ATTACHMENT 3 STABILITY EVALUATION REPORT

April 9, 2009

MEMORANDUM

From John Bosche 510 302 6295

RE: Stability Evaluation of Proposed Shoreline Rip Rap Revetment and Soil Cover Parcel B, Hunters Point

Objective

Perform a cursory evaluation of static and dynamic (earthquake) stability of the proposed rip-rap shoreline protection and soil cover at Hunters Point Parcel B.

Information Sources:

- Soil boring logs IR07MW21A2, IR07MW20A2, IR07MW24A, IR07MW25A, IR07MW26A, IR07MWP-1, IR07MWP-2, IR07MWS-3, and IR07MWS-4. The borings locations were determined from a copy of the 2008 Land Survey, IR Sites and Restrictions Related to Radionuclides, Prepared by Kurt Cholak, Tetra Tech EM Inc. dated 12/12/08. Borings without soil samples and blowcount information were not included the review data set. Borings were dated from 1986, 1990 and 2000.
- Draft figures dated 1/15/09 including: Figure 4, Existing Topography and Cross Sections, Figure 6, Cross Sections I, L, and O, Figure 7, Cross Sections T and V, Figure 8, Cross Section X, and Figure 9, Proposed Cover Contours.
- 3. Three draft drawings (all are currently labeled as Drawing No. C-5 and all are dated 4/6/09). These 3 drawings contain the following cross sections, A, B, C, D, E, F, AA, BB, DD, and EE of the proposed revetment.
- 4. Tetra Tech EM Inc. 2004. "Final, Parcel E Nonstandard Data Gaps Investigation, Landfill Liquefaction Potential, Hunters Point Shipyard." August 13.
- DMG. 2000. "Seismic Hazard Evaluation of the City and County of San Francisco, California." Open File Report 2000-009. Online address: <u>http://gmw.consrv.ca.gov/shmp/download/evalrpt/sf_eval.pdf</u>.

Revetment Stability Hunters Point, Parcel B April 9, 2009 Page 2

Work Performed:

- 1. Reviewed soil boring logs
- 2. Prepared cross section of proposed ground surface including revetment. Where soil data were not available near the toe of slope, assumed that the subsurface material consists of weak bay mud. Assigned assumed strength parameters and conducted static and pseudo static slope stability analyses.
- 3. Reviewed the liquefaction study performed to the Parcel E Landfill.
- 4. Conducted simplified Newmark analysis by using the yield acceleration determined in Step 2 above and 0.5 g earthquake acceleration from liquefaction study (Step 3 above) to evaluate possible earthquake movements of the proposed slope.

Discussion and Results:

- 1. The borings were each located near the top of the existing shoreline embankment. A variety of materials were logged in the borings although most materials logged were sands and gravels. Materials above the water table, cohesive materials, cobbles and gravels were not generally considered to be susceptible to liquefaction during earthquakes. No grain size distribution or -200 information was available and soil strength tests were not available.
- 2. There are some layers of soil below the groundwater table that may be susceptible to soil liquefaction. SM and SP layers that may be most susceptible to liquefaction were identified in IR07MW20A2 and IR07MW21A2. As previously stated, the existing soils at the site area variable, so the SM and SP layers observed in these two borings are not continuous. However, soil data at the site was generated by a variety of investigators, primarily for environmental studies. No comprehensive investigation of geotechnical parameters or evaluation of liquefaction potential has been performed at the site. The California Division of Mines and Geology (Open File Report 200-009) has identified this area on the State of California, Seismic Hazard Zones, Official Map as one "…where historic occurrence of liquefaction, or local geological, geotechnical and groundwater conditions indicate a potential for permanent ground displacements..."
- 3. A proposed slope inclination of 4:1 is inherently stable under static conditions for rip rap embankments founded on sand and for most embankments founded on clays. Using an assumed soil profile and assumed soil parameters to model weak clays near the toe of the slope, a static slope stability factor of safety (FS) was calculated. The FS result exceeded 2 which indicates a stable slope under static conditions. A yield acceleration was calculated for the purpose of evaluating potential slope movements during earthquake shaking. The yield acceleration for the postulated soil profile and assumed soil strengths is 0.2g.
- 4. Selection of the maximum probable earthquake (MPE) and the peak ground acceleration (PGA) was based on prior work at Hunters Point for the Parcel E Landfill. The M7.9 1906 San Francisco earthquake was selected as the MPE because it was the largest

Revetment Stability Hunters Point, Parcel B April 9, 2009 Page 3

recorded historical earthquake. The 1906 earthquake occurred on the Peninsular segment of the San Andreas Fault, which is the fault closest to the site.

The design earthquake has the following characteristics:

- Location: San Andreas Fault Peninsula Segment
- Magnitude: 7.9
- Distance from site: 12 kilometers
- Estimated PGA: 0.5 g
- 5. Newmark analysis was performed for the postulated soil profile. A peak ground acceleration of 0.5g was used in the analysis, consistent with the Parcel E Liquefaction Study. Due to the variety of earthquake records and calculations performed, displacement estimates vary from less than 1 cm to 38 cm. Most of the estimated displacements are less than 10 cm.

Conclusions

The conclusions and recommendations of this evaluation are as follows:

- 1. The proposed slope of the revetment and the soil cover is expected to be stable under static loading.
- 2. Under earthquake shaking, permanent deformation of the ground surface may occur which might disrupt the proposed soil cover. Since no development (dwellings, office, or industrial construction) on the cover is proposed, the impact of such displacements are expected to be minor and easily repairable.
- 3. Soil liquefaction during earthquake shaking is also a possibility. Based on the geotechnical data reviewed, most of the soils are not expected to be highly susceptible to soil liquefaction during earthquake shaking. Because liquefaction causes extreme loss of soil strength, the areas that may be involved in possible displacements and the magnitude of displacements are difficult to predict based on the available information. However, since no development on the cover is proposed, it is likely that any damages to the cover will be able to be readily repaired.
- 4. Because structural improvements are not proposed on the cover surface, damages that might occur due to earthquake slope stability deformations or soil liquefaction during earthquakes are expected to be most economically repaired after the fact. This is because ground improvement techniques for subsurface materials are expensive relative to the cost of surface grading.
- 5. Damages from earthquakes are anticipated to be minimal; however, inspections of the site following earthquakes of magnitude 6.0 should be conducted to assess and repair any damages. The magnitude which triggers an inspection should be assessed following seismic events and any changes in land use.

Revetment Stability Hunters Point, Parcel B April 9, 2009 Page 4

6. More accurate evaluation of site impacts during earthquakes would require subsurface investigation, testing, and more thorough evaluation/study. Considering the ease of surface repairs to the cover and the potential cost of site improvements prior to earthquake shaking, such effort is not recommended at this time.

If you have any questions regarding this memo, please contact me at (510) 302-6295.

Sincerely, TETRA TECH EM INC.

John Borke

John Bosche California Civil (#30241) California Geotechnical Engineer (#156)

Attachments: Attachment 1, Static Stability Analysis Results Attachment 2, Dynamic Stability Analysis Results Attachment 3, Newmark Analysis Results by 3 Methods ATTACHMENT 1 STATIC STABILITY ANALYSIS RESULTS

(12 pages)

Profile.out ** PCSTABL6 **

by Purdue University

modified by Peter J. Bosscher University of Wisconsin-Madison

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer`s Method of Slices

PROBLEM DESCRIPTION Static with Assumed Parameters

BOUNDARY COORDINATES

8	Тор	Boundari es
14	Total	Boundari es

Boundary	X-Left	Y-Left	X-Right	Y-Right	Soil Type
No.	(ft)	(ft)	(ft)	(ft)	Below Bnd
1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{c} 0.\ 00\\ 28.\ 00\\ 78.\ 00\\ 154.\ 00\\ 158.\ 00\\ 218.\ 00\\ 223.\ 00\\ 258.\ 00\\ 153.\ 00\\ 159.\ 00\\ 183.\ 00\\ 219.\ 00\\ \end{array}$	$\begin{array}{c} 50.\ 00\\ 50.\ 00\\ 51.\ 00\\ 54.\ 90\\ 55.\ 00\\ 70.\ 00\\ 70.\ 00\\ 70.\ 00\\ 54.\ 90\\ 52.\ 00\\ 58.\ 00\\ 67.\ 00\\ \end{array}$	28.00 78.00 154.00 158.00 218.00 223.00 258.00 348.00 159.00 183.00 219.00 223.00	50.00 51.00 54.90 55.00 70.00 70.00 72.00 52.00 52.00 58.00 67.00 70.00	1 1 2 2 3 3 1 1 3 3
13	0. 00	29.00	171. 00	29.00	3
14	171. 00	29.00	183. 00	58.00	3

ISOTROPIC SOIL PARAMETERS

3 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface Page 1

No.	(pcf)	(pcf)	Profil (psf)		Param.	(psf)	No.
1	115. 0	115. 0	400. 0	0.0	0.00	0. 0	0
2	135. 0	135. 0	0. 0	40.0	0.00	0. 0	0
3	120. 0	120. 0	0. 0	30.0	0.00	0. 0	0

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 6 Coordinate Points

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	0.00	50.00
2	28.00	50.00
3	78.00	51.00
4	153.00	54.90
5	230.00	55.50
6	348.00	60.00

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

400 Trial Surfaces Have Been Generated.

20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 80.00 ft. and X = 158.00 ft.

Each Surface Terminates Between X = 180.00 ft. and X = 340.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is $\,Y$ = 10.00 ft.

4.00 ft. Line Segments Define Each Trial Failure Surface.

