	4	(470)	*	(070)		(2%)	1	(270)
Lymphoma malignant histiocytic	3	(6%)	1	(2%)		(2%)		
Lymphoma malignant lymphocytic	U	(070)	•	(270)		(6%)		
Lymphoma malignant mixed	1	(2%)			J	(0 /0 /	1	(2%)
Mesentery	*(50)	(470)	*(49)		*(50)		*(50)	(270)
Lymphoma malignant histiocytic	,	(2%)	(40)		(00)		(00)	
Pancreas	(49)	(= /0/	*(49)		*(50)		(49)	
Hemangiosarcoma	/		(23)		(30)			(2%)
Lymphoma malignant histiocytic	1	(2%)					•	,— · • <i>i</i>
Lymphoma malignant lymphocytic		-			1	(2%)		
Lymphoma malignant mixed		(2%)					1	(2%)
Salivary glands	(50)		*(49)		*(50)		(49)	
Lymphoma malignant mixed								(2%)
Stomach, forestomach	(49)		*(49)		*(50)		(48)	
Papilloma squamous		(4%)						
Stomach, glandular	(50)		*(49)		*(50)		(48)	(OC)
Adenocarcinoma						(0.00)	1	(2%)
Lymphoma malignant lymphocytic Serosa, fibrosarcoma, metastatic, skin					1	(2%)	1	(2%)
ARDIOVASCULAR SYSTEM								,
Heart	(50)		*(49)		*(50)		(50)	
Fibrosarcoma, metastatic, multiple, skin								(2%)
Lymphoma malignant lymphocytic					1	(2%)		
Epicardium, sarcoma			-			(2%)		

TABLE C1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle	Control	Low Dose	Mid	Dose	High	Dose
ENDOCRINE SYSTEM		·					
Adrenal gland	(49)		*(49)	*(50)		(50)	
Capsule, adenoma	(10)		(10)	(00)			(4%)
Adrenal gland, cortex	(49)		*(49)	*(50)		(50)	
Fibrosarcoma, metastatic, skin						1	(2%)
Lymphoma malignant histiocytic	1	(2%)		_			
Lymphoma malignant lymphocytic	_			2	(4%)		
Lymphoma malignant mixed		(2%)	*/40>	+/20)		(50)	
Adrenal gland, medulla	(49)	(OM)	*(49)	*(50)		(50)	
Lymphoma malignant histiocytic	1	(2%)		1	(2%)		
Lymphoma malignant lymphocytic Pituitary gland	(40)		*(49)	*(50)	(270)	(41)	
Lymphoma malignant lymphocytic	(40)		(40)		(2%)	(41)	
Thyroid gland	(50)		*(49)	*(50)	(2 /0)	(48)	
Lymphoma malignant histiocytic		(2%)	(10)	(00)		(40)	
Lymphoma malignant lymphocytic	•	(- /		1	(2%)		
C-cell, adenoma			1 (2%)	_	,		
Follicular cell, adenoma	4	(8%)	,			3	(6%)
GENERAL BODY SYSTEM None	N				1		
GENITAL SYSTEM							
Epididymis	(49)		*(49)	*(50)		(49)	
Lymphoma malignant lymphocytic				1	(2%)		(O#)
Lymphoma malignant mixed	440)		*(40)	*("0)			(2%)
Prostate	(48)		*(49)	*(50)	(00)	(50)	
Lymphoma malignant lymphocytic	(40)		*(40)		(2%)	(50)	
Testes Lymphoma malignant lymphocytic	(49)		*(49)	*(50)	(2%)	(00)	
Interstitial cell, adenoma	1	(2%)		•	(270)		
HEMATOPOIETIC SYSTEM							
Blood	*(50)		*(49)	*(50)		*(50)	
Lymphoma malignant lymphocytic				1	(2%)		
Bone marrow	(50)		*(49)	*(50)		(50)	
Lymphoma malignant histiocytic	2	(4%)					
Lymphoma malignant lymphocytic				1	(2%)		.a~:
		(2%)				1	(2%)
Lymphoma malignant mixed	4						(4%)
Femoral, hemangiosarcoma		(2%)	*(40)	*(50)		/4D\	
Femoral, hemangiosarcoma Lymph node	(49)	(2%)	*(49)	*(50)	(2%)	(49)	
Femoral, hemangiosarcoma Lymph node Lymphoma malignant histiocytic		(2%)	*(49)		(2%)	•	(2%)
Femoral, hemangiosarcoma Lymph node Lymphoma malignant histiocytic Lymphoma malignant mixed		(2%)	*(49)		(2%)	1	(2%) (2%)
Femoral, hemangiosarcoma Lymph node Lymphoma malignant histiocytic Lymphoma malignant mixed Lumbar, lymphoma malignant mixed	(49)		*(49)		(2%)	1	(2%) (2%)
Femoral, hemangiosarcoma Lymph node Lymphoma malignant histiocytic Lymphoma malignant mixed Lumbar, lymphoma malignant mixed Mediastinal, lymphoma malignant his	(49)		*(49)	1	(2%) (4%)	1	
Femoral, hemangiosarcoma Lymph node Lymphoma malignant histiocytic Lymphoma malignant mixed Lumbar, lymphoma malignant mixed	(49) stiocytic 2 nphocytic		*(49)	1		1	(2%)
Femoral, hemangiosarcoma Lymph node Lymphoma malignant histiocytic Lymphoma malignant mixed Lumbar, lymphoma malignant mixed Mediastinal, lymphoma malignant his Mediastinal, lymphoma malignant lyr	(49) stiocytic 2 nphocytic xed 3	(4%)	*(49)	1		1 1	(2%)
Femoral, hemangiosarcoma Lymph node Lymphoma malignant histiocytic Lymphoma malignant mixed Lumbar, lymphoma malignant mixed Mediastinal, lymphoma malignant lym Mediastinal, lymphoma malignant mix Mediastinal, lymphoma malignant mix Pancreatic, lymphoma malignant mix Renal, lymphoma malignant lymphocy	(49) stiocytic 2 nphocytic xed 3 ed 1 ytic	(4%) (6%) (2%)	*(49)	2		1 1 1	(2%) (2%) (2%)
Femoral, hemangiosarcoma Lymph node Lymphoma malignant histiocytic Lymphoma malignant mixed Lumbar, lymphoma malignant mixed Mediastinal, lymphoma malignant his Mediastinal, lymphoma malignant mix Mediastinal, lymphoma malignant mix Pancreatic, lymphoma malignant mix Renal, lymphoma malignant lymphocy Renal, lymphoma malignant lymphocy	stiocytic 2 mphocytic xed 3 ed 1 ytic	(4%) (6%)		2	(4%)	1 1 1 1	(2%) (2%)
Femoral, hemangiosarcoma Lymph node Lymphoma malignant histiocytic Lymphoma malignant mixed Lumbar, lymphoma malignant mixed Mediastinal, lymphoma malignant lym Mediastinal, lymphoma malignant mix Mediastinal, lymphoma malignant mix Renal, lymphoma malignant mix Renal, lymphoma malignant mixed Lymph node, mandibular	stiocytic 2 nphocytic xed 3 ed 1 ytic 1 (48)	(4%) (6%) (2%) (2%)	*(49)	2	(4%)	1 1 1	(2%) (2%) (2%)
Femoral, hemangiosarcoma Lymph node Lymphoma malignant histiocytic Lymphoma malignant mixed Lumbar, lymphoma malignant mixed Mediastinal, lymphoma malignant his Mediastinal, lymphoma malignant mix Mediastinal, lymphoma malignant mix Renal, lymphoma malignant mix Renal, lymphoma malignant mix Renal, lymphoma malignant mixed Lymph node, mandibular Lymphoma malignant histiocytic	stiocytic 2 nphocytic xed 3 ed 1 ytic 1 (48)	(4%) (6%) (2%) (2%) (2%)		1 2 1 *(50)	(4%) (2%)	1 1 1 1	(2%) (2%) (2%)
Femoral, hemangiosarcoma Lymph node Lymphoma malignant histiocytic Lymphoma malignant mixed Lumbar, lymphoma malignant mixed Mediastinal, lymphoma malignant his Mediastinal, lymphoma malignant lym Mediastinal, lymphoma malignant mix Pancreatic, lymphoma malignant mix Renal, lymphoma malignant mix Renal, lymphoma malignant mixed Lymphoma malignant mixed Lymphoma malignant histiocytic Lymphoma malignant lymphocytic	stiocytic 2 nphocytic xed 3 ed 1 ytic 1 (48)	(4%) (6%) (2%) (2%) (2%) (2%)		1 2 1 *(50)	(4%)	1 1 1 1 (49)	(2%) (2%) (2%) (2%)
Femoral, hemangiosarcoma Lymph node Lymphoma malignant histiocytic Lymphoma malignant mixed Lumbar, lymphoma malignant mixed Mediastinal, lymphoma malignant his Mediastinal, lymphoma malignant lym Mediastinal, lymphoma malignant mix Renal, lymphoma malignant mix Renal, lymphoma malignant mixed Lymph node, mandibular Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed	stiocytic 2 nphocytic xed 3 ed 1 ytic 1 (48)	(4%) (6%) (2%) (2%) (2%)		1 2 1 *(50)	(4%) (2%)	1 1 1 (49)	(2%) (2%) (2%) (2%)
Femoral, hemangiosarcoma Lymph node Lymphoma malignant histiocytic Lymphoma malignant mixed Lumbar, lymphoma malignant mixed Mediastinal, lymphoma malignant his Mediastinal, lymphoma malignant lym Mediastinal, lymphoma malignant mix Pancreatic, lymphoma malignant mix Renal, lymphoma malignant mix Renal, lymphoma malignant mixed Lymph node, mandibular Lymphoma malignant histiocytic Lymphoma malignant lymphocytic	atiocytic 2 nphocytic xed 3 ed 1 ytic 1 (48) 1 1 3	(4%) (6%) (2%) (2%) (2%) (2%)		1 2 1 *(50)	(4%) (2%)	1 1 1 (49)	(2%) (2%) (2%) (2%)

TABLE C1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ-CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
HEMATOPOIETIC SYSTEM (Continued)								
Lymph node, mesenteric	(22)		*(49)		*(50)		(17)	
Hemangiosarcoma	, ,	(5%)	(10)		(00)		(,	
Lymphoma malignant histiocytic		(9%)						
Lymphoma malignant lymphocytic		(5%)	2	(4%)	5	(10%)		
Lymphoma malignant mixed		(14%)		(-,-,	•	(,	1	(6%)
Spleen	(50)		(47)		(49)		(49)	(0,0)
Hemangiosarcoma	, ,	(6%)		(4%)	(10)			(10%
Lymphoma malignant histiocytic		(6%)	_	(2,0)	1	(2%)	·	(20%
Lymphoma malignant lymphocytic		(2%)				(10%)		
Lymphoma malignant mixed		(6%)			Ū	(10,0)	2	(4%)
Thymus	(36)		*(49)		*(50)		(27)	(1,0)
Lymphoma malignant histiocytic		(3%)	(40)		(00)		(21)	
Lymphoma malignant lymphocytic	•	(0 /0)			1	(2%)		
Lymphoma malignant mixed						(270)	1	(4%)
Sarcoma, metastatic, uncertain primar	ar aita				1	(2%)	1	(4:70)
Sarcoma, metastatic, uncertain primai	y site				1	(270)		
INTEGUMENTARY SYSTEM								
Skin	(49)		*(49)		*(50)		(49)	
Basosquamous tumor benign			,		, ,			(2%)
Papilloma squamous					1	(2%)		,
Subcutaneous tissue, fibroma	3	(6%)	4	(8%)		(10%)	1	(2%)
Subcutaneous tissue, fibrosarcoma		(12%)		(6%)		(16%)		(8%)
Subcutaneous tissue, fibrosarcoma, mu	ltiple	(1270)	·	(0,0)		(2%)	•	(0,0)
Subcutaneous tissue, lymphoma malig					•	(2,0)		
lymphocytic					1	(2%)		
Subcutaneous tissue, melanoma malig	nant		1	(2%)	•	(2 %)		
Subcutaneous tissue, sarcoma			•	(270)	1	(2%)		
MUSCULOSKELETAL SYSTEM Skeletal muscle Intercostal, fibrosarcoma, metastatic, s	*(50) kin		*(49)		*(50)		*(50) 1	(2%)
NERVOUS SYSTEM			***					
Brain	(50)		*(49)		*(50)		(50)	
Lymphoma malignant lymphocytic	(55)		(10)			(2%)	(00)	
-Jpoma mangnanti ij inpitocy tic								
RESPIRATORY SYSTEM	/#A\		4/10:		#/#A:		/ 	
RESPIRATORY SYSTEM	(50)	(9%)	*(49)	(0 <i>m</i>)	*(50)	(100)	(50)	(O~)
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma	4	(8%)		(8%)	,	(10%)		(8%)
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multip	4 e 1	(2%)	4		5		4	
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multipl Alveolar/bronchiolar carcinoma	e 1 3		4	(8%) (2%)	5	(10%) (6%)	4	(6%)
ESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic, multiple, sk	e 1 3	(2%)	4		5		4 3 1	(6%) (2%)
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic, multiple, sk Hemangiosarcoma, metastatic, liver	4 e 1 3	(2%) (6%)	1	(2%)	5 3	(6%)	3 1 1	(6%) (2%) (2%)
ESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic, multiple, sk Hemangiosarcoma, metastatic, liver Hepatocellular carcinoma, metastatic,	4 1 3 in liver 1	(2%)	1		5 3 2	(6%) (4%)	3 1 1	(6%) (2%) (2%)
ESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic, multiple, sk Hemangiosarcoma, metastatic, liver Hepatocellular carcinoma, metastatic, Hepatocholangiocarcinoma, metastatic	4 1 3 3 in liver 1 t, liver	(2%) (6%) (2%)	1	(2%)	5 3 2	(6%)	3 1 1	(6%) (2%) (2%)
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic, multiple, sk Hemangiosarcoma, metastatic, liver Hepatocellular carcinoma, metastatic, Hepatocholangiocarcinoma, metastatic Lymphoma malignant histiocytic	4 1 3 3 in liver 1 t, liver	(2%) (6%)	1	(2%)	5 3 2 1	(6%) (4%) (2%)	3 1 1	(6%) (2%) (2%)
Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic, multiple, sk Hemangiosarcoma, metastatic, liver Hepatocellular carcinoma, metastatic, Hepatocholangiocarcinoma, metastatic Lymphoma malignant histiocytic Lymphoma malignant lymphocytic	4 1 3 in liver 1 ., liver 2	(2%) (6%) (2%) (4%)	1	(2%)	5 3 2 1	(6%) (4%)	3 1 1 9	(6%) (2%) (2%) (18%)
Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multipi Alveolar/bronchiolar adenoma, multipi Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic, multiple, sk Hemangiosarcoma, metastatic, liver Hepatocellular carcinoma, metastatic, Hepatocholangiocarcinoma, metastatic Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed	4 1 3 in liver 1 ., liver 2	(2%) (6%) (2%)	1	(2%)	5 3 2 1	(6%) (4%) (2%)	3 1 1 9	(6%) (2%) (2%)
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic, multiple, sk Hemangiosarcoma, metastatic, liver Hepatocellular carcinoma, metastatic, Hepatocholangiocarcinoma, metastatic Lymphoma malignant histiocytic Lymphoma malignant lymphocytic	4 1 3 in liver 1 ., liver 2	(2%) (6%) (2%) (4%)	1	(2%)	5 3 2 1	(6%) (4%) (2%)	3 1 1 9	(6%) (2%) (2%) (18%)
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic, multiple, sk Hemangiosarcoma, metastatic, liver Hepatocellular carcinoma, metastatic, Hepatocholangiocarcinoma, metastatic Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed	4 1 3 in liver 1 ., liver 2	(2%) (6%) (2%) (4%)	1	(2%)	5 3 2 1	(6%) (4%) (2%)	3 1 1 9	(6%) (2%) (2%) (18%)
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic, multiple, sk Hemangiosarcoma, metastatic, liver Hepatocellular carcinoma, metastatic, Hepatocholangiocarcinoma, metastatic Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed Melanoma malignant, metastatic, skin	4 1 3 in liver 1 ., liver 2	(2%) (6%) (2%) (4%)	1	(2%)	5 3 2 1	(6%) (4%) (2%) (4%)	3 1 1 9	(6%) (2%) (2%) (18%)

TABLE C1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
SPECIAL SENSES SYSTEM								
Harderian gland	*(50)		*(49)		*(50)		*(50)	
Adenoma	5	(10%)	2	(4%)	1	(2%)	4	(8%)
Adenoma, multiple							1	(2%)
Lymphoma malignant histiocytic	2	(4%)						
Lymphoma malignant lymphocytic					1	(2%)		
URINARY SYSTEM								
Kidney	(50)		*(49)		*(50)		(49)	
Lymphoma malignant histiocytic		(4%)	/		1-2/		/	
Lymphoma malignant lymphocytic	_				2	(4%)		
Lymphoma malignant mixed	1	(2%)				•	2	(4%)
Urinary bladder	(49)		*(49)		*(50)		(50)	
Lymphoma malignant lymphocytic					2	(4%)		
SYSTEMIC LESIONS								
Multiple organs	*(50)		*(49)		*(50)		*(50)	
Lymphoma malignant mixed		(10%)	(10)		(/			(6%)
Lymphoma malignant histiocytic	-	(6%)	1	(2%)	1	(2%)		(-,-,
Lymphoma malignant lymphocytic		(4%)		(4%)	8	(16%)		
Hemangiosarcoma		(8%)	4	(8%)	1	(2%)	10	(20%
ANIMAL DISPOSITION SUMMARY								
Animals initially in study	50		50		50		50	
Terminal sacrifice	43		36		29		35	
Moribund	3		6		12		9	
Dead	4		7		9		6	
Missing			1					
TUMOR SUMMARY								
Total animals with primary neoplasms **	40		30		35		36	
Total primary neoplasms	56		46		59		59	
Total animals with benign neoplasms	23		20		17		18	
Total benign neoplasms	29		26		22		21	
Total animals with malignant neoplasms	25		16		28		27	
Total malignant neoplasms	27		20		37		38	
Total animals with secondary neoplasms ***	• 1		2		3		10	
Total secondary neoplasms	1		4		4		16	
Total animals with malignant neoplasms					1			

^{*} Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.

** Primary tumors: all tumors except secondary tumors

*** Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF p-CHLOROANILINE HYDROCHLORIDE: VEHICLE CONTROL

CARCASS ID CARCASS ID ALIMENTARY SYSTEM Esophagus Gallbladder Lymphoma malignant histiocytic Intestine large, cecum Intestine large, colon Intestine large, colon Intestine large, cretum Intestine large, cretum Intestine large, cretum Intestine large, cretum Intestine mail: Intestine large, colon Intestine large, colon Intestine large, colon Intestine large, colon Intestine large, colon Intestine large, colon Intestine large, colon Intestine large, colon Intestine large, colon Intestine large, colon Intestine large, colon Intestine large, colon Intestine large, colon Intestine large, colon Intestine large, colon Intestine large, colon Intestine large, colon I	1 1 0 0 5 5 5 3 3 3 4 4 + + + + + + + + + + + + + + +	1 0 5 7 4 ++ ++ ++
ALIMENTARY SYSTEM Esophagus Galibladder Lymphoma malignant histocytic Intestine large, coton Intestine large, coton Intestine large, coton Intestine large, coton Intestine large, coton Intestine large, coton Intestine large, coton Intestine large, coton Intestine large, coton Intestine large, coton Intestine large, coton Intestine large, coton Intestine large, coton Intestine large, coton Intestine large, coton Intestine large, coton Intestine large, coton Intestine large, coton Intestine small, doudenum Intestine small, doudenum Intestine small, doudenum Intestine small, sipunum Intesti	3 4 + + + + + + + + + + + + + + +	+++++
A M A A A + + + + + + + + + + + + + + +	+ + + + + + + +	+ ++++
Lymphoma malignant histiocytic Intastine large, cecum	+ + + + + + + +	+ ++++
Lymphoma malignant histiocytic Intestine large, celon M A + + + + + + + + + + + + + + + + + +	+ + + + + + + +	+++++
A	+ + + + + + + +	+++
Intestine large, rectum	+ + + + + +	+
Intestine large, rectum	+ + + + +	+
A A + + + + + + + + + + + + + + + + +		
Intesties small, ileum		
A A A + + + + + + + + + + + + + + + +	+ +	
Adenocarcinoma		+
Lymphoma malignant lymphocytic		
Hemangiosarcoma	+ +	+
Hepatocellular adenoma		
Hejatocellular adenome, multiple	хх	
X Mesentery		
Messentery + Lymphoma malignant histocytic X Pancreas + A + + + + + + + + + + + + + + + + + +		
Lymphoma malignant histocytic		
Lymphoma malignant histocytic X		
Lymphoma malignant mixed Salivary glands	+ +	+
Salivary glands Stomach Stomach, forestomach Stomach, forestomach Stomach, glandular Tooth CARDIOVASCULAR SYSTEM Heart ENDOCRINE SYSTEM Adrenal gland Adrenal gland Acrenal gland, cortex Lymphoma malignant histocytic X Salivary glands + + + + + + + + + + + + + + + + + + +		
+ + + + + + + + + + + + + + + + + + +	+ +	+
Papilloma squamous	+ +	+
+ + + + + + + + + + + + + + + + + + +	т т	-
CARDIOVASCULAR SYSTEM Heart + + + + + + + + + + + + + + + + + + +	+ +	+
Heart	+ +	+
ENDOCRINE SYSTEM Adrenal gland, cortex + + + + + + + + + + + + + + + + + + +		
Adrenal gland + + + + + + + + + + + + + + + + + + +	+ +	+
Adrenal gland Adrenal gland, cortex + + + + + + + + + + + + + + + + + + +		
Lymphoma malignant histiocytic X	+ +	+
Lymphoma malignant nisticcytic X	+ +	+
Adrenal gland, medulla $+ + + + + + + + + + + + + + + + + + +$	+ +	+
Lymphoma malignant histiocytic X		
Islets, pancreatic	+ +	+
Pituitary gland $M M + + + + + + + + + + + + + + + + + $	+ M	
Thyroid gland $+ + + + + + + + + + + + + + + + + + +$	+ +	+
Lymphoma malignant histocytic Follicular cell, adenoma		
GENERAL BODY SYSTEM None		
GENITAL SYSTEM		
Epididymis	+ +	+
Proptate	+ M	+
Seminal vesicle + + + + + + + + + + + + + + + + + + +		,
Testes	+ +	+
Interstitial cell, adenoma X	+ + +	

^{+:} Tissue examined microscopically
: Not examined
-: Present but not examined microscopically
I: Insufficient tissue

M: Missing
 A: Autolysis precludes examination
 X: Incidence of listed morphology

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: VEHICLE CONTROL (Continued)

								(0	on	LIII	Tea	.,														
WEEKS ON STUDY	0 5	1 0 5	0 5	0 5	0 5	1 0 5	0 5	1 0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	1 0 5	0 5	1 0 5	0 5	0 5	0 5	1 0 5	
CARCASS ID	3 8 1	3 9 2	3 9 4	3 1 3	3 1 4	3 2 5	3 4 2	3 5 3	3 6 4	3 7 3	3 8 5	3 9 1	3 9 3	4 0 1	0 3	4 0 4	3 1 1	3 3 3	3 3 5	3 6 5	3 7 2	3 7 5	3 8 3	3 8 4	3 9 5	TOTAL TISSUE: TUMOR
LIMENTARY SYSTEM	·		-										-													
sophagus Fallbladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymphoma malignant histiocytic	†	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	45 1
ntestine large	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
ntestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
testine large, colon	1 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
ntestine large, rectum	+	+	+	+	<u> </u>	+	+	+	+	M +	+	+	+	+	+	+	+	+	+	++	+	++	+	+	++	46 48
ntestine small, duodenum	1 +	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	Ŧ	Ŧ	+	+	+	+	+	48
itestine small, ileum	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	÷	+	+	÷	+	+	÷	+	47
testine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Adenocarcinoma	ı														X											1
Lymphoma malignant histiocytic Lymphoma malignant lymphocytic																										1 1
Peyer's patch, lymphoma malignant																										1 *
mixed				X																						2
iver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma Hepatocellular carcinoma																					X					2 2
Hepatocellular carcinoma, multiple																					Λ.					1
Hepatocellular adenoma	- 1		X										X						Х							7
Hepatocellular adenoma, multiple	1										X															2
Lymphoma malignant histiocytic	- 1																									3
Lymphoma malignant mixed	1																									1
lesentery Lymphoma malignant histiocytic	1																									1 1
ancreas	1 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Lymphoma malignant histiocytic													•								•	·		•	·	1
Lymphoma malignant mixed	1 .																						Х			1
allvary glands tomach	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 50
tomach, forestomach	1 7	+	Ŧ	+	+	+	Ŧ	Ŧ	M	Ŧ	+	+	Ŧ	+	+	Ŧ	Ŧ	+	Ŧ	+	Ţ	7	Ŧ	+	Ţ	49
Papilloma squamous				,							•			•				,			•				,	2
tomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
'ooth	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ARDIOVASCULAR SYSTEM																										
leart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
NDOCRINE SYSTEM	1.																									
drenal gland drenal gland, cortex	1 ‡	+	<u>+</u>	+	<u>+</u>	+	+	Ť	+	+	<u>+</u>	1	+	+	+	+	+	+	+	+	+	+	+	+	+	49 49
Lymphoma malignant histiocytic	1 '				т	1	-	•	•	-	,	r	*	т-	т	τ	т-	Τ.	т	т.	т	_	т	_	_	1
Lymphoma malignant mixed	1																									1
drenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Lymphoma malignant histiocytic	١.																									1
slets, pancreatic arathyroid gland	+ M	+ M	+	+	+	+ M	+ M	+ M	+	+	, M	, M	+	ľ	+	+	+	+	+ M	+	+	, M	+	+	+	49 36
ituitary gland	M	M	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	Ŧ	M	+	Ŧ	+	Ŧ	+	+	40
hyroid gland	+	+	+	÷	+	+	+	+	÷	÷	+	÷	+	÷	÷	÷	÷	÷	+	÷	+	÷	+	+	÷	50
Lymphoma malignant histiocytic	1					_:																				1
Follicular cell, adenoma	1	X				X	X												X							4
ENERAL BODY SYSTEM																										
ENITAL SYSTEM																										
pididymis	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
reputial gland	+													+							-					2
rostate	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
	- 1			+				+			+						+	+			+	+	+			19
		.4.					8.4	4	1	.1	.1	4	1.	.1	-1	1.						,				4.0
eminal vesicle 'estes Interstitial cell, adenoma	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: VEHICLE CONTROL (Continued)

					` -				•																
WEEKS ON STUDY	7 1	0 7 2	0 7 8	0 8 5	0 9 4	0 9 6	0 9 6	1 0 4	1 0 4	0 4	1 0 4	1 0 4	0 4	1 0 4	1 0 4	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5
CARCASS ID	3 2 2	3 4 4	3 1 2	3 4 5	3 7 1	3 5 1	3 2 1	3 4 1	3 5 2	3 5 5	3 6 1	3 6 2	3 6 3	3 8 2	0 2	3 3 2	4 0 5	3 1 5	3 2 3	3 2 4	3 3 1	3 3 4	3 4 3	3 5 4	3 7 4
HEMATOPOIETIC SYSTEM Blood Bone marrow Lymphoma malignant histiocytic Lymphoma malignant mixed	†	+	+	++	+ X	+	+	+	+	+	++	+	+	+	*	+	+	+	+	+	+	+	+	+	+
Femoral, hemangiosarcoma Lymph node Mediastimal, lymphoma malignant histiocytic	+ x	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X
Mediastinal, lymphoma malignant mixed Pancreatic, lymphoma malignant mixed Renal, lymphoma malignant mixed Lymph node, mandibular	+	+	+	+	X	+	+	+	+	+	X +	+	I	+	+	+	+	+	+	+	+	+	+	+	+
Lymphoma malignant histiccytic Lymphoma malignant lymphocytic Lymphoma malignant mixed Lymph node, mesenteric	+	M	м	+	X M	м	X M	<u>.</u>	м	M	м	M	+	M	+	M	M	M	+	M	M	+	М	м	+
Hemangiosarcoma Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed	x							х							X										x
Spleen Hemangiosarcoma Lymphoma malignant histiocytic Lymphoma malignant lymphocytic	x	+	+	+	+	+	x	+	+	x	+	+	+	+	×	+	+	+	+	+	+	+	+	+	+
Lymphoma malignant mixed Thymus Lymphoma malignant histiocytic	+	M	+	М	X +	+	*	+	M	M	M	+	+	+	+	+	M	+	+	M	+	M	+	+	X +
INTEGUMENTARY SYSTEM Mammary gland Skin Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma	M +	М + Х	M +	M + X	M +	М + Х	M +	M +	M +	M +	M +	M +	M	M +											
MUSCULOSKELETAL SYSTEM Bone	+	+	+	+	+	+	+	+	+	+	Ī	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+ X	+	+	+	+	+	+	+	+
Hepatocellular carcinoma, metastatic, Sver Dymphoma malignant histiocytic Dymphoma malignant mixed Nose	x	_	_	_	X	_	_	_	X	_	_	_		_	x	_	_	_	_		_	+	.	+	_
Trachea	_ +	+	+	+	+	+	÷	+	+	÷	+	+	÷	÷	+	+	+	+	+	÷	+	+	+	÷	<u>+</u>
SPECIAL SENSES SYSTEM Eye Harderian gland Adenoma Lymphoma malignant histocytic	+ X	+	+	+	+	+	+ X	+	+	+	x	+	+	+	+	+	+	x	+	++	+	+	+	+ + X	+
URINARY SYSTEM Kidney Lymphoma malignant histiocytic Lymphoma malignant mixed	+ x	+	+	+	+ X	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: VEHICLE CONTROL (Continued)

