United States Department of Veterans Affairs
MIRECC Centers

VISN 19 MIRECC Staff: Perry F. Renshaw, MD, PhD, MBA

VISN 19 MIRECC
Perry F. Renshaw, MD, PhD, MBA

Updated: 9 August 2012

 

Biography & Contact

Perry RenshawPerry F. Renshaw, MD, PhD, MBA 
Title: Medical Director
Contact:
801.582.1565 ext. 2776
perry_renshaw@yahoo.com
Dr. Perry Renshaw is a USTAR Professor of Psychiatry at the University of Utah School of Medicine as well as the Director of the Magnetic Resonance Laboratory at the Brain Institute at the University of Utah. Dr. Renshaw received an MD and a PhD in biophysics from the University of Pennsylvania as well as an MBA from Bentley College.
Prior to Dr. Renshaw's recruitment to the University of Utah and the VISN 19 MIRECC in 2008, he spent fifteen years on the psychiatry faculty at Harvard Medical School, where he served as director of the Brain Imaging Center at McLean Hospital. Dr. Renshaw is an internationally recognized authority on the use of magnetic resonance spectroscopy methods to evaluate individuals with psychiatric and substance abuse disorders.
His work with the VISN 19 MIRECC has focused on the role of altitude as a novel risk factor for suicide. The increased risk of suicide in those who live in mountainous regions may be partly related to elevated rates of depression and drug abuse. Ongoing studies are designed to investigate how brain chemistry changes with altitude, which may lead to novel interventions designed to reduce the risk of suicide.
 

Research Projects

Pilot Study to Determine the Forward Rate Constant for Creatine Kinase by Magnetization Transfer Magnetic Resonance Spectroscopy (MRS) in Healthy Human Brain and Bipolar Disorder
Research Team: Perry Renshaw MD, PhD, Kristen Fiedler BS, Elliott Bueler
We propose to use a type of brain scan to allow us to measure the concentration of certain brain chemicals in individuals with bipolar disorder.
Keywords: Brain & Biology, Seriously Mentally Ill (SMI)
 

Recent Publications (since 2010)