Restrictions Have Been Imposed Upon The Angle Of Initiation. The Angle Has Been Restricted Between The Angles Of -90.0 And 5.0 deg.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

Profile.out

 * * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 32 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)	
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\\25\\26\\27\\28\\29\\30\\31\\32\end{array} $	104. 63 107. 94 111. 37 114. 89 118. 51 122. 20 125. 98 129. 81 133. 70 137. 63 141. 59 145. 58 157. 57 161. 54 165. 48 169. 38 173. 23 177. 02 180. 74 184. 38 187. 93 191. 39 194. 73 197. 96 201. 06 204. 03 206. 86 209. 55 212. 07 212. 39	$\begin{array}{c} 52.\ 37\\ 50.\ 12\\ 48.\ 05\\ 46.\ 16\\ 44.\ 45\\ 42.\ 93\\ 41.\ 59\\ 40.\ 46\\ 39.\ 51\\ 38.\ 77\\ 38.\ 23\\ 37.\ 90\\ 37.\ 77\\ 37.\ 84\\ 38.\ 12\\ 38.\ 60\\ 39.\ 28\\ 40.\ 16\\ 41.\ 24\\ 42.\ 52\\ 43.\ 99\\ 45.\ 65\\ 47.\ 49\\ 49.\ 51\\ 51.\ 70\\ 54.\ 06\\ 56.\ 59\\ 59.\ 26\\ 62.\ 09\\ 65.\ 06\\ 68.\ 16\\ 68.\ 60\\ 41.\ 24\\ 42.\ 52\\ 43.\ 99\\ 45.\ 65\\ 47.\ 49\\ 49.\ 51\\ 51.\ 70\\ 54.\ 06\\ 56.\ 59\\ 59.\ 26\\ 62.\ 09\\ 65.\ 06\\ 68.\ 16\\ 68.\ 60\\ 41.\ 60\\ 56.\ 59\\ 59.\ 26\\ 62.\ 09\\ 65.\ 06\\ 68.\ 16\\ 68.\ 60\\ 41.\ 60\\ 41.\ 60\\ 56.\ 59\\ 59.\ 26\\ 62.\ 09\\ 65.\ 06\\ 68.\ 16\\ 68.\ 60\\ 41.\ 60\\ 41.\ 60\\ 41.\ 60\\ 56.\ 59\\ 59.\ 26\\ 62.\ 09\\ 65.\ 06\\ 68.\ 16\\ 68.\ 60\\ 41.\ 60\\ 41.\ 60\\ 56.\ 59\\ 59.\ 26\\ 62.\ 09\\ 65.\ 06\\ 68.\ 16\\ 68.\ 60\\ 41.\ $	
Vircla Cor	$+ \sim \sim \Lambda + V$	150 2 · V _	114

Circle Center At X = 150.2; Y = 116.0 and Radius, 78.3

*** 2.737 ***

Failure Surface Specified By 34 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	104.63	52. 37
2	108.22	50. 59
3	111.87	48. 95
4	115.58	47. 46
5	119.34	46. 11
6	123.16	44. 91

		Profile.	out		
7	127.02	43.86			
8	130. 92	42.96			
9	134.84	42.21			
10	138.80	41.62			
11	142.78	41.18			
12	146.77	40.90			
13	150.76	40.77			
14	154.76	40.80			
15 16	158. 76 162. 75	40. 98 41. 32			
17	166.72	41. 32			
18	170.66	41.02			
19	174.58	43.27			
20	178.47	44.22			
21	182.31	45.32			
22	186.11	46.58			
23	189.86	47.98			
24	193.55	49.52			
25	197.17	51.21			
26	200.73	53.04			
27	204.21	55.00			
28	207.62	57.10			
29	210.94	59.33			
30	214.17	61.69			
31 32	217.31	64.17			
3∠ 33	220. 35 223. 28	66.77 69.49			
34	223.20	70.00			
54	223.17	70.00			
Circle Cen	ter At X =	152.0 ; Y =	143.5	and Radius,	102.7
* * *	2.740	* * *			

Failure Surface Specified By 31 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21	$\begin{array}{c} 121.\ 05\\ 124.\ 43\\ 127.\ 90\\ 131.\ 48\\ 135.\ 14\\ 138.\ 88\\ 142.\ 68\\ 142.\ 68\\ 146.\ 54\\ 150.\ 45\\ 154.\ 40\\ 158.\ 38\\ 162.\ 37\\ 166.\ 37\\ 170.\ 37\\ 174.\ 35\\ 178.\ 31\\ 182.\ 23\\ 186.\ 11\\ 189.\ 94\\ 193.\ 70\\ 197.\ 39\\ \end{array}$	$\begin{array}{c} 53.\ 21\\ 51.\ 06\\ 49.\ 08\\ 47.\ 29\\ 45.\ 67\\ 44.\ 25\\ 43.\ 01\\ 41.\ 98\\ 41.\ 13\\ 40.\ 49\\ 40.\ 05\\ 39.\ 82\\ 39.\ 78\\ 39.\ 78\\ 39.\ 95\\ 40.\ 32\\ 40.\ 89\\ 41.\ 67\\ 42.\ 64\\ 43.\ 81\\ 45.\ 17\\ 46.\ 72\\ Page$
		PAUE

		Profile.out	
22	200.99	48.45	
23	204.50	50.37	
24	207.91	52.46	
25	211. 21	54.72	
26	214.39	57.15	
27	217.44	59.73	
28	220.36	62.47	
29	223.14	65.35	
30	225.76	68.37	
31	227.04	70.00	

Circle Center At X = 165.0 ; Y = 118.5 and Radius, 78.7 *** 2.758 ***

Failure Surface Specified By 30 Coordinate Points

Poi n No.	t X-Surf (ft)	Y-Surf (ft)	
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\8\\9\\20\\21\\22\\3\\24\\25\\26\\27\\28\\29\\30\end{array}$	$\begin{array}{c} 121.\ 05\\ 124.\ 16\\ 127.\ 41\\ 130.\ 79\\ 134.\ 30\\ 137.\ 92\\ 141.\ 64\\ 145.\ 44\\ 149.\ 31\\ 153.\ 23\\ 157.\ 19\\ 161.\ 18\\ 165.\ 18\\ 165.\ 18\\ 169.\ 18\\ 173.\ 16\\ 177.\ 10\\ 180.\ 99\\ 184.\ 83\\ 188.\ 59\\ 192.\ 25\\ 195.\ 82\\ 199.\ 26\\ 202.\ 58\\ 205.\ 76\\ 208.\ 78\\ 211.\ 63\\ 214.\ 32\\ 216.\ 81\\ 219.\ 12\\ 221.\ 10\\ \end{array}$	$\begin{array}{c} 53.\ 21\\ 50.\ 69\\ 48.\ 36\\ 46.\ 23\\ 44.\ 31\\ 42.\ 61\\ 41.\ 13\\ 39.\ 88\\ 38.\ 86\\ 38.\ 08\\ 37.\ 53\\ 37.\ 23\\ 37.\ 23\\ 37.\ 18\\ 37.\ 36\\ 37.\ 79\\ 38.\ 46\\ 39.\ 36\\ 40.\ 50\\ 41.\ 88\\ 43.\ 47\\ 45.\ 29\\ 47.\ 32\\ 49.\ 56\\ 51.\ 99\\ 54.\ 61\\ 57.\ 41\\ 60.\ 38\\ 63.\ 50\\ 66.\ 77\\ 70.\ 00\\ \end{array}$	
urcie	Center At X =	164.1 ; Y =	103.

ircle Center At X = 164.1; Y = 103.0 and Radius, 65.9

*** 2.774 ***

Failure Surface Specified By 28 Coordinate Points Page 5

Point No.	X-Surf (ft)	Y-Surf (ft)			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	$\begin{array}{c} 125.\ 16\\ 128.\ 22\\ 131.\ 45\\ 134.\ 84\\ 138.\ 36\\ 142.\ 01\\ 145.\ 76\\ 149.\ 60\\ 153.\ 51\\ 157.\ 46\\ 161.\ 45\\ 165.\ 45\\ 165.\ 45\\ 165.\ 45\\ 169.\ 44\\ 173.\ 41\\ 177.\ 33\\ 181.\ 19\\ 184.\ 97\\ 188.\ 65\\ 192.\ 21\\ 195.\ 64\\ 198.\ 92\\ 202.\ 04\\ 204.\ 97\\ 207.\ 71\\ 210.\ 24\\ 212.\ 55\\ 214.\ 64\\ 215.\ 30\\ \end{array}$	$\begin{array}{c} 53.\ 42\\ 50.\ 85\\ 48.\ 49\\ 46.\ 36\\ 44.\ 47\\ 42.\ 83\\ 41.\ 44\\ 40.\ 31\\ 39.\ 45\\ 38.\ 86\\ 38.\ 54\\ 38.\ 50\\ 38.\ 74\\ 39.\ 25\\ 40.\ 03\\ 41.\ 08\\ 42.\ 39\\ 43.\ 96\\ 45.\ 78\\ 47.\ 84\\ 50.\ 13\\ 52.\ 64\\ 55.\ 36\\ 58.\ 27\\ 61.\ 37\\ 64.\ 63\\ 68.\ 05\\ 69.\ 32\\ \end{array}$			
Circle Cen	ter At X =	164.0 ; Y =	96. 6	and Radius,	58. 1
* * *	2.776	* * *			

Failure Surface Specified By 35 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	$\begin{array}{c} 104.\ 63\\ 107.\ 64\\ 110.\ 79\\ 114.\ 07\\ 117.\ 47\\ 120.\ 98\\ 124.\ 59\\ 128.\ 29\\ 132.\ 06\\ 135.\ 90\\ 139.\ 79\\ 143.\ 73\\ 147.\ 70\\ 151.\ 70\\ 155.\ 70\\ 155.\ 70\\ 159.\ 69\\ \end{array}$	52. 37 49. 73 47. 27 44. 98 42. 87 40. 95 39. 22 37. 69 36. 37 35. 25 34. 34 33. 64 33. 16 32. 90 32. 85 33. 02 Page 6