								,,	UII	CIII.	ueu	.,														
WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	0 5	0 5	1 0 5	0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	TOTAL:
CARCASS ID	3 8 1	3 9 2	3 9 4	3 1 3	3 1 4	3 2 5	3 4 2	3 5 3	3 6 4	3 7 3	3 8 5	3 9 1	3 9 3	4 0 1	0 3	4 0 4	3 1 1	3 3 3	3 3 5	3 6 5	3 7 2	3 7 5	3 8 3	3 8 4	3 9 5	TISSUES
HEMATOPOIETIC SYSTEM Blood Bone marrow Lymphoma malignant histocytic Lymphoma malignant mixed	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 2 1
Fémoral, hemangiosarcoma Lymph node Mediastinal, lymphoma malignant histiocytic	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	1 49 2
Mediastinal lymphoma malig, mixed Pancreatic, lymphoma malignant mixed Renal, lymphoma malignant mixed Lymph node, mandibular Lymphoma malignant histocytic Lymphoma malignant lymphocytic	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	X X +	+	+	3 1 1 48 1
Lymphoma malignant mixed Lymph node, mesenteric Hemangiosarcoma Lymphoma malignant histiocytic	+	+	+	X +	M	M	+	M	+	M	M	+	+	+	M	M	+	+	+	M	M	M	X	+	М	3 22 1 2
Lymphoma malignant lymphocytic Lymphoma malignant mixed Spleen Hemangiotarcoma Lymphoma malignant histiocytic	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	*	+	x +	+	+	*	+	X +	+	+	1 3 50 3 3
Lymphoma malignant lymphocytic Lymphoma malignant mixed Thymus Lymphoma malignant histiocytic	+	+	+	+	+	+	M	+	+	+	M	М	+	+	+	M	+	X M	I	+	+	+	X +	+	+	1 3 36 1
INTEGUMENTARY SYSTEM Mammary gland Skin Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma	M +	M +	M + X	M +	M +	M +	M + X	M +	M +	M +	M +	M +	M + X	M +	M +	M +	M +	M + X	M +	M +	M +	M +	M +	M + X X	M +	49 3 6
MUSCULOSKELETAL SYSTEM Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
RESPIRATORY SYSTEM Ling Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic,	+	+	+	+	+	+	+	*	+ X	+	+	+	+	*	+	+	+	+	+	+ X	+	+ X	+	+	*	50 4 1 3
liver Lymphoma malignant histocytic Lymphoma malignant mixed Nose Trachea	+	+	+	+	++	++	+ +	+	++	++	++	+ +	++	++	+	++	+++	+ +	++	++	++	+++	+ +	++	++	1 2 1 50 50
SPECIAL SENSES SYSTEM Eye Harderian gland Adenoma Lymphoma malignant histiocytic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	*	+	+	+	+	+	50 5 2
URINARY SYSTEM Kidney Lymphoma malignant histiocytic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 2

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF p-CHLOROANILINE HYDROCHLORIDE: LOW DOSE

STUDY OF	•								-100	<i></i>		<u> </u>	11)	<u>. </u>		***		, O.E.	-						
WEEKS ON STUDY	0 1 9	0 3 6	0 5 4	0 6 2	0 6 9	9	0 9 6	0 9 6	0 9 7	0 9 7	1 0 1	1 0 1	1 0 2	1 0 2	0 4	0 4	1 0 4	0 4	0 4	0 4	0 5	0 5	1 0 5	0 5	0 5
CARCASS ID	2 2	2 5 2	2 8 5	7 3	2 1 3	3 0 4	2 4 1	9	3 2	2 5 3	7	2 7 4	2 3 4	2 2 5	2 2 2	2 4 5	6	8 2	9	3 0 1	2 1 1	2 3 1	5 1	2 5 4	6 5
AL'MENTARY SYSTEM Esophagus Gallbladder	- -	+	+	+	+	+	_				_												_		
Intestine large Intestine large, cecum Intestine large, colon		A + A +	A + + +	A + M +	A + A +	A + A +							+ + X												
Cholangiocarcinoma, metastatic, liver Intestine large, rectum Intestine small Intestine small, duodenum		A + +	+ + +	A + I	A A A	A A A							X												
Intestine small, ileum Intestine small, jejunum Peyer's patch, lymphoma malignant lymphocytic		+	+	M +	A A	A A																			
Liver Cholangiocarcinoma Hemangiosarcoma		+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+ X	+	+	+	+	+	+	+
Hemangiosarcoma, multiple Hepatocellular carcinoma Hepatocellular adenoma Hepatocellular adenoma, multiple Lymphoma maliganat histiocytic				x	Х	х	X	х	X	x	x		X	x x		x				x					X
Pancreas Salivary glands Stomach		+++++	+ + +	+++-	A + +	A + +								А											
Stomach, forestomach Stomach, glandular Tooth		++	++	++++	+++	+++																			
CARDIOVASCULAR SYSTEM Heart ENDOCRINE SYSTEM	_	+	+	+	+	+																			
Adrenal gland Adrenal gland, cortex Adrenal gland, medulla		+ + M	++++	+ + I	+ + + A	+++																			
Islets, pancreatic Parathyroid gland Pituitary gland Thyroid gland C-cell, adenoma		M + +	++++	+ + +	+ + X	A + M +																			
GENERAL BODY SYSTEM None	-																								
GENITAL SYSTEM Epididymis Penis		+	+	+	+	+																			
Preputial gland Prostate Seminal vesicle Testes		++++	+	+ + +	+	M +				+															
HEMATOPOIETIC SYSTEM Bone marrow Lymph node	_	++	++	+	A +	A +		+	+	+	+	+	+					+			+	+	+		
Lymph node, mandibular Melanoma malignant, metastatic, skin Lymph node, mesenteric Lymphoma malignant lymphocytic		+ M	H M		+	X M		+	+	+ X +	+	+	+					+			+	+	+		
Spleen Hemangiosarcoma Thymus		+ M	+ A	+ M	+ I	A M	X	+	+	+	+	+	+	A	+	+	+	+	X	+	+	+	+	+	+
INTEGUMENTARY SYSTEM Manmary gland Ski.a Subcutaneous tissue, fibroma		M +	M +	M +	м +	M +	+	+ X		+	+	+		+	+	+ X			+	-	+		+	-	+
Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, melanoma malignant						x																	Х		
MUSCULOSKELETAL SYSTEM Bone		+	+	+	+	+	+	+		+				+		+			+		+		+		+
NERVOUS SYSTEM Brain RESPIRATORY SYSTEM		+	+	+	+	+																			
Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic, liver		+	+	+	+	+ X												*	*	x					
Melanoma malignant, metastatic, skin Nose Trachea		++	+	++	++	X + +																			
SPECIAL SENSES SYSTEM Harderian gland Adenoma		M	+	+	+	M									·										
URINARY SYSTEM Kidney Urinary bladder	-	+	+ A	++	+ A	+ A						+									+		+		_
	_ '																								

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: LOW DOSE (Continued)

								(C	on	tinı	1ed	()														
WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	TOTAL
CARCASS ID	2 7 2	2 8 3	9 3	3 0 3	2 1 5	2 2 4	3 3	2 5 5	6 3	2 6 4	3 0 2	3 0 5	1 2	2 4 3	6 2	8	2 8 4	2 9 2	2 1 4	2 2 3	2 3 5	2 4 2	2 4 4	2 7 5	9 5	TOTAL: TISSUES TUMORS
ALIMENTARY SYSTEM Esophagus Gallbladder Intestine large Intestine large, cecum Intestine large, colon Cholangiocarcinoma, metastatic, liver Intestine small, duodenum Intestine small, duodenum Intestine small, jajunum Peyer's patch, lymphoma malignant lymphocytic							-								+ + x											5 6 1 6 1 1 4 2 2 4
Liver Cholangiocarcinoma Hemangiosarcoma, multiple Hepatocellular carcinoma Hepatocellular adenoma Hepatocellular adenoma, multiple Lymphoma malignant histiocytic Pancreas Salivary glands Stomach, forestomach Stomach, glandular Tooth	+	x	+	+	+	+	+	+	+	+	x	x	* x	*	+	+	+	*	*	x	x	+	+	+	+	49 1 1 7 11 4 1 3 5 5 5 5
CARDIOVASCULAR SYSTEM Heart																						****				5
ENDOCRINE SYSTEM Adrenai gland Adrenai gland, cortex Adrenai gland, medulla Islets, pancreatic Parathyroid gland Pituitary gland Thyroid gland C-cell, adenoma		•								,																5 5 4 2 4 4 5
GENERAL BODY SYSTEM None																		-								
GENITAL SYSTEM Epididymis Penis Preputial gland Prostate Seminal vesicle Testes		+																								5 1 3 4 1 5
HEMATOPOIETIC SYSTEM Bone marrow Lymph node Lymph node, mandibular Melanoma malignant, metastatic, skin Lymph node, mesenteric Lymphonoma malignant lymphocytic Spleen Hemangiosarcoma Thymus	+	+ + +	+ + +	+	++++	+ + +	+	+	+	+	+	+	+ + +	+ + +	+ * X +	+	+ + +	+	+ + +	+	+	+	+ + +	+	+	3 25 8 1 19 2 47 2
INTEGUMENTARY SYSTEM Mammary gland Skin Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, melanoma malignant	+				+		+ X		+	+		+				† X		+ X	+	*X				M		27 4 3
MUSCULOSKELETAL SYSTEM Bone	+		+		+	+	+	+	+	+		+					+	+	+			+			+	28
NERVOUS SYSTEM Brain													·													5
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic, liver			· · · · · · · · · · · · · · · · · · ·									*											+ X			10 4 1
Melanoma malignant, metastatic, skin Nose Trachea																										1 5 5
SPECIAL SENSES SYSTEM Harderian gland Adenoma								+ X						+ x										-		5 2
URINARY SYSTEM Kidney Urinary bladder	+				+				+							+										6 8

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE: MID DOSE

WEEKS ON	0 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0-	0	ō	1	<u> </u>	1 0	1 0	1 0	1 0	1 0
STUDY	5	6	6 4	7 3	7 4	7 6	8 4	9 4	9 6	9 6	9 6	9 6	9 6	9 6	9 7	9	9	9	1	0	4	4	4	4	4
CARCASS ID	1 2	9 1	1 2 2	1 7 1	5 1	1 2 5	4 4	1 4	1 2 4	2 0 5	1 3 2	6	7 4	2 0 4	1 8 4	9 3	3	2 0 2	1 7 2	7 5	1 8 1	1 1 5	1 2 1	1 3 1	1 6 5
ALIMENTARY SYSTEM Esophagus Gallbladder	_ _	+	+	+	м	+	+																		
Gallbladder Lymphoma malignant lymphocytic	A	A		*	A	+	+																		
Intestine large Intestine large, cecum	++	+ A	+ A	+	+ A	++	+																		
Intestine large, colon Intestine large, rectum	++	+ A	+ A	+	+	+	+																		
Intestine small	+	+		+	++	+	+				+			+											
Intestine small, duodenum Lymphoma malignant lymphocytic				Х																					
Intestine small, ileum Intestine small, jejunum Lymphoma malignant lymphocytic Peyer's patch, lymphoma malignant lymphocytic	+	A	A +	M + X	M +	++	++				+ X			+ X											
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Hemangiosarcoma Hepatocellular carcinoma Hepatocellular carcinoma, multiple			х		x x	X		X		X		x	x	X	X	X	x				X				x
Hepatocellular adenoma Hepatocellular adenoma, multiple Hepatocholangiocarcinoma			Α.		Λ		x						Λ.						x						**
Lymphoma malignant histocytic Lymphoma malignant lymphocytic Pancreas	+	X + X	+	X +	+	+	+												A						X
Lymphoma malignant lymphocytic Salivary glands	+	+	+	+	+	+	+																		
Stomach Stomach, forestomach	++	+	+	+	+	+	+																		
Stomach, glandular Lymphoma malignant lymphocytic Tooth	+	+	+	+ X +	+	+	+																		
CARDIOVASCULAR SYSTEM																									
Heart Lymphoma malignant lymphocytic Epicardium, sarcoma	+	+	+	*	+	+	+ X												+						
ENDOCRINE SYSTEM Adrenal gland Adrenal gland, cortex	+	+	+	+	++	+	++								-									-	
Lymphoma malignant lymphocytic	+	Х		X		+	+																		
Adrenal gland, medulla Lymphoma malignant lymphocytic	i	X.		*	*																				
Islets, pancreatic Parathyroid gland	, + M		M		+	+ M																			
Pituitary gland Lymphoma malignant lymphocytic	I	+	M	+ X	+	+	M																		
Thyroid gland Lymphoma malignant lymphocytic	+	+	+	X	+	+	+																		
GENERAL BODY SYSTEM None																									
GENITAL SYSTEM Epididymis	_ _	+	+	+	+	+	+														-				
Lymphoma malignant lymphocytic Penis				*X															+	+					
Preputial gland Prostate	+	+	+	+	+	+	+		+													+			
Lymphoma malignant lymphocytic Seminal vesicle				Х														+			+				
Testes Lymphoma malignant lymphocytic	+	+	+	X	+	+	+																		
HEMATOPOIETIC SYSTEM																									
Blood _Lymphoma malignant lymphocytic	+			X																					
Bone marrow Lymphoma malignant lymphocytic	+	+	+	X	+	+	+																		
Lymph node Lymphoma malignant histiocytic Mediastinal, lymphoma malignant	+	+	+	+	+	+	+		+	+	+	+		+	+				X	+				+	+
lymphocytic Rezal, lymphoma malignant lymphocytic		X		X																					
Lymph node, mandibular Lymphoma malignant lymphocytic	+	X		*	+	+	+																		X X
Lymph node, mesenteric Lymphoma malignant lymphocytic	M	М	M	+ X	M	M	M		+	+	+	+		X	+					+				+	
Spleen Lymphoma malignant histiocytic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	A	+	*	+	+	+	+	+	+
Lymphoma malignant lymphocytic Thymus	М	X M	M	X	+	M	+																		X
Lymphoma malignant lymphocytic Sarcoma, metastatic, uncertain primary				X																					
site							X																		

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: MID DOSE (Continued)

								` -			ued	-/														
WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL
CARCASS ID	1 1 1	1 2 3	1 4 1	6	1 6 3	1 9 2	1 9 4	1 9 5	0 1	2 0 3	1 1 3	1 3 5	1 4 3	1 5 5	1 8 2	1 8 5	3 4	1 5 2	1 5 4	1 6 2	1 7 3	1 4 2	1 4 5	1 5 3	8 3	TISSUES
LIMENTARY SYSTEM sophagus allbladder																										6
Lymphoma malignant lymphocytic tastine large statistic large statistic large, cocum tastine large, colon tastine large, colon tastine large, rectum tastine small, duodenum Lymphoma malignant lymphocytic tastine small, ileum tastine small, ileum tastine small jejunum Lymphoma malignant lymphocytic Payer's patch, lymphoma malignant	and the second s																	+								4 1 7 4 7 5 9 6 1 3 8 1
lymphocytic iver Hemangiosarcoma Hepatocellular carcinoma, multiple Hepatocellular adenoma, multiple Hepatocellular adenoma, multiple Hepatocellular adenoma, multiple Hepatocholangiocarcinoma Lymphoma malignant histicoytic Lymphoma malignant lymphocytic ancreas Lymphoma malignant lymphocytic alivary glands Lomach, forestomach Lomach, forestomach Lomach, forestomach	+	+	+	+	+	+	*	+ x	+	+	+ x	x	+ x	+	+	+	+	+ X	+	*	+	+	* x	+ x	+	2 50 1 8 3 8 2 1 1 7 7 7 7
Lymphoma malignant lymphocytic both ARDIOVASCULAR SYSTEM eart Lymphoma malignant lymphocytic Epicardium, sarcoma									<u></u>																	8 1 1
NDOCRINE SYSTEM drenal gland drenal gland, cortex Lymphoma malignant lymphocytic drenal gland, medulla Lymphoma malignant lymphocytic lets, pencreatic arathyroid gland tutiary gland Lymphoma malignant lymphocytic nyroid gland Lymphoma malignant lymphocytic hymphoma malignant lymphocytic																										7 7 2 7 1 6 1 4 1 7
ENERAL BODY SYSTEM																										
ENITAL SYSTEM pididymis Lymphoma malignant lymphocytic snis esputial gland ostate Lymphoma malignant lymphocytic sminal vesicle sstes Lymphoma malignant lymphocytic stes														+					+		+					7 1 2 5 7 1 2 7
EMATOPOIETIC SYSTEM ood Lymphoma malignant lymphocytic me marrow Lymphoma malignant lymphocytic mph node Lymphoma malignant histiocytic Mediastinal, lymphoma malignant lymphocytic Renal, lymphoma malig, lymphocytic mph node, mandibular Lymphomy malignant lymphocytic mph node, mandibular Lymphoma malignant lymphocytic		+	+		+			+	-	+			+	+	+			+	-		+			+		2 1 7 1 28 1 2 1 9 3
mph node, mesenteric .ymphoma malignant lymphocytic leen .ymphoma malignant histiocytic .ymphoma malignant lymphocytic .ymphoma malignant ymphocytic .ymphoma malignant lymphocytic .ymphoma malignant ymphocytic .ymphoma malignant lymphocytic .ymphom	+	* * *	+	+	* * *	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* X +	+	+	+	+	20 5 49 1 5 3 1

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: MID DOSE (Continued)

							4111		•																
WEEKS ON STUDY	0 5 6	0 6 1	0 6 4	7 3	0 7 4	0 7 6	0 8 4	0 9 4	9 6	0 9 6	9	0 9 6	9 6	0 9 6	0 9 7	0 9 7	9	9 9	1 0 1	1 0 1	0 4	1 0 4	1 0 4	1 0 4	1 0 4
CARCASS ID	1 1 2	9 1	1 2 2	7 1	1 5 1	1 2 5	1 4 4	1 1 4	1 2 4	2 0 5	1 3 2	1 6 4	7 4	2 0 4	1 8 4	1 9 3	3 3	2 0 2	$\begin{array}{c} 1 \\ 7 \\ 2 \end{array}$	7 5	8 1	1 1 5	1 2 1	1 3 1	1 6 5
INTEGUMENTARY SYSTEM Mammary gland Skin Papilloma squamous	M +	M +	M +	M +	M +	M +	M +		+	+	+	+	+	+		+				+		+	+	М	_
Subcu taneous tissue, fibroma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, fibrosarcoma, multiple	x		x						x		x	x	x			X				x		X			
Subcutaneous tissue, lymphoma malignant lymphocytic Subcutaneous tissue, sarcoma				x						x															
MUSCULOSKELETAL SYSTEM	+	+	+	+	+	+	+	+	+		+				+					+		+		+	
NERVOUS SYSTEM Brain Lym phoma malignant lymphocytic	+	+	+	* X	+	+	+	-								-									_
ESPIRATORY SYSTEM ung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic, liver	+	+	* X	+	+	+ x	+	+ x	* X										•	+ X	+ X				
Hepatocholangiocarcinoma, metastatic, liver Lymphoma malignant lymphocytic Mediastinum, sarcoma		x		X			x x																		
Nose Lymphoma malignant lymphocytic Trachea	+	+	+	* X +	+	+	+																		
SPECIAL SENSES SYSTEM Eye farderian gland Adenoma Lymphoma malignant lymphocytic	M	+	+	+ X	+	++	M									+									
JRINARY SYSTEM Lidney Lymphoma malignant lymphocytic Jrinary bladder Lymphoma malignant lymphocytic	+ +	+ X +	+	* X + X	++	+	++			+	+							+			+				

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: MID DOSE (Continued)

WEEKS ON STUDY	0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	0 5	1 0 5	TOTAL:
CARCASS ID	1 1 1	1 2 3	1 4 1	6 1	6 3	9 2	9 4	9 5	0 1	2 0 3	1 1 3	1 3 5	1 4 3	1 5 5	1 8 2	1 8 5	1 3 4	1 5 2	1 5 4	6 2	1 7 3	1 4 2	1 4 5	1 5 3	8 3	TISSUES
INTEGUMENTARY SYSTEM Mammary gland Skin Papilloma squamous Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, fibrosarcoma, multiple Subcutaneous tissue, lymphoma malignant lymphocytic Subcutaneous tissue, sarcoma	+	+				*		+ X X	+	+	+		+				+ X				+ X			+ x		28 1 5 8 1 1
MUSCULOSKELETAL SYSTEM Bone		+			+		+	+	+	+	+		+					+				+	+	+		26
NERVOUS SYSTEM Brain Lymphoma malignant lymphocytic																										7 1
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic, liver Hepatocholangiocarcinoma, metastatic, liver Lymphoma malignant lymphocytic Mediastinum, sarcoma Nose Lymphoma malignant lymphocytic Trachea							+ X									•					* X			*		14 5 3 2 1 2 1 7 7 1 7
SPECIAL SENSES SYSTEM Eye Harderian gland Adenoma Lymphoma malignant lymphocytic			···																				*			1 7 1 1
URINARY SYSTEM Kidney Lymphoma malignant lymphocytic Urinary bladder Lymphoma malignant lymphocytic		*				+		+																		10 2 11 2

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE: HIGH DOSE

WEEKS ON STUDY	0 5 7	0 7 0	0 7 2	0 7 5	0 8 6	9	9 6	0 9 7	9 8	0 9 8	0 9 8	9	9 9	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 5	1 0 5
CARCASS ID	0 1 3	0 1 2	0 8 1	0 7 4	0 5 3	6 5	0 6 3	0 3 1	0 8 5	0 9 5	0 3	0 9 4	0 8 3	9 2	0 6 4	0 3 4	0 3 5	0 4 3	0 4 5	0 5 2	0 6 1	0 7 3	1 0 5	0 2 1	0 2 4
ALIMENTARY SYSTEM																									
Esophagus Gallbladder	+ A	+	M A	+	+	Å	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large, cecum Intestine large, colon	A +	+	A +	M A	A A	A	+	+	++	++	+	++	+	+	++	+	+	+	++	+	+	+	+	+	+
Intestine large, rectum	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+
Intestine small. Intestine small, duodenum	+ A	+	A	A	+ A	A	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine small, ileum	Â	+	Α	Â	7	Â	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine small, jejunum Peyer's patch, lymphoma malignant mixed	+	+	A	A	+	A	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Liver	*	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Hemangiosarcoma Hemangiosarcoma, multiple	А										Λ.			X		X									
Hepatocellular carcinoma Hepatocellular carcinoma, multiple Hepatocellular adenoma Hepatocellular adenoma, multiple		x	x		X	X				x	X	X		X	X	X			X					x	
Lymphoma malignant mixed Pancreas	_	4	Δ	_	4	_	_	_	_	_	_	_	_	4	_	_	_	_	_	_	_	_	+	+	+
Hemangiosarcoma	τ	т	А	т	т	т-			Τ.	т	т	т	т	+		т-	т	т	т	т	-	т	T	X	'
Lymphoma malignant mixed Salivary glands	ــــــــــــــــــــــــــــــــــــــ	_	_	_	_	_	_	_	_	М	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Lymphoma malignant mixed	т	т		т		т	7		т	IAT		•	т	Т	т	т		т	т	т		т.		т.	-
Stomach Stomach, forestomach	+	+	A.	+	+	Ą	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+
Stomach, glandular	+	+	A	+	+	A	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+ X	+	+	Ŧ	+	+	+
Adenocarcinoma																			X						
Serosa, fibrosarcoma, metastatic, skin Tooth	+	+	+	+	+	+	+	+	+	+	+	+	X	+	+	+	+	+	+	+	+	+	+	+	+
CARDIOVASCULAR SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Fibrosarcoma, metastatic, multiple, skin				•		•	•	•	•		·		X		·										
o compar											_														
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Capsule, adenoma Adrenal gland, cortex			_	_	_	_	_	4	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	+
Fibrosarcoma, metastatic, skin	+	_	т	_	_		_		т		_		X	_			_	т		7	т		_		-
Adrenal gland, medulla Islets, pancreatic	++	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Parathyroid gland	M	M	A M	+	Ŧ	+	Ŧ	+	+	M	+	M	M	+	+	Ŧ	+	+	+	+	+	7	M	+	+
Pitu:tary gland	+	+	+	+	+	+	M	+	+	M	+	+	+	+	+	+	+	+	I.	+	I	+	+	+	+
Thyroid gland Follicular cell, adenoma	+	M	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+
GENERAL BODY SYSTEM	_																								
None																									
GENITAL SYSTEM Epididymis			+	_	_	+	_	_	4	_		_	_	4	+	_	+	_	_	+	М	_	+	+	+
Lymphoma malignant mixed	1	•			,	•	•	•	,	,	•	,		,						•			,	•	•
Preputial gland Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Seminal vesicle		÷	,		•	•	•	,	•	•		•		ľ				•			•		Ċ	•	+
Testes	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Lymphoma malignant mixed Femoral, hemangiosarcoma														X											
Lymph node	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Lymphoma malignant mixed Lumbar, lymphoma malignant mixed Mediastinal, lymphoma malignant mixed																									
Pancreatic, lymphoma malignant mixed Renal, lymphoma malignant mixed																									
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Lymphoma malignant mixed Mast cell tumor benign Mediastinal, fibrosarcoma, metastatic,																								X	
skin Lymph node, mesenteric	+		M	M	M	M	M	M	+	М	+	+	X M	+	M	M	M	М	+	+	M	M	M	M	M
Lymphoma malignant mixed								_									_								_
Spleen Hemangiosarcoma	A	+	+	+	+	+	+	+	+	¥	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Lymphoma malignant mixed						4				41				43											
Thymus	М	+	+	+	+	+	M	M	M	M	M	M	M	M	M	M	+	M	I	M	M	+	+	+	+
Lymphoma malignant mixed																									

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: HIGH DOSE (Continued)

								(C	on	un	ueo	.)														
WEEKS ON STUDY	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	TOTAL:
CARCASS ID	0 2 5	0 4 1	0 4 2	0 7 5	0 8 2	1 0 2	0 1 5	7 2	0 9 1	0 4	0 1 1	0 2 2	0 3 2	0 3 3	0 5 4	0 8 4	0 1 4	0 2 3	0 4 4	0 5 1	0 5 5	0 6 2	7 1	9	1 0 1	TISSUES
ALIMENTARY SYSTEM	-																									·
Esophagus Gallbladder	1 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 47
Janoladder Intestine large	++	+	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+	++	+	50
Intestine large, cecum	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	44
Intestine large, colon Intestine large, rectum	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48 50
ntestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
ntestine small, duodenum ntestine small, ileum	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45 46
ntestine small, jejunum	+	+	÷	+	÷	+	÷	÷	÷	÷	÷	÷	÷	÷	÷	+	÷	÷	÷	÷	+	÷	÷	÷	+	47
Peyer's patch, lymphoma malignant mixed	i																									1
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma	İ																				X				X	3
Hemangiosarcoma, multiple Hepatocellular carcinoma					х			х						X			X					х			Λ	13
Hepatocellular carcinoma, multiple																Х										4
Hepatocellular adenoma Hepatocellular adenoma, multiple	Ì	X					Х																		х	3
Lymphoma malignant mixed																					X				**	1
Pancreas Hemangiosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1
Lymphoma malignant mixed	Í					X																				1
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Lymphoma malignant mixed tomach	+	+	+	+	+	X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 48
tomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
tomach, glandular Adenocarcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48 1
Serosa, fibrosarcoma, metastatic, skin	1																									1
ooth	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ARDIOVASCULAR SYSTEM										_											_					·
leart Fibrosarcoma, metastatic, multiple, skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
NDOCRINE SYSTEM																										
drenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Capsule, adenoma drenal gland, cortex	1 +	+	_	+	4	+	_	_	4.	_	4	_	4	_	4	_	+	_	_	X	+	_	+	+	X	50 50
Fibrosarcoma, metastatic, skin	'	•						,	•		•			,	,	•	•		,							1
drenal gland, medulla slets, pancreatic	++	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 49
arathyroid gland	+	+	Ŧ	+	+	+	M	+	M	+	+	+	+	+	+	Ŧ	M	+	+	+	M	Ŧ	Ŧ	M	+	38
ituitary gland	+	+	+	+	+	+	M	+	+	+	M	I	+	+	+	+	M	M	+	+	+	+	+	+	+	41
'hyroid gland Follicular cell, adenoma	+	+	+	+	*	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
ENERAL BODY SYSTEM									·																	
ENITAL SYSTEM																										
pididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Lymphoma malignant mixed reputial gland			_			X											1									1 5
rostate	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
eminal vesicle estes	+	_	4	_	_	_	_	_	1	L			_		1		L		1.	,			L			50
				т.	. T				т-	т	т	т	т		_	_	т	т	т.	_		-	_	_	Ψ.	30
EMATOPOIETIC SYSTEM			,					-		,							,		,	,	,	-,	,			
Lymphoma malig nant mixed	-				+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	X	+	+	+	+	50
Femoral, hemangiosarcoma	Ι.																								Х	2
ymph node Lymphoma malignant mixed	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X	+	+	+	+	49
Lumbar, lymphoma malignant mixed																					X					1
Mediastinal, lymphoma malig, mixed Pancreatic, lymphoma malignant mixed	1																				X X X X					1
Renal, lymphoma malignant mixed	1.																				X					1
ymph node, mandibular Lymphoma malignant mixed	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	49
Mast cell tumor benign						A															А					1
Mediastinal, fibrosarcoma, metastatic,	1																									
skin mph node, mesenteric	M	М	M	+	+	M	M	+	M	M	+	M	M	м	M	+	М	м	+	+	+	+	м	M	+	17
Lymphoma malignant mixed	***	-7-	-12			-74	~**	,	1.1	474	•		***	2/2	212		***	471	•	,	X	,	747	747		1
oleen Hemangiosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 5
Lymphoma malignant mixed						Х								Λ							Х				Λ	2
			3.6	+	т	-																			-	=
hymus Lymphoma malignant mixed	+	+	M	•	Ι	+	+	+	+	+	+	+	+	M	+	M	M	+	+	+	+	М	M	+	Ι	27

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: HIGH DOSE (Continued)