Agarawal, N., Port, J. D., Bazzocchi, M., & Renshaw, P. F. (2010). Update on the use of MR for assessment and diagnosis of psychiatric diseases. Radiology, 255(1), 23-41.
The lack of quantitative objective measures of psychiatric diseases such as anxiety and depression is one reason that the causative factors of psychiatric diseases remain obscure. The fact that human behavior is complex and cannot be easily tested in laboratories or reproduced in animal models further complicates our understanding of psychiatric diseases. During the past 3 decades, several magnetic resonance (MR)-based tools such as MR morphometry, diffusion-tensor imaging, functional MR imaging, and MR spectroscopy have yielded findings that provide tangible evidence of the neurobiologic manifestations of psychiatric diseases. In this article, we summarize major MR findings of schizophrenia, bipolar disorder, anxiety disorders, and attention deficit-hyperactivity disorder as examples to illustrate the promise that MR techniques hold for not only revealing the neurobiological underpinnings of psychiatric disorders but also enhancing our understanding of healthy human behavior. However, many radiologists remain skeptical about the diagnostic value of MR in psychiatric disease. Many inconsistent, noncomparable reports in the literature contribute to this skepticism. The aims of this article are to (a) illustrate the most reported MR findings of major psychiatric disorders such as schizophrenia, mood disorders, anxiety disorders, and attention deficit-hyperactivity disorder; (b) inform radiologists of the potential roles of MR imaging in psychiatric imaging research; and (c) discuss several confounding factors in the design and interpretation of MR imaging findings in psychiatry.
Keywords: Brain & Biology, Seriously Mentally Ill (SMI)
Return to Top
Agarawal, N., Sung, Y. H., Jensen, J. E., daCunha, G., Harper, D. Olson, D., & Renshaw, P. F. (2010). Short-term administration of uridine increases brain membrane phospholipid precursors in healthy adults: A 31-phosphorus magnetic resonance spectroscopy study at 4T. Bipolar Disorders, 12(8), 825-833.
OBJECTIVES: Altered metabolism of membrane phospholipids has been implicated in bipolar disorder. In humans, uridine is an important precursor of cytidine diphosphate (CDP)-choline, which plays a critical role in phospholipid synthesis and is currently being evaluated as a potential treatment for bipolar depression. METHODS: A total of 17 healthy males (mean age ± SD: 32.73 ± 7.2 years; range: 21.8-46.4 years) were enrolled in this study. Subjects underwent a 31-phosphorus magnetic resonance spectroscopy ((31) P-MRS) acquisition at baseline and then again after seven days of either 2 g of uridine or placebo administration. A two-dimensional chemical shift imaging (31) P-MRS acquisition collected spectral data from a 4 × 4 cluster of voxels acquired in the axial plane encompassing the subcortical structures as well as frontal-temporal cortical gray and white matter. The slab thickness was 3 cm and the approximate total volume of brain sampled was 432 cm(3) . The spectra obtained were analyzed using a fully automated in-house fitting algorithm. A population-averaged generalized estimating equation was used to evaluate changes both in phosphomonoesters (PME) [phosphocholine (PCho) and phosphoethanolamine (PEtn)] and phosphodiesters (PDE) [glycerophosphocholine (GPCho) and glycerophosphethanolamine (GPEtn)]. Metabolite ratios were reported with respect to the total integrated (31) P resonance area. RESULTS: The uridine group had significantly increased total PME and PEtn levels over the one-week period [6.32 and 7.17% for PME and PEtn, respectively (p<0.001)]. Other metabolite levels such as PCho, PDE, GPEtn and GPCho showed no significant changes following either uridine or placebo (all p>0.05). CONCLUSIONS: This is the first study to report a direct effect of uridine on membrane phospholipid precursors in healthy adults using (31) P-MRS. Sustained administration of uridine appears to increase PME in healthy subjects. Further investigation is required to clarify the effects of uridine in disorders with altered phospholipid metabolism such as bipolar disorder.
Keywords: Brain & Biology
Return to Top
Bracken, B. K., Jensen, J. E., Prescot, A. P., Cohen, B. M., Renshaw, P. F., & Ongur, D. (2011). Brain metabolite concentrations across cortical regions in healthy adults. Brain Research, 1369, 89-94.
Magnetic resonance spectroscopy (MRS) can provide in vivo information about metabolite levels across multiple brain regions. This study used MRS to examine concentrations of N-acetylaspartate (NAA), a marker of neuronal integrity and function, and choline (Cho), which is related to the amount of cell membrane per unit volume, in anterior cingulate cortex (ACC) and parieto-occipital cortex (POC) in healthy individuals. Data were drawn from two experiments which examined glutamatergic and GABAergic signaling in schizophrenia and bipolar disorder. After controlling for gray matter percentages, NAA/creatine (Cr) was 18% higher in POC than in ACC (p<0.001); Cho/Cr was 46% lower in POC than in ACC (p<0.001). There was an effect of study (p<0.001 for both metabolites), but no region by study interaction (NAA p=0.101, Cho p=0.850). Since NAA is localized to the intracellular space, these data suggest that ACC neuronal compartment is reduced as compared with POC, or that there is a lower concentration of NAA per cell in the ACC than POC, or both. Since elevated Cho suggests more cell membrane per unit volume, reduced NAA in ACC appears to be coupled with increases in overall cell membrane compartment. These findings are consistent with a number of previous studies using proton MRS which found increasing NAA and decreasing Cho moving caudally, and with postmortem anatomical studies which found neurons in more widely spaced bundles in ACC when compared to parietal and occipital cortices. MRS may be a useful tool for studying physical properties of the living human brain.
Keywords: Brain & Biology, Seriously Mentally Ill (SMI)
Return to Top
DelMastro, K., Hellem, T., Kim, N., Kondo, D., Sung, Y. H., & Renshaw, P. F. (2011). Incidence of major depressive episode correlates with elevation of substate region of residence. Journal of Affective Disorders, 129(1-3), 376-379.
BACKGROUND: Major depressive disorder (MDD) is a common disorder that is often associated with suicide. We have recently suggested that elevation may play a role in regional variations in rates of suicide. We hypothesize that there is also a significant correlation between incidence of MDD and elevation of residence. METHODS: The substate estimates from the 2004 to 2006 National Surveys on Drug Use and Health (NSDUH) report from SAMHSA was used to extract substate level data related to percentages of people 18 years or older who experienced serious psychological distress or a major depressive episode in the past year. Mean elevation of each substate region was calculated by averaging the weighted elevations of its relevant counties. Average elevation for United States counties was calculated using the Shuttle Radar Topography Mission (SRTM) elevation dataset. Pearson correlation coefficients were computed to investigate the association between average substate elevation and rate of serious psychological distress or major depressive episode. RESULTS: There was a significant correlation between percentage of people experiencing serious psychological distress in the past year in a substate region and that substate region's mean elevation (r=0.18; p=0.0005), as well as between the percentage of people having at least one major depressive episode in the past year in a substate region and that substate region's mean elevation (r=0.27; p0.0001). CONCLUSIONS: Elevation appears to be a significant risk factor for MDD. Further studies are indicated to determine whether the increased incidence of depression with increased elevation may be due to the hypoxic effects on subjects with MDD.
Keywords: Suicide, Seriously Mentally Ill (SMI)
Return to Top
Forester, B. P., Berlow, Y. A., Harper, D. G., Jensen, J. E., Lange, N., Froimowitz, M. P., et al. (Renshaw, P. F.) (2010). Age-related changes in brain energetics and phospholipid metabolism. NMR in Biomedicine, 23(3),242-250.
