
Human embryonic stem (ES) cells capture the
imagination because they are immortal and have
an almost unlimited developmental potential

(Fig. 1.1: How hESCs are derived). After many months of
growth in culture dishes, these remarkable cells
maintain the ability to form cells ranging from muscle
to nerve to blood — potentially any cell type that
makes up the body. The proliferative and develop-
mental potential of human ES cells promises an
essentially unlimited supply of specific cell types for
basic research and for transplantation therapies for
diseases ranging from heart disease to Parkinson’s
disease to leukemia. Here we discuss the origin and
properties of human ES cells, their implications for
basic research and human medicine, and recent
research progress since August 2001, when President
George W. Bush allowed federal funding of this
research for the first time. A previous report discussed
progress prior to June 17, 2001 (http://stemcells.nih
.gov/info/scireport/.)

WHAT ARE EMBRYONIC STEM CELLS?
Embryonic stem cells are derived from embryos at a
developmental stage before the time that implantation
would normally occur in the uterus. Fertilization
normally occurs in the oviduct, and during the next
few days, a series of cleavage divisions occur as the
embryo travels down the oviduct and into the uterus.
Each of the cells (blastomeres) of these cleavage-stage
embryos are undifferentiated, i.e. they do not look or
act like the specialized cells of the adult, and the
blastomeres are not yet committed to becoming any
particular type of differentiated cell. Indeed, each of
these blastomeres has the potential to give rise to
any cell of the body. The first differentiation event
in humans occurs at approximately five days of

development, when an outer layer of cells committed
to becoming part of the placenta (the trophectoderm)
separates from the inner cell mass (ICM). The ICM cells
have the potential to generate any cell type of the
body, but after implantation, they are quickly depleted
as they differentiate to other cell types with more
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Figure 1.1. How Human Embryonic Stem Cells are Derived
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Figure 1.2.Characteristics of Embryonic Stem Cells.
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limited developmental potential. However, if the ICM
is removed from its normal embryonic environment
and cultured under appropriate conditions, the ICM-
derived cells can continue to proliferate and replicate
themselves indefinitely and still maintain the develop-
mental potential to form any cell type of the body
(“pluripotency”; see Fig. 1.2: Characteristics of ESCs).
These pluripotent, ICM-derived cells are ES cells.

The derivation of mouse ES cells was first reported in
1981,1,2 but it was not until 1998 that derivation of
human ES cell lines was first reported.3 Why did it
take such a long time to extend the mouse results to
humans? Human ES cell lines are derived from embryos
produced by in vitro fertilization (IVF), a process in
which oocytes and sperm are placed together to allow
fertilization to take place in a culture dish. Clinics use
this method to treat certain types of infertility, and
sometimes, during the course of these treatments, IVF

embryos are produced that are no longer needed by
the couples for producing children. Currently, there
are nearly 400,000 IVF-produced embryos in frozen
storage in the United States alone,4 most of which will
be used to treat infertility, but some of which (~2.8%)
are destined to be discarded. IVF-produced embryos
that would otherwise have been discarded were the
sources of the human ES cell lines derived prior to
President Bush’s policy decision of August 2001. These
human ES cell lines are now currently eligible for
federal funding. Although attempts to derive human
ES cells were made as early as the 1980s, culture media
for human embryos produced by IVF were suboptimal.
Thus, it was difficult to culture single-cell fertilized
embryos long enough to obtain healthy blastocysts for
the derivation of ES cell lines. Also, species-specific
differences between mice and humans meant that
experience with mouse ES cells was not completely
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Figure 1.3: The Promise of Stem Cell Research
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applicable to the derivation of human ES cells. In the
1990s, ES cell lines from two non-human primates, the
rhesus monkey5 and the common marmoset,6 were
derived, and these offered closer models for the deri-
vation of human ES cells. Experience with non-human
primate ES cell lines and improvements in culture
medium for human IVF-produced embryos led rapidly
to the derivation of human ES cell lines in 1998.3

Because ES cells can proliferate without limit and can
contribute to any cell type, human ES cells offer an
unprecedented access to tissues from the human body.
They will support basic research on the differentiation
and function of human tissues and provide material for
testing that may improve the safety and efficacy of
human drugs (Figure 1.3: Promise of SC Research).7,8

For example, new drugs are not generally tested on
human heart cells because no human heart cell lines
exist. Instead, researchers rely on animal models. Because
of important species-specific differences between
animal and human hearts, however, drugs that are
toxic to the human heart have occasionally entered
clinical trials, sometimes resulting in death. Human ES
cell-derived heart cells may be extremely valuable in
identifying such drugs before they are used in clinical
trials, thereby accelerating the drug discovery process
and leading to safer and more effective treatments.9-11

Such testing will not be limited to heart cells, but to
any type of human cell that is difficult to obtain by
other sources.