					(UII	CIII	ueu	,																
WEEKS ON STUDY	0 5 7	0 7 0	0 7 2	0 7 5	0 8 6	9 0	0 9 6	0 9 7	9 8	9 8	9 8	9	9	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	0 4	1 0 4	1 0 4	0 5	1 0 5
CARCASS ID	0 1 3	0 1 2	0 8 1	0 7 4	5 3	0 6 5	0 6 3	0 3 1	0 8 5	0 9 5	1 0 3	0 9 4	0 8 3	0 9 2	0 6 4	0 3 4	0 3 5	0 4 3	0 4 5	0 5 2	0 6 1	0 7 3	1 0 5	0 2 1	0 2 4
INTEGUMENTARY SYSTEM Mammary gland Skin Basosquamous tumor benign	M +	M +	M A	M +																					
Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma									x				x		x		X			x					
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle Intercostal, fibrosarcoma, metastatic, skin	+	+	+	+	+	+	+	+	+	+	+	+	+ + X	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Fibrosarooma, metastatic, multiple, skin Hennangiosarooma, metastatic, liver	+	+	+	+	+	+	+	+	+	*	+	+	+ X	+	* X	+ X	+	+	+	+	+	+	+	+	+
Hepatocellular carcinoma, metastatic, liver Lymphoma malignant mixed			x			x				x	x			x		x			x						
Nose Trachea	++	+ +	+ M	++	++	++	++	++	++	+ +	+ +	+	++	++	+ +	++	++	++	++	+	++	++	++	+	+
SPECIAL SENSES SYSTEM Eye Harderian gland Adenoma Adenoma	М	+	+	+	+	+	+	+	+	+	M	М	+ X	+	+	+	+	, X	М	M	*	+	+	M	+
URINARY SYSTEM Kidney Lymphoma malignant mixed Urinary bladder	++	+	A +	+	+	+	+	++	+	+	+	+	++	+	+	++	+	+	+	+	+	+ +	+	+	+

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: HIGH DOSE (Continued)

								` -			400	•														
WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	TOTAL:
CARCASS ID	0 2 5	0 4 1	0 4 2	7 5	0 8 2	0 2	0 1 5	0 7 2	9 1	1 0 4	0 1 1	0 2 2	0 3 2	0 3 3	0 5 4	0 8 4	0 1 4	0 2 3	4	0 5 1	5 5	6 2	7 1	9 3	1 0 1	TISSUES TUMORS
INTEGUMENTARY SYSTEM Mammary gland Skin Hasosquamous tumor benign Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma	M +	M + X	M +	M +	M +	M +	M +	M +	M +	M +	M +	M +	M +	49 1 1 4												
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle Intercostal, fibrosarcoma, metastatic, skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 3 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic, multiple, skin Hemangiosarcoma, metastatic, liver	*	* X	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+ X	+	+	+	+	+	+	50 4 3 1
Hepatocellular carcinoma, metastatic, liver Lymphoma malignant mixed Nose Trachea	++	++	++	++	++	++	++	* + +	++	++	+	+++	++	+ +	++	X + +	++	+ +	+ +	++	X + +	++	++	++	++	9 1 50 49
SPECIAL SENSES SYSTEM Eye Harderian gland Adenoma Adenoma, multiple	+	+	+	+	+	+	+	+	+	+	+ M	+	М	+	+	+	+	*	+ + X	М	+	+	+	M	+	3 40 4 1
URINARY SYSTEM Kidney Lymphoma malignant mixed Urinary bladder	+	+	+	+ +	+	* *	+	++	++	+	+	+	+	+	+	+	+	+	+	+	* X +	+ +	+	+	+	49 2 50

TABLE C3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE

	Vehicle Contro	l 3 mg/kg	10 mg/kg	30 mg/kg
Harderian Gland: Adenoma			· · · · ·	
Overall Rates (a)	5/50 (10%)	2/49 (4%)	1/50 (2%)	5/50 (10%)
Adjusted Rates (b)	11.6%	5.6%	3.4%	13.8%
Terminal Rates (c)	5/43 (12%)	2/36 (6%)	1/29 (3%)	4/35 (11%)
Day of First Observation	728	728	728	690
Life Table Tests (d)	P = 0.279	P = 0.293N	P = 0.214N	P = 0.502
Logistic Regression Tests (d)	P = 0.310	P = 0.293N	P = 0.214N	P = 0.576
Cochran-Armitage Trend Test (d)	P = 0.350			
Fisher Exact Test (d)		P = 0.226N	P = 0.102N	P = 0.630
Liver: Hepatocellular Adenoma				
Overall Rates (a)	9/50 (18%)	15/49 (31%)	10/50 (20%)	4/50 (8%)
Adjusted Rates (b)	20.9%	36.0%	29.1%	11.4%
Terminal Rates (c)	9/43 (21%)	10/36 (28%)	7/29 (24%)	4/35 (11%)
Day of First Observation	728	432	443	728
Life Table Tests (d)	P = 0.044N	P = 0.060	P = 0.205	P = 0.209N
Logistic Regression Tests (d)	P = 0.020N	P = 0.097	P = 0.478	P = 0.209N
Cochran-Armitage Trend Test (d)	P = 0.019N	- 0,00	2 3.2.0	- 0.2001
Fisher Exact Test (d)		P = 0.109	P = 0.500	P = 0.117N
Liver: Hepatocellular Carcinoma				
Overall Rates (a)	3/50 (6%)	7/49 (14%)	11/50 (22%)	17/50 (34%)
Adjusted Rates (b)	7.0%	16.3%	25.9%	37.9%
Terminal Rates (c)	3/43 (7%)	2/36 (6%)	1/29 (3%)	8/35 (23%)
Day of First Observation	728	637	514	490
Life Table Tests (d)	P<0.001	P = 0.127	P = 0.011	P<0.001
Logistic Regression Tests (d)	P<0.001	P = 0.149	P = 0.034	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001			
Fisher Exact Test (d)		P = 0.151	P = 0.020	P<0.001
Liver: Hepatocellular Adenoma or Carci	noma			
Overall Rates (a)	11/50 (22%)	21/49 (43%)	20/50 (40%)	21/50 (42%)
Adjusted Rates (b)	25.6%	46.4%	47.0%	47.1%
Terminal Rates (c)	11/43 (26%)	12/36 (33%)	8/29 (28%)	12/35 (34%)
Day of First Observation	728	432	443	490
Life Table Tests (d)	P = 0.081	P = 0.012	P = 0.007	P = 0.010
Logistic Regression Tests (d)	P = 0.117	P = 0.019	P = 0.045	P = 0.027
Cochran-Armitage Trend Test (d)	P = 0.115			
Fisher Exact Test (d)		P = 0.022	P = 0.041	P = 0.026
Lung: Alveolar/Bronchiolar Adenoma				
Overall Rates (a)	5/50 (10%)	(e) 4/10 (40%)	(e) 5/14 (36%)	4/50 (8%)
Adjusted Rates (b)	11.6%			10.5%
Terminal Rates (c)	5/43 (12%)			2/35 (6%)
Day of First Observation	728			682
Life Table Test (d)				P = 0.611N
Logistic Regression Test (d)				P = 0.546N
Fisher Exact Test (d)				P = 0.500N
Lung: Alveolar/Bronchiolar Carcinoma				
Overall Rates (a)	3/50 (6%)	(e) 1/10 (10%)	(e) 3/14 (21%)	3/50 (6%)
Adjusted Rates (b)	7.0%		•	8.3%
Terminal Rates (c)	3/43 (7%)			2/35 (6%)
Day of First Observation	728			725
Life Table Test (d)	•			P=0.566
Logistic Regression Test (d)				P = 0.594
Fisher Exact Test (d)				P = 0.661N

TABLE C3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle Control	3 mg/kg	10 mg/kg	30 mg/kg
Lung: Alveolar/Bronchiolar Adenoma o	Carcinoma			
Overall Rates (a)		e) 5/10 (50%)	(e) 7/14 (50%)	6/50 (12%)
Adjusted Rates (b)	18.6%	c, 0/10 (00 <i>1</i> 0)	(0) 1/14(00/0)	15.9%
Terminal Rates (c)	8/43 (19%)			4/35 (11%)
Day of First Observation	728			682
Life Table Test (d)	.20			P = 0.538N
Logistic Regression Test (d)				P = 0.456N
Fisher Exact Test (d)				P = 0.387N
Subcutaneous Tissue: Fibroma				
Overall Rates (a)	3/50 (6%)	4/49 (8%)	5/50 (10%)	1/50 (2%)
Adjusted Rates (b)	7.0%	10.4%	16.2%	2.9%
Terminal Rates (c)	3/43 (7%)	3/36 (8%)	4/29 (14%)	1/35 (3%)
Day of First Observation	728	667	674	728
Life Table Tests (d)	P = 0.228N	P=0.416	P=0.180	P = 0.381N
Logistic Regression Tests (d)	P=0.191N	P = 0.465	P = 0.255	P = 0.381N
Cochran-Armitage Trend Test (d)	P = 0.131N P = 0.174N	1 -0.400	1 -0.200	1 -0.0011
Fisher Exact Test (d)	1 -0.17414	P = 0.489	P = 0.357	P = 0.309N
subcutaneous Tissue: Fibrosarcoma				
Overall Rates (a)	6/50 (12%)	3/49 (6%)	9/50 (18%)	4/50 (8%)
Adjusted Rates (b)	12.8%	8.3%	21.8%	10.2%
Terminal Rates (c)	3/43 (7%)	3/36 (8%)	2/29 (7%)	1/35 (3%)
Day of First Observation	502	728	389	682
Life Table Tests (d)	P = 0.496N	P = 0.317N	P=0.180	P = 0.450N
Logistic Regression Tests (d)	P = 0.428N	P = 0.317N P = 0.221N	P = 0.180 P = 0.496	P = 0.321N
Cochran-Armitage Trend Test (d)	P = 0.426N	F = 0.221N	r = 0.430	F = 0.3211
Fisher Exact Test (d)	1 -0.40014	P = 0.254N	P = 0.288	P = 0.370 N
ubcutaneous Tissue: Fibroma or Fibro	sarcoma			
Overall Rates (a)	8/50 (16%)	7/49 (14%)	13/50 (26%)	5/50 (10%)
Adjusted Rates (b)	17.2%	18.6%	32.5%	12.9%
Terminal Rates (c)	5/43 (12%)	6/36 (17%)	5/29 (17%)	2/35 (6%)
Day of First Observation	502	667	389	682
Life Table Tests (d)	P=0.317N	P=0.601	P=0.068	P = 0.379N
Logistic Regression Tests (d)	P = 0.226N	P = 0.507N	P=0.273	P = 0.249N
Cochran-Armitage Trend Test (d)	P = 0.232N	1 -0.00711	1 -0.216	1 -0,24014
Fisher Exact Test (d)	1 -0.20211	P = 0.517N	P = 0.163	P = 0.277N
ubcutaneous Tissue: Sarcoma or Fibro	sarcoma			
Overall Rates (a)	6/50 (12%)	3/49 (6%)	10/50 (20%)	4/50 (8%)
Adjusted Rates (b)	12.8%	8.3%	23.8%	10.2%
Terminal Rates (c)	3/43 (7%)	3/36 (8%)	2/29 (7%)	1/35 (3%)
Day of First Observation	502	728	389	682
Life Table Tests (d)	P=0.491N	P=0.317N	P=0.125	P = 0.450N
Logistic Regression Tests (d)	P = 0.423N	P = 0.221N	P=0.388	P = 0.321N
Cochran-Armitage Trend Test (d)	P = 0.423N P = 0.431N	1 -0.22114	1 -0.000	1 -0.5211
Fisher Exact Test (d)	1 -0.40111	P = 0.254N	P = 0.207	P = 0.370N
ubcutaneous Tissue: Fibroma, Sarcoma	. or Fibrosarcoma			
Overall Rates (a)	8/50 (16%)	7/49 (14%)	14/50 (28%)	5/50 (10%)
Adjusted Rates (b)	17.2%	18.6%	34.1%	12.9%
Terminal Rates (c)	5/43 (12%)	6/36 (17%)	5/29 (17%)	2/35 (6%)
	502	667	389	682
Day of First Observation	D - 0.216N	D = 0.601	D = 0 040	יארס מיס בו
Life Table Tests (d)	P=0.316N	P = 0.601	P=0.046	P = 0.379N
	P=0.316N P=0.225N P=0.231N	P = 0.601 P = 0.507N	P = 0.046 P = 0.204	P = 0.379N P = 0.249N

TABLE C3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF p-CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle Contr	ol 3 mg/kg	10 mg/kg	30 mg/kg
Thyroid Gland: Follicular Cell Adenor	na			
Overall Rates (a)	4/50 (8%)	(e) 0/5 (0%)	(e) 0/7 (0%)	3/48 (6%)
Adjusted Rates (b)	9.3%			8.6%
Terminal Rates (c)	4/43 (9%)			3/35 (9%)
Day of First Observation	728			728
Life Table Test (d)				P = 0.612N
Logistic Regression Test (d)				P = 0.612N
Fisher Exact Test (d)				P = 0.523N
Circulatory System: Hemangiosarcom:	a			
Overall Rates (a)	4/50 (8%)	4/49 (8%)	1/50 (2%)	10/50 (20%)
Adjusted Rates (b)	9.3%	9.7%	3.4%	23.9%
Terminal Rates (c)	4/43 (9%)	2/36 (6%)	1/29 (3%)	5/35 (14%)
Day of First Observation	728	479	728	399
Life Table Tests (d)	P = 0.011	P = 0.560	P = 0.315N	P = 0.047
Logistic Regression Tests (d)	P = 0.014	P = 0.639N	P = 0.315N	P = 0.083
Cochran-Armitage Trend Test (d)	P = 0.014			
Fisher Exact Test (d)		P = 0.631	P = 0.181N	P = 0.074
Hematopoietic System: Lymphoma, Al	l Malignant			
Overall Rates (a)	10/50 (20%)	3/49 (6%)	9/50 (18%)	3/50 (6%)
Adjusted Rates (b)	21.6%	7.7%	23.9%	8.0%
Terminal Rates (c)	7/43 (16%)	1/36 (3%)	4/29 (14%)	2/35 (6%)
Day of First Observation	496	674	423	682
Life Table Tests (d)	P = 0.149N	P = 0.072N	P = 0.443	P = 0.074N
Logistic Regression Tests (d)	P = 0.095N	P = 0.037N	P = 0.397N	P = 0.034N
Cochran-Armitage Trend Test (d)	P=0.098N	- 0.00.11	- 0.001.11	2 0.00411
Fisher Exact Test (d)		P = 0.039N	P = 0.500N	P = 0.036N

⁽a) Number of tumor-bearing animals/number of animals examined at the site; doses calculated as p-chloroaniline.

⁽b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

⁽c) Observed tumor incidence at terminal kill

⁽d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) Incomplete sampling of tissues

TABLE C4a. HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN MALE B6C3F1 MICE (a)

	Incidence in Controls							
Study	Adenoma	Carcinoma	Adenoma or Carcinoma					
listorical Incidence for All Water Gavage	Vehicle Controls							
odinated glycerol (b)	8/50	2/50	10/50					
hlorpheniramine maleate (c)	10/50	6/50	16/50					
etrakis(hydroxymethyl)phosphonium chloride ((c) 8/49	10/49	17/49					
falonaldehyde, sodium salt (c)	4/50	14/50	17/50					
etrakis(hydroxymethyl)phosphonium sulfate (c) 9/48	10/48	18/48					
fethyl carbamate (d)	9/50	5/50	14/50					
hlorinated trisodium phosphate (b)	6/50	9/50	14/50					
TOTAL	54/347 (15.6%)	56/347 (16.1%)	106/347 (30.5%)					
SD(e)	4.21%	8.03%	5.83%					
ange (f)								
High	10/50	14/50	18/48					
Low	4/50	2/50	10/50					
verall Historical Incidence for Untreated	Controls							
TOTAL SD(e)	259/2,032 (12.7%) 7.21%	379/2,032 (18.7%) 6.50%	609/2,032 (30.0%) 7.59%					
ange (f)								
High	(g) 22/50	15/50	(h) 29/50					
Low	0/49	4/50	8/50					

⁽a) Data as of April 29, 1987, for studies of at least 104 weeks (b) Study performed at EG&G Mason Research Institute

⁽c) Study performed at Battelle Columbus Laboratories (d) Study performed at Microbiological Associates

⁽e) Standard deviation
(f) Range and SD are presented for groups of 35 or more animals.
(g) Second highest: 12/50
(h) Second highest: 20/50

TABLE C4b. HISTORICAL INCIDENCE OF CIRCULATORY SYSTEM TUMORS IN MALE B6C3F1 MICE (a)

Study	Hemangioma	Incidence in Controls Hemangiosarcoma	Hemangioma or Hemangiosarcoma
Historical Incidence for All Water Gavage V	ehicle Controls		
odinated glycerol (b)	0/50	0/50	0/50
Chlorpheniramine maleate (c)	1/50	0/50	1/50
Tetrakis(hydroxymethyl)phosphonium chloride (c) 0/50	0/50	0/50
Malonaldehyde, sodium salt (c)	1/50	0/50	1/50
Tetrakis(hydroxymethyl)phosphonium sulfate (c)	0/50	4/50	4/50
Methyl carbamate (d)	1/50	1/50	2/50
Chlorinated trisodium phosphate (b)	1/50	2/50	3/50
TOTAL	4/350 (1.1%)	7/350 (2.0%)	11/350 (3.1%)
SD (e)	1.07%	3.06%	3.02%
Range (f)	1/50	4/50	4/50
Low	0/50	0/50	0/50
High			
Overall Historical Incidence for Untreated C	Controls		
TOTAL	26/2,040 (1.3%)	73/2,040 (3.6%)	98/2,040 (4.8%)
SD (e)	2.68%	2.46%	3.99%
Range (f)			
High	7/50	5/49	10/50
Low	0/50	0/50	0/50

⁽a) Data as of April 29, 1987, for studies of at least 104 weeks
(b) Study performed at EG&G Mason Research Institute
(c) Study performed at Battelle Columbus Laboratories
(d) Study performed at Microbiological Associates
(e) Standard deviation

⁽f) Range and SD are presented for groups of 35 or more animals.

TABLE C4c. HISTORICAL INCIDENCE OF HEMATOPOIETIC SYSTEM TUMORS IN MALE $B6C3F_1$ MICE (a)

	Incidence in Controls					
Study	Lymphoma	Lymphoma or Leukemia				
listorical Incidence for All Water Gavage Vehicle	e Controls					
odinated glycerol (b)	10/50	10/50				
hlorpheniramine maleate (c)	9/50	9/50				
etrakis(hydroxymethyl)phosphonium chloride (c)	9/50	9/50				
falonaldehyde, sodium salt (c)	4/50	4/50				
etrakis(hydroxymethyl)phosphonium sulfate (c)	2/50	2/50				
fethyl carbamate (d)	4/50	4/50				
hlorinated trisodium phosphate (b)	4/50	4/50				
TOTAL	42/350 (12.0%)	42/350 (12.0%)				
SD(e)	6.43%	6.43%				
ange (f)						
High	10/50	10/50				
Low	2/50	2/50				
verall Historical Incidence for Untreated Contro	ls					
TOTAL	248/2,040 (12.2%)	252/2,040 (12.4%)				
SD(e)	6.83%	6.94%				
ange (f)						
High	16/50	16/50				
Low	1/50	1/50				

⁽a) Data as of April 29, 1987, for studies of at least 104 weeks (b) Study performed at EG&G Mason Research Institute (c) Study performed at Battelle Columbus Laboratories

⁽d) Study performed at Microbiological Associates
(e) Standard deviation

⁽f) Range and SD are presented for groups of 35 or more animals.

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE

Ve	ehicle	Control	Low	Dose	Mid	Dose	High	Dose
Animals initially in study	50		50	· · · · · · · · · · · · · · · · · · ·	50		50	
Animals removed	50		50		50		50	
Animals examined histopathologically	50		49		50		50	
ALIMENTARY SYSTEM								
Gallbladder	(45)				(4)		(47)	
Necrosis, acute, multifocal					1	(25%)		
Lumen, crystals, diffuse					_	(m. w. e.)	1	(2%)
Submucosa, fibrosis, diffuse						(25%)	(40)	
Intestine large, colon	(48)		(6)	(1770)	(7)		(48)	
Inflammation, necrotizing, acute, multifoca	i.			(17%)			3	(6%)
Parasite metazoan	(40)			(17%)	(5)		(50)	(070)
Intestine large, rectum	(46)		(1)		(0)			(4%)
Parasite metazoan Liver	(50)		(49)		(50)		(50)	(4.70)
Amyloid deposition, multifocal	(00)		(43)			(2%)	(00)	
Angiectasis, focal	1	(2%)			•	(2,0)	2	(4%)
Angiectasis, nultifocal	•	(270)						(6%)
Clear cell focus, focal	1	(2%)					Ū	(0,0)
Cyst	_	(2,0)	1	(2%)	1	(2%)		
Hematopoietic cell proliferation, diffuse	1	(2%)	_	(= ,,,	_	(= / + /	2	(4%)
Hematopoietic cell proliferation, focal	_	(=)			1	(2%)	_	,,
Hematopoietic cell proliferation, multifocal	l 6	(12%)	4	(8%)		(12%)	3	(6%)
Inflammation		, ,		(2%)				
Inflammation, acute, multifocal							1	(2%)
Inflammation, chronic, multifocal					2	(4%)		
Inflammation, chronic active, multifocal							1	(2%)
Necrosis, acute, multifocal							1	(2%)
Necrosis, chronic active, focal	1	(2%)						
Necrosis, chronic active, multifocal			1	(2%)		(2%)	6	(12%)
Necrosis, coagulative, focal					1	(2%)	_	
Thrombus, chronic							2	(4%)
Vacuolization cytoplasmic, focal			1	(2%)	•			
Bile duct, hyperplasia, multifocal		(O~)			2	(4%)		
Centrilobular, necrosis, acute, multifocal	1	(2%)						
Centrilobular, vacuolization cytoplasmic,		(0~)						(0.00)
diffuse	4	(8%)				(96)	4	(8%)
Hepatocyte, cytomegaly, diffuse						(2%)		
Hepatocyte, hyperplasia, focal					1	(2%)	FΛ	(1000)
Kupffer cell, pigmentation, hemosiderin Pancreas	(49)		(3)		(7)		(49)	(100%)
Inflammation, chronic, multifocal	(49)		(3)		(7)		(49)	(2%)
Acinus, atrophy, focal							1	(2%)
Acinus, atrophy, nocal Acinus, atrophy, multifocal	6	(12%)					4	(8%)
Tooth	(50)	(12/0)	(5)		(7)		(50)	(070)
Incisor, dysplasia, multifocal	(00)		(0)		(1)		1	(2%)
Molar, dysplasia	1	(2%)						(2%)
Peridontal tissue, foreign body, focal		(4%)						
Peridontal tissue, foreign body, multifocal	1	(2%)						
Peridontal tissue, inflammation, chronic								
active, focal	3	(6%)					4	(8%)
Peridontal tissue, inflammation, chronic								
active, multifocal	6	(12%)					3	(6%)
CARDIOVASCULAR SYSTEM								
Heart	(50)		(5)		(8)		(50)	
Coronary artery, inflammation, chronic								
active, focal							1	(2%)

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

V	ehicle	Control	Low	Dose	Mid	Dose	High	Dose
ENDOCRINE SYSTEM						<u> </u>		
Adrenal gland	(49)		(5)		(7)		(50)	
Capsule, ectopic tissue	,	(4%)	(0)		(.,		(/	
Capsule, hyperplasia, focal	2	(4%)	1	(20%)			1	(2%)
Capsule, hyperplasia, multifocal	44	(90%)	1	(20%)	4	(57%)	44	(88%)
Adrenal gland, cortex	(49)		(5)		(7)		(50)	
Cyst							2	
Hyperplasia, focal	11	(22%)						(10%)
Hyperplasia, multifocal	_							(2%)
Hypertrophy, focal		(18%)					10	(20%)
Hypertrophy, multifocal	5	(10%)						(O~)
Necrosis, acute, focal							1	
Vacuolization cytoplasmic, focal	(40)		(4)		(7)			(2%)
Adrenal gland, medulla	(49)	(OC)	(4)		(7)		(50)	
Hyperplasia, focal		(2%)	(4)		(1)		(20)	
Parathyroid gland	(36)		(4)		(1)		(38)	(20()
Cyst	(40)		(4)		(4)			(3%)
Pituitary gland	(40)	(201)	(4)		(4)		(41)	(E0%)
Pars distalis, cyst	1	(3%)						(5%) (2%)
Pars distalis, cyst, multiple								(2%)
Pars distalis, hyperplasia, focal Thyroid gland	(50)		(5)		(7)		(48)	(270)
Inflammation, chronic active, multifocal		(2%)	(0)		(1)		(40)	
		(2%)						
Follicle, cyst, multiple Follicular cell, hyperplasia, focal EENERAL BODY SYSTEM		(2%)						
Follicular cell, hyperplasia, focal								
Follicular cell, hyperplasia, focal ENERAL BODY SYSTEM								
Follicular cell, hyperplasia, focal ENERAL BODY SYSTEM None			(5)		(7)		(49)	
Follicular cell, hyperplasia, focal EENERAL BODY SYSTEM None EENITAL SYSTEM	(49)		(5)		(7)			(4%)
Follicular cell, hyperplasia, focal ENERAL BODY SYSTEM None ENITAL SYSTEM Epididymis	(49)		(5)		(7)		2	(4%) (2%)
Follicular cell, hyperplasia, focal ENERAL BODY SYSTEM None ENITAL SYSTEM Epididymis Infiltration cellular, lymphocytic, multifoca	(49)				, ,		2 1	
Follicular cell, hyperplasia, focal EENERAL BODY SYSTEM None EENITAL SYSTEM Epididymis Infiltration cellular, lymphocytic, multifocal Inflammation, chronic, multifocal Inflammation, chronic active, multifocal Penis	(49)		(1)		(7)		2 1	(2%)
Follicular cell, hyperplasia, focal ENERAL BODY SYSTEM None ENITAL SYSTEM Epididymis Infiltration cellular, lymphocytic, multifocal Inflammation, chronic, multifocal Inflammation, chronic active, multifocal Penis Concretion, chronic active, multifocal	(49)		(1) 1	(100%)	, ,		2 1	(2%)
Follicular cell, hyperplasia, focal EENERAL BODY SYSTEM None EENITAL SYSTEM Epididymis Infiltration cellular, lymphocytic, multifocal Inflammation, chronic, multifocal Inflammation, chronic active, multifocal Penis Concretion, chronic active, multifocal Inflammation, chronic active, multifocal	(49)		(1) 1 1	(100%) (100%)	(2)		2 1 4	(2%)
Follicular cell, hyperplasia, focal ENERAL BODY SYSTEM None ENITAL SYSTEM Epididymis Infiltration cellular, lymphocytic, multifocal Inflammation, chronic, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Preputial gland	(49)	(2%)	(1) 1		, ,		2 1	(2%)
ENERAL BODY SYSTEM None ENITAL SYSTEM Epididymis Infiltration cellular, lymphocytic, multifocal Inflammation, chronic, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Preputial gland Atrophy, diffuse	(49)		(1) 1 1		(2) (5)		2 1 4 (5)	(2%) (8%)
ENERAL BODY SYSTEM None ENITAL SYSTEM Epididymis Infiltration cellular, lymphocytic, multifocal Inflammation, chronic, multifocal Inflammation, chronic active, multifocal Penis Concretion, chronic active, multifocal Inflammation, chronic active, multifocal Preputial gland Atrophy, diffuse Atrophy, multifocal	(49)	(100%)	(1) 1 1		(2) (5)	(20%)	2 1 4 (5)	(2%) (8%)
ENERAL BODY SYSTEM None ENITAL SYSTEM Epididymis Infiltration cellular, lymphocytic, multifocal Inflammation, chronic active, multifocal Penis Concretion, chronic active, multifocal Inflammation, chronic active, diffuse Atrophy, multifocal Inflammation, chronic active, diffuse	(49)	(2%)	(1) 1 1 (3)	(100%)	(2) (5) 1		(5)	(2%) (8%)
Follicular cell, hyperplasia, focal EENERAL BODY SYSTEM None EENITAL SYSTEM Epididymis Infiltration cellular, lymphocytic, multifocal Inflammation, chronic, multifocal Inflammation, chronic active, multifocal Penis Concretion, chronic active, multifocal Inflammation, chronic active, multifocal Preputial gland Atrophy, diffuse Atrophy, multifocal Inflammation, chronic active, diffuse Inflammation, chronic active, multifocal	(49)	(100%)	(1) 1 1 (3)		(2) (5) 1	(20%)	(5)	(2%) (8%)
Follicular cell, hyperplasia, focal EENERAL BODY SYSTEM None EENITAL SYSTEM Epididymis Infiltration cellular, lymphocytic, multifocal Inflammation, chronic, multifocal Inflammation, chronic active, multifocal Penis Concretion, chronic active, multifocal Inflammation, chronic active, multifocal Preputial gland Atrophy, diffuse Atrophy, multifocal Inflammation, chronic active, diffuse Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, suppurative, multifocal	(49)	(100%)	(1) 1 1 (3)	(100%)	(2) (5) 1 1 2	(20%) (40%)	(5)	(2%)
ENITAL SYSTEM Epididymis Infiltration cellular, lymphocytic, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, diffuse Atrophy, diffuse Atrophy, multifocal Inflammation, chronic active, diffuse Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, suppurative, multifocal Duct, dilatation, focal	(49) al (2) 2	(100%) (50%)	(1) 1 1 (3)	(100%)	(2) (5) 1 1 2	(20%) (40%) (20%)	(5)	(2%) (8%)
Follicular cell, hyperplasia, focal EENERAL BODY SYSTEM None EENITAL SYSTEM Epididymis Infiltration cellular, lymphocytic, multifocal Inflammation, chronic, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, diffuse Atrophy, diffuse Atrophy, multifocal Inflammation, chronic active, diffuse Inflammation, chronic active, multifocal Inflammation, suppurative, multifocal Duct, dilatation, focal Duct, dilatation, multifocal	(49) al (2) 2 1	(100%)	(1) 1 1 (3) 2	(100%)	(2) (5) 1 1 2 1 2	(20%) (40%)	(5) 1	(2%) (8%)
ENERAL BODY SYSTEM None ENITAL SYSTEM Epididymis Infiltration cellular, lymphocytic, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, diffuse Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, suppurative, multifocal Duct, dilatation, focal Duct, dilatation, multifocal Prostate	(49) al (2) 2	(100%) (50%)	(1) 1 1 (3)	(100%)	(2) (5) 1 1 2	(20%) (40%) (20%)	(5) 1 1 (50)	(2%) (8%) (20%) (20%)
ENITAL SYSTEM Epididymis Infiltration cellular, lymphocytic, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, diffuse Inflammation, chronic active, multifocal Inflammation, suppurative, multifocal Duct, dilatation, focal Duct, dilatation, multifocal Prostate Inflammation, acute, diffuse	(49) al (2) 2 1	(100%) (50%)	(1) 1 1 (3) 2 1 (4)	(100%) (67%) (33%)	(2) (5) 1 1 2 1 2	(20%) (40%) (20%)	(50) 1	(2%) (8%) (20%) (20%)
ENITAL SYSTEM Epididymis Infiltration cellular, lymphocytic, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, diffuse Inflammation, chronic active, multifocal Inflammation, suppurative, multifocal Inflammation, focal Duct, dilatation, multifocal Prostate Inflammation, acute, diffuse Inflammation, chronic active, multifocal	(49) al (2) 2 1	(100%) (50%)	(1) 1 1 (3) 2 1 (4)	(100%)	(2) (5) 1 1 2 1 2	(20%) (40%) (20%)	(50) 1 (50) 1 1	(2%) (8%) (20%) (20%) (2%) (2%)
ENITAL SYSTEM Epididymis Infiltration cellular, lymphocytic, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Penis Concretion, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, diffuse Atrophy, diffuse Atrophy, multifocal Inflammation, chronic active, diffuse Inflammation, suppurative, multifocal Inflammation, suppurative, multifocal Duct, dilatation, focal Duct, dilatation, multifocal Prostate Inflammation, acute, diffuse Inflammation, chronic active, multifocal Epithelium, hyperplasia, focal	(49) (2) 2 1 (48)	(100%) (50%)	(1) 1 1 (3) 2 1 (4)	(100%) (67%) (33%)	(2) (5) 1 1 2 1 2 (7)	(20%) (40%) (20%)	(50) 1 1 1 1 1	(2%) (8%) (20%) (20%)
ENITAL SYSTEM Epididymis Infiltration cellular, lymphocytic, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, multifocal Inflammation, chronic active, diffuse Inflammation, chronic active, multifocal Inflammation, suppurative, multifocal Inflammation, focal Duct, dilatation, multifocal Prostate Inflammation, acute, diffuse Inflammation, chronic active, multifocal	(49) (2) 2 1 (48)	(100%) (50%)	(1) 1 1 (3) 2 1 (4)	(100%) (67%) (33%)	(2) (5) 1 1 2 1 2	(20%) (40%) (20%)	(50) 1 (50) 1 1	(2%) (8%) (20%) (20%) (2%)