Evidence suggests that mitochondria undergo functional and morphological changes with age. This study aimed to investigate the relationship of brain energy metabolism to healthy aging by assessing tissue specific differences in metabolites observable by phosphorus ((31)P) MRS. (31)P MRSI at 4 Tesla (T) was performed on 34 volunteers, aged 21-84, screened to exclude serious medical and psychiatric diagnoses. Linear mixed effects models were used to analyze the effects of age on phosphorus metabolite concentrations, intracellular magnesium and pH estimates in brain tissue. A significant age associated decrease in brain pH (-0.53% per decade), increase in PCr (1.1% per decade) and decrease in PME (1.7% per decade) were found in total tissue, with PCr effects localized to the gray matter. An increase in beta NTP as a function of age (1% per decade) approached significance (p = 0.052). There were no effects demonstrated with increasing age for intracellular magnesium, PDE or inorganic phosphate. This study reports the effects of healthy aging on brain chemistry in the gray matter versus white matter using (31)P MRS measures of high energy phosphates, pH and membrane metabolism. Increased PCr, increased beta NTP (reflecting ATP) and reduced pH may reflect altered energy production with healthy aging. Unlike some previous studies of aging and brain chemistry, this study examined healthy, non-demented and psychiatrically stable older adults and specifically analyzed gray-white matter differences in brain metabolism.
Keywords: Brain & Biology
Return to Top
Han DH, Renshaw PF. Bupropion in the treatment of problematic online game play in patients with major depressive disorder. J Psychopharmacol. 2011 Mar 29. [Epub ahead of print]
As one of the problematic behaviors in patients with major depressive disorder (MDD), excessive online game play (EOP) has been reported in a number of recent studies. Bupropion has been evaluated as a potential treatment for MDD and substance dependence. We hypothesized that bupropion treatment would reduce the severity of EOP as well as depressive symptoms. Fifty male subjects with comorbid EOP and MDD were randomly assigned to bupropion + education for internet use (EDU) or placebo + EDU groups. The current study consisted in a 12-week, prospective, randomized, double-blind clinical trial, including an eight-week active treatment phase and a four-week post treatment follow-up period. During the active treatment period, Young Internet Addiction Scale (YIAS) scores and the mean time of online game playing in the bupropion group were greatly reduced compared with those of the placebo group. The Beck Depression Inventory (BDI) scores in the bupropion group were also greatly reduced compared with those of the placebo group. During the four-week post-treatment follow-up period, bupropion-associated reductions in online game play persisted, while depressive symptoms recurred. Conclusively, bupropion may improve depressive mood as well as reduce the severity of EOP in patients with comorbid MDD and online game addiction.
Keywords: Brain & Biology, Seriously Mentally Ill (SMI)
Return to Top
Han, D. H., Bolo, N., Daniels, M. A., Arenella, L., Lyoo, I. K., & Renshaw, P. F. (2011). Brain activity and desire for internet video game play. Comprehesive Psychiatry, 52(1), 88-95.
OBJECTIVE: Recent studies have suggested that the brain circuitry mediating cue-induced desire for video games is similar to that elicited by cues related to drugs and alcohol. We hypothesized that desire for Internet video games during cue presentation would activate similar brain regions to those that have been linked with craving for drugs or pathologic gambling. METHODS: This study involved the acquisition of diagnostic magnetic resonance imaging and functional magnetic resonance imaging data from 19 healthy male adults (age, 18-23 years) following training and a standardized 10-day period of game play with a specified novel Internet video game, "War Rock" (K2 Network, Irvine, CA). Using segments of videotape consisting of 5 contiguous 90-second segments of alternating resting, matched control, and video game-related scenes, desire to play the game was assessed using a 7-point visual analogue scale before and after presentation of the videotape. RESULTS: In responding to Internet video game stimuli, compared with neutral control stimuli, significantly greater activity was identified in left inferior frontal gyrus, left parahippocampal gyrus, right and left parietal lobe, right and left thalamus, and right cerebellum (false discovery rate <0.05, P < .009243). Self-reported desire was positively correlated with the β values of left inferior frontal gyrus, left parahippocampal gyrus, and right and left thalamus. Compared with the general players, subjects who played more Internet video game showed significantly greater activity in right medial frontal lobe, right and left frontal precentral gyrus, right parietal postcentral gyrus, right parahippocampal gyrus, and left parietal precuneus gyrus. Controlling for total game time, reported desire for the Internet video game in the subjects who played more Internet video game was positively correlated with activation in right medial frontal lobe and right parahippocampal gyrus. DISCUSSION: The present findings suggest that cue-induced activation to Internet video game stimuli may be similar to that observed during cue presentation in persons with substance dependence or pathologic gambling. In particular, cues appear to commonly elicit activity in the dorsolateral prefrontal, orbitofrontal cortex, parahippocampal gyrus, and thalamus.
Keywords: Brain & Biology
Return to Top
Han, D. H., Hwang, J. W., & Renshaw, P. F. (2010) Bupropion sustained release treatment decreases craving for video games and cue-induced brain activity in patients with Internet video game addiction. Experimental Clinical Psychopharmacology,18(4), 297-304.
Bupropion has been used in the treatment of patients with substance dependence based on its weak inhibition of dopamine and norepinephrine reuptake. We hypothesized that 6 weeks of bupropion sustained release (SR) treatment would decrease craving for Internet game play as well as video game cue-induced brain activity in patients with Internet video game addiction (IAG). Eleven subjects who met criteria for IAG, playing StarCraft (>30 hr/week), and eight healthy comparison subjects (HC) who had experience playing StarCraft (<3 days/week and <1 hr/day). At baseline and at the end of 6 weeks of bupropion SR treatment, brain activity in response to StarCraft cue presentation was assessed using 1.5 Tesla functional MRI. In addition, symptoms of depression, craving for playing the game, and the severity of Internet addiction were evaluated by Beck Depression Inventory, self-report of craving on a 7-point visual analogue scale, and Young's Internet Addiction Scale, respectively. In response to game cues, IAG showed higher brain activation in left occipital lobe cuneus, left dorsolateral prefrontal cortex, and left parahippocampal gyrus than HC. After a 6 week period of bupropion SR, craving for Internet video game play, total game play time, and cue-induced brain activity in dorsolateral prefrontal cortex were decreased in the IAG. We suggest that bupropion SR may change craving and brain activity in ways that are similar to those observed in individuals with substance abuse or dependence.
Keywords: Brain & Biology, Substance Use Disorders (SUD)
Return to Top
Han, D. H., Kim, Y. S., Lee, Y. S., Min, K. J., & Renshaw, P. F. (2010). Changes in cue-induced, prefrontal cortex activity with video-game play. Cyberpsychology, Behavior and Social Networking, 13(6), 655-661.