Human ES cells also have the potential to provide an
unlimited amount of tissue for transplantation
therapies to treat a wide range of degenerative
diseases. Some important human diseases are caused
by the death or dysfunction of one or a few cell types,
e.g., insulin-producing cells in diabetes or dopaminergic
neurons in Parkinson’s disease. The replacement of
these cells could offer a lifelong treatment for these
disorders. However, there are a number of challenges
to develop human ES cell-based transplantation
therapies, and many years of basic research will be
required before such therapies can be used to treat
patients. Indeed, basic research enabled by human ES
cells is likely to impact human health in ways unrelated
to transplantation medicine. This impact is likely to
begin well before the widespread use of ES cells in
transplantation and ultimately could have a more
profound long-term effect on human medicine. Since
August 2001, improvements in culture of human ES
cells, coupled with recent insights into the nature of

pluripotency, genetic manipulation of human ES cells,
and differentiation, have expanded the possibilities for
these unique cells.

CULTURE OF ES CELLS

Mouse ES cells and human ES cells were both originally
derived and grown on a layer of mouse fibroblasts
(called “feeder cells”) in the presence of bovine serum.
However, the factors that sustain the growth of these
two cell types appear to be distinct. The addition of the
cytokine, leukemia inhibitory factor (LIF), to serum-
containing medium allows mouse ES cells to proliferate
in the absence of feeder cells. LIF modulates mouse ES
cells through the activation of STAT3 (signal trans-
ducers and activators of transcription) protein. In
serum-free culture, however, LIF alone is insufficient to
prevent mouse ES cells from differentiating into neural
cells. Recently, Ying et al. reported that the combina-
tion of bone morphogenetic proteins (BMPs) and LIF is
sufficient to support the self-renewal of mouse ES
cells.12 The effects of BMPs on mouse ES cells involve
induction of inhibitor of differentiation (Id) proteins,
and inhibition of extracellular receptor kinase (ERK)
and p38 mitogen-activated protein kinases (MAPK).12,13

However, LIF in the presence of serum is not sufficient
to promote the self-renewal of human ES cells,3 and the
LIF/STAT3 pathway appears to be inactive in undiffer-
entiated human ES cells.14,15 Also, the addition of BMPs
to human ES cells in conditions that would otherwise
support ES cells leads to the rapid differentiation of
human ES cells.16,17

Several groups have attempted to define growth
factors that sustain human ES cells and have attempted
to identify culture conditions that reduce the exposure
of human ES cells to non human animal products. One
important growth factor, bFGF, allows the use of a
serum replacement to sustain human ES cells in the
presence of fibroblasts, and this medium allowed the
clonal growth of human ES cells.18 A “feeder-free”
human ES cell culture system has been developed, in
which human ES cells are grown on a protein matrix
(mouse Matrigel or Laminin) in a bFGF-containing
medium that is previously “conditioned” by co-culture
with fibroblasts.19 Although this culture system
eliminates direct contact of human ES cells with the
fibroblasts, it does not remove the potential for mouse
pathogens being introduced into the culture via the
fibroblasts. Several different sources of human feeder
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cells have been found to support the culture of human
ES cells, thus removing the possibility of pathogen
transfer from mice to humans.20–23 However, the
possibility of pathogen transfer from human to human
in these culture systems still remains. More work is still
needed to develop a culture system that eliminates the
use of fibroblasts entirely, which would also decrease
much of the variability associated with the current
culture of human ES cells. Sato et al. reported that
activation of the Wnt pathway by 6-bromoindirubin-
3’-oxime (BIO) promotes the self-renewal of ES cells in
the presence of bFGF, Matrigel, and a proprietary serum
replacement product.24 Amit et al. reported that bFGF,
TGFβ, and LIF could support some human ES cell lines
in the absence of feeders.25 Although there are some
questions about how well these new culture conditions
will work for different human ES cell lines, there is now
reason to believe that defined culture conditions for
human ES cells, which reduce the potential for
contamination by pathogens, will soon be achieved*.