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

Ve	hicle	Control	Low	Dose	Mid	Dose	High	Dose
HEMATOPOIETIC SYSTEM								
Blood	(2)				(2)			
Neutrophilia		(100%)				(50%)		
Bone marrow	(50)	(===,,,	(3)		(7)	,	(50)	
Hyperplasia, neutrophil, diffuse		(6%)	,-,			(14%)		(10%)
Hyperplasia, neutrophil, multifocal		(2%)			_	(22,0)	•	(2070)
Thrombus, chronic active		(2%)						
Femoral, angiectasis, focal	-	(2,0)					2	(4%)
Lymph node	(49)		(25)		(28)		(49)	(270)
Mediastinal, hematopoietic cell	(10)		(20)		(20)		(10)	
proliferation, diffuse	1	(2%)						
Mediastinal, hematopoietic cell	-	(2.0)						
proliferation, multifocal	9	(4%)					1	(2%)
Pancreatic, hematopoietic cell	_	(470)					•	(2/0)
proliferation, multifocal	1	(2%)						
		(2%)						
Renal, hyperplasia, plasma cell, multifocal		(470)	(8)		(0)		(40)	
Lymph node, mandibular	(48)			(190)	(9)		(49)	
Depletion lymphoid, diffuse	4	(901)	1	(13%)				
Hematopoietic cell proliferation, multifocal		(2%)		/00~ \	_			
Hyperplasia, lymphoid, multifocal		(4%)	3	(38%)		(11%)		(
Hyperplasia, plasma cell, multifocal	2	(4%)			1	(11%)	3	(6%)
Lymphocyte, necrosis, multifocal								(2%)
Lymph node, mesenteric	(22)		(19)		(20)	.=	(17)	
Angiectasis, multifocal					1	(5%)		
Hematocyst, chronic active					_			(6%)
Hematopoietic cell proliferation, multifocal		(45%)	18	(95%)	18	(90%)	14	(82%)
Hemorrhage, multifocal		(18%)						
Hyperplasia, lymphoid, diffuse	1	(5%)						
Hyperplasia, lymphoid, multifocal								(6%)
Inflammation, chronic, multifocal							1	(6%)
Inflammation, granulomatous, focal					1	(5%)		
Inflammation, suppurative, multifocal			1	(5%)				
Spleen	(50)		(47)		(49)		(49)	
Amyloid deposition, multifocal					1	(2%)		
Angiectasis, focal					1	(2%)	2	(4%)
Angiectasis, multifocal					1	(2%)		
Lymphoid follicle, depletion lymphoid,								
multifocal			1	(2%)				
Lymphoid follicle, necrosis, acute, multifoca	1		1	(2%)				
Red pulp, angiectasis, focal							1	(2%)
Red pulp, fibrosis	1	(2%)						
Red pulp, fibrosis, multifocal	-	•	1	(2%)			1	(2%)
Red pulp, hematopoietic cell proliferation,							-	
diffuse	50	(100%)	47	(100%)	49	(100%)	48	(98%)
Red pulp, pigmentation, hemosiderin,	-	• •		. ,-,		, /-/	-5	, = 5 , 0)
multifocal	37	(74%)	47	(100%)	45	(92%)	48	(98%)
Thymus	(36)			(1 0)	(3)	(= , , ,	(27)	(00 10)
Cyst, multiple	•,				(3)			(4%)
Depletion lymphoid, multifocal								(4%)
Necrosis, acute, multifocal	1	(3%)						(7%)
,,								. 10)
NTEGUMENTARY SYSTEM								
Skin	(49)		(27)		(28)		(49)	
Acanthosis, diffuse		(2%)		(11%)		(18%)		(8%)
Acanthosis, focal	_	*		(7%)	-	* /		(2%)
Acanthosis, multifocal	9	(18%)		(15%)	9	(7%)		(14%)
Alopecia	·	0,0,	-	(2010)	_	(170)		(2%)
	1	(2%)					1	(')0~\
Hyperkeratosis, multifocal Inflammation, chronic active, multifocal	1	(2%)	1	(4%)			1	(2%)

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

`	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
NTEGUMENTARY SYSTEM					7) u .			
Skin (Continued)	(49)		(27)		(28)		(49)	
Ulcer	6	(12%)	9	(33%)	8	(29%)	5	(10%)
Ulcer, multiple							4	(8%)
Sebaceous gland, hyperplasia, focal			1	(4%)				
Subcutaneous tissue, fibrosis, diffuse	1	(2%)	1	(4%)	4	(14%)	3	(6%)
Subcutaneous tissue, fibrosis, focal	1	(2%)	2	(7%)	1	(4%)	1	(2%)
Subcutaneous tissue, fibrosis, multifocal	5	(10%)	4	(15%)	1	(4%)		(4%)
Subcutaneous tissue, inflammation, acute		(,-,-		(=)		, , ,		(,
multifocal	-,		1	(4%)				
Subcutaneous tissue, inflammation, chron	nic		_	\				
active, diffuse			1	(4%)	2	(7%)		
Subcutaneous tissue, inflammation, chron	nic		•	(1,0)	_	(1,0)		
active, focal			2	(7%)			1	(2%)
Subcutaneous tissue, inflammation, chron	nic		4	(170)			•	(270)
active, multifocal		(4%)	5	(19%)	1	(4%)	7	(14%)
Subcutaneous tissue, inflammation, mult		(** 70)	3	(10/0)		(4%) (4%)	,	(I = 70)
Subcutaneous tissue, mineralization, mult						(4%) (4%)		
Subcutaneous tissue, mineralization, mui	tilocal					(4/0)		
MUSCULOSKELETAL SYSTEM								
Bone	(49)		(28)		(26)		(50)	
Bilateral, joint, radius, hyperostosis		(2%)						
Bilateral, joint, tarsal, hyperostosis	10	(20%)	21	(75%)	16	(62%)	11	(22%)
Bilateral, joint, tarsal, metaplasia, osseou								
multifocal		(20%)		(75%)	-	(62%)		(22%)
Joint, tarsal, hyperostosis		(22%)		(7%)		(15%)	9	(18%)
Trink Armel makeulania annous multifa		(994)	0	(7%)	4	(15%)	۵	(18%)
Joint, tarsal, metaplasia, osseous, multifo		(22%)		(170)	4	(13%)		
NERVOUS SYSTEM None RESPIRATORY SYSTEM Lung Alveolar epithelium, hyperplasia, focal Interstitium, inflammation, acute, diffuse Interstitium, inflammation, acute, multif Interstitium, inflammation, chronic active focal Interstitium, inflammation, chronic active	(50) 1 cocal e, 1	(2%)	(10)		(14)	(7%)	(50) 4 1	(8%) (2%) (2%)
NERVOUS SYSTEM None RESPIRATORY SYSTEM Lung Alveolar epithelium, hyperplasia, focal Interstitium, inflammation, acute, diffuse Interstitium, inflammation, acute, multif Interstitium, inflammation, chronic active focal Interstitium, inflammation, chronic active multifocal	(50) 1 ocal e, 1	(2%)	(10)	(10%)	(14)		(50) 4 1 1	(8%) (2%)
NERVOUS SYSTEM None RESPIRATORY SYSTEM Lung Alveolar epithelium, hyperplasia, focal Interstitium, inflammation, acute, diffuse Interstitium, inflammation, acute, multif Interstitium, inflammation, chronic active focal Interstitium, inflammation, chronic active multifocal Nose	(50) 1 ocal e, 1 e, 1 (50)	(2%)	(10)		(14)		(50) 4 1	(8%) (2%)
NERVOUS SYSTEM None RESPIRATORY SYSTEM Lung Alveolar epithelium, hyperplasia, focal Interstitium, inflammation, acute, diffuse Interstitium, inflammation, acute, multif Interstitium, inflammation, chronic active focal Interstitium, inflammation, chronic active multifocal	(50) 1 ocal e, 1 e, 1 (50)	(2%)	(10)		(14)		(50) 4 1 1	(8%) (2%)
NERVOUS SYSTEM None RESPIRATORY SYSTEM Lung Alveolar epithelium, hyperplasia, focal Interstitium, inflammation, acute, diffuse Interstitium, inflammation, acute, multif Interstitium, inflammation, chronic active focal Interstitium, inflammation, chronic active multifocal Nose Respiratory epithelium, inflammation, ac multifocal	(50) 1 cocal e, 1 e, 1 (50) ute,	(2%)	(10)		(14) 1 (7) 1	(7%)	(50) 4 1 1 (50)	(8%) (2%) (2%)
NERVOUS SYSTEM None RESPIRATORY SYSTEM Lung Alveolar epithelium, hyperplasia, focal Interstitium, inflammation, acute, diffuse Interstitium, inflammation, acute, multif Interstitium, inflammation, chronic active focal Interstitium, inflammation, chronic active multifocal Nose Respiratory epithelium, inflammation, ac multifocal PECIAL SENSES SYSTEM Eye	(50) 1 socal e, 1 e, 1 (50) ute,	(2%) (2%) (2%)	(10)		(14)	(7%)	(50) 4 1 1 (50) 1	(8%) (2%) (2%)
NERVOUS SYSTEM None RESPIRATORY SYSTEM Lung Alveolar epithelium, hyperplasia, focal Interstitium, inflammation, acute, diffuse Interstitium, inflammation, acute, multif Interstitium, inflammation, chronic active focal Interstitium, inflammation, chronic active multifocal Nose Respiratory epithelium, inflammation, ac multifocal PECIAL SENSES SYSTEM Eye Cataract	(50) 1 socal e, 1 e, 1 (50) ute,	(2%)	(10)		(14) 1 (7) 1	(7%)	(50) 4 1 1 (50) 1	(8%) (2%) (2%) (2%)
NERVOUS SYSTEM None RESPIRATORY SYSTEM Lung Alveolar epithelium, hyperplasia, focal Interstitium, inflammation, acute, diffuse Interstitium, inflammation, chronic active focal Interstitium, inflammation, chronic active multifocal Nose Respiratory epithelium, inflammation, ac multifocal PECIAL SENSES SYSTEM Eye Cataract Inflammation, chronic, multifocal	(50) 1 socal e, 1 e, 1 (50) ute,	(2%) (2%) (2%)	(10)		(14) 1 (7) 1	(7%)	(50) 4 1 1 (50) 1	(8%) (2%) (2%) (2%)
NERVOUS SYSTEM None RESPIRATORY SYSTEM Lung Alveolar epithelium, hyperplasia, focal Interstitium, inflammation, acute, diffuse Interstitium, inflammation, acute, multif Interstitium, inflammation, chronic active focal Interstitium, inflammation, chronic active multifocal Nose Respiratory epithelium, inflammation, ac multifocal PECIAL SENSES SYSTEM Eye Cataract	(50) 1 socal e, 1 e, 1 (50) ute,	(2%) (2%) (2%)	(10)		(14) 1 (7) 1	(7%)	(50) 4 1 1 (50) 1	(8%) (2%) (2%) (2%)
NERVOUS SYSTEM None RESPIRATORY SYSTEM Lung Alveolar epithelium, hyperplasia, focal Interstitium, inflammation, acute, diffuse Interstitium, inflammation, chronic active focal Interstitium, inflammation, chronic active multifocal Nose Respiratory epithelium, inflammation, ac multifocal PECIAL SENSES SYSTEM Eye Cataract Inflammation, chronic, multifocal Lens, cataract, multifocal Retina, atrophy, multifocal	(50) 1 socal e, 1 e, 1 (50) ute,	(2%) (2%) (2%)	(10)		(14) 1 (7) 1	(7%)	(50) 4 1 1 (50) 1	(8%) (2%) (2%)
NERVOUS SYSTEM None RESPIRATORY SYSTEM Lung Alveolar epithelium, hyperplasia, focal Interstitium, inflammation, acute, diffuse Interstitium, inflammation, chronic active focal Interstitium, inflammation, chronic active multifocal Nose Respiratory epithelium, inflammation, ac multifocal PECIAL SENSES SYSTEM Eye Cataract Inflammation, chronic, multifocal Lens, cataract, multifocal Retina, atrophy, multifocal Harderian gland	(50) 1 socal e, 1 e, 1 (50) ute,	(2%) (2%) (2%)	(10)		(14) 1 (7) 1	(7%)	(50) 4 1 1 (50) 1	(8%) (2%) (2%) (2%)
NERVOUS SYSTEM None RESPIRATORY SYSTEM Lung Alveolar epithelium, hyperplasia, focal Interstitium, inflammation, acute, diffuse Interstitium, inflammation, chronic active focal Interstitium, inflammation, chronic active multifocal Nose Respiratory epithelium, inflammation, ac multifocal PECIAL SENSES SYSTEM Eye Cataract Inflammation, chronic, multifocal Lens, cataract, multifocal Retina, atrophy, multifocal	(50) 1 ecal e, 1 (50) ute,	(2%) (2%) (2%)	(10) 1 (5)		(14) 1 (7) 1 (1)	(7%)	(50) 4 1 1 (50) 1 (3) 1 1	(8%) (2%) (2%) (2%)
NERVOUS SYSTEM None RESPIRATORY SYSTEM Lung Alveolar epithelium, hyperplasia, focal Interstitium, inflammation, acute, diffuse Interstitium, inflammation, chronic active focal Interstitium, inflammation, chronic active multifocal Nose Respiratory epithelium, inflammation, ac multifocal PECIAL SENSES SYSTEM Eye Cataract Inflammation, chronic, multifocal Lens, cataract, multifocal Retina, atrophy, multifocal Harderian gland	(50) 1 ocal e, 1 (50) ute,	(2%) (2%) (2%)	(10) 1 (5)		(14) 1 (7) 1 (1)	(14%) (100%) (100%)	(50) 4 1 1 (50) 1 (3) 1 1	(8%) (2%) (2%) (2%)

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

,	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
JRINARY SYSTEM		·				•		
Kidney	(50)		(6)		(10)		(49)	
Amyloid deposition, multifocal					1	(10%)		
Cyst							1	(2%)
Infarct, chronic, focal			1	(17%)	1	(10%)		
Inflammation, suppurative, acute, multif	ocal		3	(50%)				
Mineralization, focal			1	(17%)				
Nephropathy, chronic, focal	3	(6%)					1	(2%)
Nephropathy, chronic, multifocal	2	(4%)			3	(30%)	7	(14%)
Bilateral, hydronephrosis, acute, multifoo	cal 1	(2%)						
Cortex, inflammation, chronic, multifocal							1	(2%)
Perivascular, infiltration cellular,								
lymphocytic, multifocal							1	(2%)
Renal tubule, atypical cells, multifocal							1	(2%)
Renal tubule, degeneration, multifocal							1	(2%)
Renal tubule, pigmentation, hemosiderin	,							
multifocal							4	(8%)
Renal tubule, regeneration, focal	1	(2%)						
Renal tubule, regeneration, multifocal	33	(66%)					30	(61%)
Urinary bladder	(49)		(8)		(11)		(50)	
Dilatation	1	(2%)			4	(36%)		
Dilatation, diffuse			7	(88%)				
Submucosa, congestion, multifocal	1	(2%)						
Submucosa, necrosis, acute, multifocal							1	(2%)

APPENDIX D

SUMMARY OF LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF \$\rho\$-CHLOROANILINE HYDROCHLORIDE

		PAGE
TABLE D1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWOYEAR GAVAGE STUDY OF p -CHLOROANILINE HYDROCHLORIDE	203
TABLE D2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF p -CHLOROANILINE HYDROCHLORIDE	208
TABLE D3	ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF $p\text{-}CHLOROANILINE HYDROCHLORIDE}$	222
TABLE D4	HISTORICAL INCIDENCE OF HEMATOPOIETIC SYSTEM TUMORS IN FEMALE $B6C3F_1$ MICE	224
TABLE D5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF p-CHLOROANILINE HYDROCHLORIDE	225

TABLE D1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE

V	ehicle	Control	Low	Dose	Mid	Dose	High	Dose
Animals initially in study	50		50		50		50	
Animals removed	50		50		50		50	
Animals examined histopathologically	50		50		50		50	
ALIMENTARY SYSTEM			<u> </u>					
Gallbladder	(47)		*(50)		*(50)		(46)	
Lymphoma malignant lymphocytic		(2%)						
Intestine small, jejunum	(46)		*(50)		*(50)		(48)	/a~ \
Lymphoma malignant histiocytic							1	(2%)
Peyer's patch, lymphoma malignant	,	(90%)						
lymphocytic		(2%) (2%)					1	(90%)
Peyer's patch, lymphoma malignant mixed Peyer's patch, lymphoma malignant	1 1	(270)					1	(2%)
undifferentiated cell type	1	(2%)						
Liver	(50)	(2 /0)	(50)		(50)		(50)	
Carcinoma, metastatic, islets, pancreatic	(00)		(00)			(2%)	(00)	
Hemangiosarcoma	1	(2%)			•	·= /0/	1	(2%)
Hepatocellular carcinoma	_	(2%)	2	(4%)				(6%)
Hepatocellular carcinoma, multiple	•		-	/				(4%)
Hepatocellular adenoma	5	(10%)	6	(12%)	6	(12%)		(16%)
Hepatocellular adenoma, multiple				(2%)		(4%)		,
Lymphoma malignant histiocytic	3	(6%)	2	(4%)	1	(2%)	1	(2%)
Lymphoma malignant lymphocytic	6	(12%)	4	(8%)	3	(6%)		
Lymphoma malignant mixed	3	(6%)	1	(2%)			2	(4%)
Lymphoma malignant undifferentiated								
cell type		(2%)				(2%)		
Mesentery	*(50)		*(50)		*(50)		*(50)	
Lymphoma malignant histiocytic					1	(2%)		
Lymphoma malignant mixed		(4%)	**/=**		*.=0		(10)	
Pancreas	(48)		*(50)	(0.00)	*(50)		(49)	
Lymphoma malignant histiocytic		(4%)	1	(2%)	•	(90/)	1	(90)
Lymphoma malignant lymphocytic		(6%) (2%)			1	(2%)		(2%) (2%)
Lymphoma malignant mixed Salivary glands	(47)	(270)	*(50)		*(50)		(48)	(270)
Lymphoma malignant histiocytic		(2%)	(30)		(00)			(2%)
Lymphoma malignant lymphocytic		(13%)			1	(2%)		(4%)
Lymphoma malignant mixed		(4%)			•	(2,0)		(2%)
Stomach, forestomach	(48)	(-,0)	*(50)		*(50)		(46)	(= /-/
Lymphoma malignant lymphocytic					1	(2%)		
Papilloma squamous	1	(2%)	1	(2%)		·		
CARDIOVASCULAR SYSTEM								
Heart	(50)		*(50)		*(50)		(50)	
Lymphoma malignant lymphocytic	1	(2%)			1	(2%)		
Lymphoma malignant undifferentiated								
cell type					1	(2%)		
ENDOCRINE SYSTEM								
Adrenal gland	(50)		*(50)		*(50)		(49)	
Capsule, adenoma		(4%)						
Adrenal gland, cortex	(50)		*(50)		*(50)		(49)	
Lymphoma malignant histiocytic		*0.00 ·			_	.o.~ :	1	(2%)
Lymphoma malignant lymphocytic		(2%)	±, ≈ ∧ ;			(2%)		
Adrenal gland, medulla	(50)		*(50)		*(50)	(O.W.)	(49)	
					1	(2%)		
Lymphoma malignant lymphocytic								
Lymphoma malignant lymphocytic Pheochromocytoma malignant	0	(40)				(2%)		
Lymphoma malignant lymphocytic	2 (48)	(4%)	*(50)				(49)	

TABLE D1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dos
ENDOCRINE SYSTEM (Continued)								
Pituitary gland	(46)		*(50)		*(50)		(42)	
Lymphoma malignant lymphocytic	, -,	(2%)	(/		((/	
Pars distalis, adenoma	3	(7%)	1	(2%)	2	(4%)	3	(7%)
Thyroid gland	(49)		*(50)		*(50)		(49)	
Lymphoma malignant lymphocytic	1	(2%)						
Follicular cell, adenoma	3	(6%)					2	(4%)
GENERAL BODY SYSTEM None	,, , 		·					
GENITAL SYSTEM								
Ovary	(50)		*(50)		*(50)		(47)	
Cystadenoma	1	(2%)						(2%)
Fibrosarcoma, metastatic, skin							1	(2%)
Granulosa cell tumor benign		(2%)						
Lymphoma malignant histiocytic		(4%)	1	(2%)				
Lymphoma malignant lymphocytic		(6%)			1	(2%)		
Lymphoma malignant mixed		(2%)						
Follicle, adenoma	. 1	(2%)						
Periovarian tissue, lymphoma maligna								
lymphocytic		(4%)						(O~)
Periovarian tissue, lymphoma maligna Uterus			#(FO)		*(" ^)			(2%)
Hemangioma	(50)	(2%)	*(50)		*(50)		(48)	
Lymphoma malignant histiocytic		(2%)	2	(4%)				
Lymphoma malignant lymphocytic		(2%)	4	(470)	1	(2%)		
Lymphoma malignant mixed		(2%)			•	(2 10)		
Polyp	•	(270)			1	(2%)		
Polyp stromal	1	(2%)	1	(2%)	•	(2,0)	1	(2%)
Cervix, lymphoma malignant histiocyti	c	_ · · · /		(2%)			_	(= /5/
HEMATOPOIETIC SYSTEM						· · · · · · · · · · · · · · · · · · ·		-
Blood	(50)		*(50)		*(50)		*(50)	
Lymphoma malignant lymphocytic		(2%)	(20)			(2%)	(00)	
Lymphoma malignant undifferentiated		,=,				(2%)		
Bone marrow	(48)		*(50)		*(50)	(=)	(49)	
Lymphoma malignant histiocytic	1	(2%)			,,		(/	
Lymphoma malignant lymphocytic					1	(2%)		
Femoral, lymphoma malignant lympho	cytic 1	(2%)						
Lymph node	(48)		*(50)		*(50)		(47)	
Bronchial, lymphoma malignant lymph	ocytic						1	(2%)
Bronchial, lymphoma malignant mixed							1	(2%)
Lumbar, lymphoma malignant histiocyt		(4%)						
Lumbar, lymphoma malignant lymphod	ytic 2	(4%)			1	(2%)		
Lumbar, lymphoma malignant mixed								(2%)
Mediastinal hymphome malignant hist		(40)				(OW)		(2%)
Mediastinal, lymphoma malignant histi Mediastinal, lymphoma malignant	ocytic 2	(4%)			1	(2%)	1	(2%)
lymphocytic	E	(10%)			1	(9%)	1	(90t \
Mediastinal, lymphoma malignant mixe		(6%)			1	(2%)		(2%) $(2%)$
Mediastinal, lymphoma malignant mixe Mediastinal, lymphoma malignant	ر س	(070)					1	(270)
undifferentiated cell type					1	(2%)		
Pancreatic, lymphoma malignant lymph	nocytic					(2%)	1	(2%)
Renal, fibrosarcoma, metastatic, skin		(2%)			•	.=	•	(2 10)
Renal, lymphoma malignant histiocytic		(2%)						
						(OA)		
Renal, lymphoma malignant lymphocyt	ic 1	(2%)			1	(2%)		

TABLE D1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
HEMATOPOIETIC SYSTEM (Continued)								
Lymph node, mandibular	(46)		*(50)		*(50)		(47)	
Lymphoma malignant histiocytic		(4%)	(00)		,	(2%)		(2%)
Lymphoma malignant lymphocytic		(20%)				(4%)		(9%)
Lymphoma malignant mixed		(11%)			_	(10)	_	(4%)
Lymphoma malignant undifferentiated	U	(1170)					4	(470)
cell type	1	(2%)			1	(2%)		
Lymph node, mesenteric	(8)	(270)	*(50)		*(50)	(470)	(3)	
Lymphoma malignant histiocytic		(25%)	(00)		(00)		(0)	
Lymphoma malignant histocytic		(25%)			9	(4%)		
Lymphoma malignant mixed		(38%)			L	(4:70)	9	(67%)
Lymphoma malignant undifferentiated	J	(30%)					2	(0170)
cell type	1	(13%)						
Spleen	(50)	(1370)	(50)		(50)		(49)	
Hemangiosarcoma		(2%)		(2%)		(2%)	(45)	
		(6%)		(2%)	1	(270)	1	(2%)
Lymphoma malignant histiocytic				(16%)	2	(6%)		(10%)
Lymphoma malignant lymphocytic		(18%)		(2%)	3	(070)		(6%)
Lymphoma malignant mixed	0	(12%)	1	(2%)			3	(6%)
Lymphoma malignant undifferentiated	1	(90%)				(2%)		
cell type		(2%)	*(50)			(2%)	(25)	
Thymus	(41)	(9%)	*(50)		*(50)		(35)	
Lymphoma malignant histiocytic		(2%)						
Lymphoma malignant lymphocytic		(10%)					0	(COT)
Lymphoma malignant mixed	4	(10%)					2	(6%)
Lymphoma malignant undifferentiated						(00)		
cell type					1	(2%)		
NTEGUMENTARY SYSTEM								
Mammary gland	(38)		*(50)		*(50)		(44)	
Adenocarcinoma	(00)			(2%)	(00)		(/	
Adenoma				(2%)				
Skin	(50)		*(50)	(2 /0 /	*(50)		(49)	
Subcutaneous tissue, fibrosarcoma		(2%)	(00)			(6%)		(6%)
Subcutaneous tissue, lymphoma maligna		(270)			Ū	(0,0)	· ·	(0,0)
histiocytic	****		1	(2%)				
Subcutaneous tissue, lymphoma maligna	nt		-	(270)				
lymphocytic	III C				1	(2%)		
тутриосусте	_				1	(2%)		
MUSCULOSKELETAL SYSTEM								
Bone	(49)		*(50)		*(50)		(50)	
Cranium, osteoma				(2%)	,			
Sacrum, osteosarcoma			-	(=)			1	(2%)
Skeletal muscle	*(50)		*(50)		*(50)		*(50)	(= / - /
Abdominal, lymphoma malignant	(/		(00)		(00)		,,,	
lymphocytic	1	(2%)						
								
IERVOUS SYSTEM			4					
Brain	(48)		*(50)		*(50)		(49)	
Choroid plexus, lymphoma malignant		.00						
lymphocytic	1	(2%)						
ESPIRATORY SYSTEM	·····							
Lung	(50)		*(50)		*(50)		(50)	
Alveolar/bronchiolar adenoma		(10%)		(4%)		(2%)		(4%)
Alveolar/bronchiolar carcinoma		(2%)		(2%)	•	(270)		(4%)
		- 101	•	(# /V/	1	(2%)	4	(= 10)
Carcinoma metastatic ielete nancreatio								
Carcinoma, metastatic, islets, pancreatic		(2%)				(270)		
Fibrosarcoma, metastatic, skin	1	(2%)	1	(2%)	1	(270)	ว	(A9 ₆)
	1 /er	(2%) (2%)	1	(2%)		(2%)		(4%) (2%)

TABLE D1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
RESPIRATORY SYSTEM								
Lung (Continued)	(50)		*(50)		*(50)		(50)	
Lymphoma malignant lymphocytic	5	(10%)	(,		1	(2%)	3	(6%)
Lymphoma malignant mixed	3	(6%)					1	(2%)
Lymphoma malignant undifferentiated								
cell type		(2%)			1	(2%)		
Pheochromocytoma malignant, metastat	tic,					, a		
adrenal gland	, .				1	(2%)		(O.01.)
Mediastinum, fibrosarcoma, metastatic,			#/50)		*(50)			(2%)
Nose Lymphoma malignant lymphocytic	(50)		*(50)		*(50)	(2%)	(50)	
Lymphoma mangnant lymphocytic						(2%)		
SPECIAL SENSES SYSTEM								
Harderian gland	(50)		*(50)		*(50)		*(50)	
Adenoma	3	(6%)	1	(2%)		(2%)	4	(8%)
Lymphoma malignant lymphocytic					1	(2%)		
JRINARY SYSTEM								
Kidney	(50)		*(50)		*(50)		(49)	
Lymphoma malignant histiocytic		(2%)			(/			
Lymphoma malignant lymphocytic	7	(14%)	2	(4%)	1	(2%)	3	(6%)
Lymphoma malignant mixed	3	(6%)					1	(2%)
Lymphoma malignant undifferentiated								
cell type	1	(2%)			1	(2%)		
Renal tubule, adenoma								(2%)
Urinary bladder	(48)	(0~)	*(50)		*(50)		(44)	
Fibrosarcoma, metastatic, skin		(2%)						
Lymphoma malignant histiocytic Lymphoma malignant lymphocytic		(2%) (8%)						
Lymphoma malignant mixed		(2%)					1	(2%)
Lymphoma malignant undifferentiated	•	(270)					•	(2 10)
cell type	1	(2%)						
SYSTEMIC LESIONS								
Multiple organs		*(50)	*(50)		*(50)		*(50)	
Lymphoma malignant histiocytic	3	(6%)		(6%)		(2%)		(4%)
Lymphoma malignant mixed		(12%)		(2%)	-	,,		(6%)
Lymphoma malignant lymphocytic		(20%)		(16%)	3	(6%)	_	(10%
Hemangioma	1	(2%)						
Hemangiosarcoma	2	(4%)	1	(2%)	1	(2%)	1	(2%)
Lymphoma malignant undifferentiated		(O#)				/a.w.:		
cell type	1	(2%)			1	(2%)		
NIMAL DISPOSITION SUMMARY								
Animals initially in study	50		50		50		50	
Terminal sacrifice	39		42		44		41	
Moribund	5		4		3		4	
Dead	5		1		3		5	
Dosing accident	1		3					

TABLE D1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle Control	Low Dose	Mid Dose	High Dose
TUMOR SUMMARY				
Total animals with primary neoplasms **	36	26	21	31
Total primary neoplasms	54	32	24	44
Total animals with benign neoplasms	20	15	12	17
Total benign neoplasms	29	15	13	22
Total animals with malignant neoplasms	24	16	10	21
Total malignant neoplasms	25	17	11	22
Total animals with secondary neoplasms **	* 1	1	2	4
Total secondary neoplasms	3	1	3	5

^{*} Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.