		Profile.	out		
17	163.67	33.40			
18	167.63	34.00			
19	171.54	34.82			
20	175.41	35.85			
21	179. 21	37.08			
22	182. 95	38.52			
23	186. 59	40. 16			
24	190. 15	42.00			
25	193.60	44.03			
26	196. 93	46.24			
27	200.14	48.63			
28	203.21	51.19			
29	206.14	53.91			
30	208.92	56.79			
31	211.54	59.81			
32	213.99	62.97			
33	216.26	66.26			
34	218.36	69.67			
35	218.53	70.00			
Circle Ce	nter At X =	154.6 ; Y =	106.5	and Radius,	73.6
* * *	2.779	* * *			

Failure Surface Specified By 29 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1 2 3 4 5 6 7 8 9 0 11 23 4 5 6 7 8 9 0 11 23 4 5 6 7 8 9 0 11 23 4 5 22 24 5 22 22 24 5 22 22 22 22 22 22 22 22 22 22 22 22 2	$\begin{array}{c} 125.\ 16\\ 128.\ 83\\ 132.\ 57\\ 136.\ 37\\ 140.\ 22\\ 144.\ 10\\ 148.\ 03\\ 151.\ 99\\ 155.\ 96\\ 159.\ 95\\ 163.\ 95\\ 167.\ 95\\ 167.\ 95\\ 171.\ 94\\ 175.\ 92\\ 179.\ 88\\ 183.\ 81\\ 187.\ 70\\ 191.\ 54\\ 195.\ 34\\ 195.\ 34\\ 199.\ 08\\ 202.\ 76\\ 206.\ 37\\ 209.\ 90\\ 213.\ 34\\ 216.\ 70\\ 219.\ 96\\ 223.\ 12\\ 226.\ 17\\ 227.\ 75\end{array}$	$\begin{array}{c} 53.\ 42\\ 51.\ 84\\ 50.\ 42\\ 49.\ 16\\ 48.\ 06\\ 47.\ 13\\ 46.\ 36\\ 45.\ 77\\ 45.\ 34\\ 45.\ 08\\ 44.\ 99\\ 45.\ 07\\ 45.\ 33\\ 45.\ 75\\ 46.\ 34\\ 47.\ 10\\ 48.\ 03\\ 49.\ 12\\ 50.\ 37\\ 51.\ 79\\ 53.\ 36\\ 55.\ 09\\ 56.\ 98\\ 59.\ 01\\ 61.\ 18\\ 63.\ 50\\ 65.\ 95\\ 68.\ 54\\ 70.\ 00\\ \end{array}$

*** 2.783 ***

Failure Surface Specified By 18 Coordinate Points

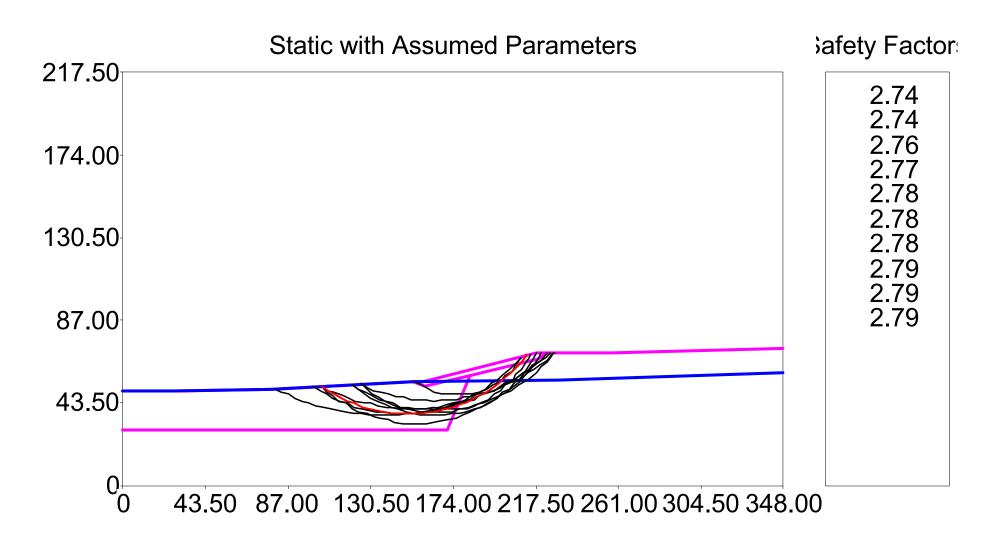
Point No.	X-Surf (ft)	Y-Surf (ft)			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	$\begin{array}{c} 153.\ 90\\ 157.\ 25\\ 160.\ 82\\ 164.\ 56\\ 168.\ 42\\ 172.\ 38\\ 176.\ 37\\ 180.\ 36\\ 184.\ 31\\ 188.\ 17\\ 191.\ 91\\ 195.\ 47\\ 198.\ 81\\ 201.\ 92\\ 204.\ 74\\ 207.\ 24\\ 209.\ 41\\ 210.\ 00 \end{array}$	$\begin{array}{c} 54.89\\ 52.72\\ 50.91\\ 49.49\\ 48.46\\ 47.84\\ 47.84\\ 47.64\\ 47.86\\ 48.49\\ 49.54\\ 50.98\\ 52.80\\ 54.99\\ 57.52\\ 60.35\\ 63.47\\ 66.83\\ 68.00 \end{array}$			
		176.3 ; Y =	85.8	and Radius,	38. 2

*** 2.785 ***

Failure Surface Specified By 40 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	$\begin{array}{c} 80.\ 00\\ 83.\ 60\\ 87.\ 26\\ 90.\ 96\\ 94.\ 71\\ 98.\ 49\\ 102.\ 32\\ 106.\ 18\\ 110.\ 07\\ 113.\ 99\\ 117.\ 93\\ 121.\ 89\\ 125.\ 86\\ 129.\ 85\\ 133.\ 84\\ 137.\ 84\\ 141.\ 84\\ 145.\ 84\end{array}$	51. 10 49. 36 47. 74 46. 22 44. 82 43. 54 42. 37 41. 32 40. 39 39. 58 38. 89 38. 32 37. 54 37. 54 37. 54 37. 26 37. 30 37. 47 Page
		Pade

Page 8


		Profile.	out		
19	149.83	37.75			
20	153.81	38.16			
21	157.77	38.70			
22 23	161. 72 165. 64	39.35 40.12			
23	169.54	40.12			
25	173.41	42.03			
26	177.25	43.16			
27	181.05	44.41			
28	184.81	45.78			
29	188. 52	47.26			
30	192.19	48.85			
31	195.81	50.55			
32	199.38	52.37			
33 34	202.88 206.33	54.29 56.32			
35	200.33	58.46			
36	213.03	60.69			
37	216.27	63.03			
38	219.44	65.47			
39	222.54	68.00			
40	224.84	70.00			
Circle Ce	enter At X =	138.5 ; Y =	167.6	and Radius,	130. 3
* * *	2. 786	* * *			

Failure Surface Specified By 32 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 24 5 26 27	$100. 53 \\ 103. 89 \\ 107. 36 \\ 110. 92 \\ 114. 57 \\ 118. 29 \\ 122. 08 \\ 125. 92 \\ 129. 82 \\ 133. 75 \\ 137. 72 \\ 141. 71 \\ 145. 70 \\ 149. 70 \\ 153. 70 \\ 157. 67 \\ 161. 62 \\ 165. 53 \\ 169. 40 \\ 173. 21 \\ 176. 96 \\ 180. 64 \\ 184. 23 \\ 187. 74 \\ 191. 15 \\ 194. 45 \\ 197. 64 \\ 187.$	$\begin{array}{c} 52.\ 16\\ 50.\ 00\\ 48.\ 00\\ 46.\ 18\\ 44.\ 53\\ 43.\ 07\\ 41.\ 78\\ 40.\ 69\\ 39.\ 78\\ 39.\ 06\\ 38.\ 54\\ 38.\ 20\\ 38.\ 07\\ 38.\ 13\\ 38.\ 38\\ 38.\ 83\\ 39.\ 47\\ 40.\ 30\\ 41.\ 32\\ 42.\ 53\\ 43.\ 93\\ 45.\ 50\\ 47.\ 25\\ 49.\ 18\\ 51.\ 27\\ 53.\ 53\\ 55.\ 95\\ 75.\ 93\\ 75.\ 50\\ 75.\ 55\\ 75.\ 75.\ 75.\ 75\ 75\ 75\ 75\ 75\ 75\ 75\ 75\ 75\$

28 29 30 31 32	9) 1 2	200. 70 203. 64 206. 44 209. 10 209. 81	58. 61. 64. 67. 67.	23 09 07 95				
Ci rcl	e Center	AtX =	146.5 ;	Y =	120. 1	l and F	adi us,	82.0
	* * *	2. 788	* * *					
	Y		А	Х	I	S		F Τ
	0.	00 4	3. 50	87.00) ^	130. 50	174.00	217.50
Х	0.00 +	*-	-+*	+-		+	+	+
	-							
	- - 43.50+	•	*					
	-							
	-		*					
А	87.00 +							
	-		9. 11					
х		6	61.3 1235					
	-	· 6 · 6 · 6	137					
	-	· 6 · 6	17. ** 128					
I	1/4.00 +	*6 	317. *.					
	-	·	. 3218 32110					
S	217.50 +		32111 32** 32*	k				
	-	·	W 					
	- - 261.00 +	• • • • • • •	· · · · · · · · · · · · · · · · · · ·	k				
	-	• • • • • •	 					
	-		 					
F	304.50 +	-		Page 1	0			
				i aye i	0			