Once a set of defined culture conditions is established
for the derivation and culture of human ES cells, chal-
lenges to improve the medium will still remain. For
example, the cloning efficiency of human ES cells —
the ability of a single human ES cell to proliferate and
become a colony — is very low (typically less than 1%)
compared to that of mouse ES cells. Another difficulty
is the potential for accumulation of genetic and
epigenetic changes over prolonged periods of culture.
For example, karyotypic changes have been observed
in several human ES cell lines after prolonged culture,
and the rate at which these changes dominate a culture
may depend on the culture method.26,27 The status of
imprinted (epigenetically modified) genes and the
stability of imprinting in various culture conditions
remain completely unstudied in human ES cells**. The
status of imprinted genes can clearly change with culture
conditions in other cell types.28,29 These changes
present potential problems if human ES cells are to be
used in cell replacement therapy, and optimizing
medium to reduce the rate at which genetic and
epigenetic changes accumulate in culture represents a
long-term endeavor. The ideal human ES cell medium,

then, (a) would be cost-effective and easy to use so that
many more investigators can use human ES cells as a
research tool; (b) would be composed entirely of
defined components not of animal origin; (c) would
allow cell growth at clonal densities; and (d) would
minimize the rate at which genetic and epigenetic
changes accumulate in culture. Such a medium will be
a challenge to develop and will most likely be achieved
through a series of incremental improvements over a
period of years.

Among all the newly derived human ES cell lines,
twelve lines have gained the most attention. In March
2004, a South Korean group reported the first
derivation of a human ES cell line (SCNT-hES-1) using
the technique of somatic cell nuclear transfer (SCNT).
Human somatic nuclei were transferred into human
oocytes (nuclear transfer), which previously had been
stripped of their own genetic material, and the
resultant nuclear transfer products were cultured in vitro
to the blastocyst stage for ES cell derivation.30***
Because the ES cells derived through nuclear transfer
contain the same genetic material as that of the nuclear
donor, the intent of the procedure is that the
differentiated derivatives would not be rejected by the
donor’s immune system if used in transplantation
therapy. More recently, the same group reported the
derivation of eleven more human SCNT-ES cell lines***
with markedly improved efficiency (16.8 oocytes/line
vs. 242 oocytes/line in their previous report).31***
However, given the abnormalities frequently observed
in cloned animals, and the costs involved, it is not clear
how useful this procedure will be in clinical applica-
tions. Also, for some autoimmune diseases, such as
type I diabetes, merely providing genetically-matched
tissue will be insufficient to prevent immune rejection.

Additionally, new human ES cell lines were established
from embryos with genetic disorders, which were
detected during the practice of preimplantation
genetic diagnosis (PGD). These new cell lines may
provide an excellent in vitro model for studies on the
effects that the genetic mutations have on cell prolifer-
ation and differentiation.32
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* Editor’s note: Papers published since this writing report defined culture conditions for human embryonic stem cells.  See Ludwig
et al., Nat. Biotech 24: 185-187, 2006; and Lu et al., PNAS 103:5688-5693, 2006.08.14.

** Editor’s note: Papers published since the time this chapter was written address this: see Maitra et al., Nature Genetics 37,
1099-1103, 2005; and Rugg-Gunn et al., Nature Genetics 37:585-587, 2005.

*** Editor’s note: Both papers referenced in 30 and 31 were later retracted: see Science 20 Jan 2006; Vol. 311. No. 5759, p. 335.
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Figure 1.4. How RNAi Can Be Used To Modify Stem Cells
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* Editor’s note: One recent report now estimates 414 hESC lines, see  Guhr et al., www.StemCells.com early online version for
June 15, 2006: “Current State of Human Embryonic Stem Cell Research: An Overview of Cell Lines and their Usage in
Experimental Work.”