^{**} Primary tumors: all tumors except secondary tumors

*** Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE: VEHICLE CONTROL

WEEKS ON STUDY	0	0	6	0 7	9	9	1 0	1 0	1	0	1 0	1 0	0	1	1	1 0	1	0	10	— 1	1) (1 1	 j
31001	1	í	9	6	6	6	ŏ	Ö	2	3	4	4	4	4	4	4	4	4	4	4				1 4	
CARCASS ID	7 6 5	7 9 5	7 5 2	7 1 4	7 5 1	7 7 4	7 8 2	7 8 3	7 6 2	7 5 3	7 1 1	7 1 2	7 1 3	7 2 4	7 3 1	7 3 2	7 3 4	7 4 2	7 4 3	5	7 5	7 ' 3 8 L 4	7 3 4	7 7 9 9 2 4	
LIMENTARY SYSTEM																									_
sophagus allbladder	+	+	M A	++	+ A	+	+	+	+ A	+	+	+	+	+	++	+	+	+	. +		+	+	+	+ :	+
andiadder Lymphoma malignant lymphocytic	*	+	Α.	+	A	+	+	_	A		_	Ŧ	т	Ψ.	X	_	_	т	,		•	т	т	т	*
ntestine large ntestine large, cecum	+	A	A A	+ A	A A	+	+	+	+	+	+	+	+	++	+	+	+	+			+ +	+ +	+ +	+ ·	+
itestine large, colon	+	A	A	+	Α	÷	+	÷	÷	+	+	÷	÷	+	+	+	÷	+	. 4		+		+	+ -	+
ntestine large, rectum ntestine small	+ +	A A	A	+ A	A A	++	+	+	+	+	+	+	+	+	+	+	+	+	. +				+		+ +
ntestine small, duodenum	+	A	Α	Α	Α	+	+	÷	+	+	+	+	+	+	+	+	÷	+			+	+	+		+
stestine small, ileum	+	A A	A	A A	A A	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+ -	+
itestine small, jejunum Peyer's patch, lymphoma malignant		^	Λ.	Λ	^	7	Ŧ	т	-	-	-		-		,	'		1					'	,	
lymphocytic Peyer's patch, lymphoma malignant																									
raixed						X																			
Peyer's patch, lymphoma malignant undifferentiated cell type																									
ver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+ .	+
Hemangiosarcoma Hepatocellular carcinoma			х																						
Hepatocellular adenoma			••			X																			
Lymphoma malignant histiocytic Lymphoma malignant lymphocytic					х		X		Х		X				x					,	x				
Lymphoma malignant mixed Lymphoma malignant undifferentiated					••	X				X											-			3	X
cell type esentery						+				+															
Lymphoma malignant mixed		_	Α	Α	+	X	_	_	+	X +	_	_	_	_	_	_	+	+		٠.	+	+	+	+ .	_
ymphoma malignant histiocytic		т	А	Α.		_	т	+	X	_	x X	+		т	т.	г	1	*		'	,	'			
ymphoma malignant lymphocytic					X					v					X										
ymphoma malignant mixed livary glands	+	+	+	M	+	+	M	+	+	+	+	+	+	+	+	+	+	+		٠ .	+	+	+	+	+
ymphoma malignant histiocytic	ļ				х				X						X					,	X				
Jymphoma malignant lymphocytic Jymphoma malignant mixed	ļ				Λ	Х				X					Λ					•	Λ.				
omach omach, forestomach	+	+	A A	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+		<u> </u>	+	+	+	+ :	+
Papilloma squamous	'	,	Α.	•	Α.	,			,	•	,	,	X	,				,				1			
to mach, gland ular ooth	+	+	A.	+	A +	+	. +	+	+	+	+	+	+	+	+	+	+	+	: :	<u> </u>	+	+	+	+ +	+
ARDIOVASCULAR SYSTEM																									
eart Lymphoma malignant lymphocytic	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+
NDOCRINE SYSTEM drenai gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+
Capsule, adenoma																									
drenal gland, cortex Lymphoma malignant lymphocytic	+	+	+	+	X	+	+	+	+	+	+	+	+	+	+	+	+	+		-	+	+	+	+	+
drenai gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+
Pheochromocytoma benign lets, pancreatic	+	+	A	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	٠.	+	+	+	+	+	+
arathyroid gland	+	M	M	M	M	+	M	+	+	M	+	+	+	+	M	+	+	+	- 1	1	+	M	+	+	+
tuitary gland Lymphoma malignant lymphocytic	+	+	+	+	+ X	+	M	M	+	+	+	M	+	+	+	+	+	+		-	+	+	+	+	+
Pars distalis, adenoma																									
nyroid gland Lymphoma malignant lymphocytic	+	+	M	+	X	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+
follicular cell, adenoma																			2	ζ.					
ENERAL BODY SYSTEM None						-																			
NITAL SYSTEM																									
ary Systadenoma	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	٠ -	+	+	+	+	+	+
Granulosa cell tumor benign													Λ												
Lymphoma malignant histiocytic Lymphoma malignant lymphocytic					х				X	x	Х				х										
Lymphoma malignant mixed					Λ	X				Λ					A										
Follicle, adenoma Periovarian tissue, lymphoma																									
malignant lymphocytic	1																				X				
terus Hemangioma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ Y	+	+	+	+	+	+	+	+	+
Lymphoma malignant histiocytic									X							л									
Lymphoma malignant lymphocytic Lymphoma malignant mixed					Х					х															
e, mpnoma mangnani milaeu										Λ															

^{+:} Tissue examined microscopically
: Not examined
-: Present but not examined microscopically
I: Insufficient tissue

<sup>M: Missing
A: Autolysis precludes examination
X: Incidence of listed morphology</sup>

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: VEHICLE CONTROL (Continued)

								(0	on	tini	ueo	. <i>)</i>														
WEEKS ON STUDY	1 0 4	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	TOTAL:
CARCASS ID	8 0 5	7 1 5	7 2 3	7 4 1	7 4 5	7 7 2	8 0 1	7 2 2	7 2 5	7 4 4	7 6 1	7 7 3	7 7 5	7 8 5	7 9 1	8 0 4	7 2 1	7 3 5	7 7 1	7 9 3	7 3 3	7 5 4	7 6 3	7 6 4	8 0 2	TISSUES
ALIMENTARY SYSTEM																							_			ļ
Esophagus Gallbladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 47
Lymphoma malignant lymphocytic	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	_	+	_	_	_	_	Ŧ	i
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Intestine large, cecum Intestine large, colon	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	46 47
Intestine large, rectum	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	46 46
Intestine small, duodenum Intestine small, ileum	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Peyer's patch, lymphoma malignant lymphocytic Peyer's patch, lymphoma malignant mixed											X															1
Peyer's patch, lymphoma malignant																										ŀ
undifferentiated cell type	+	+	+	4-	+	X	+	+	+	4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma	1	,	τ.	X		,			,	,	,	,	,	1		,		,	,			,			•	1
Hepatocellular carcinoma Hepatocellular adenoma						х												x				x				5
Lymphoma malignant histiocytic						•												21				**				3
Lymphoma malignant lymphocytic	X															X										6 3
Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type Mesentery						x																				1
Lymphoma malignant mixed																										2 2
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Lymphoma malignant histiocytic Lymphoma malignant lymphocytic																							х			2 3
Lymphoma malignant mixed																										1
alivary glands Lymphoma malignant histiocytic	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Lymphoma malignant lymphocytic											X					X							X			6
Lymphoma malignant mixed Stomach	۱.		_		_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_		_	_	_	2 48
Stomach, forestomach	7	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Papilloma squamous																										1
Stomach, glandular Footh	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48 50
CARDIOVASCULAR SYSTEM																										
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymphoma malignant lymphocytic																										1
ENDOCRINE SYSTEM																										-
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Capsule, adenoma Adrenal gland, cortex	1	_	_	_		_	_	_	X	_	.1.	_		1	_	_	X	_	_	_	_	_	_	_	_	50 50
Lymphoma malignant lymphocytic	1.			,	,			,	,	,	т	,		,	•		,					-		,		1
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma benign slets, pancreatic	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	48
arathyroid gland	+	M	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	M	+	+	M	+	+	+	+	37
ituitary gland Lymphoma malignant lymphocytic	1 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	46 1
Pars distalis, adenoma			X								X													X		3
hyroid gland Lymphoma malignant lymphocytic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Follicular cell, adenoma												X								X						3
ENERAL BODY SYSTEM None				-						_,																-
ENITAL SYSTEM																							_			-
)vary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Cystadenoma Granulosa cell tumor benign																						х				1 1
Lymphoma malignant histiocytic																						••				2
Lymphoma malignant lymphocytic Lymphoma malignant mixed																										3
Follicle, adenoma					Х																					1
Periovarian tissue, lymphoma																										1
malignant lymphocytic Iterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X	+	+	+	+	+	+	+	+	+	2 50
Hemangioma	"	'	,					,			т.	1-	1.	*	Τ.		7		π.	4.	,	Τ'	r	,-	-	j 1
Lymphoma malignant histiocytic Lymphoma malignant lymphocytic	1																									1 1
Lymphoma malignant mixed																										i
Polyp stromal					X																					ī
	1																									

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: VEHICLE CONTROL (Continued)

					(0	OII	,111	ued	.,																
WEEKS ON STUDY	0 0 1	0 2 1	0 6 9	0 7 6	0 9 6	0 9 6	1 0 0	1 0 0	1 0 2	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
CARCASS ID	7 6 5	7 9 5	7 5 2	7 1 4	7 5 1	7 7 4	7 8 2	7 8 3	7 6 2	7 5 3	7 1 1	$\frac{7}{1}$	7 1 3	7 2 4	7 3 1	7 3 2	7 3 4	7 4 2	7 4 3	7 5 5	7 8 1	7 8 4	7 9 2	7 9 4	8 0 3
HEMATOPOIETIC SYSTEM Blood	-				+			_																	
Lymphoma malignant lymphocytic Bone marrow Lymphoma malignant histiocytic	+	+	+	+	X +	+	+	+	A	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Femoral, lymphoma malignant lymphocytic					X						A														
Lymph node Lumbar, lymphoma malignant histocytic Lumbar, lymphoma malignant lymphocytic Mediastinal, lymphoma malignant histocytic	+	М	+	+	¥	+	+	+	x x	+	x x	+	+	+	X	+	+	+	+	+	+	+	+	+	+
Mediastinal, lymphoma malignant lymphocytic Mediastinal, lymphoma malignant mixed Renal, fibrosarcoma, metastatic, skin Renal, lymphoma malignant histocytic Renal, lymphoma malignant lymphocytic Renal, lymphoma malignant mixed				x	x x	x x	x	x							X										
Lymph node, mandibular Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed Lymphoma malignant undifferentiated	+	M	+	M	+ X	x	M	+ Y	X	+ X	*X	+	+	+	+ X	+	+	+	+	X	+ X	+	+	+ X	+ X
cell type Lymph node, mesenteric Lymphoma malignant histocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type	М	M	M	M	+ X	+ X	*X	+ X	M	+ X	*X	М	М	M	+ X	M	M	M	M	M	M	M	M	M	M
Spleen Hemangiosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+
Lymphoma malignant histocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type					X	x	X	x	Х	x	X				X					X	x			x	x
Thymns Lymphoma malignant histocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed	+	M	+	M	+ X	+ X	M	+ X	*	+ X	+	+	M	+	M	+	+	+	+	+ X	+	+	+	+ X	M
INTEGUMENTARY SYSTEM Mammary gland Skin Subcutaneous tissue, fibrosarcoma	+ +	M +	+	+ + X	M +	+	+	+	+	+	M +	M +	++	M +	+	++	++	++	++	M +	M +	M +	+	+	++
MUSCULOSKELETAL SYSTEM																									
Bone Skeietal muscle Abdominal, lymphoma malignant lymphocytic	+	+	+	+	+ + X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain Choroid plexus, lymphoma malignant lymphocytic	+	+	+	+	+	+		+	+	+	+	+	+		+ X	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	+	+	+	*	+	+	+	+	+	+	+	+	*	+	*	+	+	+	+	+	+	+	+	+
Fibrosarcoma, metastatic, skin Lymphoma malignant histocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed I ymphoma malignant undifferentiated cell type	- Annual Control			Y	x	x			x	x					x									x	x
Nose Trachea	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++
SPFCIAL SENSES SYSTEM Eye Hardeпan gland	_		+		+	+	+	+	+		+	+	4	+	+	+	+	+	+	+	+	+	+	+	+
Adenoma	_		т	т		ſ		т	т	т	т		т	r	r	т.	X			ſ	٢		X		
URINARY SYSTEM Kidney Lymphoma malignant histocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed Lymphoma malignant undifferentiated	+	+	+	+	+ X	+ X	+	+	*	+ x	+	+	+	+	+ X	+	+	+	+	+ X	+ X	+	+	+ x	+ X
cell type Urnary bladder Fibrosarcoma, metastatic, skin Lymphoma malignant histocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed Lymphoma malignant cell type	+	A	A	* X	+ X	+	+	+	+ X	+ X	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: VEHICLE CONTROL (Continued)

								,,	V+41	,1111	ıed	,														
WEEKS ON STUDY	1 0 4	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL
CARCASS ID	8 0 5	7 1 5	7 2 3	7 4 1	7 4 5	$\begin{array}{c} 7 \\ 7 \\ 2 \end{array}$	8 0 1	7 2 2	7 2 5	7 4 4	7 6 1	7 7 3	7 7 5	7 8 5	7 9 1	8 0 4	7 2 1	7 3 5	7 7 1	7 9 3	7 3 3	7 5 4	7 6 3	7 6 4	8 0 2	TISSUES
EMATOPOIETIC SYSTEM								_																		1
lood Lymphoma malignant lymphocytic loone marrow Lymphoma malignant histiocytic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	I	+	+	+	+	+	+	1 48 1
Femoral, lymphoma malignant lymphocytic ymph node	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	1 48
Lumbar, lymphoma malig. histiocytic Lumbar, lymphoma malig. lymphocytic Mediastinal, lymphoma malignant histiocytic		·			,																					2 2 2
Mediastinal, lymphoma malignant lymphocytic Mediastinal, lymphoma malig mixed Renal, fibrosarcoma, metastatic, skin Renal, lymphoma malignant histiocytic Renal, lymphoma malig lymphocytic									x		X					X							x			5 3 1 1
Renal, lymphoma malignant mixed ymph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	1 46
Lymphoma malignant histocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed Lymphoma malignant undifferentiated	x								x		X					X							x			9 5
cell type ymph node, mesenteric Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed	M	M	M	M	M	X +	M	M	M	M	M	M	M	M	M	M	M	M	М	M	М	M	M	М	М	1 8 2 2 2 3
Lymphoma malignant undifferentiated cell type pleen Hemangiosarcoma	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed Lymphoma malignant undifferentiated	x								x		x					x		x					X			3 9 6
cell type hymus Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed	+ X	+	+	+	+	X +	+	+	M	+	+	M	+	+	+	M	+	+	+	+	+	+	+ X	+	+	1 41 1 4 4
NTEGUMENTARY SYSTEM I ammary gland kin Subcutaneous tissue, fibrosarcoma	++	++	++	+	++	M +	++	++	+	+	+	M +	+	+	++	++	++	++	+	++	++	M +	++	++	M +	38 50 1
MUSCULOSKELETAL SYSTEM																										.
one keletal muscle Abdominal, lymphoma malignant lymphocytic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ι	+	+	+	+	+	+	49 1
IERVOUS SYSTEM frain ('horoid plexus, lymphoma malignant lymphocytic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
FSPIRATORY SYSTEM Alveolar/bronchiolar adenoma	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	*	+	+	+	50
Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic, skin Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed	x							х															x			1 1 1 5 3
Lymphoma malignant undifferentiated cell type lose rachea	++	+	++	+	+	X + +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 50
PECIAL SENSES SYSTEM																										-
ye ardeman gland Adenoma	+	+	+	+	M	*X	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	1 48 3
RINARY SYSTEM idney Lymphoma malignant histocytic Lymphoma malignant lymphocytic	+ X	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 7 3
Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type rinary bladder Fibrosarcoma, metastatic, skin	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 48 1
Lymphoma malignant histiocytic Lymphoma malignant lymphocytic											X												х			1 4

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE: LOW DOSE

WEEKS ON STUDY	0 0 1	0 0 1	0 0 1	0 6 3	0 7 6	0 9 8	1 0 2	1 0 2	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5
CARCASS ID	6 1 4	6 2 1	6 3 2	6 9 5	6 1 3	6 3 4	6 4 4	6 1 2	6 2 3	6 5 2	6 5 4	6 1	6 7 2	6 7 3	7 0 3	7 0 4	6 1 1	6 3 5	6 4 5	6 5 5	6 6 5	6 8 3	6 8 5	6 9 1	6 9 3
AI IMENTARY SYSTEM																									
Esophagus Gallbladder	+	+	+ A	+ A	+																				
Intestine large Intestine large, cecum	†	+	+ M	+	+																				
Intestine large, colon Intestine large, rectum	+	++	+ M	++	++																				
Intestine small	+	+	A.	+	+																				
Intestine small, duodenum Intestine small, ileum	+ +	+	A A	+	+																				
Intestine small, jejunum Liver	+	+	A +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Hepatocellular carcinoma Hepatocellular adenoma Hepatocellular adenoma, multiple l ymphoma malignant histocytic l ymphoma malignant lymphocytic l ymphoma malignant mixed			·		ĸ			·	'	,	,	•	•	•	·	•	•	x	x x	·	·				
Mesentery Pancreas	+	+	+	+	+	+		+																	
I ymphoma malignant histiocytic Sa ivary glands	+	+	+	+	X +																				
Stomach Stomach, forestomach	+	+	+	+	+																				
Papilloma squamous		,	·	X	,																				
Stomach, glandular Tooth	+	+	+	+	+																				
CARDIOVASCULAR SYSTEM Heart	+	+	+	+	+																				
ENDOCRINE SYSTEM																									
Adrenal gland Adrenal gland, cortex	+	+	+	+	+																				
Adrenal gland, medulla Islets, pancreatic	+	+	+	+	+																				
Parathyroid gland Pituitary gland	M +	M +	M M	+	+								_												
Pars distalis, adenoma Thyroid gland	+	M	+	+	+								x ⁺												
GFNERAL BODY SYSTEM None																									
GFNITAL SYSTEM Ovary					+		_																		
l y mphoma malignant histiocytic				Ċ	Х																				
Urerus y mphoma malignant histocytic o yp stromal ervix, lymphoma malignant histocytic	+	+	+	+	*	+	+		+	+		+		+		+	+	+	+	+		X	+	+	
HEMATOPOIETIC SYSTEM																									
Bone marrow Lymph node	++	+	+	+	+																				
Lymph node mandibular	+	+	+	+	+																				
Lymph node mesenteric S lean	M +	M +	M +	M +	M +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ifemangiosarcoma ymphoma malignant histiocytic ymphoma malignant lymphocytic ymphoma malignant mixed											*X							X	x		x				
Thymus		+	+	+	M																				
INTEGUMENTARY SYSTEM Mammary gland Agenocarcinoma	М	+	M	+	+															+ X					
Adenoma Skin	+	+	+	+	+															+					
Subcutaneous tissue lymphoma malignant histiocytic					X																				
MUSCULOSKELETAL SYSTEM										·····															
Bi ne ('ramium, osteoma	+	+	+	+	+										X X										
NERVOUS SYSTEM Brain	+	+	+	+	+																				
RESPIRATORY SYSTEM										-															
Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma rlepatocellular carcinoma, metastatic liver	+	+	+	+	+						*X														
N >s€ Tra hea	++	+	+	+	+																				
SPECIAL SENSES SYSTEM																									
Eve Hardenan gland Adenoma	+	M	M	+	+				+ X																
URINARY SYSTEM																									
Kidney y nphoma malignant lymphocytic	+	+	+	+	+														* X						
Umnary bladder	+	+	+	+	+																				

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: LOW DOSE (Continued)

WEEKS ON STUDY	1 0 5	1 0 5	0	0 5	0 5	0	0 5	0 5	0 5	1 0 5	1 0 5	1 0 5	5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0	0 5	0 5	0	1 0 5	TOTAL
CARCASS ID	6 9 4	6 4 1	6 5 1	6 6 2	7 0 5	6 1 5	6 2 2	6 2 4	6 3 1	6 3 3	6 4 2	6 6 4	6 7 4	6 7 5	7 0 1	6 2 5	6 4 3	6 5 3	6 6 3	6 7 1	6 8 1	6 8 2	6 8 4	6 9 2	7 0 2	TOTAL. TISSUES TUMORS
LIMENTARY SYSTEM					_																				<u></u>	
Sophagus Failbladder																										5 3 5
ntestine large ntestine large, cecum																										4
ntestine large, colon ntestine large, rectum																										5 4
ntestine small ntestine small, duodenum																										4
ntestine small, ileum ntestine small, jejunum																										4
iver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hepatocellular carcinoma Hepatocellular adenoma	x					X												х				X		Х	X	6
Hepatocellular adenoma, multiple Lymphoma malignant histocytic																	X		X							$\frac{1}{2}$
Lymphoma malignant lymphocytic Lymphoma malignant mixed	X						х				X															4
Mesentery Pancreas																						+				2 7
Lymphoma malignant histiocytic Salivary glands																										5
Stomach Stomach, forestomach																										5 5
Papilloma squamous																										1
stomach, glandular Footh																										5 5
ARDIOVASCULAR SYSTEM	-																									
leart																										5
FNDOCRINE SYSTEM Adrenal gland					•																					5 5
Adrenal gland, cortex Adrenal gland, medulla																										5
Slets, pancreatic Parathyroid gland																										5 2
htuitary gland Pars distalis, adenoma												M														5
Tars distans, adenoma Thyroid gland	İ																									4
ENERAL BODY SYSTEM None																										
ENITAL SYSTEM															_		•									14
Lymphoma malignant histiocytic	١.															+				Τ.		+				1
Iterus Lymphoma malignant histiocytic	+	+	+	+	+		+		+	+	+		+	+	+		+		+	+	+		+	+	+	38
Polyp stromal Cervix, lymphoma malignant histocytic															X				х							1
HEMATOPOIETIC SYSTEM	ļ																									
Sone marrow Lymph node																										5 5
ymph node, mandibular ymph node, mesenteric																										5
Spleen Hemangiosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Lymphoma malignant histiocytic	x				X						х								X	х			х			1 8
Lymphoma malignant lymphocytic Lymphoma malignant mixed	^				А		X				А									Λ			А			1
'hymus																										4
NTEGUMENTARY SYSTEM Mammary gland									+																	5
Adenocarcinoma Adenoma									x																	1 1
Subcutaneous tissue, lymphoma									+																	7
malignant histocytic																										. 1
MUSCULOSKELETAL SYSTEM Sone																										6
Cranium, osteoma																	<u>-</u> .									1
NERVOUS SYSTEM Brain																										5
RESPIRATORY SYSTEM	-																								-	
Alveolar/bronchiolar adenoma																+						X X				8 2
Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic,																						X				1
liver Vose																						X				1 5
`rachea																										5
PECIAL SENSES SYSTEM																										1
fardenan gland Adenoma																										4
JRINARY SYSTEM																										-
Cidney																				*						7 2
Lymphoma malignant lymphocytic Jrinary bladder	1																			Λ						5

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE: MID DOSE

WEEKS ON STUDY	0 7 5	0 7 6	9	9	9	9	0	1 0 4	0	0	0	1 0 4	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5
CARCASS						<u>,</u>		·	<u>.</u>					-5						-		-	_		
ID ID	5 7 4	5 6 3	5 2 3	5 9 4	5 5 1	5 8 3	5 1 1	5 2 4	5 3 2	7 1	5 8 2	5 9 1	5 1 3	1 5	2 2	5 2 5	3 3	5 5 5	5 6 1	5 7 2	5 7 5	5 8 4	5 1 2	5 2 1	5 3 1
ALIMENTARY SYSTEM	-																								
Esophagus Gallbladder	+ M	+	+																						
Galibiadder Intestine large	H	+	A +																						
Intestine large, cecum	+	+	À																						
Intestine large, colon	+	+	+																						
Intestine large, rectum	+	+	A																						
Intestine small Intestine small, duodenum	+	+	+																						
Intestine small, aleum	M	+	+																						
Intestine small, jejunum	A	÷	+																						
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Carcinoma, metastatic, islets,	1																								
pancreatic Hepatocellular adenoma								х										х							
Hepatocellular adenoma, multiple							X	Λ										~							
Lymphoma malignant histiocytic	-		X																						
Lymphoma malignant lymphocytic	- [X																							
Lymphoma malignant undifferentiated																									
cell type Mesentery	X		+		_	+																			
Lymphoma malignant histocytic			x			,																			
Pancreas	+	+	+			+																			
Lymphoma malignant lymphocytic		Х																							
Salivary glands	+	+	+																						
Lymphoma malignant lymphocytic Stomach	+	X +	+																						
Stomach, forestomach	+	+	+																						
Lymphoma malignant lymphocytic		X																							
Stomach, glandular	+	+	+																						
Tooth	+	+	+																						
CARDIOVASCULAR SYSTEM	-																								
Heart	+	+	+																						
Lymphoma malignant lymphocytic	i	X																							
Lymphoma malignant undifferentiated																									
cell type	X																								
ENDOCRINE SYSTEM	-																								
Adrenal gland	+	+	+																						
Adrenal gland, cortex	+	+	+																						
Lymphoma malignant lymphocytic		X																							
Adrenal gland, medulla	+	+ X	+																						
Lymphoma malignant lymphocytic Pheochromocytoma malignant		Λ																							
Islets, pancreatic	+	+	+																						
Carcinoma	1																								
Parathyroid gland	+	+	+																						
Pituitary gland	+	+	+							+			+ X										+ X		
Pars distalis, adenoma Thyroid gland	+	+	+										А										Λ		
· · ·	1 '																								
GENERAL BODY SYSTEM None																									
GENITAL SYSTEM	-																								
Ovary	+	+	+		+		+	+	+	+					+			+	+			+			+
Lymphoma malignant lymphocytic		Х																							
Uterus	+	+	+	+			+	+		+	+	+	+	+		+	+	+	+		+	+	+		+
Lymphoma malignant lymphocytic Polyp											X														

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: MID DOSE (Continued)

WEEKS ON	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
STUDY	0 5	0 5	ō	0	0 5	õ	0 5	0	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	! 1
	5	5	5	5	5	5	Э	9	ъ	э	ъ	э	Э	ъ	э	Э	Э	Э	Э	Э	3	Э	э	Э	3	TOTAL
CARCASS	5	5	5	-5	5	5	-5	5	6	- 5	5	-5	- 5	5	5	6	5	5	-5	5	-5	-5	6	6	6	TISSUES
ID	3	3	3	4	4	5	6	8	0	4	5	5	6	8	9	0	1	4	6	7	9	9	0	0	0	TUMORS
	3	4	5	2	4	3	5	5	1	5	2	4	2	1	5	2	4	1	4	3	2	3	3	4	5	
ALIMENTARY SYSTEM													-													
Esophagus																										3
Esophagus Gailbladder																				+						2
Intestine large																										3
Intestine large, cecum	ļ																									2 3
Intestine large, colon Intestine large, rectum																										2
Intestine small																										3
Intestine small, duodenum																										3 2
Intestine small, ileum	1																									$\frac{2}{2}$
Intestine small, jejunum Liver	↓	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Carcinoma, metastatic, islets,	`				•	•	•	,			•		•	•		•	•					•	•	•		
pancreatic																				X						1
Hepatocellular adenoma								X			X						х	X				X				6 2
Hepatocellular adenoma, multiple Lymphoma malignant histocytic																	Ā									1 1
Lymphoma malignant lymphocytic	x									X																3
Lymphoma malignant undifferentiated																										
cell type																										1 1
Mesentery Lymphoma malignant histocytic																										3
Pancreas	ļ																			+						5
Lymphoma malignant lymphocytic																										1
Salivary glands																										3
Lymphoma malignant lymphocytic																										1 4
Stomach Stomach, forestomach	ļ			+																						3
Lymphoma malignant lymphocytic	i																									i
Stomach, glandular																										3
Tooth	ļ																									3
CARDIOVASCULAR SYSTEM																										
Heart																										3
Lymphoma malignant lymphocytic																										1
Lymphoma malignant undifferentiated	Į																									
cell type																										1
ENDOCRINE SYSTEM	-																									
Adrenal gland]															+										4
Adrenal gland, cortex																+										4
Lymphoma malignant lymphocytic																+										1 4
Adrenal gland, medulla Lymphoma malignant lymphocytic																+										1 1
Pheochromocytoma malignant	1															X										1
Islets, pancreatic																				+						4
Carcinoma																				X						1 3
Parathyroid gland Pituitary gland	J																									6
Pars distalis, adenoma																										2
Thyroid gland	ļ																									3
GENERAL BODY SYSTEM																										
None																										
GENITAL SYSTEM																										
Ovary]					+							+							+					+	17
Lymphoma malignant lymphocytic Uterus	+	+	+		+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	42
Lymphoma malignant lymphocytic	Ι΄.		•		,			,		*							'		,	,		1.	,		,	1
Polyp																										1
	I																									I

