

SPORT

Hypothesis and Objectives

P2B.7

• Hypothesis: High-resolution land and water datasets from NASA utilities can lead to improvements in simulated summertime pulse-type convection over the S.E. U.S.

- Experiment objectives
 - Use NASA Land Information System (LIS) to provide highresolution land surface initializations
- Incorporate SPoRT MODIS composites for detailed representation of sea surface temperatures (SSTs)
- Demonstrate proof of concept in using these datasets in local model applications with the Weather Research and Forecasting (WRF) model
- Quantify possible improvements to WRF simulations

*NASA/SPoRT MODIS SST Initialization

- Moderate Resolution Imaging Spectroradiometer (MODIS) SSTs provide superior resolution
- Ocean surface initialized with SPoRT/MODIS SSTs
- Quality check with the latency product
- Current weakness is high latency in areas with persistent cloud cover
- JPL collaboration to improve product with AMSR-E

(c) LIS – NAM

Forecast Hour

Initializing the Land Surface* with the NASA Land Information System to Improve **WRF Predictions of Summertime Convection**

Jonathan L. Case¹, Sujay V. Kumar², Jayanthi Srikishen³, and Gary J. Jedlovec⁴ ¹ENSCO Inc./Short-term Prediction Research and Transition (SPoRT) Center; ²SAIC/NASA Goddard Space Flight Center, Greenbelt, MD; ³Universities Space Research Association/SPoRT Center, Huntsville, AL; ⁴NASA Marshall Space Flight Center/SPoRT Center, Huntsville, AL

	Control		LISMOD	
Fcst hour	Grid Area Match	Grid Area Un-match	Grid Area Match	Grid Area Un-match
15	0	492	0	474
16	0	802	232	587
17	388	544	606	653
18	419	1039	470	711
19	108	1122	186	916
20	318	680	271	674
21	394	301	382	646
22	0	596	110	424
23	28	632	30	501
24	0	328	0	417