Brain responses, particularly within the orbitofrontal and cingulate cortices, to Internet video-game cues in college students are similar to those observed in patients with substance dependence in response to the substance-related cues. In this study, we report changes in brain activity between baseline and following 6 weeks of Internet video-game play. We hypothesized that subjects with high levels of self-reported craving for Internet video-game play would be associated with increased activity in the prefrontal cortex, particularly the orbitofrontal and anterior cingulate cortex. Twenty-one healthy university students were recruited. At baseline and after a 6-week period of Internet video-game play, brain activity during presentation of video-game cues was assessed using 3T blood oxygen level dependent functional magnetic resonance imaging. Craving for Internet video-game play was assessed by self-report on a 7-point visual analogue scale following cue presentation. During a standardized 6-week video-game play period, brain activity in the anterior cingulate and orbitofrontal cortex of the excessive Internet game-playing group (EIGP) increased in response to Internet video-game cues. In contrast, activity observed in the general player group (GP) was not changed or decreased. In addition, the change of craving for Internet video games was positively correlated with the change in activity of the anterior cingulate in all subjects. These changes in frontal-lobe activity with extended video-game play may be similar to those observed during the early stages of addiction.
Keywords: Brain & Biology, Substance Use Disorders (SUD)
Return to Top
Henry, M. E., Jensen, J. E., Licata, S. C., Ravichandran, C., Butman, M. L., Shanahan, M., Lauriat, T. L., Renshaw, P. F. (2010). The acute and late CNS glutamine response to benzodiazepine challenge: a pilot pharmacokinetic study using proton magnetic resonance spectroscopy. Psychiatry Research, 184(3), 171-176.
Benzodiazepines (BZs), which are typically used as anxiolytics, act by modulating inhibitory signaling through gamma-aminobutyric acid A (GABA)(A) receptors. Functionally, the inhibitory effects of GABA may be counterbalanced by the excitatory effects of glutamate (Glu) as the two neurotransmitter systems are metabolically linked through their synthetic intermediate glutamine (Gln). The primary aim of this study was to determine whether the effects of different BZs on the GABA and Glu/Gln systems would vary according to the pharmacokinetics of the different drugs. Proton magnetic resonance spectroscopy ((1)H MRS) was used to measure GABA, Glu, and Gln levels in six healthy adult volunteers 1h and 10 h following immediate release alprazolam, extended release alprazolam, clonazepam, or placebo. Although there were no differences between 1 and 10 h when the drugs were examined individually, there was a trend level difference between the 1- and 10-h effects of BZs on Gln when the BZs were combined. In post-hoc comparisons, the difference in the Gln to creatine (Cr) ratio was 0.04 for the BZs versus placebo at 1h and 0.01 at 10h following the administration of drug (t(11)=2.49, P=0.03 1 h; t(10)=0.65, P=0.53 10 h; no correction for multiple comparisons). An increase in Gln/Cr at 1 h post-BZ is consistent with a functionally synergistic relationship between Glu/Gln and GABA in the brain. It also suggests that MRS may have sufficient sensitivity to detect acute drug effects.
Keywords: Brain & Biology
Return to Top
Henry, M. E., Lauriat, T. L., Shanahan, M., Renshaw, P. F., Lyoo, I. K., Kim, J. E. (2011). Accuracy and stability of measuring GABA, glutamate, and glutamine by proton magnetic resonance spectroscopy: A phantom study at 4 Tesla. Journal of Magnetic Resonance, 208(2), 210-218.
Proton magnetic resonance spectroscopy has the potential to provide valuable information about alterations in gamma-aminobutyric acid (GABA), glutamate (Glu), and glutamine (Gln) in psychiatric and neurological disorders. In order to use this technique effectively, it is important to establish the accuracy and reproducibility of the methodology. In this study, phantoms with known metabolite concentrations were used to compare the accuracy of 2D J-resolved MRS, single-echo 30 ms PRESS, and GABA-edited MEGA-PRESS for measuring all three aforementioned neurochemicals simultaneously. The phantoms included metabolite concentrations above and below the physiological range and scans were performed at baseline, 1 week, and 1 month time-points. For GABA measurement, MEGA-PRESS proved optimal with a measured-to-target correlation of R(2)=0.999, with J-resolved providing R(2)=0.973 for GABA. All three methods proved effective in measuring Glu with R(2)=0.987 (30 ms PRESS), R(2)=0.996 (J-resolved) and R(2)=0.910 (MEGA-PRESS). J-resolved and MEGA-PRESS yielded good results for Gln measures with respective R(2)=0.855 (J-resolved) and R(2)=0.815 (MEGA-PRESS). The 30 ms PRESS method proved ineffective in measuring GABA and Gln. When measurement stability at in vivo concentration was assessed as a function of varying spectral quality, J-resolved proved the most stable and immune to signal-to-noise and linewidth fluctuation compared to MEGA-PRESS and 30 ms PRESS.
Keywords: Brain & Biology
Return to Top
Jeong EK, Sung YH, Kim SE, Zuo C, Shi X, Mellon EA, Renshaw PF. Measurement of creatine kinase reaction rate in human brain using magnetization transfer image-selected in vivo spectroscopy (MT-ISIS) and a volume (31)P/(1)H radiofrequency coil in a clinical 3-T MRI system. NMR Biomed. 2010 Dec 29. [Epub ahead of print]
High-energy phosphate metabolism, which allows the synthesis and regeneration of adenosine triphosphate (ATP), is a vital process for neuronal survival and activity. In particular, creatine kinase (CK) serves as an energy reservoir for the rapid buffering of ATP levels. Altered CK enzyme activity, reflecting compromised high-energy phosphate metabolism or mitochondrial dysfunction in the brain, can be assessed using magnetization transfer (MT) MRS. MT (31)P MRS has been used to measure the forward CK reaction rate in animal and human brain, employing a surface radiofrequency coil. However, long acquisition times and excessive radiofrequency irradiation prevent these methods from being used routinely for clinical evaluations. In this article, a new MT (31)P MRS method is presented, which can be practically used to measure the CK forward reaction rate constant in a clinical MRI system employing a volume head (31)P coil for spatial localization, without contamination from the scalp muscle, and an acquisition time of 30min. Other advantages associated with the method include radiofrequency homogeneity within the regions of interest of the brain using a volume coil with image-selected in vivo spectroscopy localization, and reduction of the specific absorption rate using nonadiabatic radiofrequency pulses for MT saturation. The mean value of k(f) was measured as 0.320±0.075s(-1) from 10 healthy volunteers with an age range of 18-40 years. These values are consistent with those obtained using earlier methods, and the technique may be used routinely to evaluate energetic processes in the brain on a clinical MRI system.
Keywords: Brain & Biology
Return to Top
Killgore, W. D. S., Ross, A. J., Kamiya, T., Kawada, Y., Renshaw, P.F., & Yurgelun-Todd, D. A. (2010). Citicoline affects appetite and cortico-limbic responses to images of high calorie foods. International Journal of Eating Disorders, 43, 6-13.
OBJECTIVE: Cytidine-5'-diphosphocholine (citicoline) has a variety of cognitive enhancing, neuroprotective, and neuroregenerative properties. In cocaine-addicted individuals, citicoline has been shown to increase brain dopamine levels and reduce cravings. The effects of this compound on appetite, food cravings, and brain responses to food are unknown. METHOD:: We compared the effects of treatment with Cognizin(R) citicoline (500 mg/day versus 2,000 mg/day) for 6 weeks on changes in appetite ratings, weight, and cortico-limbic responses to images of high-calorie foods using functional magnetic resonance imaging (fMRI). RESULTS:: After 6 weeks, there was no significant change in weight status, although significant declines in appetite ratings were observed for the 2,000 mg/day group. The higher dose group also showed significant increases in functional brain responses to food stimuli within the amygdala, insula, and lateral orbitofrontal cortex. Increased activation in these regions correlated with declines in appetite ratings. DISCUSSION:: These preliminary findings suggest a potential usefulness of citicoline in modulating appetite, but further research is warranted. (c) 2009 by Wiley Periodicals, Inc. Int J Eat Disord 2009.
Keywords: Brain & Biology
Return to Top