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: MID DOSE (Continued)

					,,		VIII.	ueo	.,																
WEEKS ON STUDY	7 5	0 7 6	0 9 0	0 9 6	9 6	0 9 7	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5
CARCASS ID	5 7 4	5 6 3	5 2 3	5 9 4	5 5 1	5 8 3	5 1 1	5 2 4	5 3 2	5 7 1	5 8 2	5 9 1	5 1 3	5 1 5	5 2 2	5 2 5	5 4 3	5 5 5	5 6 1	5 7 2	5 7 5	5 8 4	5 1 2	5 2 1	5 3 1
HEMATOPOIETIC SYSTEM Blood Lymphoma malignant lymphocytic Lymphoma malignant undifferentiated cell type Bone marrow Lymphoma malignant lymphocytic Lymph node Lumbar, lymphoma malignant lymphocytic Mediastinal, lymphoma malignant histocytic Mediastinal, lymphoma malignant	+ X + +	+ X + X +	+ + X	+																			+		
lymphocytic Mediastinal, lymphoma malignant undifferentiated cell type Pancreatic, lymphoma malignant lymphocytic Renal, lymphoma malignant lymphocytic Lymphoma malignant histocytic Lymphoma malignant lymphocytic Lymphoma malignant iymphocytic Lymphoma malignant undifferentiated cell type Lymph node, mesenteric Lymphoma malignant lymphocytic Spieen Hemangiosarcoma	X + X M +	x	т х м +	M + +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ + +	+	+
Lymphoma malignant lymphocytic Lymphoma malignant undifferentiated cell type Thymus Lymphoma malignant undifferentiated cell type INTEGUMENTARY SYSTEM	x + x	M	М		_																				
Mammary gland Skin Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, lymphoma malignant lymphocytic	++	+ + X	+	*					+																
MUSCULOSKELETAL SYSTEM Bone	+	+	+																						
NERVOUS SYSTEM Brain	+	+	+																						
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Carcinoma, metastatic, islets, pancreatic Lymphoma malignant histocytic Lymphoma malignant lymphocytic Lymphoma malignant undifferentiated cell type Pheochromocytoma malignant,	+ x	+ x	+ X		+																				
metastatic, adrenal gland Nose Lymphoma malignant lymphocytic Trachea	+	* X +	+																						
SPECIAL SENSES SYSTEM Harderian gland Adenoma Lymphoma malignant lymphocytic	М	+ X	+											+ X											
URINARY SYSTEM Kidney Lymphoma malignant lymphocytic Lymphoma malignant undifferentiated cell type Urinary bladder	+ X +	* *	+																						

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: MID DOSE (Continued)

								(•	, O11		ueo	-,														
WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL
CARCASS ID	5 3 3	5 3 4	5 3 5	5 4 2	5 4 4	5 5 3	5 6 5	5 8 5	6 0 1	5 4 5	5 5 2	5 5 4	5 6 2	5 8 1	5 9 5	6 0 2	5 1 4	5 4 1	5 6 4	5 7 3	5 9 2	5 9 3	6 0 3	6 0 4	6 0 5	TOTAL. TISSUES TUMORS
HEMATOPOIETIC SYSTEM Blood Lymphoma malignant lymphocytic Lymphoma malignant undifferentiated cell type Bone marrow Lymphoma malignant lymphocytic Lymphoma malignant lymphocytic Lymph node Lumbar, lymphoma malignant histocytic Mediastinal, lymphoma malignant lymphocytic Mediastinal, lymphoma malignant undifferentiated cell type Pancreatic, lymphoma malignant lymphocytic Renal, lymphoma malignant Lymphocytic Lymphoma malignant lymphocytic Lymphoma malignant lymphocytic Lymphoma malignant undifferentiated cell type ymph node, mesenteric Lymphoma malignant lymphocytic Lymphoma malignant lymphocytic Lymphoma malignant lymphocytic Lymphoma malignant lymphocytic Lymphoma malignant lymphocytic Lymphoma malignant lymphocytic Lymphoma malignant lymphocytic Lymphoma malignant lymphocytic bleen Hemangiosarcoma	* X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M M +	+	+	+	+	+	1 1 1 1 1 1 1 1 2 2 1 4 2 2 5 0 1
Lymphoma malignant lymphocytic Lymphoma malignant undifferentiated cell type Tymus Lymphoma malignant undifferentiated cell type INTEGUMENTARY SYSTEM Mammary gland Skin Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, lymphoma malignant lymphocytic	X			- *						X							+ X	-								3 1 1 1 3 7 3 3
MUSCULOSKELETAL SYSTEM	1																									3
NERVOUS SYSTEM Brain																										3
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Carcinoma, metastatic, islets, pancreatic Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant undifferentiated cell type Pheochromocytoma malignant, metastatic, adrenal gland Nose Lymphoma malignant lymphocytic Trachea						,										+ x				+ X		+ X				7 1 1 1 1 1 1 3 1 3 3 3
SPECIAL SENSES SYSTEM Hardenan gland Adenoma Lymphoma malignant lymphocytic				_		AP 4074.01								· · ·	_											3 1 1
JRINARY SYSTEM Kidney Lymphoma malignant lymphocytic Lymphoma malignant undifferentiated cell type Jrinary bladder				_				-							-			+								1 1 3

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF $\rho\text{-}CHLOROANILINE HYDROCHLORIDE: HIGH DOSE$

WEEKS ON STUDY	0 6 6	0 7 9	0 8 7	8	0 9 1	0 9 6	0	0 1	0	0	0	0	0	0	0	0	0 5	0 5	0 5	0 5	0 5	0 5	5	0 5	0 5
CARCASS ID	4 6 3	4 3	4 5	4 6 4	4 8 5	4 2 5	4 7 1	4 3 2	4 6 2	1 3	4 1 4	4 3 4	4 1	4 5 3	4 5 4	4 9 3	1 2	4 3 1	4 3 3	4 5 1	4 6 5	4 8 3	5 0 5	4 2 4	7 3
LIMENTARY SYSTEM																									
sophagus allbladder	†	+	+ A	+	Ą	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
testine large	A +	+	Â	+	A A	Ŧ	+	+	A. +	+	+	+	+	+	+	+	+	+	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	
testine large, cecum	1 +	+	Ä	÷	Ä	÷	+	+	À	÷	+	+	+	÷	÷	÷	+	+	+	+	+	+	+	+	
testine large, colon	+	+	A	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
testine large, rectum	+	+	Ą	+	Ą	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
estine small	+	+	Ą	+	Ą	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
estine small, duodenum	1 +	+	A	+	Ā	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
estine small, ileum estine small, jejunum	‡	+	A A	+	A	Ι	+	+	A +	Ι	+	+	+	Ι	I	+	+	+	Ι	I		I	I	I	
ymphoma malignant histiocytic	'	,			**			x						•				•		•	•			,	
'eyer's patch, lymphoma malignant																									
mixed													Х												
/er	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
lemangiosarcoma lepatocellular carcinoma	i			X												X									
lepatocellular carcinoma, multiple																22									
Iepatocellular adenoma	-								Х									Х							
ymphoma malignant histiocytic			X																						
ymphoma malignant mixed																									
esentery ncreas	+	+			A		J.	J.	J.			J.							.4.	ı		L	L		
ncreas ymphoma malignant lymphocytic	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
ymphoma malignant mixed																									
hvary glands	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
ymphoma malignant histiocytic			X																						
ymphoma malignant lymphocytic																							X		
ymphoma malignant mixed omach	.				2.5																		+		
omach, forestomach	‡	+	+	+	M	+	T	+	A. A	+	+	+	+	+	+	+	M	+	+	+	Ť	+	+	+	
omach, glandular	+	+	À	÷	M	+	+	+	Ã	÷	÷	÷	+	+	÷	+	+	÷	+	+	+	+	+	÷	
oth	÷	+	+	+	+	+	+	+	+	+	+	÷	+	÷	+	+	+	+	+	+	+	+	+	+	
NOTATION AND AVABLE																									_
RDIOVASCULAR SYSTEM art	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
	'			_ '														'		_ `					
DOCRINE SYSTEM										-															
renal gland	+	+	+	+	Ą	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
renal gland, cortex ymphoma malignant histiocytic	+	+	X	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
renal gland, medulla	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
ets, pancreatic	+	+	+	+	Ã	+	+	+	+	+	+	÷	÷	+	÷	÷	+	÷	+	÷	+	+	+	+	
rathyroid gland	+	+	+	+	M	+	+	+	+	+	+	M	+	+	+	+	+	+	+	M	+	+	+	+	
uitary gland	+	+	+	+	M	+	+	+	+	M	+	+	+	+	+	+	M	+	+	+	+	+	+	+	
Pars distalis, adenoma													X												
yroid gland Follicular cell, adenoma	+	+	+	+	A	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	
ENERAL BODY SYSTEM																			_						
ENITAL SYSTEM	— —																								-
vary	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Cystadenoma	Ì					v																			
Fibrosarcoma, metastatic, skin						X																			
Periovarian tissue, lymphoma malignant mixed	1																								
erus	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
olyp stromal																									
MATOPOIETIC SYSTEM																		-							
ood	-							+			+														
ne marrow	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
mph node	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	
Bronchial, lymphoma malignant	1																								
lymphocytic Bionchial, lymphoma malignant mixed																									
umbar, lymphoma malignant mixed																									
lediastinal, fibrosarcoma, metastatic,																									
skin																									
Iediastinal, lymphoma malignant histiocytic			х																						
Mediastinal, lymphoma malignant			Λ																						
lymphocytic																							X		
fediastinal, lymphoma malignant mixed																									
ancreatic, lymphoma malignant																									
lymphocytic	- I .				A	. 1	1	1		.4	1	. 4	1			1		ı	4.	1			X	М	,
mph node, mandibular ymphoma malignant histiocytic	+	+	*	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	IVI	
ymphoma malignant histocytic ymphoma malignant lymphocytic			А																				Х		
vmphoma malignant mixed																							41		
mph node, mesenteric	M	M	M	M	Α	M	M	M	M	M	M	M	+	M	M	M	M	M	M	M	M	M	M	M	ĺ
ymphoma malignant mixed													X												
leen	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
ymphoma malignant histocytic			X																		v		v		
Amphoma malignant lymphocytic													v								X		X		
vmphoma malignant mixed		+	M	M	M	м	_	M	+	M	м	+	X M	+	M	+	+	4	+	4		4	4	4	
ymus	1 10/4							447	1.																

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: HIGH DOSE (Continued)

STUDY	0 5	0 5	0 5	0	0 5	0 5	0	0 5	0	1 0 5	1 0 5	1 0 5	0 5	0 5	0 5	0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	0 5	0 5	0 5	1 0 5	
CARCASS ID	4 7 4	4 8 2	9 2	5 0 1	4 1 1	4 1 5	4 4 2	4 5 5	4 6 1	4 7 2	4 7 5	4 8 1	4 9 4	4 9 5	5 0 3	4 2 1	4 2 2	4 2 3	4 3 5	4 4 4	4 5 2	4 8 4	4 9 1	5 0 2	5 0 4	TOTAL TISSUE TUMOR
CIMONTARY SYSTEM	_																					-		_	_	
ophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	+	+	+	49 46
allbladder testine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
testine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
testine large, colon testine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48 48
testine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
estine small, duodenum estine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48 47
testine small, jejunum	+	+	+	+	÷	+	+	+	÷	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	48
ymphoma malignant histiocytic Peyer's patch, lymphoma malignant																										1
mixed																										1
ver Iemangiosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hepatocellular carcinoma		X													_											3
lepatocellular carcinoma, multiple lepatocellular adenoma							X	х					X		X X							X				2 8
ymphoma malignant histiocytic																										1
ymphoma malignant mixed esentery												X +												X		2 3
ncreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
ymphoma malignant lymphocytic ymphoma malignant mixed										X														X		1 1
livary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
ymphoma malignant histiocytic ymphoma malignant lymphocytic														x												1 2
ymphoma malignant mixed												X		41												1
omach omach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48 46
mach, glandular	+	+	+	+	+	+	÷	+	+	÷	+	+	÷	+	+	+	+	÷	+	+	+	+	÷	+	+	47
oth	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
RDIOVASCULAR SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DOCRINE SYSTEM																										ļ
renal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
renal gland, cortex ymphoma malignant histiocytic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
renal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
ets, pancreatic rathyroid gland	+	+	+	+	+ M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 46
tuitary gland	+	+	+	+	+	+	+	I	+	+	M	+	+	+	+	+	+	+	I	+	M	+	+	+	+	42
Pars distalis, adenoma syroid gland	+	+	+	+	+	+	X	+	X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	3 49
ollicular cell, adenoma	Ċ	•	٠	•		•	,							Ċ		X		,		·	•	•		•		2
ENERAL BODY SYSTEM												_														-
ENITAL SYSTEM																										-
vary Cystadenoma	+	I	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	47
ibrosarcoma, metastatic, skin) î
Periovarian tissue, lymphoma malignant mixed												¥														1
erus	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	M	+	+	48
olyp stromal														X												1
EMATOPOIETIC SYSTEM												-												-		
ood	+	+	+	+	+	+	+	+	+-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	3 49
mph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Bronchial, lymphoma malignant lymphocytic														X												1
Bronchial, lymphoma malignant mixed												X														1
Jumbar, lymphoma malignant mixed Mediastinal, fibrosarcoma, metastatic,												Х														1
skin																		X								1
fediastinal, lymphoma malignant histiocytic																										1
fediastinal, lymphoma malignant																										1
lymphocytic fediastinal, lymphoma malig mixed																								X		1
ancreatic, lymphoma malignant																										1
lymphocytic mph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
ymphoma malignant histiocytic				v						v				10-												1
ymphoma malignant lymphocytic ymphoma malignant mixed				Х						X		X		X										X		4 2
	M	M	M	M	M	M	M	M	M	M	M	+	M	M	M	+	M	M	M	M	M	M	M	M	M	$\begin{array}{c c} 2\\ 3\\ 2 \end{array}$
			_	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	49
mph node, mesenteric ymphoma malignant mixed leen	+	+																								
ymphoma malignant mixed leen ymphoma malignant histiocytic	+	+	т	v						v				v												1 5
ymphoma malignant mixed leen	+	+	Т	x				М		X M		X +		X +	M			M						X		5 3 35 2

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: HIGH DOSE (Continued)

WEEKS ON STUDY	0 6 6	0 7 9	0 8 7	0 8 8	0 9 1	0 9 6	1 0 1	1 0 1	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5
CARCASS ID	4 6 3	4 3	4 4 5	4 6 4	4 8 5	4 2 5	4 7 1	4 3 2	6 2	1 3	1 4	4 3 4	4 1	4 5 3	4 5 4	4 9 3	4 1 2	4 3 1	4 3 3	4 5 1	4 6 5	4 8 3	5 0 5	2 4	7 3
INTEGUMENTARY SYSTEM Mammary gland Skin Subcutaneous tissue, fibrosarcoma	++	+ +	++	++	M A	+ + X	+	++	+	++	++	+	++	++	++	+	+ +	+ +	++	+ +	M +	M +	+	+	+ + X
MUSCULOSKELETAL SYSTEM Bone Sacrum, osteosarcoma Skeletal muscle	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic, liver	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+
Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed Mediastinum, fibrosarcoma, metastatic, skin			x																				x		
Nose Trachea	++	+	+	+	+ A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSES SYSTEM Eye Harderian gland Adenoma	+	++	М	+	+	+	+	+	+	+	+ X	+	I +	+	+	+	М	+	+	+	+	+	+	+	М
URINARY SYSTEM Kidney Lymphoma malignant lymphocytic Lymphoma malignant mixed	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* X	+	+	+	+
Renal tubule, adenoma Urnnary bladder Lymphoma malignant mixed	+	+	A	+	A	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: HIGH DOSE (Continued)

WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL
CARCASS ID	4 7 4	4 8 2	4 9 2	5 0 1	4 1 1	1 5	4 2	4 5 5	4 6 1	4 7 2	4 7 5	4 8 1	4 9 4	4 9 5	5 0 3	4 2 1	4 2 2	4 2 3	4 3 5	4 4	4 5 2	4 8 4	4 9 1	5 0 2	5 0 4	TISSUES
INTEGUMENTARY SYSTEM Mammary gland Skin Subcutaneous tissue, fibrosarcoma	M +	++	++	++	++	+	M +	+	++	+++	++	+	+++	+	+++	++	++	+ + X	++	+	++	M +	++	++	++	44 49 3
MUSCULOSKELETAL SYSTEM Bone Sacrum, osteosarcoma Skeletal muscle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	+	+	+	+	+	+	+	+	+	+ X	+ X	+	+	+	+	+	+	+ X	+	+	+	+	+	+	50 2 2
Hepatocellular carcinoma, metastatic, hver Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed Mediastinum, fibrosarcoma, metastatic,		X					x			x		x		x												2 1 3 1
skin Nose 7 rachea	++	+	+	++	++	++	+	++	++	+	+	++	+	+	++	++	+	X + +	+	+	++	+	++	+	++	1 50 49
SPECIAL SENSES SYSTEM Eye Hardenan gland Adenoma	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+ X	+	+	+	+	+	1 47 4
URINARY SYSTEM Kidney Lymphome malignant lymphocytic Lymphome malignant mixed	+	+	+	+ X	+	+	+	+	+	+	+	+ X	+	*	+	+	+	+	+	+	+	+	+	+	+	49 3 1
Renal tubule, adenoma Trinary bladder Lymphoma malignant mixed	+	+	+	I	+	+	+	+	+	+	+	+ X	X +	+	+	+	+	+	+	I	+	+	M	+	+	1 44 1

TABLE D3. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE

	Vehicle Contro	l 3 mg/kg	10 mg/kg	30 mg/kg
Harderian Gland: Adenoma				
Overall Rates (a)	3/50 (6%)	1/50 (2%)	1/50 (2%)	4/50 (8%)
Adjusted Rates (b)	7.7%	2.4%	2.3%	9.8%
Terminal Rates (c)	3/39 (8%)	1/42 (2%)	1/44 (2%)	4/41 (10%)
Day of First Observation	728	728	728	728
Life Table Tests (d)	P = 0.225	P = 0.279N	P = 0.263N	P=0.527
Logistic Regression Tests (d)	P=0.225	P = 0.279N	P = 0.263N	P = 0.527
Cochran-Armitage Trend Test (d)	P = 0.222	2 0.21011	1 0.2001	1 0.02.
Fisher Exact Test (d)	. — 0.22.2	P = 0.309N	P = 0.309N	P = 0.500
Liver: Hepatocellular Adenoma				
Overali Rates (a)	5/50 (10%)	7/50 (14%)	8/50 (16%)	8/50 (16%)
Adjusted Rates (b)	12.3%	16.7%	18.2%	19.0%
Terminal Rates (c)	4/39 (10%)	7/42 (17%)	8/44 (18%)	7/41 (17%)
Day of First Observation	672	728	728	722
Life Table Tests (d)	P = 0.310	P=0.428	P=0.354	P=0.308
Logistic Regression Tests (d)	P = 0.305	P = 0.374	P = 0.302	P = 0.303
Cochran-Armitage Trend Test (d)	P = 0.301	T - 0.014	A = 0.002	0.201
Fisher Exact Test (d)	1 -0.001	P = 0.380	P = 0.277	P = 0.277
Liver: Hepatocellular Carcinoma				
Overall Rates (a)	1/50 (2%)	2/50 (4%)	0/50 (0%)	5/50 (10%)
Adjusted Rates (b)	2.1%	4.8%	0.0%	11.7%
Terminal Rates (c)	0/39 (0%)	2/42 (5%)	0/44 (0%)	4/41 (10%)
Day of First Observation	480	728	0/44(070)	616
Life Table Tests (d)	P=0.034	P=0.512	P = 0.492N	P=0.117
Logistic Regression Tests (d)	P = 0.028	P=0.509	P = 0.492N P = 0.500N	P = 0.082
Cochran-Armitage Trend Test (d)	P = 0.032N	r = 0.509	F - 0.50014	F -0.002
Fisher Exact Test (d)	1 -0.03214	P = 0.500	P = 0.500N	P = 0.102
Liver: Hepatocellular Adenoma or Card	cinoma			
Overall Rates (a)	6/50 (12%)	9/50 (18%)	8/50 (16%)	11/50 (22%
Adjusted Rates (b)	14.1%	21.4%	18.2%	25.4%
Terminal Rates (c)	4/39 (10%)	9/42 (21%)	8/44 (18%)	9/41 (22%)
Day of First Observation	480	728	728	616
Life Table Tests (d)	P=0.171		P=0.472	P=0.174
		P = 0.335		
Logistic Regression Tests (d)	P = 0.180	P = 0.278	P = 0.395	P = 0.146
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.161	P = 0.288	P = 0.387	P = 0.143
Lung: Alveolar/Bronchiolar Adenoma				
Overall Rates (a)	5/E0 (100)	(e) 2/8 (25%)	(a) 1/7 (1 40f.)	9/50 (40)
Overall Rates (a) Adjusted Rates (b)	5/50 (10%) 12.2%	(e) 4/0 (20%)	(e) 1/7 (14%)	2/50 (4%) 4.9%
Terminal Rates (c)	4/39 (10%)			2/41 (5%)
Day of First Observation	4/39 (10%) 666			728
Life Table Test (d)	000			P = 0.203N
Life Table Test (d) Logistic Regression Test (d)				
Fisher Exact Test (d)				P = 0.206N P = 0.218N
Lung: Alveolar/Bronchiolar Adenoma o	r Carcinoma			
Overall Rates (a)		(e) 2/8 (25%)	(e) 1/7 (14%)	4/50 (8%)
Adjusted Rates (b)	14.7%	(6) 210 (2070)	(C) I/ (L 1470)	9.8%
Torminal Rates (c)	5/39 (13%)			4/41 (10%)
Terminal Rates (c)				700
Day of First Observation	666			728 B=0.244N
				728 P=0.344N P=0.356N

TABLE D3. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle Cont	trol 3 mg/kg	10 mg/kg	30 mg/kg
Pituitary Gland/Pars Distalis: Adenoma				
Overall Rates (a)	3/46 (7%)	(e) 1/5 (20%)	(e) 2/6 (33%)	3/42 (7%)
Adjusted Rates (b)	8.1%		, , , , , , , , , , , , , , , , , , , ,	8.8%
Terminal Rates (c)	3/37 (8%)			3/34 (9%)
Day of First Observation	728			728
Life Table Test (d)				P = 0.624
Logistic Regression Test (d)				P = 0.624
Fisher Exact Test (d)				P = 0.617
Subcutaneous Tissue: Fibrosarcoma				
Overall Rates (a)	1/50 (2%)	0/50 (0%)	3/50 (6%)	3/50 (6%)
Adjusted Rates (b)	2.1%	0.0%	0.0%	7.0%
Terminal Rates (c)	0/39 (0%)	0/42 (0%)	2/44 (5%)	2/41 (5%)
Day of First Observation	527		667	667
Life Table Tests (d)	P = 0.131	P = 0.504N	P = 0.337	P = 0.321
Logistic Regression Tests (d)	P = 0.117	P = 0.473N	P = 0.260	P = 0.268
Cochran-Armitage Trend Test (d)	P = 0.126			
Fisher Exact Test (d)		P = 0.500N	P = 0.309	P = 0.309
Thyroid Gland: Follicular Cell Adenom	a			
Overall Rates (a)	3/49 (6%)	(e) 0/4 (0%)	(e) 0/3 (0%)	2/49 (4%)
Adjusted Rates (b)	7.7%			4.9%
Terminal Rates (c)	3/39 (8%)			2/41 (5%)
Day of First Observation	728			728
Life Table Test (d)				P = 0.477N
Logistic Regression Test (d)				P = 0.477N
Fisher Exact Test (d)				P = 0.500N
Hematopoietic System: Lymphoma, All	Malignant			
Overall Rates (a)	19/50 (38%)	12/50 (24%)	5/50 (10%)	10/50 (20%
Adjusted Rates (b)	41.3%	27.8%	10.3%	23.0%
Terminal Rates (c)	12/39 (31%)	11/42 (26%)	2/44 (5%)	8/41 (20%)
Day of First Observation	666	528	521	609
Life Table Tests (d)	P = 0.082N	P = 0.083N	P = 0.001N	P = 0.041N
Logistic Regression Tests (d)	P = 0.071 N	P = 0.104N	P = 0.001N	P = 0.032N
Cochran-Armitage Trend Test (d)	P = 0.078N			
Fisher Exact Test (d)		P = 0.097N	P<0.001N	P = 0.038N

⁽a) Number of tumor-bearing animals/number of animals examined at the site; doses calculated as p-chloroaniline.

⁽b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

⁽c) Observed tumor incidence at terminal kill

⁽d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

⁽e) Incomplete sampling of tissues

TABLE D4. HISTORICAL INCIDENCE OF HEMATOPOIETIC SYSTEM TUMORS IN FEMALE B6C3F $_1$ MICE (a)

	Incid	ence in Controls
Study	Lymphoma	Lymphoma or Leukemia
orical Incidence for All Water Gavage Ve	hicle Controls	
inated glycerol (b)	26/50	26/50
orpheniramine maleate (c)	17/50	18/50
rakis(hydroxymethyl)phosphonium chloride (c)	21/50	21/50
onaldehyde, sodium salt (c)	13/50	13/50
akis(hydroxymethyl)phosphonium sulfate (c)	16/50	18/50
hyl carbamate (d)	14/50	14/50
rinated trisodium phosphate (b)	12/50	12/50
OTAL	119/350 (34.0%)	122/350 (34.9%)
O (e)	9.93%	9.92%
e (f)		
ligh	26/50	26/50
w .	12/50	12/50
rall Historical Incidence for Untreated Co	ontrols	
TOTAL	617/2,040 (30.2%)	636/2,040 (31,2%)
SD (e)	13.32%	12.83%
ge (f)		
ligh	(g) 37/50	(g) 38/50
ow	5/50	6/50

⁽a) Data as of April 29, 1987, for studies of at least 104 weeks
(b) Study performed at EG&G Mason Research Institute
(c) Study performed at Battelle Columbus Laboratories
(d) Study performed at Microbiological Associates
(e) Standard deviation
(f) Range and SD are presented for groups of 35 or more animals.
(g) Second highest: 31/50

TABLE D5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
nimals initially in study	50		50		50		50	
nimals removed	50		50		50		50	
nimals examined histopathologically	50		50		50		50	
LIMENTARY SYSTEM	· , · · · · · · · · · · · · · · · · · · ·							
Gallbladder	(47)		(3)		(2)		(46)	
Infiltration cellular, lymphocytic, mult	tifocal							(2%)
Lumen, pigmentation, diffuse								(2%)
Mucosa, cyst								(2%)
Intestine large, colon	(47)		(5)		(3)		(48)	
Parasite metazoan	3	(6%)						
Intestine small, duodenum	(46)		(4)		(3)		(48)	
Inflammation, chronic, focal		(2%)						
Ulcer, chronic, focal		(2%)						
Intestine small, jejunum	(46)		(4)		(2)		(48)	
Necrosis, acute, diffuse								(2%)
Liver	(50)	(24)	(50)		(50)		(50)	
Angiectasis, focal		(2%)						,a~,
Basophilic focus		(2%)	^	 .			1	(2%)
Clear cell focus	1	(2%)	2	(4%)		(00)		(0.00)
Cytomegaly, focal		(00%)	00	(20%)		(2%)		(2%)
Hematopoietic cell proliferation, multi		(30%)		(58%)		(48%)		(62%)
Necrosis, acute, multifocal	1	(2%)	1	(2%)	I	(2%)		(2%)
Thrombus, chronic						(O.W.)		(2%)
Vacuolization cytoplasmic, focal				(OW)	1	(2%)	1	(2%)
Bile duct, cyst	,		1	(2%)				(0 <i>c</i>)
Centrilobular, necrosis, acute, multifor		(0%)		(0%)			1	(2%)
Hepatocyte, karyomegaly, focal		(2%)	1	(2%)		/ 0 ~ \	40	(000
Kupffer cell, pigmentation, hemosideri		(90)			1	(2%)	46	(92%)
Periportal, inflammation, multifocal		(2%)						
Serosa, inflammation, suppurative, chi multifocal	ronic,						1	(2%)
							1	(270)
Sinusoid, infiltration cellular,	1	(2%)						
polymorphonuclear, diffuse Mesentery	(2)	(270)	(2)		(3)		(3)	
Inflammation, chronic active, multifoc				(100%)		(67%)	1	(33%)
Inflammation, suppurative, chronic, m			4	(100%)	2	(0170)		(67%)
Pancreas	(48)		(7)		(5)		(49)	(0170)
Inflammation, chronic active, multifoc				(14%)		(20%)	(43)	
Inflammation, suppurative, chronic, m			•	(1470)		(2070)	1	(2%)
Acinus, atrophy, diffuse		(2%)					•	(= ,0,
Acinus, atrophy, focal		(2%)					2	(4%)
Acinus, atrophy, multifocal		(2%)	1	(14%)	2	(40%)		(10%)
Duct, cyst		(= ///		(14%)	_	(,,		(2%)
Duct, cyst, multiple	1	(2%)	_	,				
Duct, ectasia, focal							1	(2%)
Duct, ectasia, multifocal					1	(20%)		
Duct, inflammation, chronic, multifoca	.l 1	(2%)						
Salivary glands	(47)		(5)		(3)		(48)	
Infiltration cellular, lymphocytic, mult	ifocal							(6%)
Acinus, atrophy, focal								(2%)
Stomach, forestomach	(48)		(5)		(3)		(46)	
Acanthosis, focal							1	(2%)
Hyperkeratosis, focal							1	(2%)
Ulcer, acute, focal							1	(2%)
Stomach, glandular	(48)		(5)		(3)		(47)	
Cyst							1	(2%)
Necrosis, acute, focal	1	(2%)						