		Profile.out
	-	
	-	
	-	
	-	
	-	
Т	348.00 +	W *

ATTACHMENT 2 DYNAMIC STABILITY ANALYSIS RESULTS

(12 pages)

by Purdue University

modified by Peter J. Bosscher University of Wisconsin-Madison

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer`s Method of Slices

PROBLEM DESCRIPTION Dynamic with Assumed Parameters

BOUNDARY COORDINATES

8	Тор	Boundari es
14	Total	Boundari es

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	0.00	50.00	28.00	50.00	1
2	28.00	50.00	78.00	51.00	1
3	78.00	51.00	154.00	54.90	1
4	154.00	54.90	158.00	55.00	2
5	158.00	55.00	218.00	70.00	2
6	218.00	70.00	223.00	70.00	2
7	223.00	70.00	258.00	70.00	3
8	258.00	70.00	348.00	72.00	3
9	153.00	54.90	159.00	52.00	1
10	159.00	52.00	183.00	58.00	1
11	183.00	58.00	219.00	67.00	3
12	219.00	67.00	223.00	70.00	3
13	0.00	29.00	171.00	29.00	3
14	171.00	29.00	183.00	58.00	3

ISOTROPIC SOIL PARAMETERS

3 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface Page 1

No.	(pcf)	(pcf)	Profil (psf)		Param.	(psf)	No.
1	115. 0	115. 0	400. 0	0.0	0.00	0.0	0
2	135. 0	135. 0	0. 0	40.0	0.00	0.0	0
3	120. 0	120. 0	0. 0	30.0	0.00	0.0	0

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 6 Coordinate Points

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	0.00	50.00
2	28.00	50.00
3	78.00	51.00
4	153.00	54.90
5	230.00	55.50
6	348.00	60.00

A Horizontal Earthquake Loading Coefficient OfO. 200 Has Been Assigned

A Vertical Earthquake Loading Coefficient 0f0.000 Has Been Assigned

Cavitation Pressure = 0.0 psf

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

400 Trial Surfaces Have Been Generated.

20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 80.00 ft. and X = 158.00 ft.

Each Surface Terminates Between X = 180.00 ft. and X = 340.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 10.00 ft.

4.00 ft. Line Segments Define Each Trial Failure Surface.

Profile.out

Restrictions Have Been Imposed Upon The Angle Of Initiation. The Angle Has Been Restricted Between The Angles Of -90.0 And 5.0 deg.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 35 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\0\\1\\1\\2\\3\\4\\5\\6\\7\\8\\9\\0\\1\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2$	$\begin{array}{c} 80.\ 00\\ 83.\ 09\\ 86.\ 31\\ 89.\ 64\\ 93.\ 07\\ 96.\ 61\\ 100.\ 23\\ 103.\ 93\\ 107.\ 70\\ 111.\ 53\\ 115.\ 41\\ 119.\ 34\\ 123.\ 30\\ 127.\ 28\\ 131.\ 28\\ 135.\ 28\\ 139.\ 27\\ 143.\ 25\\ 147.\ 20\\ 151.\ 12\\ 154.\ 99\\ 158.\ 81\\ 162.\ 57\\ 166.\ 25\\ 169.\ 85\\ 173.\ 36\\ 176.\ 77\\ 180.\ 07\\ 183.\ 26\\ 186.\ 32\\ 189.\ 25\\ 192.\ 05\\ 194.\ 70\\ 197.\ 20\\ 198.\ 39\end{array}$	$\begin{array}{c} 51.\ 10\\ 48.\ 57\\ 46.\ 19\\ 43.\ 97\\ 41.\ 92\\ 40.\ 04\\ 38.\ 34\\ 36.\ 82\\ 35.\ 49\\ 34.\ 34\\ 33.\ 39\\ 32.\ 62\\ 32.\ 06\\ 31.\ 51\\ 31.\ 54\\ 31.\ 56\\ 32.\ 18\\ 32.\ 79\\ 33.\ 60\\ 35.\ 80\\ 37.\ 18\\ 38.\ 74\\ 40.\ 48\\ 42.\ 40\\ 44.\ 49\\ 46.\ 75\\ 49.\ 17\\ 51.\ 74\\ 54.\ 46\\ 57.\ 32\\ 60.\ 32\\ 63.\ 44\\ 65.\ 10\\ \end{array}$

Circle Center At X = 132.8; Y = 112.4 and Radius, 80.9

*** 0.971 ***

Profile.out

Poi No		X-Surf (ft)	Ň	Y-Surf (ft)					
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32		$\begin{array}{c} 88.\ 21\\ 91.\ 24\\ 94.\ 41\\ 97.\ 71\\ 101.\ 13\\ 104.\ 66\\ 108.\ 29\\ 112.\ 01\\ 115.\ 81\\ 119.\ 67\\ 123.\ 58\\ 127.\ 54\\ 131.\ 52\\ 135.\ 52\\ 139.\ 52\\ 135.\ 52\\ 139.\ 52\\ 139.\ 52\\ 139.\ 52\\ 143.\ 51\\ 147.\ 47\\ 151.\ 40\\ 155.\ 29\\ 159.\ 11\\ 162.\ 87\\ 166.\ 54\\ 170.\ 11\\ 173.\ 58\\ 176.\ 93\\ 180.\ 15\\ 183.\ 23\\ 186.\ 17\\ 188.\ 95\\ 191.\ 57\\ 194.\ 01\\ 195.\ 46\\ \end{array}$		$\begin{array}{c} 51.52\\ 48.91\\ 46.47\\ 44.21\\ 42.13\\ 40.26\\ 38.58\\ 37.11\\ 35.85\\ 34.81\\ 33.99\\ 33.38\\ 33.00\\ 32.84\\ 32.91\\ 33.20\\ 33.72\\ 34.45\\ 35.41\\ 36.58\\ 37.96\\ 41.35\\ 45.53\\ 45.55\\ 45.55\\ 45.55\\ 45.55\\ 45.55\\ 45.55\\ 45.55\\ 45$					
Circl	e Center	^ At X =	136. ***	3;Y	=	104. 1	and	Radi us,	71.3

Failure Surface Specified By 32 Coordinate Points

Failure Surface Specified By 34 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1 2 3 4 5 6 7 8 9 10	88. 21 91. 48 94. 85 98. 33 101. 89 105. 53 109. 25 113. 03 116. 87 120. 76	51. 52 49. 22 47. 07 45. 08 43. 26 41. 61 40. 13 38. 83 37. 71 36. 77 Page 4

		Profile.	out		
11	124.69	36.02			
12	128.65	35.45			
13	132.63	35.07			
14	136.62	34.87			
15	140.62	34.87			
16	144.62	35.05			
17	148.60	35.42			
18	152.56	35.98			
19	156.49	36.72			
20 21	160. 38 164. 23	37.65 38.76			
22	168.01	40.05			
22	171.73	40.05			
23	175.38	43.16			
25	178.95	44.97			
26	182.42	46.95			
27	185.80	49.09			
28	189.08	51.38			
29	192.24	53.83			
30	195.29	56.42			
31	198. 21	59.16			
32	200. 99	62.03			
33	203.64	65.02			
34	205.04	66.76			
Circle Ce	nter At X =	138.7 ; Y =	119. 7	and Radius,	84.9
* * *	1.043	* * *			

Failure Surface Specified By 29 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 9 21 22 3 24 25	96. 42 99. 35 102. 45 105. 71 109. 12 112. 66 116. 31 120. 06 123. 90 127. 80 131. 75 135. 74 139. 74 143. 73 147. 71 151. 65 155. 53 159. 35 163. 07 166. 69 170. 19 173. 55 176. 77 179. 82 182. 69	51.9549.2246.6944.3842.2840.4238.7937.4036.2735.3934.7834.4234.3334.5034.9435.6435.6435.6436.5937.8039.2640.9642.9045.0647.4550.0352.82
		שכע

26 27 28	185.37 187.85 190.12	Profile.c 55.79 58.92 62.22	out		
29	190.69	63.17			
Circle Cer	nter At X =	139.1 ; Y =	94.9	and Radi us,	60.6

*** 1.086 ***

Failure Surface Specified By 32 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	100. 53 103. 33 106. 30 109. 44 112. 72 116. 15 119. 69 123. 35 127. 10 130. 93 134. 83 138. 77 142. 75 146. 75 150. 75 154. 73 158. 69 162. 60 166. 45 170. 22 173. 90 177. 48 180. 93 184. 25 187. 43 190. 44 193. 29 195. 95 198. 42 200. 68 202. 74 203. 86	52. 16 49. 30 46. 62 44. 14 41. 86 39. 79 37. 94 36. 32 34. 93 33. 78 32. 87 32. 22 31. 81 31. 65 31. 74 32. 09 32. 69 33. 53 34. 62 35. 95 37. 51 39. 30 41. 32 43. 55 45. 98 48. 61 51. 42 54. 41 57. 55 60. 85 64. 28 66. 46 147. 3 ; Y =	95. 1	and Dadi us	42 E
**		147.5 , I = ***	7J. I	and Radius,	63.5

Failure Surface Specified By 32 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
		Page 6

Profile.ou

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Circle Center At X		91.5 and Radiu	s, 61.1

Failure Surface Specified By 40 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	$\begin{array}{c} 80.\ 00\\ 83.\ 60\\ 87.\ 26\\ 90.\ 96\\ 94.\ 71\\ 98.\ 49\\ 102.\ 32\\ 106.\ 18\\ 110.\ 07\\ 113.\ 99\\ 117.\ 93\\ 121.\ 89\\ 125.\ 86\\ 129.\ 85\\ 133.\ 84\\ 137.\ 84\end{array}$	$\begin{array}{c} 51.\ 10\\ 49.\ 36\\ 47.\ 74\\ 46.\ 22\\ 44.\ 82\\ 43.\ 54\\ 42.\ 37\\ 41.\ 32\\ 40.\ 39\\ 39.\ 58\\ 38.\ 89\\ 38.\ 89\\ 38.\ 32\\ 37.\ 87\\ 37.\ 54\\ 37.\ 34\\ 37.\ 26\end{array}$
		Page