Kim, J. E., Lyoo, I. K., Estes, A. M., Renshaw, P.F., Shaw, D. W., Friedman, S. D., et al. (2010). Laterobasal amygdalar enlargement in 6- to 7-year-old children with autism spectrum disorder. Archives of General Psychiatry, 67(11), 1187-97.
CONTEXT: There is substantial imaging evidence for volumetric abnormalities of the amygdala in younger children with autism spectrum disorder (ASD). The amygdala can be divided into functionally distinct laterobasal, superficial, and centromedial subregions. To date, we are not aware of any in vivo reports specifically assessing subregional amygdalar abnormalities in individuals with ASD. OBJECTIVES: To evaluate alterations in subregional amygdalar morphology in children with ASD compared with typically developing (TD) children and to examine the relationships with ASD symptom severity. DESIGN: A cross-sectional study encompassing a narrow age range of children with ASD and age-matched TD children that evaluated magnetic resonance imaging-defined subregional morphology of the amygdala using a novel subregional analytic method. SETTING: Participants were recruited and clinically evaluated through the University of Washington Autism Center and imaged at the Diagnostic Imaging Sciences Center at the University of Washington. Imaging data were analyzed through the Brain Imaging Laboratory at the Seoul National University. PARTICIPANTS: Fifty-one children 6 to 7 years of age (ASD, n = 31 and TD, n = 20) were assessed using magnetic resonance imaging and behavioral measures. MAIN OUTCOME MEASURES: Volume and subregional measures of the amygdala and measures of social and communication functioning. RESULTS: The ASD group exhibited larger right and left amygdalae, by 12.7% and 11.0%, respectively, relative to the TD group. Subregional analysis revealed that the ASD group had enlarged laterobasal amygdalar subregions, relative to the TD group, after adjusting for age, sex, and hemispheric cerebral volume (P < .05, false discovery rate corrected and with clustered surface points >15). Exploratory analyses revealed that there were linear trends comparing a strictly defined subgroup of children with autistic disorder, who exhibited the greatest extent of laterobasal enlargement, followed by a subgroup of children with pervasive developmental disorder not otherwise specified and then the group of TD children (P for linear trend <.001). There were linear trends between enlargement of laterobasal subregions and lower levels of social and communication functioning (P < .001, P < .001, and P = .001 for 3 areas in the right laterobasal subregion; P < .001 for 1 area in the left laterobasal subregion). CONCLUSION: The current study demonstrates bilateral enlargement of laterobasal subregions of the amygdala in 6- to 7-year-old children with ASD and that subregional alterations are associated with deficits in social and communicative behavior.
Keywords: Brain & Biology
Return to Top
Kim, N., Kim, H. J., Hwang, J., Yoon, S. J., Cho, H. B., Renshaw, P.F., Lyco, I. K., & Kim, J. E. (2011). Amygdalar shape analysis method using surface contour aligning, spherical mapping, and probabilistic subregional segmentation. Neuroscience Letter, 488(1), 65-69.
The objective of this study was to develop a reliable method for the shape analysis of the amygdala, a structure that is important in gaining a better understanding of the limbic system in the human brain. The goal of this study was threefold; to develop (1) a robust method for aligning the contour of the amygdala; (2) a reproducible method for extracting surface parameters of the amygdala using a spherical mapping technique; and (3) a standardized approach for statistical assessment and visualization of shape alterations by applying the probabilistic maps of amygdalar subregions. This technique was validated by conducting an artificial phantom study and by assessing sex-related amygdalar shape differences using T1-weighted images from healthy volunteers. In the phantom study, the region with atrophy was detected successfully through the shape analysis process. In the human study, the average radii of the centromedial (CM) subregion in the left amygdala and laterobasal (LB), superficial (SF) and CM subregions in the right amygdala were different between sexes (t-tests, p=0.02, 0.04, 0.04, and 0.002, respectively). In addition, focal regions with larger radii in amygdalae of men than those of women were found predominantly on the surfaces of bilateral SF and bilateral CM subregions, after the volumes of the amygdala had been scaled to the unit volume (1000mm(3)) (Mann-Whitney U-test, false discovery rate corrected p<0.05, clustered vertex points>25). Regions with smaller radii in amygdalae of men were found predominantly on the anterior surfaces of the right LB and SF subregions (Mann-Whitney U-test, false discovery rate corrected p<0.05, clustered vertex points>25). This is generally in agreement with previous findings from animal studies. The current method may be used for measuring subtle local shape changes of the amygdala in various psychiatric or neurologic disorders.
Keywords: Brain & Biology
Return to Top
Kim, N., Mickelson, J. B., Brenner, B. E., Haws, C. A., Yurgelun-Todd, D.A., & Renshaw, P.F. (2011). Altitude, Gun Ownership, Rural Areas, and Suicide. American Journal of Psychiatry,168(1), 49-54.
OBJECTIVE: The authors recently observed a correlation between state altitude and suicide rate in the United States, which could be explained by higher rates of gun ownership and lower population density in the intermountain West. The present study evaluated the relationship between mean county and state altitude in the United States and total age-adjusted suicide rates, firearm-related suicide rates, and non-firearm-related suicide rates. The authors hypothesized that altitude would be significantly associated with suicide rate. METHOD: Elevation data were calculated with an approximate spatial resolution of 0.5 km, using zonal statistics on data sets compiled from the National Geospatial-Intelligence Agency and the National Aeronautics and Space Administration. Suicide and population density data were obtained through the Centers for Disease Control and Prevention (CDC) WONDER database. Gun ownership data were obtained through the CDC's Behavioral Risk Factor Surveillance System. RESULTS: A significant positive correlation was observed between age-adjusted suicide rate and county elevation (r=0.51). Firearm (r=0.41) and non-firearm suicide rates (r=0.32) were also positively correlated with mean county elevation. CONCLUSIONS: When altitude, gun ownership, and population density are considered as predictor variables for suicide rates on a state basis, altitude appears to be a significant independent risk factor. This association may be related to the effects of metabolic stress associated with mild hypoxia in individuals with mood disorders.
Keywords: Suicide
Return to Top
Kondo, D. G., Hellem, T. L., Sung, Y. H., Kim, N., Jeong, E. K., Delmastro, K. K., Shi, X., & Renshaw, P.F. (2011). Review: Magnetic resonance spectroscopy studies of pediatric major depressive disorder. Depression Research & Treatment, Epub 2010 Oct 4.
Introduction. This paper focuses on the application of Magnetic Resonance Spectroscopy (MRS) to the study of Major Depressive Disorder (MDD) in children and adolescents. Method. A literature search using the National Institutes of Health's PubMed database was conducted to identify indexed peer-reviewed MRS studies in pediatric patients with MDD. Results. The literature search yielded 18 articles reporting original MRS data in pediatric MDD. Neurochemical alterations in Choline, Glutamate, and N-Acetyl Aspartate are associated with pediatric MDD, suggesting pathophysiologic continuity with adult MDD. Conclusions. The MRS literature in pediatric MDD is modest but growing. In studies that are methodologically comparable, the results have been consistent. Because it offers a noninvasive and repeatable measurement of relevant in vivo brain chemistry, MRS has the potential to provide insights into the pathophysiology of MDD as well as the mediators and moderators of treatment response.
Keywords: Brain & Biology, Seriously Mentally Ill (SMI)
Return to Top
Kondo, D. G., Sung, Y. H., Hellem, T. L., Delmastro, K. K., Jeong, E. K., Kim, N., Shi, X. & Renshaw, P.F. (2011). Open-label uridine for treatment of depressed adolescents with bipolar disorder. Journal of Child and Adolescent Psychopharmacology, 21(2), 171-175.