TABLE D5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

•	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
CARDIOVASCULAR SYSTEM								
Heart	(50)		(5)		(3)		(50)	
Atrium, inflammation, chronic, focal					1	(33%)		
Coronary artery, inflammation, chronic							,	(90%)
active multifocal Epicardium, inflammation, acute, multif	oool		1	(20%)			1	(2%)
Epicardium, imiammacion, acute, mutili	ocai			(20%)				
ENDOCRINE SYSTEM								
Adrenal gland	(50)		(5)		(4)		(49)	
Accessory adrenal cortical nodule		(2%)						
Capsule, cyst	1	(2%)						
Capsule, hyperplasia, cystic, glandular,								
multifocal	1	(2%)						
Capsule, hyperplasia, focal								(2%)
Capsule, hyperplasia, multifocal		(96%)	2	(40%)	3	(75%)	48	(98%
Corticomedullary junction, degeneration	•							.a~:
fatty, multifocal	. = ^ .		/ Ex.					(2%)
Adrenal gland, cortex	(50)		(5)		(4)		(49)	(O~
Degeneration, fatty, focal	1							(2%)
Hematopoietic cell proliferation, multifor		(00)						(2%)
Hyperplasia, focal		(2%)					1	(2%)
Hyperplasia, multifocal		(2%)					0	(400)
Hypertrophy, focal		(4%)						(4%)
Hypertrophy, multifocal Adrenal gland, medulla		(2%)	(F)		(4)			(2%)
Adrenai giand, medulia Hyperplasia, focal	(50)		(5)		(4)		(49)	
	1	(2%)					1	(906)
Infiltration cellular, plasma cell, focal Pituitary gland	(46)		(5)		(6)		(42)	(2%)
Pars distalis, cyst		(7%)	(3)		(0)		. ,	(2%)
Pars distalis, cyst, multiple		(2%)					1	(270)
Pars distalis, hyperplasia, focal		(11%)			1	(17%)	6	(14%
Pars distalis, hyperplasia, multifocal		(4%)			•	(1170)	·	(11/1
Thyroid gland	(49)		(4)		(3)		(49)	
Necrosis, acute, focal		(2%)	(-/		(0)		(- 0 /	
Follicular cell, hyperplasia	•	(2,0)					1	(2%)
Follicular cell, hyperplasia, focal	1	(2%)						(2%)
Follicular cell, hyperplasia, multifocal	-	(=,0)						(2%)
Interstitium, inflammation, chronic, focal	1							(2%)
GENERAL BODY SYSTEM None								
GENITAL SYSTEM								
Ovary	(50)		(14)		(17)		(47)	
Angiectasis, focal							1	(2%)
Angiectasis, multifocal		(2%)			1	(6%)		
Inflammation, suppurative, chronic, mult							2	(4%)
Thrombus, chronic active	1	(2%)	1	(7%)				_
Corpus luteum, angiectasis, multifocal	4.5	.0041						(2%)
Follicle, cyst		(20%)	7	(50%)	11	(65%)		(30%
Follicle, cyst, multiple		(6%)		/= ~/ \	-			(2%)
Periovarian tissue, cyst	3	(6%)	1	(7%)	5	(29%)	1	(2%)
Periovarian tissue, infiltration cellular,								(O ~
lymphocytic, multifocal							1	(2%)
Periovarian tissue, inflammation, chronic	2			(77.04.)				
active, multifocal			1	(7%)				/0 <i>m</i> ·
Rete ovarii, cyst							1	(2%)

TABLE D5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

Ve	hicle	Control	Low	Dose	Mid	Dose	High	Dose
GENITAL SYSTEM (Continued)								
Uterus	(50)		(38)		(42)		(48)	
Inflammation, suppurative, chronic, multif				(3%)				(4%)
Endometrium, angiectasis, multifocal		(2%)		(/				,
Endometrium, hyperplasia, cystic,	_	(=,						
glandular, multifocal	45	(90%)	35	(92%)	41	(98%)	43	(90%)
Mucosa, metaplasia, squamous, multifocal				,,			1	(2%)
Myometrium, angiectasis, multifocal	1	(2%)						
HEMATOPOIETIC SYSTEM								
Blood	(1)				(2)		(3)	
Neutrophilia							3	(100%)
Bone marrow	(48)		(5)		(3)		(49)	
Femoral, angiectasis, focal	1	(2%)						
Femoral, hyperplasia, neutrophil, diffuse								(4%)
Femoral, myelofibrosis, multifocal	3	(6%)					4	(8%)
Lymph node	(48)		(5)		(7)		(47)	
Mediastinal, hyperplasia, lymphoid, diffuse)						2	(4%)
Pancreatic, inflammation, chronic active,								
multifocal					1	(14%)		
Renal, hyperplasia, lymphoid, diffuse								(2%)
Lymph node, mandibular	(46)		(5)		(5)		(47)	
Hyperplasia, lymphoid, diffuse								(2%)
Hyperplasia, plasma cell, multifocal						(0.5 4)	1	(2%)
Lymphatic, angiectasis, diffuse	/					(20%)	/ A :	
Lymph node, mesenteric	(8)				(4)	(OF 61)	(3)	
Cyst						(25%)		
Hematopoietic cell proliferation, multifocal		(100)			1	(25%)		
Lymphatic, ectasia, focal		(13%)	/505		/PA		(40)	
Spleen	(50)		(50)		(50)		(49)	(90/)
Capsule, hyperplasia, multifocal							1.	(2%)
Capsule, inflammation, chronic active,					_	(0 <i>m</i>)		
multifocal	.1 4	(9.0%)	_	(40)	1	(2%)		
Lymphoid follicle, necrosis, acute, multifoca	11 1	(2%)	2	(4%)				
Red pulp, hematopoietic cell proliferation,	40	(0.00)	F.A.	/100%\	40	(000)	40	(00%)
diffuse	48	(96%)	50	(100%)	49	(98%)	48	(98%)
Red pulp, pigmentation, hemosiderin, multifocal		(0.0%)		(0.4%)	40	(00%)	40	(100%)
	_	(90%)		(94%)	_	(98%)		(100%)
Thymus Depletion by phoid multifacel	(41)		(4)		(1)		(35)	(20)
Depletion lymphoid, multifocal		(90%)		(BEN)			1	(3%)
Necrosis, acute, multifocal		(2%)	3	(75%)				
Medulla, thymocyte, hyperplasia, diffuse	1	(2%)						
INTEGUMENTARY SYSTEM	(2.5)							
Mammary gland	(38)		(5)		(3)	(OH ~)	(44)	
Hyperplasia, cystic, multifocal	(FA)		2 2 5			(67%)	(40)	
Skin	(50)	(001)	(7)		(7)		(49)	
Parasite external	3	(6%)			c	(90%)		
Ulcer						(29%)		
Subcutaneous tissue, fibrosis, multifocal					1	(14%)		
Subcutaneous tissue, inflammation, chronic	:				0	(200)		
active, multifocal					2	(29%)		

TABLE D5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

Ve	hicle	Control	Low	Dose	Mid	Dose	High	Dose
MUSCULOSKELETAL SYSTEM								
Bone	(49)		(6)		(3)		(50)	
Bilateral, joint, tarsal, hyperostosis	1	(2%)						
Bilateral, joint, tarsal, metaplasia, osseous,								
multifocal	1	(2%)						
Cranium, fibrous osteodystrophy								(2%)
Cranium, hyperostosis, focal							1	(2%)
NERVOUS SYSTEM					······			
Brain	(48)		(5)		(3)		(49)	
Hemorrhage, multifocal		(2%)	(-,		(-,		, .	
Necrosis, acute, multifocal					1	(33%)		
Hypothalamus, compression, focal							1	(2%)
Meninges, infiltration cellular, lymphocytic								
multifocal	1	(2%)					2	(4%)
Meninges, inflammation, chronic active,								(0~)
multifocal							1	(2%)
RESPIRATORY SYSTEM								
Lung	(50)		(8)		(7)		(50)	
Alveolar epithelium, hyperplasia, focal			1	(13%)				(6%)
Alveolus, hemorrhage, multifocal					1	(14%)	1	(2%)
Interstitium, inflammation, chronic,								
multifocal	2	(4%)						
Interstitium, inflammation, chronic active,							1	(2%)
focal Interstitium, inflammation, chronic active,							1	(270)
multifocal	1	(2%)						
Mediastinum, foreign body, multifocal		(2%)	3	(38%)				
Perivascular, hyperplasia, lymphoid,	-	(=,0,	ŭ	(00,10)				
multifocal	1	(2%)						
Perivascular, inflammation, chronic, multif	ocal						1	(2%)
Pleura, inflammation, acute, diffuse			1	(13%)				
SPECIAL SENSES SYSTEM								
Eye	(1)		(1)				(1)	
Degeneration, diffuse							1	(100%)
Cornea, inflammation, necrotizing, chronic								
active, diffuse				(100%)				
Harderian gland	(48)	(0%)	(4)		(3)		(47)	
Inflammation, chronic active, diffuse Acinus, hyperplasia, multifocal	1	(2%)					1	(2%)
	····							
URINARY SYSTEM	/ P.A.							
Kidney	(50)		(7)		(4)	(05%)	(49)	
Inflammation, chronic active, multifocal					1	(25%)	1	(2%)
Mineralization, multifocal Nephropathy, chronic, diffuse	1	(2%)					1	(270)
Nephropathy, chronic, diffuse Nephropathy, chronic, focal		(2%) (6%)					1	(2%)
THEOLIGONALITY, CHEOTIC, HICKI		(0%) (2%)						(2%)
						(OF 24)	_	(2 10)
Nephropathy, chronic, multifocal	1	(270)			1	(25%)		
Nephropathy, chronic, multifocal Capsule, fibrosis, chronic, focal					1	(25%)		
Nephropathy, chronic, multifocal Capsule, fibrosis, chronic, focal Glomerulus, amyloid deposition, multifocal	1	(2%)			1	(25%)	3	(6%)
Nephropathy, chronic, multifocal Capsule, fibrosis, chronic, focal	1				1	(25%)	3	(6%)

TABLE D5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF ρ -CHLOROANILINE HYDROCHLORIDE (Continued)

	Vehicle Control	Low Dose	Mid Dose	High Dose
URINARY SYSTEM				
Kidney (Continued)	(50)	(7)	(4)	(49)
Renal tubule, cytoplasmic alteration, d	iffuse	1 (14%)		
Renal tubule, dilatation, diffuse				1 (2%)
Renal tubule, pigmentation, hemoside	rin,			
multifocal				38 (78%)
Renal tubule, regeneration, focal	3 (6%)			
Renal tubule, regeneration, multifocal	4 (8%)			3 (6%)

APPENDIX E

SENTINEL ANIMAL PROGRAM

		PAGE
TABLE E1	MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE TWO-YEAR GAVAGE STUDIES OF p -CHLOROANILINE HYDROCHLORIDE	233

APPENDIX E. SENTINEL ANIMAL PROGRAM

Methods

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via viral serology on sera from extra (sentinel) animals in the study rooms. These animals are untreated, and these animals and the study animals are both subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Fifteen B6C3F₁ mice and 15 F344/N rats of each sex were selected at the time of randomization and allocation of the animals to the various study groups. Five animals of each designated sentinel group were killed at 6 and 18 months on study. Data from animals surviving 24 months were collected from 5/50 randomly selected vehicle control animals of each sex and species. The blood from each animal was collected and clotted, and the serum was separated. The serum was cooled on ice and shipped to Microbiological Associates' Comprehensive Animal Diagnostic Service for determination of the viral antibody titers. The following tests were performed:

	Hemagglutination <u>Inhibition</u>	Complement <u>Fixation</u>	ELISA
Mice	PVM (pneumonia virus of mice) Reo 3 (reovirus type 3) GDVII (Theiler's encephalomyelitis virus) Poly (polyoma virus) MVM (minute virus of mice) Ectro (infectious ectromelia) Sendai (18, 24 mo)	M. Ad. (mouse adenovirus) LCM (lymphocytic choriomeningitis virus) Sendai (6 mo)	MHV (mouse hepatitis virus)
Rats	PVM KRV (Kilham rat virus) H-1 (Toolan's H-1 virus) Sendai (18, 24 mo)	RCV (rat coronavirus) (6 mo) Sendai (6 mo)	RCV/SDA (sialo- dacryoadenitis virus) (18, 24 mo)

Results

Results are presented in Table E1.

TABLE E1. MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE TWO-YEAR GAVAGE STUDIES OF ρ -CHLOROANILINE HYDROCHLORIDE (a)

	Interval (months)	Number of Animals	Positive Serologic Reaction for
RATS			
	6		None positive
	18		None positive
	24		None positive
MICE			
	6		None positive
	18	1/10	MHV
	24	1/10 2/10	PVM MHV

⁽a) Blood samples were taken from sentinel animals at 6 and 18 months after the start of dosing and from the vehicle control animals just before they were killed; samples were sent to Microbiological Associates (Bethesda, MD) for determination of antibody titers.

APPENDIX F

ANALYSIS OF ORGAN WEIGHTS FOR RATS AND MICE IN THE THIRTEEN-WEEK GAVAGE STUDIES OF p-CHLOROANILINE HYDROCHLORIDE

		PAGE
TABLE F1	ANALYSIS OF ORGAN WEIGHTS FOR RATS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF p -CHLOROANILINE HYDROCHLORIDE	236
TABLE F2	ANALYSIS OF ORGAN WEIGHTS FOR MICE IN THE THIRTEEN-WEEK GAVAGE STUDIES OF p-CHLOROANILINE HYDROCHLORIDE	237

TABLE F1. ANALYSIS OF ORGAN WEIGHTS FOR RATS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF ρ -CHLOROANILINE HYDROCHLORIDE (a)

	Vehicle Control	5 mg/kg	10 mg/kg	20 mg/kg	40 mg/kg	80 mg/kg
MALE	W			, , , , , , , , , , , , , , , , , , , ,		
No. weighed	10	10	10	10	10	10
Body weight (b) Brain Heart Kidney Liver (grams Lung Right testis Spleen Thymus FEMALE	328 ± 12.1 1,927 ± 15 935 ± 20 1,202 ± 30 1) 13.0 ± 0.42 1,638 ± 50 1,396 ± 33 (e) 286 ± 10	$\begin{array}{c} 336 & \pm 5.5 \\ 1,919 & \pm 10 \\ 988 & \pm 28 \\ 1,174 & \pm 29 \\ 12.4 & \pm 0.26 \\ 1,652 & \pm 61 \\ 1,404 & \pm 14 \\ 804 & \pm 16 \\ 261 & \pm 11 \\ \end{array}$	345 ± 3.8 $1,957 \pm 16$ 993 ± 15 $1,219 \pm 17$ 13.0 ± 0.31 $1,697 \pm 72$ $1,467 \pm 18$ $1,057 \pm 19$ 265 ± 8	$\begin{array}{c} 350 & \pm 12.0 \\ 1,935 & \pm 16 \\ 980 & \pm 16 \\ 1,173 & \pm 21 \\ 13.0 & \pm 0.37 \\ 1,616 & \pm 54 \\ 1,487 & \pm 27 \\ \text{(f) } 1,638 & \pm 25 \\ 290 & \pm 15 \end{array}$	332 ± 8.6 1.884 ± 22 1,003 ± 26 1,146 ± 27 13.3 ± 0.49 1,681 ± 70 1,454 ± 22 (f) 3,368 ± 54 (d) 329 ± 16	(c) 285 ± 8.5 (c) 1,850 ± 24 1,007 ± 43 1,132 ± 37 12.3 ± 0.45 (d) 1,444 ± 49 1,403 ± 26 (f) 4,748 ± 161 (c) 225 ± 10
No. weighed	9	10	10	10	10	9
Body weight (b) Brain Heart Kidney Liver Lung Spleen Thymus	200 ± 2.4 1,784 ± 17 628 ± 16 698 ± 13 7,079 ± 201 1,100 ± 48 447 ± 13 229 ± 7	$ \begin{array}{c} 198 & \pm 2.5 \\ 1,765 & \pm 21 \\ 639 & \pm 17 \\ 691 & \pm 14 \\ 6,392 & \pm 162 \\ 1,143 & \pm 28 \\ (c) 607 & \pm 9 \\ 230 & \pm 9 \end{array} $	$ \begin{array}{c} 199 & \pm 2.6 \\ 1,799 & \pm 15 \\ 686 & \pm 17 \\ 722 & \pm 20 \\ 7,073 & \pm 134 \\ d) 1,272 & \pm 35 \\ (c) 806 & \pm 15 \\ 222 & \pm 15 \end{array} $	$ \begin{array}{r} 189 & \pm 9.2 \\ 1,778 & \pm 14 \\ 643 & \pm 10 \\ 724 & \pm 19 \\ 6,909 & \pm 143 \\ 1,230 & \pm 58 \\ (c) 1,422 & \pm 30 \\ 244 & \pm 11 \end{array} $	$ \begin{array}{r} 195 & \pm 2.3 \\ 1,779 & \pm 12 \\ 665 & \pm 26 \\ 739 & \pm 12 \\ 7,228 & \pm 156 \\ 1,098 & \pm 43 \\ (c) 2,413 & \pm 71 \\ 229 & \pm 9 \end{array} $	194 ± 2.6 1,761 ± 15 (c) 744 ± 33 (c) 792 ± 19 7,481 ± 223 1,113 ± 27 (c) 3,527 ± 57 202 ± 6

⁽a) Mean in milligrams \pm standard error, except as noted. P values are vs. the vehicle controls: Dunnett's test was used when a nonsignificant result was obtained by the Jonckheere trend test; otherwise Williams' test was used (Dunnett, 1980; Jonckheere, 1954; Williams, 1971, 1972); doses calculated as p-chloroaniline.

⁽b) Absolute necropsy body weight (in grams) ± standard error

⁽c) P<0.01 vs. vehicle controls

⁽d) P < 0.05 vs. vehicle controls

⁽e) Spleen weights not recorded for vehicle controls; reported P values vs. the 5 mg/kg group.

⁽f) P<0.01 vs. the 5 mg/kg group

TABLE F2. ANALYSIS OF ORGAN WEIGHTS FOR MICE IN THE THIRTEEN-WEEK GAVAGE STUDIES OF p-CHLOROANILINE HYDROCHLORIDE (a)

	Vehicle Control	7.5 mg/kg	15 mg/kg	30 mg/kg	60 mg/kg	120 mg/kg
MALE						
No. weighed	10	10	10	10	10	8
Body weight (b) Brain Heart Kidney Liver Lung Spleen Right testis Thymus FEMALE	$\begin{array}{c} 32.1 & \pm 1.14 \\ 447 & \pm 5.8 \\ 157 & \pm 10.2 \\ 270 & \pm 8.2 \\ 1,664 & \pm 49 \\ 228 & \pm 12 \\ 69 & \pm 4 \\ 113 & \pm 3.9 \\ 34 & \pm 2.6 \\ \end{array}$	32.3 ± 0.97 459 ± 5.4 163 ± 6.2 278 ± 9.4 $1,543 \pm 67$ 253 ± 12 (c) 107 ± 5 119 ± 2.9 42 ± 4.0	$\begin{array}{c} 31.6 & \pm 1.07 \\ 449 & \pm 7.5 \\ 170 & \pm 7.0 \\ 281 & \pm 10.6 \\ 1,576 & \pm 71 \\ 268 & \pm 18 \\ \text{(d)} \ 132 & \pm 21 \\ \text{(c)} \ 127 & \pm 4.0 \\ 43 & \pm 3.3 \\ \end{array}$	$\begin{array}{c} 33.5 & \pm 0.45 \\ 449 & \pm 6.1 \\ \text{(c) } 192 & \pm 10.0 \\ 282 & \pm 5.7 \\ 1,800 & \pm 46 \\ 264 & \pm 14 \\ \text{(d) } 196 & \pm 12 \\ 118 & \pm 4.1 \\ 32 & \pm 2.9 \\ \end{array}$	$\begin{array}{c} 32.8 & \pm 0.65 \\ 455 & \pm 5.4 \\ \text{(c) } 188 & \pm 9.8 \\ 273 & \pm 7.6 \\ 1,817 & \pm 44 \\ \text{(c) } 279 & \pm 15 \\ \text{(d) } 266 & \pm 10 \\ 114 & \pm 3.3 \\ 33 & \pm 2.6 \\ \end{array}$	$\begin{array}{c} 31.9 & \pm 1.13 \\ 440 & \pm 8.7 \\ \text{(c) } 190 & \pm 9.2 \\ 273 & \pm 13.4 \\ 1.813 & \pm 66 \\ \text{(d) } 287 & \pm 13 \\ \text{(d) } 398 & \pm 14 \\ 111 & \pm 3.2 \\ 33 & \pm 2.7 \\ \end{array}$
o. weighed	9	10	10	9	7	8
Body weight (b) Brain Heart Kidney Liver Lung Spleen Thymus	$\begin{array}{c} 27.2 & \pm 0.66 \\ 486 & \pm 7.4 \\ 134 & \pm 3.9 \\ 202 & \pm 8.7 \\ 1,475 & \pm 39 \\ 225 & \pm 6 \\ 93 & \pm 5 \\ 46 & \pm 2.9 \end{array}$	$\begin{array}{c} 25.8 & \pm 0.47 \\ 461 & \pm 8.6 \\ 144 & \pm 4.8 \\ 187 & \pm 2.7 \\ 1,300 & \pm 32 \\ 225 & \pm 13 \\ 97 & \pm 5 \\ 48 & \pm 2.5 \end{array}$	$\begin{array}{c} 25.1 & \pm 0.77 \\ 461 & \pm 6.7 \\ 134 & \pm 6.1 \\ 182 & \pm 5.1 \\ 1,245 & \pm 61 \\ 212 & \pm 11 \\ 125 & \pm 6 \\ 43 & \pm 2.4 \end{array}$	$\begin{array}{c} 26.0 & \pm 0.58 \\ 460 & \pm 9.2 \\ 142 & \pm 8.6 \\ 189 & \pm 9.3 \\ 1,388 & \pm 63 \\ 262 & \pm 15 \\ (d) \ 206 & \pm 14 \\ 46 & \pm 3.0 \end{array}$	$\begin{array}{c} 27.4 & \pm 0.65 \\ 472 & \pm 8.1 \\ 158 & \pm 11.0 \\ 187 & \pm 10.5 \\ 1,459 & \pm 54 \\ 242 & \pm 10 \\ (d) 293 & \pm 17 \\ 39 & \pm 2.2 \end{array}$	$\begin{array}{c} 26.9 & \pm 0.48 \\ 471 & \pm 5.6 \\ 145 & \pm 5.0 \\ 200 & \pm 5.9 \\ 1,603 & \pm 38 \\ 244 & \pm 17 \\ \text{(d)} 532 & \pm 24 \\ 43 & \pm 3.9 \end{array}$

⁽a) Mean in milligrams \pm standard error, except as noted. P values are vs. the vehicle controls: Dunnett's test was used when a nonsignificant result was obtained by the Jonckheere trend test; otherwise Williams' test was used (Dunnett, 1980; Jonckheere, 1954; Williams, 1971, 1972); doses calculated as p-chloroaniline.

⁽b) Absolute necropsy body weight (in grams) \pm standard error (c) P<0.05 (d) P<0.01

APPENDIX G

INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

Pelleted Diet: November 1981 to December 1983

(Manufactured by Zeigler Bros., Inc., Gardners, PA)

		PAGE
TABLE G1	INGREDIENTS OF NIH 07 RAT AND MOUSE RATION	240
TABLE G2	VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION	240
TABLE G3	NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION	241
TABLE G4	CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION	242

TABLE G1. INGREDIENTS OF NIH 07 RAT AND MOUSE RATION (a)

Ingredients (b)	Percent by Weight
round #2 yellow shelled corn	24.50
round hard winter wheat	23.00
ybean meal (49% protein)	12.00
ish meal (60% protein)	10.00
heat middlings	10.00
ried skim milk	5.00
falfa meal (dehydrated, 17% protein)	4.00
rn gluten meal (60% protein)	3.00
roil	2.50
ied brewer's yeast	2.00
y molasses	1.50
calcium phosphate	1.25
ound limestone	0.50
;	0.50
mixes (vitamin and mineral)	0.25

⁽a) NCI, 1976; NIH, 1978

TABLE G2. VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION (a)

	Amount	Source
Vitamins		
A	5,500,000 IU	Stabilized vitamin A palmitate or acetate
D_3	4,600,000 IU	D-activated animal sterol
\mathbf{K}_3	2.8 g	Menadione
d - α -Tocopheryl acetate	20,000 IŬ	
Choline	560.0 g	Choline chloride
Folic acid	2.2 g	
Niacin	30.0 g	
d-Pantothenic acid	18.0 g	d-Calcium pantothenate
Riboflavin	3.4 g	•
Thiamine	10.0 g	Thiamine mononitrate
B_{12}	4,000 µg	
Pyridoxine	1.7 g	Pyridoxine hydrochloride
Biotin	140.0 mg	d-Biotin
Minerals		
Iron	120.0 g	Iron sulfate
Manganese	60.0 g	Manganous oxide
Zinc	16.0 g	Zinc oxide
Copper	4.0 g	Copper sulfate
Iodine	1.4 g	Calcium iodate
Cobalt	0.4 g	Cobalt carbonate

⁽a) Per ton (2,000 lb) of finished product

⁽b) Ingredients ground to pass through a U.S. Standard Screen No. 16 before being mixed

TABLE G3. NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION

Nutrients	Mean ± Standard Deviation	Range	Number of Samples	
Protein (percent by weight)	23.59 ± 0.94	22.2-26.3	26	
Crude fat (percent by weight)	4.96 ± 0.52	3.3-5.7	26	
Crude fiber (percent by weight)	3.39 ± 0.52	2.9-5.6	26	
Ash (percent by weight)	6.51 ± 0.49	5.7-7.3	26	
Amino Acids (percent of total d	iet)			
Arginine	1.32 ± 0.072	1.310-1.390	5	
Cystine	0.319 ± 0.088	0.218-0.400	5	
Glycine	1.146 ± 0.063	1.060-1.210	5	
Histidine	0.571 ± 0.026	0.531-0.603	5	
Isoleucine	0.914 ± 0.030	0.881-0.944	5	
Leucine	1.946 ± 0.056	1.850-1.990	5	
Lysine	1.280 ± 0.067	1.200-1.370	5	
Methionine	0.436 ± 0.165	0.306-0.699	5	
Phenylalanine	0.938 ± 0.158	0.665-1.05	5	
Threonine	0.855 ± 0.035	0.824-0.898	5	
Tryptophan	0.333 ± 0.333 0.277 ± 0.221	0.156-0.671	5	
Tyrosine	0.277 ± 0.221 0.618 ± 0.086	0.564-0.769	5 5	
Valine	1.108 ± 0.043	1.050-1.170	5	
Essential Fatty Acids (percent o	f total diet)			
Linoleic	2.290 ± 0.313	1.83-2.52	5	
Linolenic	0.258 ± 0.040	0.210-0.308	5	
Vitamins				
Vitamin A (IU/kg)	12,084 ± 4,821	3,600-24,000	26	
Vitamin D (IU/kg)	$4,450 \pm 1,382$	3,000-6,300	4	
a-Tocopherol (ppm)	43.58 ± 6.92	31.1-48.0	5	
Thiamine (ppm)	16.9 ± 2.42	12.0-21.0	26	
Riboflavin (ppm)	7.6 ± 0.85	7.58-8.2	5	
Niacin (ppm)	97.8 ± 31.68	65.0-150.0	5	
Pantothenic acid (ppm)	30.06 ± 4.31	23.0-34.0	5	
Pyridoxine (ppm)	7.68 ± 1.31	5.60-8.8	5	
Folic acid (ppm)	2.62 ± 0.89	1.80-3.7	5	
Biotin (ppm)	0.254 ± 0.053	0.19-0.32	5	
Vitamin B ₁₂ (ppb)	24.21 ± 12.66	10.6-38.0	5	
Choline (ppm)	$3,122 \pm 416.8$	2,400-3,430	5	
Aine rals				
Calcium (percent)	1.30 ± 0.13	1.11-1.63	26	
Phosphorus (percent)	0.97 ± 0.05	0.88-1.10	26	
Potassium (percent)	0.900 ± 0.098	0.772-0.971	3	
Chloride (percent)	0.513 ± 0.114	0.380-0.635	5	
Sodium (percent)	0.323 ± 0.043	0.258-0.371	5	
Magnesium (percent)	0.167 ± 0.012	0.151-0.181	5	
Sulfur (percent)	0.304 ± 0.064	0.268-0.420	5	
Iron (ppm)	410.3 ± 94.04	262.0-523.0	5	
Manganese (ppm)	90.29 ± 7.15	81.7-99.4	5	
Zinc (ppm)	52.78 ± 4.94	46.1-58.2	5	
Copper (ppm)	10.72 ± 2.76	8.09-15.39	5	
Iodine (ppm)	2.95 ± 1.05	1.52-3.82	4	
Chromium (ppm)	1.85 ± 0.25	1.44-2.09	5	
Cobalt (ppm)	0.681 ± 0.14	0.490-0.780	4	

TABLE G4. CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

Contaminants	Mean ± Standard Deviation	Range	Number of Samples
Arsenic (ppm)	0.52 ± 0.13	0.29-0.77	26
Cadmium (ppm) (a)	< 0.10		26
Lead (ppm)	0.76 ± 0.62	0.33-3.37	26
Mercury (ppm) (a)	< 0.05		26
Selenium (ppm)	0.29 ± 0.07	0.13-0.40	26
Aflatoxins (ppb) (a)	< 5.0		26
Nitrate nitrogen (ppm) (b)	8.66 ± 4.47	0.10-22.0	26
Nitrite nitrogen (ppm) (b)	2.16 ± 1.97	0.10-7.20	26
BHA (ppm) (c)	4.63 ± 4.74	2.0-17.0	26
BHT(ppm)(c)	2.67 ± 2.58	0.9-12.0	26
Aerobic plate count (CFU/g) (d)	$41,212 \pm 34,610$	4,900-130,000	26
Coliform (MPN/g) (e)	48.42 ± 123	3.0-460	26
E. coli (MPN/g) (a)	< 3.0		26
Total nitrosamines (ppb) (f)	5.25 ± 5.80	1.7-30.9	26
N-Nitrosodimethylamine (ppb) (f)	4.12 ± 5.83	0.8-30.0	26
N-Nitrosopyrrolidine (ppb) (f)	1.13 ± 0.46	0.81-2.9	26
Pesticides (ppm)			
α-BHC (a,g)	< 0.01		26
β-BHC (a)	< 0.02		26
γ-BHC-Lindane (a)	< 0.01		26
δ-BHC (a)	< 0.01		26
Heptachlor (a)	< 0.01		26
Aldrin (a)	< 0.01		26
Heptachlor epoxide (a)	< 0.01		26
DDE (a)	< 0.01		26
DDD(a)	< 0.01		26
DDT(a)	< 0.01		26
HCB(a)	< 0.01		26
Mirex (a)	< 0.01		26
Methoxychlor (a)	< 0.05		26
Dieldrin (a)	< 0.01		26
Endrin (a)	< 0.01		26
Telodrin (a)	< 0.01		26
Chlordane (a)	< 0.05		26
Toxaphene (a)	<0.1		26
Estimated PCBs (a)	<0.2		26
Ronnel (a)	< 0.01		26
Ethion (a)	<0.02		26
Trithion (a)	< 0.05		26
Diazinon (a)	<0.1		26
Methyl parathion (a)	<0.02		26 26
Ethyl parathion (a)	<0.02		26 26
Malathion (h)	0.10 ± 0.09	0.05-0.45	26 26
Endosulfan I (a)	<0.01	0.00-0.40	26 26
Endosulfan II (a)	< 0.01		25
Endosulfan sulfate (a)	< 0.01		26 26

⁽a) All values were less than the detection limit, given in the table as the mean.