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Profile.out 37.30 37.47 37.75 38.16 38.70 39.35 40.12 41.02 42.03 43.16 44.41 45.78 47.26 48.85 50.55 52.37 54.29 56.32 58.46 60.69 63.03 65.47 68.00 70.00		
Circle Center At X =	138.5 ; Y = 167.6	and Radius,	130. 3
1.107			

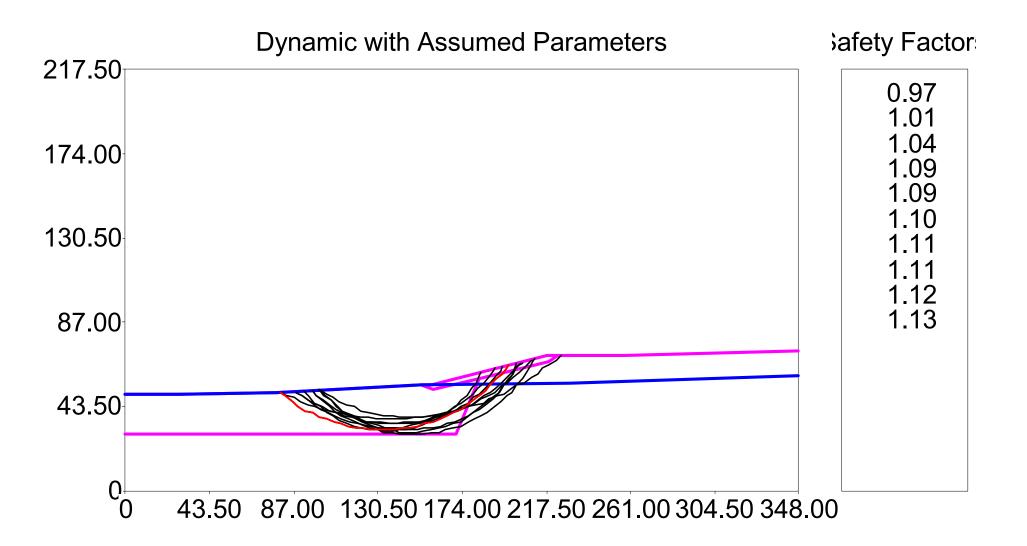
Failure Surface Specified By 36 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 3 24 25	96. 42 99. 20 102. 14 105. 23 108. 45 111. 81 115. 29 118. 87 122. 55 126. 31 130. 14 134. 03 137. 97 141. 94 145. 94 145. 94 145. 94 153. 93 157. 91 161. 85 165. 75 169. 60 173. 37 177. 06 180. 66 184. 15	51.95 49.07 46.35 43.81 41.45 39.27 37.29 35.51 33.94 32.58 31.44 30.52 29.82 29.35 29.08 29.29 29.29 29.73 30.39 31.28 32.39 33.71 35.25 37.00 38.94 32.58 31.44 30.52 29.35 29.08 29.29 29.73 30.39 31.28 32.39 32.59 32.59 32.50 33.94 32.52 37.20 32.39 32.39 32.39 32.39 32.39 33.71 35.25 37.00 38.94 32.39 32.39 33.71 35.25 37.00 38.94 32.39 32.39 32.39 32.39 33.71 35.25 37.00 38.94 39.30 3
		Pana

		Profile.	out		
26	187.53	41.09			
27	190. 78	43.42			
28	193.89	45.94			
29	196.85	48.62			
30	199.66	51.48			
31	202.29	54.48			
32	204.76	57.64			
33	207.03	60.93			
34	209.12	64.34			
35	211.01	67.86			
36	211. 21	68.30			
Circle Ce	nter At X =	148.3 ; Y =	99. 2	and Radi us,	70. 1
* * *	1.114	* * *			

Failure Surface Specified By 29 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)			
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\\25\\26\\27\\28\\29\end{array} $	$\begin{array}{c} 92.\ 32\\ 94.\ 90\\ 97.\ 71\\ 100.\ 71\\ 103.\ 90\\ 107.\ 25\\ 110.\ 76\\ 114.\ 39\\ 118.\ 14\\ 121.\ 98\\ 125.\ 89\\ 129.\ 86\\ 133.\ 85\\ 137.\ 85\\ 141.\ 84\\ 145.\ 79\\ 149.\ 68\\ 153.\ 50\\ 157.\ 23\\ 160.\ 84\\ 164.\ 31\\ 167.\ 63\\ 170.\ 77\\ 173.\ 73\\ 176.\ 48\\ 179.\ 01\\ 181.\ 32\\ 183.\ 37\\ 184.\ 62\end{array}$	$\begin{array}{c} 51.\ 73\\ 48.\ 68\\ 45.\ 83\\ 43.\ 19\\ 40.\ 77\\ 38.\ 59\\ 36.\ 67\\ 35.\ 00\\ 33.\ 61\\ 32.\ 49\\ 31.\ 65\\ 31.\ 10\\ 30.\ 85\\ 30.\ 88\\ 31.\ 21\\ 31.\ 82\\ 32.\ 73\\ 33.\ 91\\ 35.\ 37\\ 37.\ 10\\ 39.\ 09\\ 41.\ 32\\ 43.\ 79\\ 46.\ 49\\ 49.\ 39\\ 52.\ 48\\ 55.\ 76\\ 59.\ 19\\ 61.\ 65\end{array}$			
Circle Cen	ter At X =	135.4 ; Y =	85.6	and Radius,	54.8
* * *	1. 118	* * *			

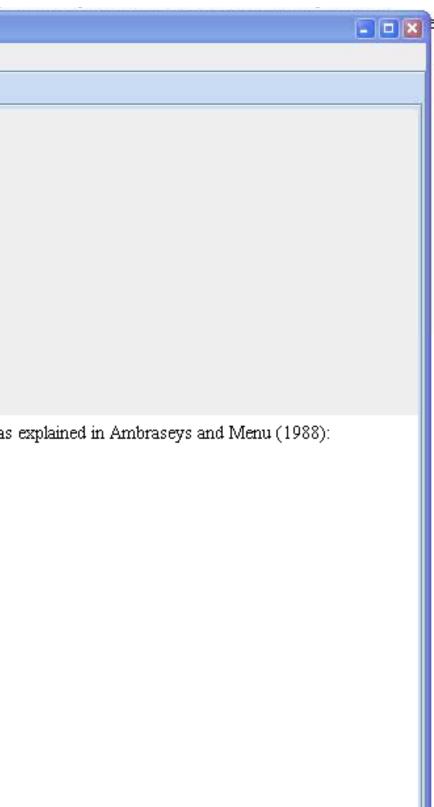

Failure Surface Specified By 32 Coordinate Points Page 9 $\ensuremath{\mathsf{Points}}$

Point No.	X-Surf (ft)	Y-Sı (ft				
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\end{array} $	100. 53 103. 89 107. 36 110. 92 114. 57 118. 29 122. 08 125. 92 133. 75 137. 72 141. 71 145. 70 153. 70 157. 67 161. 62 165. 53 169. 40 173. 21 176. 96 180. 64 184. 23 187. 74 191. 15 194. 45 197. 64 200. 70 203. 64 206. 44 209. 10 209. 81	$\begin{array}{c} 52.\\ 50.\\ 48.\\ 46.\\ 44.\\ 43.\\ 41.\\ 40.\\ 39.\\ 38.\\ 38.\\ 38.\\ 38.\\ 38.\\ 38.\\ 38.\\ 38$	00 00 18 53 07 78 69 78 06 54 20 07 13 38 83 47 30 253 93 50 25 18 27 53 95 25 18 27 53 95 22 309 07			
Circle Cente	er At X =	146.5;	Y = 12	20.1 and R	adi us, 82	. 0
***	1. 131	* * *				
Ň	ſ	А	X I	S	F	Т
					174.00	
X 0.00	+*-	-+*	+	+		+
	-	*				
43.50	- +					
	-					
	-	1	Page 10			

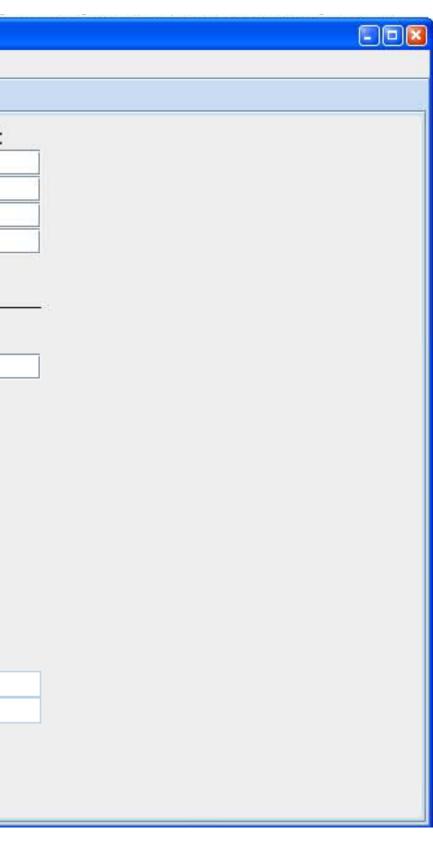
Page 10

		Profi
A	87.00	1* +112 1124 11245
х	130. 50	1235. 1135 1240 + 127 127 117 517 *
I	174.00	
S	217. 50	
	261.00	
F	304.50	- ····· - ····· + ····· - ····· - ·····
Т	348.00	 + W *

Profile.out


ATTACHMENT 3 NEWMARK ANALYSIS RESULTS BY 3 METHODS

(7 pages)

