

ENERGY STAR for Data Center Products: UPS ...plus Servers, Storage, and more April 24, 2012

Robert (RJ) Meyers

Data Center Products Lead ENERGY STAR Program US Environmental Protection Agency

Overview

- Main presentation:
 - Uninterruptible Power Supplies (UPS)
- Product updates:
 - Servers
 - Storage
 - Large Network Equipment
 - Data Center Cooling Systems

UPS Defined

- UPSs are devices that sit between an outside power source and an IT load and which reduce or eliminate undesirable features of the incoming power supply.
 - Undesirable features = power outages, voltage sags or surges, poor frequency harmonics, etc.
- Also provide some limited battery or flywheel backup power.

Scope of the ESTAR Specification

- AC and DC power
- VFD, VI, and VFI products
- Static electronics and Rotary systems
- Systems with Battery and Flywheel storage
- Traditional, Multi-mode, and Modular systems
- Consumer through Data Center scale
 - No upper or lower bounds—full market range

AC and DC

- Both AC and DC products covered.
- DC newer for data centers, less common
 - Traditionally in telecom or other sectors
- If your data center is designed for it, DC provides efficiency boost.
 - Roughly a few percentage points increase

Scope of the ESTAR Specification

- AC and DC power
- VFD, VI, and VFI products
- Static electronics and Rotary systems
- Systems with Battery and Flywheel storage
- Traditional, Multi-mode, and Modular systems
- Consumer through Data Center scale
 - No upper or lower bounds—full market range

Input Mode: VFD

- Voltage and Frequency Dependent (VFD)
 - Basic IT load protection
 - Highest energy efficiency (96 98% peak)
 - Deployed in "Passive Standby" topology
- Tend to be smaller, individual-device oriented
 - Consumer, light commercial
 - Battery backup, surge protection

Input Mode: VI

- Voltage Independent (VI)
 - Enhanced IT load protection
 - Moderate energy efficiency (94 97% peak)
 - Deployed in "Line Interactive" topology
- Range from small single-device to larger "server rack" size

Input Mode: VFI

- Voltage and Frequency Independent (VFI)
 - Highest IT load protection
 - Lower energy efficiency (84 95% peak).
 - Increases with output power.
 - Deployed in "Double Conversion" topology
 - Isolates load completely from mains power
- Range from single-device coverage to large data center systems

Scope of the ESTAR Specification

- AC and DC power
- VFD, VI, and VFI products
- Static electronics and Rotary systems
- Systems with Battery and Flywheel storage
- Traditional, Multi-mode, and Modular systems
- Consumer through Data Center scale
 - No upper or lower bounds—full market range

Scope of the ESTAR Specification

- AC and DC power
- VFD, VI, and VFI products
- Static electronics and Rotary systems
- Systems with Battery and Flywheel storage
- Traditional, Multi-mode, and Modular systems
- Consumer through Data Center scale
 - No upper or lower bounds—full market range

UPS Type: Traditional

- Historically, majority of UPS products
- Single product/enclosure
- Some maximum output power
- Single input mode (either VFI, VI, or VFD)
- Example:
 - 50 kW VFI system

UPS Type: Multiple Normal Mode

- Newer product type, only offered by a few companies
- >1 input dependency in operation
 - Ex.: 500 kW Multi-mode UPS
 - Functions in VFD at 97% efficiency
 - Voltage drop occurs
 - Rapidly switches to VFI at 92% efficiency to protect load from disruption
- Fast switching time—on the order of 4 10ms.
- Can gain 5 10% efficiency from VFD mode.

UPS Type: Modular

- A frame plus individual modules
- Ex.: 500 kW Modular VFI UPS, with 5 modules of 100 kW each.
 - Only need 200 kW for initial deployment, will expand out to 500 kW.
 - Buy frame with 2 modules installed, 3 empty slots.
 - Purchase additional modules as needed to expand.
- Enables longer operation at higher loading point
 - Greater energy efficiency

Typical UPS Efficiency Curve

- Much higher efficiency from maintaining high load
- Moving from 25% 100% load:
 - Nearly 7 15% efficiency gain

Example UPS Efficiency Curves

Savings from ENERGY STAR

Expected Energy Savings from Purchasing an ENERGY STAR UPS (VFI)

VFI UPS Output Capacity (kW)

Example Savings from Purchasing ENERGY STAR

Assumes ~50% load on VFI UPS. Average ESTAR vs. average non-ESTAR efficiency used to derive energy savings per year

Power (kW)	Capex (\$)	Elec. Rate (\$/kWh)	Energy Savings (kWh/yr)	Cost savings (\$/yr)	Lifetime (yrs)	Lifetime savings (\$)	Savings as fraction of capex
10	\$9k	0.1	4,075	\$407	10	\$4k	44%
100	\$90k	0.1	21,832	\$2.1k	15	\$32.7k	36%
1000	\$800k	0.1	266,550	\$26.6k	15	\$400k	50%

Indirect Savings

- Cooling energy savings
 - Rule of thumb: 25 50% of direct IT savings
 - High efficiency = less energy lost to heat, less energy expended to remove heat.
- Ex.: 1MW VFI UPS saves \$400k direct
 - Avoided cooling: Add another \$100k 200k lifetime.

Metering Incentive

- Specification provides a 1% incentive to UPS products that meter their output kWh.
- Ex.: Rather than be >94%, a VFI product with a meter must be >93%.
- Enables measurement of PUE
 - Accuracy enough to determine trend
- Measure PUE and get the ENERGY STAR label for your data center!

Power and Performance Datasheet (PPDS)

- Contains information on product energy performance
- Enables comparisons between products
- Developing online "PPDS widget" to search ESTAR database

Final Word: UPS

- Newer, high efficiency technologies on market
 - Standard, modular, multi-mode
- Data center DC power share small but growing, with efficiency bonus
- Huge lifetime savings from purchasing ESTAR
- Absolutely <u>must</u> examine operational costs in addition to capex/installation
- More easily measure PUE with output meters

Data Center Product Updates

Servers:

- Working on v2.0
- Extending scope to include blade servers
- Test and publish active power consumption with SPECpower Server Efficiency Rating Tool (SERT)
- Effective early 2013

Storage:

- Working on v1.0
- Cover majority of HDD and SSD Online systems
- Test and publish idle and active efficiency
- Effective late 2012

Future Data Center Products

- Large Network Equipment
 - Launch development Q3/Q4 2012
 - Plan to cover switches, routers, examine modular units
- Data Center Cooling Systems
 - Launch development Q3/Q4 2012
 - Scoping still active

Thank you!

RJ Meyers

1310 L St. NW, 902M

202-343-9923

Meyers.Robert@epa.gov