⁽b) Source of contamination: alfalfa, grains, and fish meal

⁽c) Source of contamination: soy oil and fish meal

⁽d) CFU = colony-forming unit
(e) MPN = most probable number

⁽f) All values were corrected for percent recovery.
(g) BHC = hexachlorocyclohexane or benzene hexachloride

⁽h) Thirteen batches contained more than 0.05 ppm.

APPENDIX H

DISTRIBUTION AND DISPOSITION OF p-CHLOROANILINE AND

p-CHLOROANILINE HYDROCHLORIDE IN F344 RATS

		PAGE
TABLE H1	ELIMINATION OF ρ -CHLOROANILINE FROM TISSUES OF F344 RATS ADMINISTERED ρ -CHLOROANILINE BY INTRAVENOUS INJECTION	252
TABLE H2	THE CONCENTRATION OF ρ-CHLOROACETANILIDE IN TISSUES OF F344 RATS ADMINISTERED ρ-CHLOROANILINE BY INTRAVENOUS INJECTION	252

A study of the distribution and disposition of p-chloroaniline and p-chloroaniline hydrochloride in F344 rats was conducted at the University of Arizona under the sponsorship of the National Toxicology Program (NIEHS contract no. NO1-ES-8-2130). The laboratory report is on file at the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.

OVERVIEW OF p-CHLOROANILINE PHARMACOKINETICS IN F344 RATS

In F344 rats, p-chloroaniline was rapidly eliminated after a single oral dose. The primary route of excretion was the urine, where approximately 75% of the administered carbon-14 appeared within 24 hours, and approximately 10% was found in the feces. Elimination was found to be independent of dose within a hundredfold dose range (0.3-30 mg/kg). Seven days after administration, the only tissue containing significant amounts of radioactivity was the erythrocyte fraction of whole blood.

The excretory profile after a single 0.3 mg/kg intravenous dose of $[^{14}C]p$ -chloroaniline was essentially identical to that following oral administration. Urinary excretion of carbon-14 was rapid, with approximately 60% of the dose appearing in urine within 4 hours. By 24 hours, only 4% of the urinary carbon-14 was present as p-chloroaniline, and less than 1% of the dose appeared in the feces. No p-chloroacetanilide, a major circulating metabolite of p-chloroaniline, was detected in either urine or feces over a 3-day period.

There were no apparent tissue depots of p-chloroaniline or metabolites after a single intravenous dose of 3 mg/kg except for erythrocytes. Tissue levels of carbon-14 peaked 30 minutes to 1 hour after intravenous administration, with the highest percentage of dose being found in liver, muscle, fat, and skin. Elimination from all tissues followed bi-exponential kinetics.

The pharmacokinetics of p-chloroacetanilide followed mono-exponential decay kinetics with an appearance phase. The appearance half-life $(t_{\alpha_{\frac{1}{2}}})$ of p-chloroacetanilide was about 10 minutes, and the elimination $(t_{\beta_{\frac{1}{2}}})$ was on the order of 1.5-2 hours.

These results demonstrate that after intravenous administration to F344 rats, p-chloroaniline is rapidly N-acetylated to p-chloroacetanilide as the first step in metabolism and excretion of p-chloroaniline. The absence of any p-chloroacetanilide in the urine indicates further metabolism of p-chloroacetanilide prior to excretion via that route.

MATERIALS AND METHODS

Chemicals and Animals

Uniformly ring-labeled [14C]p-chloroaniline (specific activity 5.0 mCi/mmol) was purchased from KOR Inc. (Cambridge, Massachusetts). Unlabeled p-chloroaniline was purchased from Aldrich Chemical Co. (Milwaukee, Wisconsin) and was recrystallized twice from ethanol:water (1:1) before use. Spectrophotometric-grade p-nitrophenol was obtained from Sigma Chemical Co. (Milwaukee, Wisconsin). p-Chloroacetanilide was prepared by refluxing p-chloroaniline with acetic anhydride. Recrystallization from 50% acetic acid produced colorless needles with a melting point of 176°-178° C (compared with 177°-178° C, Merck, 1983). Mass spectra of the synthesized p-chloroacetanilide confirmed its structure. p-Chloroglycoanilide was prepared by the method of Shapiro et al. (1959). The identity of this material was confirmed by proton magnetic resonance spectroscopy and mass spectrometry. Heptane sulfonic acid sodium salt was obtained from Eastman Kodak Co. (Rochester, New York), and high-performance liquid chromatography-grade acetonitrile was purchased from Burdick and Jackson Laboratories (Muskegon, Michigan). Inactin® (methylpropyl-N'-ethylthiobarbiturate) was obtained from Andrew Lockwood Association (Madison, Wisconsin). All other chemicals were of reagent or scintillation quality as required.

Male F344 rats weighing 150-200 g, purchased from M.A. Bioproducts (Walkersville, Maryland), were housed individually in stainless steel metabolism cages designed to separate urine from feces and were provided with feed and water ad libitum.

Distribution/Disposition Studies

The effect of dose on the disposition of p-chloroaniline after oral administration of 0.3, 3, or 30 mg/kg p-chloroaniline in 0.01 N hydrochloric acid was determined in rats (three animals per dose). Rats at the two higher doses received 40 µCi/kg, and those at the lowest dose received 9 µCi/kg. Urine and feces were collected daily and analyzed for total carbon-14, and the percentage of excreted dose was calculated. Urine samples (0.5 ml) were added directly to Betaphase scintillation fluid (Westchem Products, San Diego, California) and analyzed directly by liquid scintillation counting (LS-100C Beckman Instruments, Fullerton, California). Feces were digested in 15 ml of 0.5 N sodium hydroxide, and 0.5 g aliquots were oxidized to carbon[14C] dioxide in a Packard Tri-Carb sample oxidizer (Packard Instruments, Downers Grove, Illinois), as previously described (Miller et al., 1982).

Tissue distribution and pharmacokinetic studies were conducted in rats after a single intravenous injection via the tail vein with 3 mg/kg p-chloroaniline (30 μ Ci/kg) dissolved in a mixture of ethanol:propylene glycol:water (1:1:8). Three animals were killed at times ranging from 15 minutes to 3 days. Tissues saved for analysis included brain, lung, liver, kidney, spleen, small intestine, testis, renal fat, muscle, and skin. Urinary bladder and intestinal contents were combined with that day's urine and feces, respectively. Blood was obtained by cardiac puncture, and a 1-ml aliquot was immediately mixed with two volumes of acetonitrile for later analysis for p-chloroaniline. The remainder of the sample was stored at 4°C in heparinized glass tubes. Tissue samples were kept frozen at -10° C prior to analysis.

Tissue aliquots (0.1-0.5 g) were analyzed in duplicate for total carbon-14 as previously described. The percentage of the total dose found in tissues was based on the wet tissue weight, with estimates of 9%, 50%, 7%, and 16% of the total body weight being used for blood, muscle, fat, and skin, respectively (Matthews and Anderson, 1975).

Biliary Excretion

Bile was collected from the common bile duct of anesthetized (100 mg/kg Inactin®) rats after cannulation with PE10 polyethylene tubing (Clay Adams, New York). After 30 minutes of bile collection, 3 mg/kg p-chloroaniline (30 μ Ci/kg) was administered via the tail vein. Bile samples were collected at 30-minute intervals for 6.0 hours. Duplicate 25- μ l samples were assayed directly by liquid scintillation counting for quantification of total carbon-14. Pooled 6-hour samples were also analyzed for p-chloroaniline as described below for urine.

Separation of p-Chloroaniline from Metabolites

p-Chloroaniline was separated from its metabolites in those tissues that contained greater than 1% of the administered dose and was assayed by high-performance liquid chromatography. Blood samples for high-performance liquid chromatography analysis were added to two volumes of acetonitrile at the time of collection, and the protein precipitate was separated by centrifugation. The supernatant was then extracted with two additional volumes of acetonitrile. The extracts were pooled and washed with 1 ml of hexane to remove lipids. The hexane layer was discarded, since it contained less than 100 disintegrations per minute (dpm) of carbon-14. The pooled acetonitrile extracts were evaporated to near dryness under a stream of dry nitrogen before the addition of 200 µl of a mixture of acetonitrile: water:acetic acid (25:24:1) which contained 40 µg/ml unlabeled p-chloroaniline and p-nitrophenol. The protein pellets remaining after the acetonitrile extractions were oxidized to carbon[14C]

dioxide to determine nonextractable radioactivity. Urine samples were diluted with an equal volume of acetonitrile containing 40 µg/ml p-chloroaniline and p-nitrophenol prior to high-performance liquid chromatographic analysis. All other tissues were solubilized in 0.5 N sodium hydroxide at 40° C for 24 hours and extracted twice with a diethyl ether:acetonitrile:hexane (8:1:1) mixture. The pooled extracts were concentrated under a stream of dry nitrogen. The residue was dissolved in 1 ml of acetonitrile and extracted with 1 ml of hexane. The hexane washes contained notable quantities of metabolites which were taken into account in the calculations. The washed acetonitrile extracts from tissue homogenates were then treated as those for blood. These extraction procedures recovered more than 90% of the [14C]p-chloroaniline added to control blood, liver homogenates, and urine samples; stability studies showed that p-chloroaniline and p-chloroacetanilide levels were unaffected by these procedures. However, recovery of total carbon-14 from tissues was between 30% and 80% regardless of the time point, and that from blood ranged from 80% at 15 minutes to less than 1% by 24 hours, suggesting that substantial binding may have occurred. This nonextractable radioactivity was assumed to be unidentified metabolites of p-chloroaniline.

For high-performance liquid chromatographic analysis, a 250×4.6 mm Spherisorb 5 μ C-6 reverse phase column (Chromanetics Inc., Baltimore, Maryland) was used. The mobile phase was acetonitrile:water:acetic acid (37:62:1), containing 5 mM heptane sulfonic acid as an ion-pairing agent at a 1.5 ml/minute flow rate. A Spectra Physics Model 3500 B high-performance liquid chromatography system was used with a Spectra Physics model 8200 ultraviolet detector set at 254 nm. With this system, p-chloroglycoanilide, p-nitrophenol, p-chloroacetanilide, and p-chloroaniline elute at 4, 5, 6, and 7 minutes, respectively. Quantification of tissue extracts was accomplished by collecting the column effluent at 1-minute intervals (p-chloroaniline and p-chloroacetanilide were collected as discrete peaks) and analyzing for carbon-14 by liquid scintillation counting. With this method, the limit of detection was determined to be 100 dpm above background.

Pharmacokinetic Analysis

Pharmacokinetic analyses were performed on the distribution data for total carbon-14, p-chloro-acetanilide, and p-chloro-aniline in blood, tissues, and excreta by the nonlinear regression program NONLIN (Metzler, 1969). The equations used to derive the kinetic curves representing the best statistical fit (P < 0.05) to the data were described by Gibaldi and Perrier (1975).

The concentration (C) of p-chloroaniline and of total carbon-14 was best described by the bi-exponential equation I:

I.
$$C = A_e - \alpha_1 t + B_e - \alpha_2 t$$

For total carbon-14 in urine and feces, the data were best described by equation II:

II.
$$C = A(1 - e^{\alpha t})$$

The presence of total carbon-14 showed an appearance phase in the intestinal contents which fit equation III:

III.
$$C = A(e - \alpha_1 t - e - \alpha_2 t)$$

The previous equation (III) was also used to fit the *p*-chloroacetanilide data for all tissues except liver and blood. Data for liver and blood were described by equation IV:

IV.
$$C = Ae - \alpha t$$

In the above equations, A and B are constants and a_1 and a_2 are first and second phase rate constants, respectively. Time (t) is in hours.

RESULTS

After oral administration of 0.3, 3, or 30 mg/kg p-chloroaniline, [14 C]p-chloroaniline equivalents were rapidly excreted. At 24 hours, 77% of the dose appeared in the urine and 10% in the feces. After 7 days, 83.7% \pm 7.9% of the dose had been excreted in the urine and 10.8% \pm 1.9% in the feces (Figure H1). At this time, the only tissue containing greater than 1% of the administered dose was the cellular component of blood, which contained 1%-2% of the dose. Since excretion was found to be independent of dose, the mid dose of 3 mg/kg was used for subsequent intravenous studies.

Total Carbon-14 Kinetics

After an intravenous injection of [14C]p-chloroaniline, total radioactivity was rapidly distributed, with maximal levels being reached in most tissues within 15 minutes. At this time, muscle (34%), fat (14%), skin (12%), liver (8%), and blood (7%) contained the majority of radioactivity, and the small intestine and kidney each contained approximately 3% of the dose. The elimination of total carbon-14 from all tissues was best described by first order biphasic elimination kinetics (Figures H2 and H3). The initial elimination half-lives were similar for all tissues and ranged between 1.5 and 4 hours. By 8 hours, approximately 90% of the administered dose was eliminated from the blood and tissues into the urine and feces. Because of this rapid elimination, accurate terminal decay rate constants were difficult to determine but were calculated to be approximately 48 hours. The terminal elimination phase of carbon-14 equivalents represented only 6% of the dose, and 4% of the dose was found in whole blood (Figure H4).

p-Chloroaniline Kinetics

Accurate determination of the rate of p-chloroaniline elimination from tissues was difficult because of its rapid disappearance. Tissues analyzed displayed bi-exponential decay kinetics with initial half-lives of approximately 8 minutes and terminal half-lives of 3-4 hours, except for adipose tissue and small intestine which had terminal half-lives of 29 and 23 hours, respectively (Table H1). With blood, muscle, fat, and skin, the best fit for the kinetic curve was determined after deleting data at 1 hour. These tissues had concentrations of p-chloroaniline at 1 hour which were considerably higher than at the other time points. The results at 1 hour were confirmed in a repeated experiment; therefore, the data were not considered to be in error.

p-Chloroacetanilide Pharmacokinetics

The kinetics of p-chloroacetanilide in those tissues examined followed monophasic elimination kinetics preceded by a short appearance phase in all tissues except liver and whole blood (Table H2). The distribution of p-chloroacetanilide was similar to that of total carbon-14, with the highest levels being found in muscle, skin, fat, liver, and blood. The half-life of appearance of p-chloroacetanilide was approximately 10 minutes, and the elimination half-life was 3 hours.

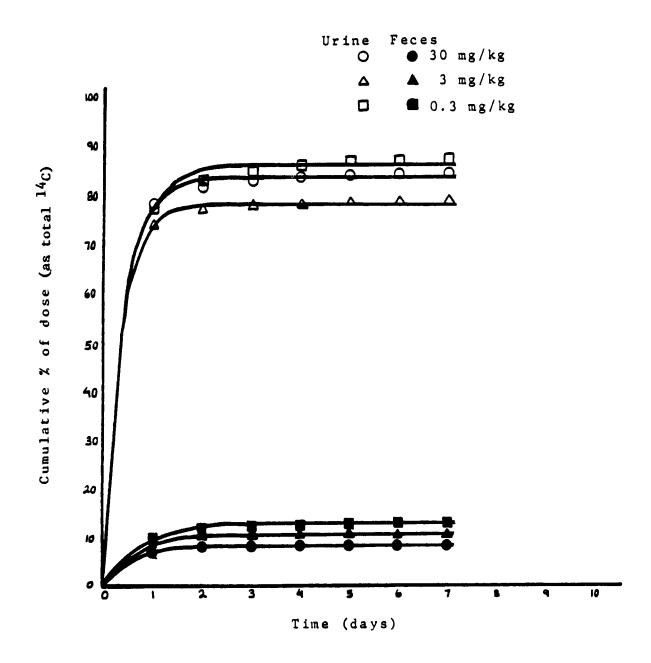


FIGURE H1. EXCRETION OF CARBON-14 IN F344 RATS AFTER GAVAGE ADMINISTRATION OF [14 C] $_p$ -CHLOROANILINE IN AQUEOUS HYDROCHLORIC ACID

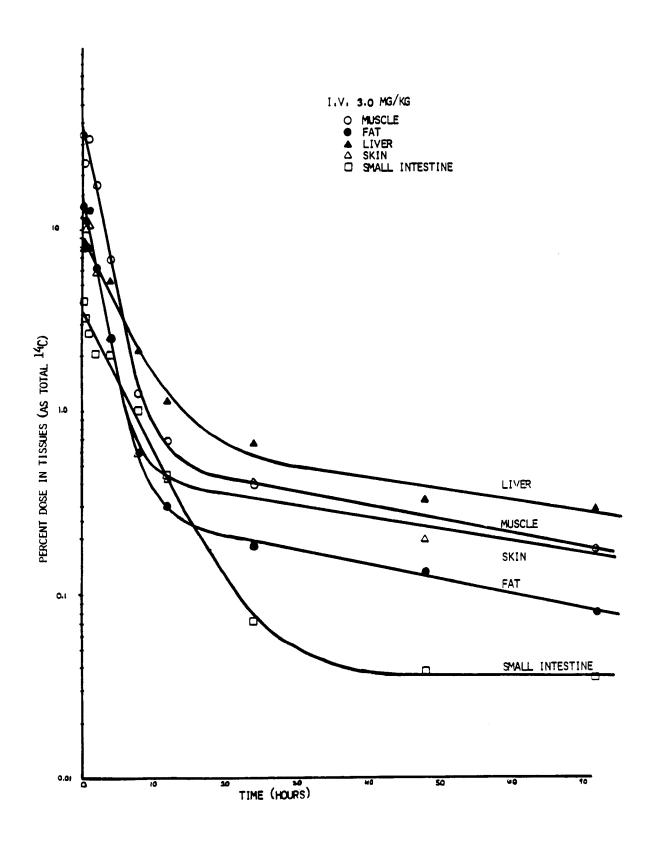


FIGURE H2. ELIMINATION OF CARBON-14 FROM THE MUSCLE, FAT, LIVER, SKIN, AND SMALL INTESTINE OF F344 RATS AFTER INTRAVENOUS ADMINISTRATION OF [14C]p-CHLOROANILINE

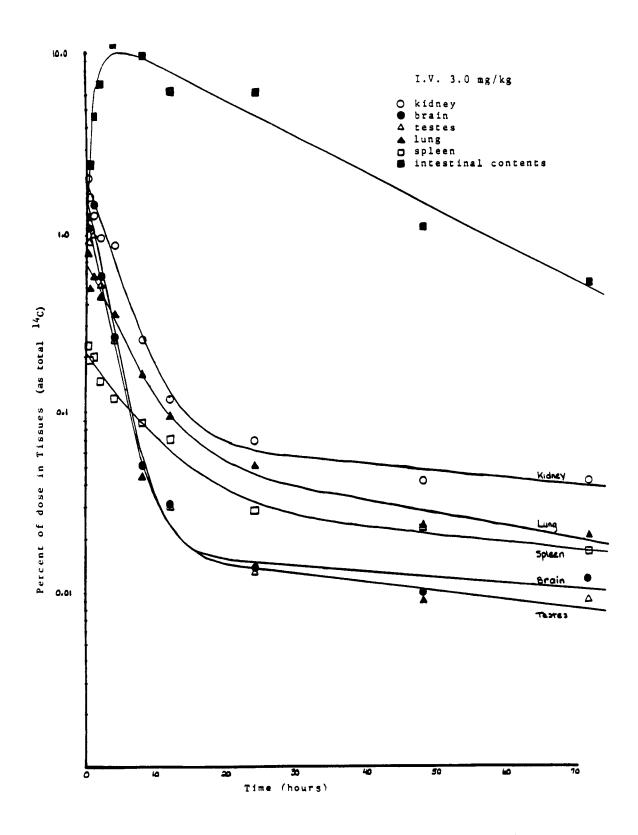


FIGURE H3. ELIMINATION OF CARBON-14 IN THE KIDNEY, BRAIN, TESTIS, LUNG, SPLEEN, AND INTESTINAL CONTENTS OF F344 RATS AFTER INTRAVENOUS ADMINISTRATION OF [14C]p-CHLOROANILINE

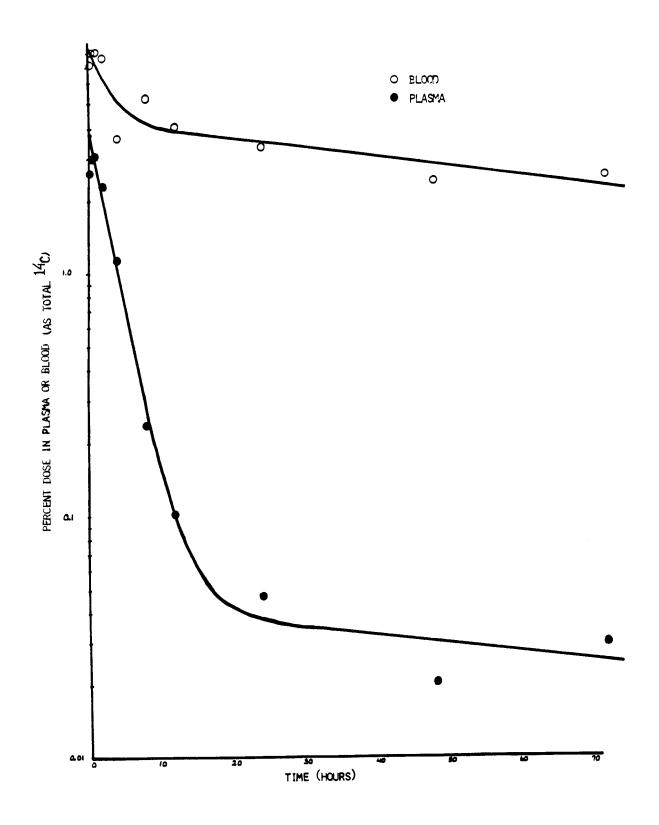


FIGURE H4. BLOOD AND PLASMA LEVELS OF CARBON-14 IN F344 RATS AFTER INTRAVENOUS ADMINISTRATION OF [14C]p-CHLOROANILINE (3 mg/kg)

TABLE H1. ELIMINATION OF ρ-CHLOROANILINE FROM TISSUES OF F344 RATS ADMINISTERED ρ-CHLOROANILINE BY INTRAVENOUS INJECTION (a)

Tissue	A (percent)	α	t _a (hours)	B (percent)	β	tβ (hours)
Kidney	1.31	7.9	0.087	0.36	0.17	3.87
Small intestine	1.12	3.7	0.187	0.59	0.03	23
Adipose tissue	3.59	3.8	0.182	0.28	0.02	29
Muscle	22.6	5.6	0.124	1.3	0.12	5.4
Skin	8.60	5.10	0.124	0.58	0.17	4.0
Whole blood	0.82	7.90	0.087	0.01	0.15	4.56

⁽a) Dose = 3 mg/kg; data fitted to equation I described in the Materials and Methods section of Appendix H.

TABLE H2. THE CONCENTRATION OF ρ -CHLOROACETANILIDE IN TISSUES OF F344 RATS ADMINISTERED ρ -CHLOROANILINE BY INTRAVENOUS INJECTION

Tissue	A (percent)	α	t _α (hours)	β	tβ (hours)	
Liver	3.00			0.23	(a) 3.04	
Whole blood	7.43			0.25	(a) 2.74	
Kidney	1.0	4.4	0.15	0.48	1.44	
Small intestine	1.71	10.5	0.07	0.30	2.30	
Muscle	39.4	4.4	0.16	0.48	1.44	
Adipose tissue	7.9	4.8	0.15	0.36	1.90	
Skin	7.8	10.0	0.069	0.39	1.76	

⁽a) Dose = 3 mg/kg. Liver and blood data were fitted to equation IV described in the Materials and Methods section of Appendix H; all other data were fitted to equation I.

Biliary Excretion of [14C]p-Chloroaniline

The biliary excretion of total carbon-14 occurred rapidly after intravenous administration of [14 C] p chloroaniline (Figure H5). Cumulative recovery accounted for 25% \pm 2.7% of the dose after 6.0 hours of collection. High-performance liquid chromatographic analysis of pooled bile extracts revealed only small amounts of p-chloroaniline (10%) and p-chloroacetanilide (7%), with the remainder being unidentified polar metabolites.

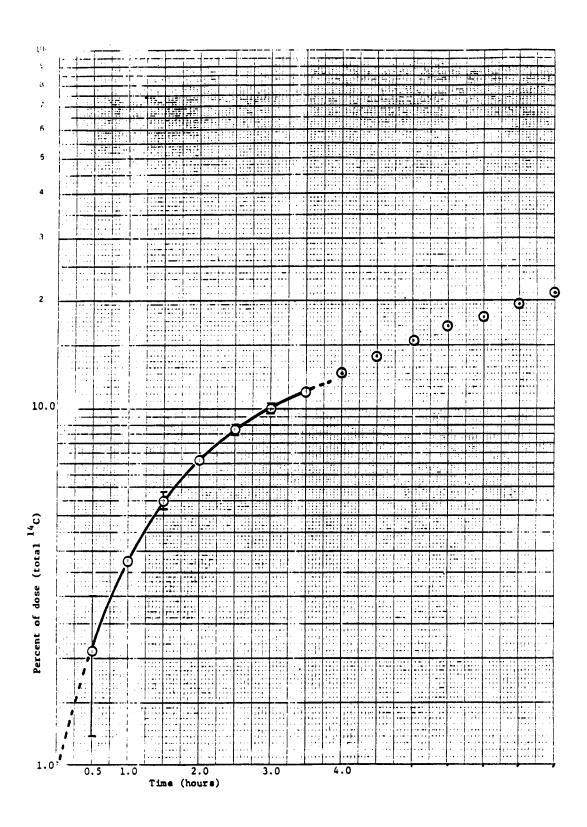


FIGURE H5. BILIARY EXCRETION OF CARBON-14 IN F344 RATS AFTER INTRAVENOUS ADMINISTRATION OF [14C]p-CHLOROANILINE (3 mg/kg)

APPENDIX I

AUDIT SUMMARY

APPENDIX I. AUDIT SUMMARY

The pathology specimens, experimental data, study documents, and draft NTP Technical Report No. 351 for the 2-year studies of p-chloroaniline hydrochloride in rats and mice were audited for accuracy, consistency, completeness, and compliance with the Good Laboratory Practice (GLP) regulations of the Food and Drug Administration (fully implemented by the National Toxicology Program [NTP] beginning October 1, 1981). The studies were conducted by Battelle Columbus Laboratories (Columbus, Ohio). Dosing of animals by gavage began on January 25, 1982, for rats and on February 8, 1982, for mice. The retrospective audit was conducted for the National Institute of Environmental Health Sciences (NIEHS) at the NTP Archives during September, October, and November 1987 by Argus Research Laboratories, Inc. The complete audit report is on file at the NIEHS. The audit included a review of:

- (1) All records concerning animal receipt, quarantine, randomization, and disposition prior to study start.
- (2) All inlife records including protocol, correspondence, animal husbandry, environmental conditions, dosing, external masses, mortality, animal identification, and serology.
- (3) Body weight data and clinical observation data for a random 10% sample of animals in each study group.
- (4) All chemistry records.
- (5) All postmortem records for individual animals concerning disposition codes, condition codes, tissue accountability, correlation of masses or clinical signs recorded at the last inlife observation with gross observations and microscopic diagnoses, and correlations between gross observations and microscopic diagnoses.
- (6) All wet tissue bags for inventory and wet tissues from a random 20% sample of rats in all study groups, plus other relevant cases to verify animal identity and to examine for untrimmed potential lesions.
- (7) Blocks and slides of tissues from a random 20% sample of animals from each study group to examine for proper match and inventory.
- (8) All red-lined diagnoses on the intermediate pathology table to verify incorporation of changes in the final tables.
- (9) Correlation between the data, results, and procedures for the 2-year studies presented in the preliminary Technical Report and the records available at the NTP Archives.

The archival records documented adequately all inlife procedures and events except for the disposition of surplus animals. The records documented the preparation, analysis, and administration of doses. A random sample of group mean body weights was recalculated and found to be accurate. Of the external masses observed inlife, 139/149 in rats and 211/212 in mice were correlated with necropsy observations. The date of death recorded at necrospy for one mid dose male mouse did not agree with the date entered into the computer at the time of animal removal; survival for that group appeared to be 28 rather than 29 mice. Clinical signs were recorded in a generally consistent manner. Hematologic and clinical chemical data were not audited.

Review of the pathology specimens showed that individual animal identifiers (clipped toes and ears) were present and correct in the tissue bags for 99/100 rats and 87/95 mice examined. Followup on animals with less than complete and correct identifiers indicated that individual animal identity had been maintained. The audit found seven untrimmed potential lesions in rats (none in target organs) and none in mice. All gross observations made at necropsy were correlated with microscopic observations, except for one in one rat. Tissue slides and blocks were inspected, and sections matched each other properly. All diagnoses on intermediate tables had been incorporated into the final pathology tables.

Details of these and other audit findings are presented in the audit reports. In conclusion, the data and results presented in the Technical Report for the 2-year gavage studies of p-chloroaniline hydrochloride are supported by the records at the NTP Archives.