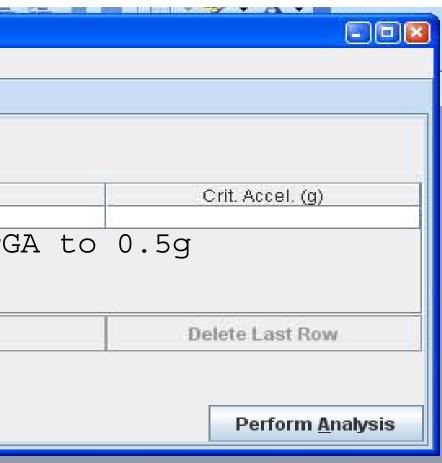

				TOO, 8.4.4	
📓 Newmark 🛛 🛛 🛛	ewmark Method	d 1 Calculat	tion (1 pag	ge)	
Getting Started Rigord	ous Rigid-Block Analysis	Simplified Analyses	Record Manager	Utilities	Help
Rigid-Block Analysis	Decoupled Analysis				
<u>Ambraseys</u> and Menu	◯ <u>J</u> ibson and Others ◯	Probability o <u>f</u> Failure			
What is the critical (yield) a	acceleration (in g's)?				
0.2 g					
What is the peak ground a	cceleration (in g's)?				
0.5 g					
Perform Analysis					
Estimated Newmark Displa 5.9	acement (in cm)	Result =	5.9 CM		
This program estimates ri	gid-block Newmark displa	cement as a function o	f the critical accelera	ation and pe	ik ground acceleration using the following equation as

 $\log D_n = 0.90 + \log[(1 - a_c / a_{max})^{2.53} (a_c / a_{max})^{-1.09}]$

where D_n is Newmark displacement in centimeters, a_c is critical (yield) acceleration in g's, and a_{max} is the peak horizontal ground acceleration in g's.

🕌 Newmark							
Getting Started	Rigorous Rigid-Block Analysis	Simplified Analyses	Record Manager	Utilities	Help		
Rigid-Block Anal	ysis Decoupled Analysis						
	Method 2 tion (1 page)	Input parameters: Critical (yield) acceleration Vertical thickness, h (m): Shear-wave velocity, Vs (m Earthquake magnitude, M: Peak bedrock acceleration Earthquake distance, r (km Compute C Calculations: Site period, Ts (s): Mean shaking period, Tm (Period ratio, Ts/Tm: Duration, D(5-95%) (s): Non-linear response factor Max. hor. equiv. acc. (MHE MHEA/(MHA*NRF): Ac/Amax: Normalized displacement ((s): (s):		Normalized MH Mean Period: Significant dura Normalized dis	ation: placement: ing procedure (0
		Estimated displacement (o			Median Feq for	screen procedure:	
		Estimated displacement (i	n): 12.8		Seismic coeffic	cient for screen proc	edure:

🕌 Newmark									
Getting Started	Rigorous Rigi	d-Block Analysis	Simplified Analy	ses Record N	Manager Utiliti	es Help			
Step 1: Select R	ecords Step	2: Perform Rigid-E	Block Analysis	Step 3: View Res	ults				
Search records	by properties	Select individua	records						
1	Greater	han or equal to:	Less than or equ	al to:	Newmar	k Method	3 Calcula	ation (5	pa
Moment Magnitud	and the second sec			1					-
Arias Intensity (m				Eaarch	for recordo	Step	1: Selec	ted eart	hơi
Duration (5-95%) (337 B			Search	for records	-			-
				<u>C</u> lear all	search fields	stri	ke-slip a	and soft	SO
Peak Acceleration									
Mean Period (s)									
Epicentral Distan	ce (km)			Search com	plete. 22 records	found.			
Focal Distance (k	m)				•••••••				
Rupture Distance	(km)								
Focal Mechanism	: 🗌 All 🔽 Strik	e-slip 🔲 Normal	Reverse C	blique normal	Oblique revers	e			
Site Classification		drock 🗆 Soft ro	ck 🔲 Stiff soil 🔽	Soft soil	2429				
Site classification				1 3017 3011					
-			Longe and Ale						a .t.
Records sele	cted (units a	is indicated a	bove):	-					Sele
Sort by Earthquak	ke 💌 ti	nen Record	▼ A/A ▼						
Earthquake	Record	Magnitude	Arias Int.	Duration	PGA	Mean Per.	Epi. Dist.	Focal Dist.	_
Imperial Valley		6.5	1.145	11.7	0.267	0.63	28.0	30.0	11
Imperial Valley		6.5	0.694	14.2	0.222	0.48	28.0	30.0	1.41.4
Kobe, Japan 19		6.9	1.031	13.2	0.251	0.40			
Kobe, Japan 19	KAK-090					0.48	26.1	33.5	28
Kobe, Japan 19	NUC 000	6.9	1.688	12.9	0.345	0.54	26.1	33.5	28 28
Koho Johon 14		6.9	3.353	9.7	0.345 0.509	0.54 0.49	26.1 10.6	33.5 23.5	28 28 11
Kobe, Japan 19	NIS-090	6.9 6.9	3.353 2.270	9.7 11.2	0.345 0.509 0.503	0.54 0.49 0.53	26.1 10.6 10.6	33.5 23.5 23.5	28 28 11
Kobe, Japan 19	NIS-090 OSA-000	6.9 6.9 6.9	3.353 2.270 0.230	9.7 11.2 58.3	0.345 0.509 0.503 0.079	0.54 0.49 0.53 1.24	26.1 10.6 10.6 44.6	33.5 23.5 23.5 49.3	28 28 11 11 8.
Kobe, Japan 19 Kobe, Japan 19	NIS-090 OSA-000 OSA-090	6.9 6.9 6.9 6.9	3.353 2.270 0.230 0.195	9.7 11.2 58.3 70.5	0.345 0.509 0.503 0.079 0.064	0.54 0.49 0.53 1.24 1.43	26.1 10.6 10.6 44.6 44.6	33.5 23.5 23.5 49.3 49.3	28 28 11 11 8. 8.
Kobe, Japan 19	NIS-090 OSA-000 OSA-090 SHI-000	6.9 6.9 6.9	3.353 2.270 0.230	9.7 11.2 58.3	0.345 0.509 0.503 0.079	0.54 0.49 0.53 1.24	26.1 10.6 10.6 44.6	33.5 23.5 23.5 49.3	26 26 11 11 8. 8. 8. 15
Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19	NIS-090 OSA-000 OSA-090 SHI-000 SHI-090	6.9 6.9 6.9 6.9 6.9	3.353 2.270 0.230 0.195 0.827	9.7 11.2 58.3 70.5 10.3	0.345 0.509 0.503 0.079 0.064 0.243	0.54 0.49 0.53 1.24 1.43 0.76	26.1 10.6 10.6 44.6 44.6 48.7	33.5 23.5 23.5 49.3 49.3 53.0	20 20 11 11 8. 8. 10 10
Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19	NIS-090 OSA-000 OSA-090 SHI-000 SHI-090 TAK-000	6.9 6.9 6.9 6.9 6.9 6.9 6.9	3.353 2.270 0.230 0.195 0.827 0.639	9.7 11.2 58.3 70.5 10.3 11.8	0.345 0.509 0.503 0.079 0.064 0.243 0.212	0.54 0.49 0.53 1.24 1.43 0.76 0.73	26.1 10.6 10.6 44.6 44.6 48.7 48.7	33.5 23.5 23.5 49.3 49.3 53.0 53.0	20 20 11 11 8. 8. 15 15 0.
Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19	NIS-090 OSA-000 OSA-090 SHI-000 SHI-090 TAK-000 TAK-090	6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	3.353 2.270 0.230 0.195 0.827 0.639 8.700	9.7 11.2 58.3 70.5 10.3 11.8 11.3	0.345 0.509 0.503 0.079 0.064 0.243 0.212 0.611	0.54 0.49 0.53 1.24 1.43 0.76 0.73 1.13	26.1 10.6 10.6 44.6 44.6 48.7 48.7 48.7 13.3	33.5 23.5 23.5 49.3 49.3 53.0 53.0 24.9	20 20 11 11 8. 8. 10 10 0. 0.
Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19	NIS-090 OSA-000 OSA-090 SHI-000 SHI-090 TAK-000 TAK-090 TAZ-000	6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	3.353 2.270 0.230 0.195 0.827 0.639 8.700 8.134	9.7 11.2 58.3 70.5 10.3 11.8 11.3 9.9	0.345 0.509 0.503 0.079 0.064 0.243 0.212 0.611 0.616	0.54 0.49 0.53 1.24 1.43 0.76 0.73 1.13 0.99	26.1 10.6 10.6 44.6 44.6 48.7 48.7 13.3 13.3	33.5 23.5 23.5 49.3 49.3 53.0 53.0 24.9 24.9	20 20 11 11 8. 8. 15 15 0. 0. 0.
Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19	NIS-090 OSA-000 OSA-090 SHI-000 SHI-090 TAK-000 TAK-090 TAZ-000 TAZ-090	6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	3.353 2.270 0.230 0.195 0.827 0.639 8.700 8.134 3.071	9.7 11.2 58.3 70.5 10.3 11.8 11.3 9.9 4.6	0.345 0.509 0.503 0.079 0.064 0.243 0.212 0.611 0.616 0.693	0.54 0.49 0.53 1.24 1.43 0.76 0.73 1.13 0.99 0.80	26.1 10.6 10.6 44.6 44.6 48.7 48.7 13.3 13.3 13.3 39.1	33.5 23.5 23.5 49.3 49.3 53.0 53.0 24.9 24.9 24.9 44.4	20 20 11 11 8. 8. 10 10 0. 0. 1. 1.
Kobe, Japan 19 Kobe, Japan 19	NIS-090 OSA-000 OSA-090 SHI-000 SHI-090 TAK-000 TAK-090 TAZ-000 TAZ-090 ATS-000	6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	3.353 2.270 0.230 0.195 0.827 0.639 8.700 8.134 3.071 3.937	9.7 11.2 58.3 70.5 10.3 11.8 11.8 11.3 9.9 4.6 3.7	0.345 0.509 0.503 0.079 0.064 0.243 0.212 0.611 0.616 0.693 0.694	0.54 0.49 0.53 1.24 1.43 0.76 0.73 1.13 0.99 0.80 0.63	26.1 10.6 10.6 44.6 44.6 48.7 48.7 13.3 13.3 39.1 39.1	33.5 23.5 23.5 49.3 49.3 53.0 53.0 24.9 24.9 24.9 44.4 44.4	20 20 11 11 8. 8. 10 10 0. 0. 1. 1. 78
Kobe, Japan 19 Kobe, Japan 19	NIS-090 OSA-000 OSA-090 SHI-000 SHI-090 TAK-000 TAK-090 TAZ-000 TAZ-000 ATS-000 ATS-090	6.9 6.2	3.353 2.270 0.230 0.195 0.827 0.639 8.700 8.134 3.071 3.937 1.007	9.7 11.2 58.3 70.5 10.3 11.8 11.3 9.9 4.6 3.7 36.6	0.345 0.509 0.503 0.079 0.064 0.243 0.212 0.611 0.616 0.693 0.693 0.694 0.249	0.54 0.49 0.53 1.24 1.43 0.76 0.73 1.13 0.99 0.80 0.63 0.87	26.1 10.6 10.6 44.6 44.6 48.7 48.7 13.3 13.3 13.3 39.1 39.1 39.1 101.7	33.5 23.5 23.5 49.3 49.3 53.0 53.0 24.9 24.9 24.9 44.4 44.4 103.1	20 20 11 11 8. 8. 10 10 0. 1. 1. 78 78
Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kocaeli, Turkey Kocaeli, Turkey	NIS-090 OSA-000 OSA-090 SHI-000 SHI-090 TAK-000 TAK-090 TAZ-000 TAZ-000 ATS-000 ATS-000 ATS-090 A01-040	6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 7.4	3.353 2.270 0.230 0.195 0.827 0.639 8.700 8.134 3.071 3.937 1.007 1.240	9.7 11.2 58.3 70.5 10.3 11.8 11.8 11.3 9.9 4.6 3.7 36.6 37.2	0.345 0.509 0.503 0.079 0.064 0.243 0.212 0.611 0.616 0.693 0.693 0.694 0.249 0.249 0.185	0.54 0.49 0.53 1.24 1.43 0.76 0.73 1.13 0.99 0.80 0.80 0.63 0.87 0.98	26.1 10.6 10.6 44.6 48.7 48.7 13.3 13.3 39.1 39.1 101.7 101.7	33.5 23.5 23.5 49.3 49.3 53.0 53.0 24.9 24.9 24.9 44.4 44.4 103.1 103.1	20 20 11 11 8. 8. 15 0. 1. 1. 78 78 78 54
Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kocaeli, Turkey Morgan Hill 1984	NIS-090 OSA-000 OSA-090 SHI-000 SHI-090 TAK-000 TAK-090 TAZ-000 TAZ-090 ATS-000 ATS-090 ATS-090 A01-040 A01-310	6.9 6.2	3.353 2.270 0.230 0.195 0.827 0.639 8.700 8.134 3.071 3.937 1.007 1.240 0.065	9.7 11.2 58.3 70.5 10.3 11.8 11.3 9.9 4.6 3.7 36.6 37.2 21.3	0.345 0.509 0.503 0.079 0.064 0.243 0.212 0.611 0.616 0.693 0.693 0.694 0.249 0.185 0.046	0.54 0.49 0.53 1.24 1.43 0.76 0.73 1.13 0.99 0.80 0.63 0.87 0.98 0.98 0.98	26.1 10.6 10.6 44.6 44.6 48.7 48.7 13.3 13.3 39.1 39.1 39.1 101.7 101.7 55.4	33.5 23.5 23.5 49.3 49.3 53.0 53.0 24.9 24.9 24.9 44.4 44.4 103.1 103.1 56.1	20 20 11 11 8. 8. 10 10 0. 1. 1. 78 78 54 54
Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kocaeli, Turkey Kocaeli, Turkey Morgan Hill 1984 Morgan Hill 1984	NIS-090 OSA-000 OSA-090 SHI-000 SHI-090 TAK-090 TAK-090 TAZ-000 TAZ-000 ATS-000 ATS-000 ATS-090 A01-040 A01-310 SSW-225	6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.2	3.353 2.270 0.230 0.195 0.827 0.639 8.700 8.134 3.071 3.937 1.007 1.240 0.065 0.076	9.7 11.2 58.3 70.5 10.3 11.8 11.3 9.9 4.6 3.7 36.6 37.2 21.3 19.0	0.345 0.509 0.503 0.079 0.064 0.243 0.212 0.611 0.616 0.693 0.693 0.694 0.249 0.185 0.046 0.068	0.54 0.49 0.53 1.24 1.43 0.76 0.73 1.13 0.99 0.80 0.80 0.63 0.87 0.98 0.98 0.98 0.52 0.49	26.1 10.6 10.6 44.6 48.7 48.7 13.3 13.3 39.1 39.1 101.7 101.7 55.4 55.4	33.5 23.5 23.5 49.3 49.3 53.0 53.0 24.9 24.9 44.4 103.1 56.1	20 20 11 11 8. 8. 10 10 0. 10 1. 10 10 10 10 10 10 10 10 10 10 10 10 10
Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kobe, Japan 19 Kocaeli, Turkey Kocaeli, Turkey Morgan Hill 1984 Superstition Hill	NIS-090 OSA-000 OSA-090 SHI-000 SHI-090 TAK-090 TAK-090 TAZ-000 TAZ-000 ATS-000 ATS-000 ATS-090 A01-310 SSW-225 SSW-315 SSW-225	6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.2 6.5	3.353 2.270 0.230 0.195 0.827 0.639 8.700 8.134 3.071 3.937 1.007 1.240 0.065 0.076 0.264	9.7 11.2 58.3 70.5 10.3 11.8 11.8 11.3 9.9 4.6 3.7 36.6 37.2 21.3 19.0 12.9	0.345 0.509 0.503 0.079 0.064 0.243 0.212 0.611 0.616 0.693 0.693 0.694 0.249 0.185 0.046 0.068 0.068 0.0137	0.54 0.49 0.53 1.24 1.43 0.76 0.73 1.13 0.99 0.80 0.63 0.87 0.98 0.52 0.49 0.47	26.1 10.6 10.6 44.6 44.6 48.7 48.7 13.3 13.3 39.1 39.1 39.1 39.1 101.7 55.4 55.4 55.4 18.0	33.5 23.5 23.5 49.3 49.3 53.0 53.0 24.9 24.9 44.4 44.4 103.1 56.1 56.1 21.0	11 20 20 11 11 8. 8. 16 16 0. 0. 1. 1. 78 78 54 54 26 26

