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ABSTRACT 
 
Working closely with atmospheric scientists at the Marshall 
Space Flight Center, researchers at the University of 
Alabama in Huntsville are applying Sensor Web 
Enablement (SWE) technologies to the real world problem 
of efficiently assimilating NASA satellite data into weather 
forecast models in near real time.  By implementing SWE 
protocols and services into our Data Assimilation System 
we expect to realize a processing framework that is 
distributed, interoperable and plug-and-play, thereby 
increasing access to scientific products in a more efficient, 
autonomous, and affordable way.   
 

Index Terms— Standards, Communication Protocols, 
Atmospheric measurements, Geographic information 
systems, Weather forecasting 
 

1. INTRODUCTION 
 
The goal of the Sensor Management for Applied Research 
Technologies (SMART) On-Demand Modeling (ODM) 
project is to develop a prototype system that will 
demonstrate the readiness of the Open Geospatial 
Consortium (OGC) SWE capabilities to integrate both 
space-based Earth observations and forecast model output 
into new data acquisition, processing and assimilation 
strategies.   The next two sections will explain how this 
project will enhance existing forecasting capabilities and 
why we chose SWE as the implementation framework. 
 
1.1. Science Application 
 
The integration of NASA satellite data into weather forecast 
models is a critical component of NASA's Weather Focus 
area.  There is a need to integrate large data volumes from 
satellite sensors with different observational constraints and 
data formats into a common processing system.  This can be 
a manually intensive and time consuming process, in that 
swath coverage relative to storm positions, data volume and 

availability all constrain assimilation decisions.  In a real-
time situation, timely observational data are needed to 
impact the decision making processes at forecast centers.  
Because of the potential to reduce the loss of property and 
lives, appropriate data assimilation in evolving high-impact 
weather situations is likely a more effective use of computer 
time and associated manpower than forecast improvements 
in low-impact weather systems.  The requirement to quickly 
process and assimilate these large data volumes from multi-
sensor platforms often results in significant sub-sampling of 
high resolution data to accomplish the processing in a 
timely manner [1].   

At NASA's Short-term Prediction and Research 
Transition (SPoRT) Center [2], Atmospheric Infrared 
Sounder (AIRS) data provides a key input into the regional 
data assimilation procedures used to produce short-term 
regional weather forecasts with the Weather Research & 
Forecasting (WRF) model [3,4].  Currently, AIRS 
temperature and moisture profiles are only occasionally 
used to support the operational forecast capabilities at the 
National Weather Service [5] because it is not a trivial 
decision on when to include the data and where spatially it 
will have the most effect for the forecast of day-to-day 
weather conditions over the United States.   

The effective inclusion of AIRS data into regional 
forecast models is made possible through autonomous 
processing of model data fields, satellite orbit predictions, 
instrument data, and required ancillary information through 
sensor web capabilities and services.  Researchers at SPoRT 
Center (located at NASA Marshall Space Flight Center) 
have achieved analysis and forecast improvements with the 
assimilation of AIRS thermodynamic profiles into the 
Weather Research and Forecasting (WRF) model [6].  In 
the assimilation process, a North American Mesoscale 
(NAM) forecast initializes a short-term WRF forecast that is 
then used as the background (i.e. first guess) for the 
assimilation of AIRS profiles into the Advanced Regional 
Prediction System (ARPS) Data Analysis System (ADAS).  
Because SPoRT is a transition-to-operations center [7], 
there is a premium on analysis and forecast speed.  One 
hindrance of SPoRT’s current system is the lengthy analysis 



computation time (90+ minutes).  Our contribution to 
reducing this time is to intelligently select only those 
profiles that will have the greatest impact on the analysis, 
such as those profiles collocated with regions of high-
impact  weather conditions.   
 
1.2. Why sensor web enablement? 
 
The OGC suite of SWE specifications, some newly released 
and others under development, provides standards for data 
and information acquisition from sensor systems and data 
repositories.  The OGC is an international consortium of 
industry, academic and government organizations using a 
voluntary consensus process to collaboratively develop 
open standards for geospatial data and information services.  
The OGC SWE standards framework provides 
specifications for interfaces, protocols and encodings that 
are designed to enable implementation of interoperable, 
service-oriented networks of sensors and applications [8]. 
Documentation for all approved OGC standards is freely 
available at http://www.opengeospatial.org/standards/.   

Sensor web enablement services implemented for the 
SMART prototype include Sensor Observation Services 
(SOS), Sensor Alert Services (SAS), and Sensor Model 
Language (SensorML) process chains. SOS provides a web 
service interface for requesting, filtering and retrieving 
sensor system information and observations, while SAS 
provides a web service interface for advertising, publishing 
and subscribing to alerts from sensors.  SensorML is an 
eXtensible Markup Language (XML) schema for describing 
a functional model of a sensor system and related processes.  
Within the SWE framework, there is little distinction 
between an instrument, model, simulation, or data 
processing engine.  They all are termed “sensor systems” 
and can be described in SensorML as process models or 
chains.      

This paper will focus on SensorML, first describing the 
two SensorML process chains being implemented for the 
SMART project, then the remaining SWE components that 
comprise the entire Data Assimilation System. 
 

2. SENSOR MODEL LANGUAGE PROCESS 
CHAINS 

 
SensorML is used for describing a functional model of a 
sensor system and related processes.  Multiple processes 
can be combined with SensorML to form an executable 
process chain.  That is, a SensorML process chain is a 
logical group of inter-connected software sub-processes or 
hardware components (each of which may be single 
processes or process chains) and the connections that link 
their inputs and outputs.  Within the SMART Data 
Assimilation System we have defined two process chains:  
one that identifies weather events in user-specified regions 
and time windows, and one that preprocesses sensor data 

for assimilation into models.  The inner workings of these 
process chains are described next. 
 