This report is an open-label case series of seven depressed adolescents with bipolar disorder treated with uridine for 6 weeks. Treatment response was measured with the Children's Depression Rating Scale-Revised and the Clinical Global Impressions scale. Uridine was associated with decreased depressive symptoms, and was well tolerated by study participants. Further systematic studies of uridine are warranted.
Keywords: Brain & Biology
Return to Top
Licata, S. C., & Renshaw, P.F. (2010). Neurochemistry of drug action: insights from proton magnetic resonance spectroscopic imaging and the relevance to addiction. Annals of the New York Academy of Sciences, 1187, 148-171.
Proton magnetic resonance spectroscopy ((1)H MRS) is a noninvasive imaging technique that permits measurement of particular compounds or metabolites within the tissue of interest. In the brain, (1)H MRS provides a snapshot of the neurochemical environment within a defined volume of interest. A search of the literature demonstrates the widespread utility of this technique for characterizing tumors, tracking the progress of neurodegenerative disease, and for understanding the neurobiological basis of psychiatric disorders. As of relatively recently, (1)H MRS has found its way into substance abuse research, and it is beginning to become recognized as a valuable complement in the brain imaging toolbox that also contains positron emission tomography, single-photon-emission computed tomography, and functional magnetic resonance imaging. Drug abuse studies using (1)H MRS have identified several biochemical changes in the brain. The most consistent alterations across drug class were reductions in N-acetylaspartate and elevations in myo-inositol, whereas changes in choline, creatine, and amino acid transmitters also were abundant. Together, the studies discussed herein provide evidence that drugs of abuse may have a profound effect on neuronal health, energy metabolism and maintenance, inflammatory processes, cell membrane turnover, and neurotransmission, and these biochemical changes may underlie the neuropathology within brain tissue that subsequently gives rise to the cognitive and behavioral impairments associated with drug addiction.
Keywords: Brain & Biology, Substance Use Disorders (SUD)
Return to Top
Liu X, Jensen JE, Gillis TE, Zuo CS, Prescot AP, Brimson M, Cayetano K, Renshaw PF, Kaufman MJ. Chronic cocaine exposure induces putamen glutamate and glutamine metabolite abnormalities in squirrel monkeys. Psychopharmacology (Berl). 2011 Oct;217(3):367-75. Epub 2011 Apr 15.
RATIONALE: Chronic cocaine exposure has been associated with progressive brain structural and functional changes. Clarifying mechanisms underlying cocaine's progressive brain effects may help in the development of effective cocaine abuse treatments. OBJECTIVES: We used a controlled squirrel monkey model of chronic cocaine exposure (45 mg/kg/week for 9 months) combined with ultra-high magnetic field (9.4 T) proton magnetic resonance spectroscopy to prospectively measure putamen metabolite changes. METHODS: Proton metabolites were measured with a STEAM sequence, quantified with LCModel using a simulated basis set, and expressed as metabolite/total creatine (tCr) ratios. RESULTS: We found cocaine-induced time-dependent changes in putamen glutamate/tCr and glutamine/tCr metabolite ratios suggestive of altered glutamate compartmentalization, neurotransmission, and metabolism. By contrast, saline-treated monkeys exhibited no metabolite changes over time. The time course of cocaine-induced metabolite abnormalities we detected is consistent with the apparent time course of glutamate abnormalities identified in a cross-sectional study in human cocaine users, as well as with microdialysis findings in rodent models of repeated cocaine exposure. CONCLUSIONS: Together, these findings suggests that this squirrel monkey model may be useful for characterizing glutamatergic changes associated with cocaine exposure and for determining efficacies of treatments designed to mitigate cocaine-induced glutamatergic system dysfunction.
Keywords: Brain & Biology, Substance Use Disorders (SUD)
Return to Top
Lyoo IK, Yoon S, Kim TS, Hwang J, Kim JE, Won W, Bae S, Renshaw PF. A Randomized, Double-Blind Placebo-Controlled Trial of Oral Creatine Monohydrate Augmentation for Enhanced Response to a Selective Serotonin Reuptake Inhibitor in Women With Major Depressive Disorder. Am J Psychiatry. 2012 Aug 1. doi: 10.1176/appi.ajp.2012.12010009. [Epub ahead of print]
OBJECTIVE Antidepressants targeting monoaminergic neurotransmitter systems, despite their immediate effects at the synaptic level, usually require several weeks of administration to achieve clinical efficacy. The authors propose a strategy of adding creatine monohydrate (creatine) to a selective serotonin reuptake inhibitor (SSRI) in the treatment of patients with major depressive disorder. Such augmentation may lead to a more rapid onset of antidepressant effects and a greater treatment response, potentially by restoring brain bioenergetics at the cellular level. METHOD Fifty-two women with major depressive disorder were enrolled in an 8-week double-blind placebo-controlled clinical trial and randomly assigned to receive escitalopram in addition to either creatine (5 g/day, N=25) or placebo (N=27). Efficacy was primarily assessed by changes in the Hamilton Depression Rating Scale (HAM-D) score. RESULTS In comparison to the placebo augmentation group, patients receiving creatine augmentation showed significantly greater improvements in HAM-D score, as early as week 2 of treatment. This differential improvement favoring creatine was maintained at weeks 4 and 8. There were no differences between treatment groups in the proportion of patients who discontinued treatment prematurely (creatine: N=8, 32.0%; placebo: N=5, 18.5%) or in the overall frequency of all reported adverse events (creatine: 36 events; placebo: 45 events). CONCLUSIONS The current study suggests that creatine augmentation of SSRI treatment may be a promising therapeutic approach that exhibits more rapid and efficacious responses in women with major depressive disorder.
Keywords: Brain & Biology, Seriously Mentally Ill (SMI)
Return to Top
Lyoo, I. K., Dager, S. R., Kim, J. E., Yoon, S. J., Friedman, S. D., Dunner, D. L., & Renshaw, P.F. (2010). Lithium-induced gray matter volume increase as a neural correlate of treatment response in bipolar disorder: A longitudinal brain imaging study. Neuropsychopharmacology,35(8), 1743-1750.
Preclinical studies suggest that lithium may exert neurotrophic effects that counteract pathological processes in the brain of patients with bipolar disorder (BD). To describe and compare the course and magnitude of gray matter volume changes in patients with BD who are treated with lithium or valproic acid (VPA) compared to healthy comparison subjects, and to assess clinical relationships to gray matter volume changes induced by lithium in patients with BD, we conducted longitudinal brain imaging and clinical evaluations of treatment response in 22 mood-stabilizing and antipsychotic medications-naive patients with BD who were randomly assigned to either lithium or VPA treatment after baseline assessment. Fourteen healthy comparison subjects did not take any psychotropic medications during follow-up. Longitudinal data analyses of 93 serial magnetic resonance images revealed lithium-induced increases in gray matter volume, which peaked at week 10-12 and were maintained through 16 weeks of treatment. This increase was associated with positive clinical response. In contrast, VPA-treated patients with BD or healthy comparison subjects did not show gray matter volume changes over time. Results suggest that lithium induces sustained increases in cerebral gray matter volume in patients with BD and that these changes are related to the therapeutic efficacy of lithium.
Keywords: Brain & Biology, Seriously Mentally Ill (SMI)
Return to Top
Ongur, D., Haddad, S., Prescot, A. P., Jensen, J. E., Siburian, R., Cohen, B. M., Renshaw, P.F., & Smoller, J. W. (2011). Relationship between genetic variation in the glutaminase gene GLS1 and brain glutamine/glutamate ratio measured in vivo. Biological Psychiatry, 70(2), 169-174.