To date, more than 120 human ES cell lines have been
established worldwide,33* 67 of which are included
in the National Institutes of Health (NIH) registry
(http://stemcells.nih.gov/research/registry/). As of this
writing, 21 cell lines are currently available for distri-
bution, all of which have been exposed to animal
products during their derivation. Although it has been
eight years since the initial derivation of human ES cells, it is
an open question as to the extent that independent
human ES cell lines differ from one another. At the very
least, the limited number of cell lines cannot represent a
reasonable sampling of the genetic diversity of different
ethnic groups in the United States, and this has

consequences for drug testing, as adverse reactions to
drugs often reflect a complex genetic component.
Once defined culture conditions are well established for
human ES cells, there will be an even more compelling
need to derive additional cell lines.

PLURIPOTENCY OF ES CELLS
The ability of ES cells to develop into all cell types of the
body has fascinated scientists for years, yet remarkably
little is known about factors that make one cell
pluripotent and another more restricted in its develop-
mental potential. The transcription factor Oct4 has



been used as a key marker for ES cells and for the
pluripotent cells of the intact embryo, and its expres-
sion must be maintained at a critical level for ES cells
to remain undifferentiated.34 The Oct4 protein itself,
however, is insufficient to maintain ES cells in the un-
differentiated state. Recently, two groups identified
another transcription factor, Nanog, that is essential
for the maintenance of the undifferentiated state of
mouse ES cells.35,36 The expression of Nanog decreased
rapidly as mouse ES cells differentiated, and when its
expression level was maintained by a constitutive
promoter, mouse ES cells could remain undifferentiated
and proliferate in the absence of either LIF or BMP in
serum-free medium.12 Nanog is also expressed in
human ES cells, though at a much lower level
compared to that of Oct4, and its function in human ES
cells has yet to be examined.

By comparing gene expression patterns between
different ES cell lines and between ES cells and other
cell types such as adult stem cells and differentiated
cells, genes that are enriched in the ES cells have been
identified. Using this approach, Esg-1, an uncharac-
terized ES cell-specific gene, was found to be exclusively
associated with pluripotency in the mouse.37 Sperger
et al. identified 895 genes that are expressed at
significantly higher levels in human ES cells and
embryonic carcinoma cell lines, the malignant
counterparts to ES cells.38 Sato et al. identified a set of
918 genes enriched in undifferentiated human ES cells
compared with their differentiated counterparts; many
of these genes were shared by mouse ES cells.39

Another group, however, found 92 genes, including
Oct4 and Nanog, enriched in six different human ES
cell lines, which showed limited overlap with those in
mouse ES cell lines.40 Care must be taken to interpret
these data, and the considerable differences in the
results may arise from the cell lines used in the experi-
ments, methods to prepare and maintain the cells, and
the specific methods used to profile gene expression.

GENETIC MANIPULATION OF ES CELLS

Since establishing human ES cells in 1998, scientists
have developed genetic manipulation techniques to
determine the function of particular genes, to direct
the differentiation of human ES cells towards specific
cell types, or to tag an ES cell derivative with a certain
marker gene. Several approaches have been developed
to introduce genetic elements randomly into the

human ES cell genome, including electroporation,
transfection by lipid-based reagents, and lentiviral
vectors.41–44 However, homologous recombination, a
method in which a specific gene inside the ES cells is
modified with an artificially introduced DNA molecule,
is an even more precise method of genetic engineering
that can modify a gene in a defined way at a specific
locus. While this technology is routinely used in mouse
ES cells, it has recently been successfully developed in
human ES cells (See chapter 5: Genetically Modified Stem
Cells), thus opening new doors for using ES cells as
vehicles for gene therapy and for creating in vitro
models of human genetic disorders such as Lesch-
Nyhan disease.45,46 Another method to test the
function of a gene is to use RNA interference (RNAi) to
decrease the expression of a gene of interest (see Figure
1.4: RNA interference). In RNAi, small pieces of double-
stranded RNA (siRNA; small interfering RNA) are either
chemically synthesized and introduced directly into
cells, or expressed from DNA vectors. Once inside the
cells, the siRNA can lead to the degradation of the
messenger RNA (mRNA), which contains the exact
sequence as that of the siRNA. mRNA is the product of
DNA transcription and normally can be translated into
proteins. RNAi can work efficiently in somatic cells, and
there has been some progress in applying this
technology to human ES cells.47–49

DIFFERENTIATION OF HUMAN ES CELLS

The pluripotency of ES cells suggests possible
widespread uses for these cells and their derivatives.
The ES cell-derived cells can potentially be used to
replace or restore tissues that have been damaged by
disease or injury, such as diabetes, heart attacks,
Parkinson’s disease or spinal cord injury. The recent devel-
opments in these particular areas are discussed in detail
in other chapters, and Table 1 summarizes recent pub-
lications in the differentiation of specific cell lineages.