2.1. Event Identification Process Chain 

 
The event identification process chain, shown in the green 
box in Figure 1, is composed of functions for retrieving 
North American Mesoscale (NAM) model data using an 
SOS Client, detecting weather events or phenomena using 
the Phenomenon Extraction Algorithm (PEA) [9], and event 
filtering.  PEA is a data mining process that examines a 
series of NAM forecasts and identifies regions of significant 
weather.  For SMART, the PEA is configured to detect low 
pressure systems, but in the future may be tuned to detect 
fronts and/or areas of likely convective initiation.  Because 
the PEA algorithm treats both low pressure systems and 
high pressure systems as anomalous regions, the Event 
Filter module is required to filter out high pressure systems. 

 
Figure 1. Event Identification Process Chain 

Given a particular date, time and region, this process 
chain first fetches the NAM mean sea-level pressure field 
from the NAM SOS, then performs general event detection 
using PEA, and finally determines the low pressure system 
events of interest using the event filter function.  Any events 
identified are published to the Sensor Alert Service (SAS), 
which sends an alert message with the spatial domain of the 
detected event as represented by a bounding box of latitude 
and longitude, and the temporal range encompassing one 
hour before and after the NAM forecast time. This alert is 
used to query the availability of AIRS data coincident with 
the time period and the spatial area of the event identified. If 
AIRS profiles are available, another alert is published 
through the SAS system.  
 
2.2. Data Assimilation for Models Process Chain 
 
The data assimilation for models process chain, shown in 
the blue box in Figure 2, is triggered by a 
“Phenomena/AIRS Intersection” alert from the event 
identification SAS.  Within the process chain, the SAS 
Listener receives an alert, upon which an SOS client 
retrieves the AIRS data, which are then preprocessed and 
formatted into the ASCII format required by the ADAS 
assimilation system that is already running on a compute 
cluster at the SPoRT Center. ADAS produces the analyses 
used to initialize SPoRT’s regional WRF model runs.    



 
Figure 2.  Data Assimilation for Models Process Chain 

 
2.3. Implementing a Process Chain 
 
To create process models for these functions, the authors 
followed examples in the white paper “Creation of Specific 
SensorML Process Models” [10].  The component software 
modules, written in java, needed minimal modification to 
accept inputs from the process chain and to pass outputs to 
the process chain.  SensorML Process Models were defined 
for each of the software modules, and then these process 
models were connected in a Process Chain.  A separate 
Process Map description was created to map each process 
model to its actual implementation.  When the system is 

invoked, the Process Chain Execution Engine parses the 
process chain and the various process models it contains 
together with the process map.  It runs the component 
software modules in sequence and makes the data flow from 
one module to the next as a stream. 
 
3. SMART'S SENSOR WEB ENABLED SATELLITE 

DATA ASSIMILATION DATA FLOW 
 
Figure 3 shows the two process chains in context of the full 
SMART data assimilation prototype.  The prototype is 
organized into three subsystems:  data access, event 
identification, and data assimilation.  Feeding the two 
process chains described above are two SOSs that provide a 
pertinent subset of data from the NAM weather model and 
archived data from the Aqua AIRS instrument.  (Note that 
future versions will be able to process near real time as well 
as archived data.)  The Event Identification Process Chain 
mines NAM forecasts for low pressure centers.  A Sensor 
Alert Service will query for AIRS observations that are 
coincident with these weather events and issue a notification 
identifying the relevant AIRS overpasses.  In response to 
such an alert, the Data Assimilation Process Chain will 
acquire AIRS observations of the phenomena detected, and 
generate input files for the ADAS analysis. When the 
improved ADAS analysis with assimilated AIRS 

Figure 3.  SMART Assimilation of AIRS Data into a Weather Forecast Model:  A Sensor Web Enabled 
Distributed Processing System 



observations is complete, a Web Notification Service 
associated with the data assimilation process will issue an 
alert to WRF modelers that a new set of initial conditions 
for the WRF model is available. 

Note that this is a distributed, service-oriented 
architecture, with different data and processes on different 
servers. The SMART server is dedicated to this project, 
while the VisAnalysis Systems Technologies (VAST) Lab 
hosts many OGC services developed for this project and 
others.  The SPoRT Center’s cluster computers host the 
AIRS data, as well as routine modeling and assimilation 
runs, which SMART is intended to augment. 
 

4. CONCLUSION 
 
This SMART-ODM prototype exercises a variety of SWE 
components in a useful application that automates a 
currently manual process, that of deciding when to 
assimilate AIRS data into a forecast model.  The initial 
demonstration implementation is accessing historical NAM 
forecast runs and archived AIRS data.  Subsequent versions 
will culminate with the system prototype of near real-time 
satellite assimilation into the WRF model.   

The success of SWE in applied science systems will 
only be achieved through the proliferation of SWE 
technologies within the science community. Through this 
project, SMART team members have gained experience 
with SensorML and other OGC SWE technologies, learning 
how to describe a standalone executable program with a 
SensorML process model, and how to write a SensorML 
description of a chain of such processes.   Though the initial 
learning curve was steep, we expect creation of additional 
process chains to be much easier after the first one.  As 
these emerging standards come into wider use, we expect 
user documentation and tools to improve, greatly facilitating 
sensor web development and process chain composition.  

By applying SWE protocols to a real world science 
exercise we are demonstrating the utility and promise of a 
more timely and efficient satellite data assimilation process.  
This project demonstrates the applicability of SWE 
technologies far beyond communication with the sensors 
themselves.  Furthermore, the use of standard SWE 
protocols and formats supports the interoperability of any of 
these components, facilitating their reuse in a variety of 
process chains. 
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