BACKGROUND: Abnormalities in glutamatergic neurotransmission are implicated in several psychiatric disorders, but in vivo neurochemical studies of the glutamate (Glu) system have been hampered by a lack of adequate probes. By contrast, glutamine (Gln) and Glu can be quantified separately in proton magnetic resonance spectroscopy studies in vivo. Accumulating evidence suggests that the Gln/Glu ratio is a putative index of glutamatergic neurotransmission but interpretation of changes in the Gln/Glu ratio depends on the conditions of the system, including ammonia levels. METHODS: Here, we explored whether variation in GLS1 (the gene encoding the brain isoform of glutaminase, which catalyzes Gln-to-Glu conversion) is associated with Gln/Glu measured in vivo in two brain regions (anterior cingulate cortex, parieto-occipital cortex). RESULTS: A specific haplotype of four single nucleotide polymorphisms within GLS1 was significantly associated with Gln/Glu in the parieto-occipital cortex in an magnetic resonance spectroscopy-genetics dataset optimized for Gln/Glu detection (n = 42). This finding was replicated in a second magnetic resonance spectroscopy dataset that was optimized for γ-aminobutyric acid detection where Gln and Glu measurements could still be extracted (n = 40). CONCLUSIONS: These findings suggest that genetic variation in a key component of glutamatergic machinery is associated with a putative in vivo index of glutamatergic neurotransmission. Thus, GLS1 genotype might provide insight into normal brain function and into the pathophysiology of many psychiatric conditions where glutamatergic neurotransmission has been implicated. It might also serve as a biomarker for predicting response to existing and novel therapeutic interventions in psychiatry that target glutamatergic neurotransmission.
Keywords: Brain & Biology
Return to Top
Ongür, D., Lundy, M., Greenhouse, I., Shinn, A. K., Menon, V., Cohen, B. M., & Renshaw, P.F. (2010). Default mode network abnormalities in bipolar disorder and schizophrenia. Psychiatry Research,183(1), 59-68.
The default-mode network (DMN) consists of a set of brain areas preferentially activated during internally focused tasks. We used functional magnetic resonance imaging (fMRI) to study the DMN in bipolar mania and acute schizophrenia. Participants comprised 17 patients with bipolar disorder (BD), 14 patients with schizophrenia (SZ) and 15 normal controls (NC), who underwent 10-min resting fMRI scans. The DMN was extracted using independent component analysis and template-matching; spatial extent and timecourse were examined. Both patient groups showed reduced DMN connectivity in the medial prefrontal cortex (mPFC) (BD: x=-2, y=54, z=-12; SZ: x=-2, y=22, z=18). BD subjects showed abnormal recruitment of parietal cortex (correlated with mania severity) while SZ subjects showed greater recruitment of the frontopolar cortex/basal ganglia. Both groups had significantly higher frequency fluctuations than controls. We found ventral mPFC abnormalities in BD and dorsal mPFC abnormalities in SZ. The higher frequency of BOLD signal oscillations observed in patients suggests abnormal functional organization of circuits in both disorders. Further studies are needed to determine how these abnormalities are related to specific symptoms of each condition.
Keywords: Brain & Biology, Seriously Mentally Ill (SMI)
Return to Top
Ongur, D., Prescot, A. P., McCarthy, J., Cohen, B. M., & Renshaw, P.F. (2010). Elevated gamma-aminobutyric acid levels in chronic schizophrenia. Biological Psychiatry, 68(7), 667-670.
BACKGROUND: Despite widely replicated abnormalities of gamma-aminobutyric acid (GABA) neurons in schizophrenia postmortem, few studies have measured tissue GABA levels in vivo. We used proton magnetic resonance spectroscopy to measure tissue GABA levels in participants with schizophrenia and healthy control subjects in the anterior cingulate cortex and parieto-occipital cortex. METHODS: Twenty-one schizophrenia participants effectively treated on a stable medication regimen (mean age 39.0, 14 male) and 19 healthy control subjects (mean age 36.3, 12 male) underwent a proton magnetic resonance spectroscopy scan using GABA-selective editing at 4 Tesla after providing informed consent. Data were collected from two 16.7-mL voxels and analyzed using LCModel. RESULTS: We found elevations in GABA/creatine in the schizophrenia group compared with control subjects [F(1,65) = 4.149, p = .046] in both brain areas (15.5% elevation in anterior cingulate cortex, 11.9% in parieto-occipital cortex). We also found a positive correlation between GABA/creatine and glutamate/creatine, which was not accounted for by % GM or brain region. CONCLUSIONS: We found elevated GABA/creatinine in participants with chronically treated schizophrenia. Postmortem studies report evidence for dysfunctional GABAergic neurotransmission in schizophrenia. Elevated GABA levels, whether primary to illness or compensatory to another process, may be associated with dysfunctional GABAergic neurotransmission in chronic schizophrenia.
Keywords: Brain & Biology, Seriously Mentally Ill (SMI)
Return to Top
Prescot, A. P., Locatelli, A. E., Renshaw, P.F., & Yurgelun-Todd, D.A. (2011). Neurochemical alterations in adolescent chronic marijuana smokers: A proton MRS study. Neuroimage, 57(1), 69-75.
Converging evidence from neuroimaging and neuropsychological studies indicates that heavy marijuana use is associated with cingulate dysfunction. However, there has been limited human data documenting in vivo biochemical brain changes after chronic marijuana exposure. Previous proton magnetic resonance spectroscopy studies have demonstrated reduced basal ganglia glutamate and dorsolateral prefrontal cortex N-acetyl aspartate levels in adult chronic marijuana users. Similar studies have not been reported in adolescent populations. The present study used proton magnetic resonance spectroscopy to determine whether reductions in glutamate, N-acetyl aspartate and/or other proton metabolite concentrations would be found in the anterior cingulate cortex (ACC) of adolescent marijuana users compared with non-using controls. Adolescent marijuana users (N=17; average age 17.8 years) and similarly aged healthy control subjects (N=17; average age 16.2 years) were scanned using a Siemens 3T Trio MRI system. Proton magnetic resonance spectroscopy data were acquired from a 22.5 mL voxel positioned bilaterally within the ACC. Spectra were fitted using commercial software and all metabolite integrals were normalized to the scaled unsuppressed water integral. Analysis of variance and analysis of covariance were performed to compare between-group metabolite levels. The marijuana-using cohort showed statistically significant reductions in anterior cingulate glutamate (-15%, p<0.01), N-acetyl aspartate (-13%, p=0.02), total creatine (-10%, p<0.01) and myo-inositol (-10%, p=0.03). Within-voxel tissue-type segmentation did not reveal any significant differences in gray/white matter or cerebrospinal fluid content between the two groups. The reduced glutamate and N-acetyl aspartate levels in the adolescent marijuana-using cohort are consistent with precedent human (1)H MRS data, and likely reflect an alteration of anterior cingulate glutamatergic neurotransmission and neuronal integrity within these individuals. The reduced total creatine and myo-inositol levels observed in these subjects might infer altered ACC energetic status and glial metabolism, respectively. These results expand on previous functional MRI data reporting altered cingulate function in individuals with marijuana-abuse.
Keywords: Brain & Biology
Return to Top
Streeter, C. C., Whitfield, T. H., Owen, L., Rein, T., Karri, S. K., Yakhkind, A., & Renshaw, P.F. (2010). Effects of yoga versus walking on mood, anxiety, and brain GABA levels: A randomized controlled MRS study. Journal of Alternative & Complementary Medicine, 16(11), 1145-1152.