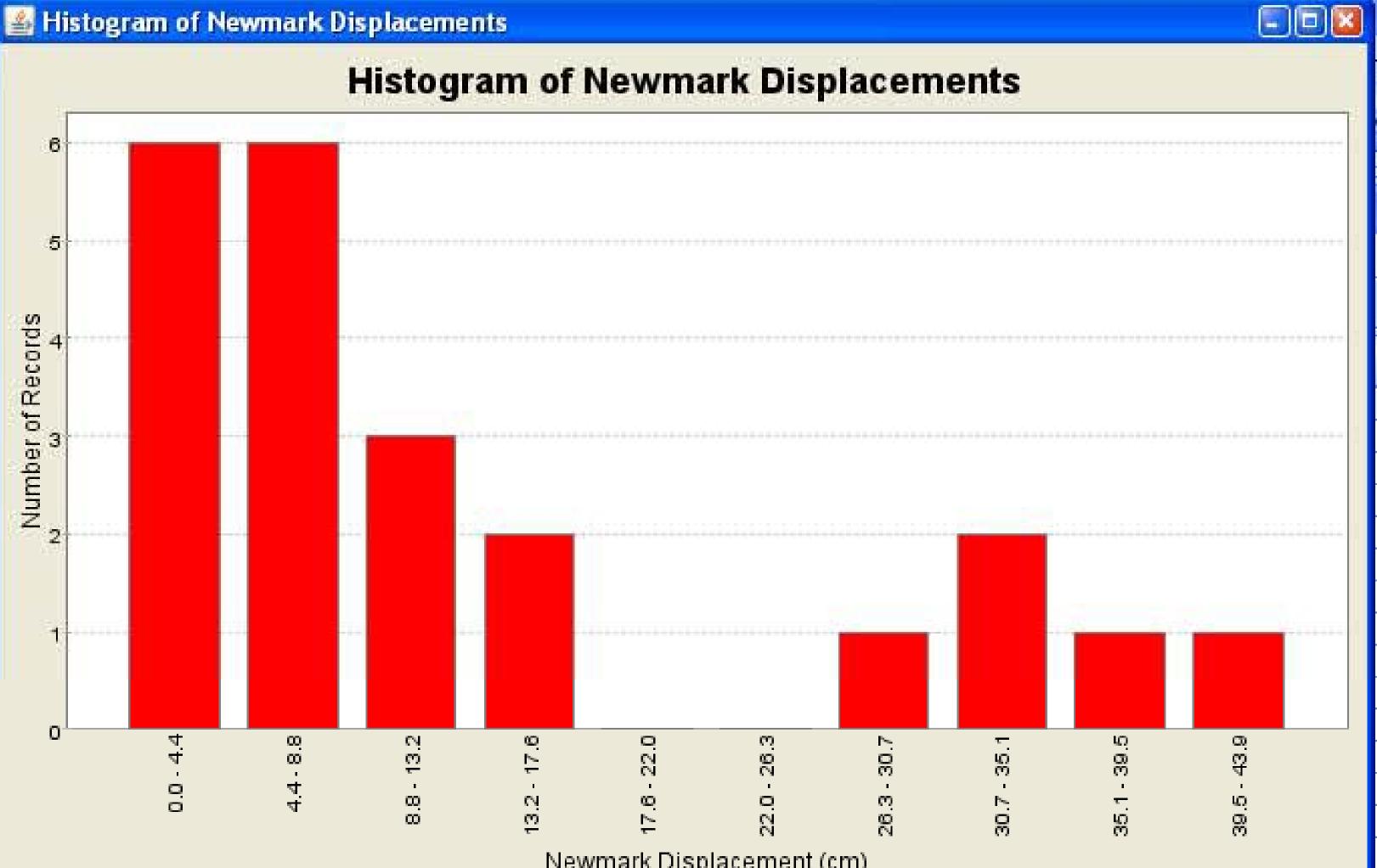

Manage groups...