The differentiation of ES cells also provides model
systems to study early events in human development.
Because of possible harm to the resulting child, it is not
ethically acceptable to experimentally manipulate the
postimplantation human embryo. Therefore, most of
what is known about the mechanisms of early human
embryology and human development, especially in the
early postimplantation period, is based on histological
sections of a limited number of human embryos and
on analogy to the experimental embryology of the
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mouse. However, human and mouse embryos differ
significantly, particularly in the formation, structure,
and function of the fetal membranes and placenta, and
the formation of an embryonic disc instead of an egg
cylinder.50–52 For example, the mouse yolk sac is a well-
vascularized, robust, extraembryonic organ throughout
gestation that provides important nutrient exchange
functions. In humans, the yolk sac also serves
important early functions, including the initiation of
hematopoiesis, but it becomes essentially a vestigial
structure at later times or stages in gestation. Similarly,
there are dramatic differences between mouse and
human placentas, both in structure and function. Thus,
mice can serve in a limited capacity as a model system
for understanding the developmental events that
support the initiation and maintenance of human
pregnancy. Human ES cell lines thus provide an
important new in vitro model that will improve our
understanding of the differentiation of human tissues,
and thus provide important insights into processes
such as infertility, pregnancy loss, and birth defects.

Human ES cells are already contributing to the study of
development. For example, it is now possible to direct
human ES cells to differentiate efficiently to
trophoblast, the outer layer of the placenta that
mediates implantation and connects the conceptus to
the uterus.17,53 Another use of human ES cells is for the
study of germ cell development. Cells resembling both
oocytes and sperm have been successfully derived from
mouse ES cells in vitro.54–56 Recently, human ES cells
have also been observed to differentiate into cells
expressing genes characteristic of germ cells.57 Thus it
may also be possible to derive oocytes and sperm from
human ES cells, allowing the detailed study of human
gametogenesis for the first time. Moreover, human ES
cell studies are not limited to early differentiation, but
are increasingly being used to understand the
differentiation and functions of many human tissues,
including neural, cardiac, vascular, pancreatic, hepatic,
and bone (see Table 1). Moreover, transplantation of
ES-derived cells has offered promising results in animal
models.58–67

Although scientists have gained more insights into the
biology of human ES cells since 2001, many key
questions remain to be addressed before the full
potential of these unique cells can be realized. It is
surprising, for example, that mouse and human ES cells
appear to be so different with respect to the molecules
that mediate their self-renewal, and perhaps even in

Table 1. Publications on Differentiation of
Human Embryonic Stem Cells since 2001

Cell types Publications References

Neural 8 61, 66, 68-73 

Cardiac 6 9-11, 74-76 

Endothelial (Vascular) 2 77, 78 

Hematopoietic (Blood) 8 79-86 

Pancreatic (Islet-like) 2 87, 88 

Hepatic (Liver) 3 89-91 

Bone 1 92 

Trophoblast 2 17, 53 

Multilineages 9 16, 57, 93-99 

their developmental potentials. BMPs, for example, in
combination with LIF, promote the self-renewal of
mouse ES cells. But in conditions that would otherwise
support undifferentiated proliferation, BMPs cause
rapid differentiation of human ES cells. Also, human
ES cells differentiate quite readily to trophoblast,
whereas mouse ES cells do so poorly, if at all. One
would expect that at some level, the basic molecular
mechanisms that control pluripotency would be
conserved, and indeed, human and mouse ES cells
share the expression of many key genes. Yet we remain
remarkably ignorant about the molecular mechanisms
that control pluripotency, and the nature of this
remarkable cellular state has become one of the central
questions of developmental biology. Of course, the
other great challenge will be to continue to unravel the
factors that control the differentiation of human ES
cells to specific lineages, so that ES cells can fulfill their
tremendous promise in basic human biology, drug
screening, and transplantation medicine.
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