OBJECTIVES: Yoga and exercise have beneficial effects on mood and anxiety. γ-Aminobutyric acid (GABA)-ergic activity is reduced in mood and anxiety disorders. The practice of yoga postures is associated with increased brain GABA levels. This study addresses the question of whether changes in mood, anxiety, and GABA levels are specific to yoga or related to physical activity. METHODS: Healthy subjects with no significant medical/psychiatric disorders were randomized to yoga or a metabolically matched walking intervention for 60 minutes 3 times a week for 12 weeks. Mood and anxiety scales were taken at weeks 0, 4, 8, 12, and before each magnetic resonance spectroscopy scan. Scan 1 was at baseline. Scan 2, obtained after the 12-week intervention, was followed by a 60-minute yoga or walking intervention, which was immediately followed by Scan 3. RESULTS: The yoga subjects (n=19) reported greater improvement in mood and greater decreases in anxiety than the walking group (n=15). There were positive correlations between improved mood and decreased anxiety and thalamic GABA levels. The yoga group had positive correlations between changes in mood scales and changes in GABA levels. CONCLUSIONS: The 12-week yoga intervention was associated with greater improvements in mood and anxiety than a metabolically matched walking exercise. This is the first study to demonstrate that increased thalamic GABA levels are associated with improved mood and decreased anxiety. It is also the first time that a behavioral intervention (i.e., yoga postures) has been associated with a positive correlation between acute increases in thalamic GABA levels and improvements in mood and anxiety scales. Given that pharmacologic agents that increase the activity of the GABA system are prescribed to improve mood and decrease anxiety, the reported correlations are in the expected direction. The possible role of GABA in mediating the beneficial effects of yoga on mood and anxiety warrants further study.
Keywords: Brain & Biology, Complementary Arts Medicine
Return to Top
Trksak, G. H., Jensen, J. E., Plante, D. T., Penetar, D. M., Tartarini, W. L., Maywalt, M. A., Brendel, M., Dorsey, C. M., Renshaw, P.F., & Lukas, S. E. (2010). Effects of sleep deprivation on sleep homeostasis and restoration during methadone-maintenance: a [31]P MRS brain imaging study. Drug and Alcohol Dependence,106(2-3), 79-91.
Insomnia afflicts many individuals, but particularly those in chronic methadone treatment. Studies examining sleep deprivation (SD) have begun to identify sleep restoration processes involving brain bioenergetics. The technique ([31])P magnetic resonance spectroscopy (MRS) can measure brain changes in the high-energy phosphates: alpha-, beta-, and gamma-nucleoside triphosphate (NTP). In the present study, 21 methadone-maintained (MM) and 16 control participants underwent baseline (BL), SD (40 wakeful hours), recovery1 (RE1), and recovery2 (RE2) study nights. Polysomnographic sleep was recorded each night and ([31])P MRS brain scanning conducted each morning using a 4T MR scanner (dual-tuned proton/phosphorus head-coil). Interestingly, increases in total sleep time (TST) and sleep efficiency index (SEI) commonly associated with RE sleep were not apparent in MM participants. Analysis of methadone treatment duration revealed that the lack of RE sleep increases in TST and SEI was primarily exhibited by short-term MM participants (methadone 12 months) participants was more comparable to control participants. Slow wave sleep increased during RE1, but there was no difference between MM and control participants. Spectral power analysis revealed that compared to control participants; MM participants had greater delta, theta, and alpha spectral power during BL and RE sleep. ([31])P MRS revealed that elevations in brain beta-NTP (a direct measure of ATP) following RE sleep were greater in MM compared to control participants. Results suggest that differences in sleep and brain chemistry during RE in MM participants may be reflective of a disruption in homeostatic sleep function.
Keywords: Brain & Biology, Substance Use Disorders (SUD)
Return to Top
Winkelman, J. W., Benson, K. L., Buxton, O. M., Lyoo, I. K., Yoon, S., O'Connor, S., & Renshaw, P.F.. (2010). Lack of hippocampal volume differences in primary insomnia and good sleeper controls: an MRI volumetric study at 3 Tesla. Sleep Med., 11(6), 576-582.
BACKGROUND: A recent pilot study reported that hippocampal volume (HV) was reduced in patients with primary insomnia (PI) relative to normal sleepers. Loss of HV in PI might be due to chronic hyperarousal and/or chronic sleep debt. The aim of this study was to replicate the earlier pilot report while employing a larger sample, more rigorous screening criteria, and objective sleep data. METHODS: This cross-sectional design included community recruits meeting DSM-IV criteria for PI (n=20, 10 males, mean age 39.3+/-8.7) or good sleeper controls (n=15, 9 males, mean age 38.8+/-5.3). All subjects were unmedicated and rigorously screened to exclude comorbid psychiatric and medical illness. PI subjects underwent overnight polysomnography to screen for sleep-related breathing and movement disorders. HV and total brain volumes were derived by MRI employing a Siemens/Trio scanner operating at 3 Tesla. Data also included 2 weeks of sleep diaries and wrist actigraphy. RESULTS: Mean HV was 4322.0+/-299.7 mm(3) for the good sleeper controls and 4601.55+/-537.4 mm(3) for the PI group. The dependent variable, HV, was analyzed by ANCOVA. Main effects were diagnosis and gender; whole brain volume served as the covariate. Although the overall model was significant (F=6.3, p=0.001), the main effects of diagnosis (F=2.14) and gender (F=0.04) were not significant. The covariate of whole brain volume was significant (F=5.74, p=0.023) as was the interaction of diagnosis with gender (F=10.22, p=0.003), with male insomniacs having larger HVs than male controls. CONCLUSIONS: This study did not replicate a previously published report of HV loss in primary insomnia. Differences between our finding and the previous report might be due to sample composition and method of MRI assessment. Furthermore, we demonstrated no objective differences between the controls and PIs in actigraphic measures of sleep maintenance. Within the PIs, however, actigraphic measures of poor sleep maintenance were associated with smaller HV.
Keywords: Brain & Biology
Return to Top
Yildiz, A., Gokmen, N., Kucukguctu, S., Yurt, A., Olson, D., Rouse, E. D., & Renshaw, P.F. (2010). In vivo proton magnetic resonance spectroscopic examination of benzodiazepine action in humans. Psychiatry Research, 184(3), 162-170.
In an examination of the effect of benzodiazepines on brain chemistry, 44 healthy controls underwent a short echo-time proton magnetic resonance spectroscopy ((1)H MRS) session after induced sedation with intravenous midazolam (0.03mg/kg) plus fentanyl (2μg/kg). The regions of interest were the anterior cingulate cortex, right basal ganglia, right frontal lobe, and right hippocampus. Twenty-five of these subjects underwent the second (1)H MRS session while awake. The measured (1)H MRS metabolites included N-acetyl-aspartate, creatine-containing compounds (PCr+Cr), choline-containing compounds, myo-inositol, and glutamate plus glutamine, which were quantified both as absolute values and metabolite/PCr+Cr ratios. The results were analyzed using independent group t tests and repeated measures analysis of variance (ANOVA, with alpha values set at 0.025 to minimize the risk of false-positive findings arising from multiple comparisons. No significant difference between subjects under midazolam plus fentanyl induced sedation and awake could be detected with unpaired analyses. Paired comparisons by ANOVA with repeated measures found that neither drug (midazolam plus fentanyl) nor the drug by time (interval between two scan times) interaction had a significant effect on the quantified metabolites. These findings encourage utilization of benzodiazepine-induced brief sedation during in vivo (1)H MRS experiments of the brain, and may help with elucidation of state-dependent neurochemical alterations during the course of bipolar and schizoaffective disorders.
Keywords: Brain & Biology, Seriously Mentally Ill (SMI)
Return to Top
 
 
 
 
 
 

Resources


Order the free SDVCS Clipboard

Order the free VA ACE Card

Veterans Crisis Line 1-800-273-8255 Press 1

Click Now for Confidential Veterans Chat

Guide to Long Term Care: Explore Your Options

Make The Connection Website

PTSD Information