Clear table <u>D</u>elete h

22 of 22 records selected for analysis

es)		
ake re	cords that	c are
L.		
- •		
	Denstoret	all fact an obtain
<u>a</u> ll for analy	sis Deselect	all for a <u>n</u> alysis
Display pr	operties of: 🖲 Reco	or <u>d</u> s 🔾 Stations
Rup. Dist	Foc. Mech.	Analyze
rap. Dior	Strike-slip	
	Strike-slip	V
	Strike-slip	V
	Strike-slip	V
		Texture 1
	Strike-slip	V
	Strike-slip Strike-slip	V V
	Strike-slip	2
	Strike-slip Strike-slip	v
	Strike-slip Strike-slip Strike-slip	V V
	Strike-slip Strike-slip Strike-slip Strike-slip	
	Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip	
	Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip	
	Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip	
	Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip	
	Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip	
	Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip	
	Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip	
	Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip	
	Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip	
	Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip	
	Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip	
	Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip	
	Strike-slip	
	Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip Strike-slip	

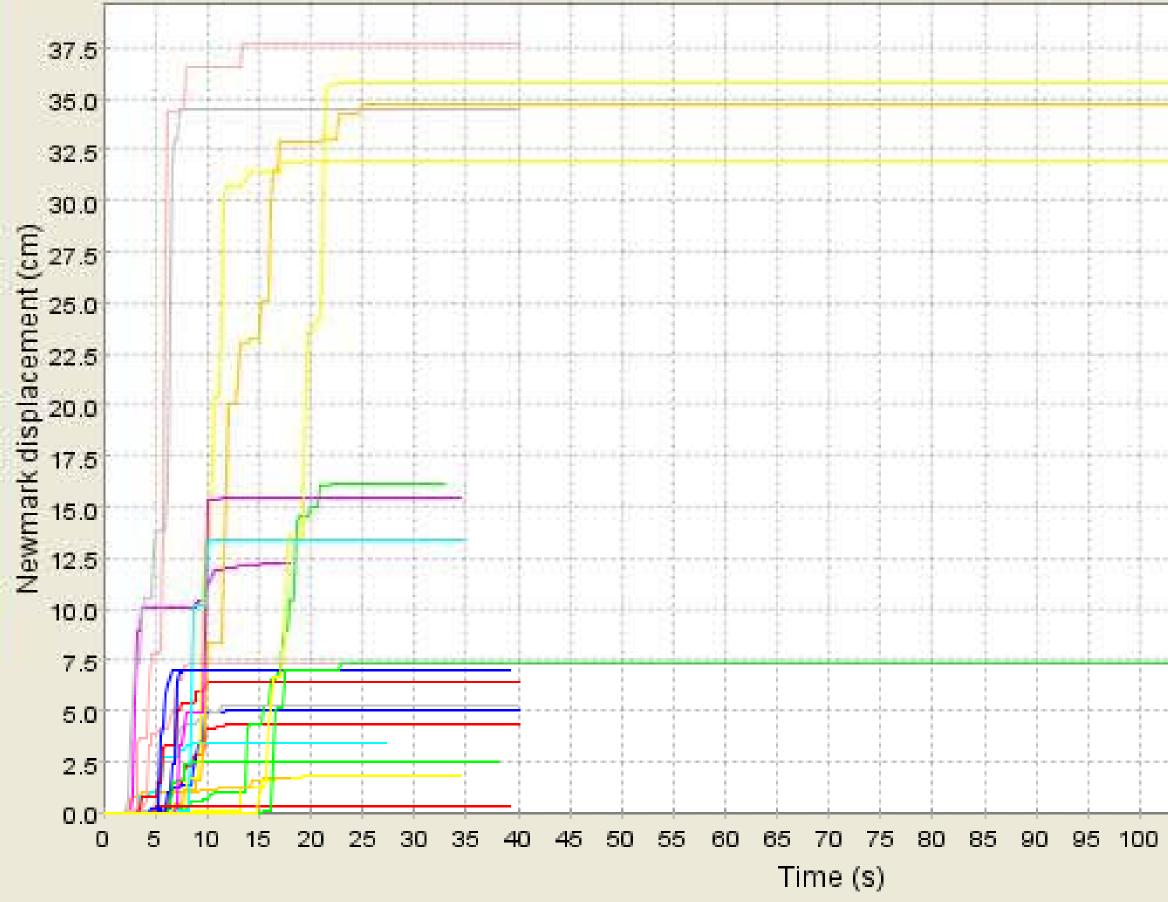
🕌 Newmark			123 - 2080 -	12	17	
Getting Started Rigorous Rigid-E	Block Analysis	Simplified Analyses	Record Manager	Utilities	Help	
Step 1: Select Records Step 2: I	Perform Rigid-B	lock Analysis Step 3	: View Results			
Specify the critical (yield) a	cceleration	of the landslide (ii	n g's):			
<u>Constant critical acceleration</u>	Varies with <u>d</u>	lisplacement		C	Varies v	vith time
.2	Displace	ment (cm)	Crit. Accel. (g)			Time (s)
Step 2: Selected	Yield A	Acceleratior	n of 0.2g a	ind sc	aled	the P
	Add	Row	Delete Last Row			Add Row
Scaling: Do <u>n</u> ot scale earthquake records <u>S</u> cale all earthquake records to a		in g's) of .5				


	di di la diserte di setto di s				1.00	IN IN N		
🛃 Newmark								
Getting Started Rigorou	us Rigid-Block Analysis	Simplified Ana	yses Record Manager	Utilities	Help			
Step 1: Select Records	Step 2: Perform Rigid-B	lock Analysis	Step 3: View Results					
	Perfor	m <u>A</u> nalysis					<u>C</u> lear output	
Earthquake	й П	Record		Displace	ment 1 (cm)		Displacement 2 (cm)	Average Disp. (cm)
Imperial Valley 1979	EC3-140	1	4.3			13.6		9.0
Imperial Valley 1979	EC3-230		5.0			3.5		4.2
Morgan Hill 1984	A01-040		16.2			11.6		13.9
Morgan Hill 1984	A01-310		1.8			4.8		3.3
Superstition Hills 1987	SSW-22	5	1.7			3.4		2.6
Superstition Hills 1987	SSW-31	5	12.2			7.9		10.0
Westmorland 1981	SSW-22	5	3.4			3.4		3.4
Westmorland 1981	SSW-31	5	7.4			6.8	•	7.1
Kobe, Japan 1995	KAK-000		5.3			3.7		4.5
Kobe, Japan 1995	KAK-090		6.4			2.7		4.6
Kobe, Japan 1995	NIS-000		7.0			6.3		6.6
Kobe, Japan 1995	NIS-090		2.5			3.4		3.0
Kobe, Japan 1995	OSA-000)	32.0			55.8		43.9
Kobe, Japan 1995	OSA-090)	34.7			27.0		30.8
Kobe, Japan 1995	SHI-000		15.5			11.1		13.3
Kobe, Japan 1995	SHI-090		13.5			8.5		11.0
Kobe, Japan 1995	TAK-000		37.7			29.5		33.6
Kobe, Japan 1995	TAK-090		34.5			24.9		29.7
Kobe, Japan 1995	TAZ-000		0.3			8.2		4.2
Kobe, Japan 1995	TAZ-090		7.0			4.5		5.8
Kocaeli, Turkey 1999	ATS-000		7.3			4.8		6.0
Kocaeli, Turkey 1999	ATS-090		35.8			39.4		37.6

Step 3: Conduct analysis and display histogram and also displacements VS time.

<u>S</u> ave output) tab delimited 🔾 space delimited 🔾 comma delimited						
	Plot <u>h</u> istogram of Newmark displacements						
	Plot Newmark displacements versus time						

Mean value is: 13.1 cm Median value is: 7.1 cm Standard Deviation is: 12.9 cm



Newmark Displacement (cm)

Mewmark displacement versus time

Newmark displacement versus time

100 105 110 115 120 125 130 135 140

		÷.	-	1			
	61111	1.11		deres i		1	4
		_		-	-		
1111111				1408084			
			1			-	
			1	1.1			
지수는 물건이 있는 것		10 M 10 M 10 M		640000A	para,	122	1
				1. L.			
		d., .					
a la la facilita de la composición de							
			1	1.1			
		÷.	1	1.0		÷	
	and see and see and	1997					
			1				
			1	1		1	
				104. D			
ni (i mari	1111	6 a a a	1000	i farmi	l'anna i	1	-
			1				
1.1							
				A 4 1 1 1 1 1 1		1000	
		÷	1				
			1.1.1				
		- C.					
			90000		ginnin,		
		e	1				
	61111		-	1.1.1.1.1	(******	1	
	ġ	e	÷	34 U			
	1.0.0	1000				1000-014	
			1		-		

