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ABSTRACT 
 

A new computer program implementation of the layered elastic response equations has been 
written for use in Federal Aviation Administration (FAA) airport pavement design and 
evaluation computer programs. The program is written in Visual Basic (VB) 6.0 for Microsoft 
Windows 95, or higher, as a Dynamic Link Library with a defined interface. It can therefore be 
executed from programs written in other languages compiled for execution under Windows. 
Major objectives in writing the new program were to improve the efficiency of the computation 
of linear elastic pavement responses in the LEDFAA thickness design program and to provide a 
well-documented methodology and implementation suitable for further development when 
necessary. Wheel loads are modeled as circular loads with constant vertical pressure. Efficiency 
has been improved by structuring the program loops so that redundant computations are 
eliminated for multiple aircraft on a multiple-layered structure. This makes the computation time 
only very weakly dependent on the number of layers and the number of aircraft when all of the 
structure and aircraft information is passed to the program before execution. A code fragment is 
presented to illustrate the structure of the program loops. The use of Gauss-Laguerre integration, 
with offset of the layer origins, and part inversion in the solution of the matrix equations also 
improve efficiency. The development environment for LEAF was a computer program for 
backcalculating the layer modulus values of pavement structures represented by linear elastic 
layers of infinite horizontal extent. The requirements for calling the DLL from an application are 
illustrated by code excerpts from the backcalculation program. 
 
INTRODUCTION 
 

LEAF is a layered elastic analysis computer program developed for use as a component in 
Federal Aviation Administration (FAA) airport pavement design and analysis application 
computer programs. Intended originally to replace JULEA as used in LEDFAA 1.2, LEAF has 
the same general structure as JULEA, with Gauss-Laguerre integration, but introduces a more 
generalized transformation of the origin in the integral equations and organizes the inner loops 
for more efficient computation of pavement responses for multiple aircraft mixes. 

The fundamental computational element of any layered elastic program is based on the 
idealized multiple-layered half-space with circular load applied at the surface, as shown in 
figure 1. The bottom layer in LEAF is of infinite depth and the load on the surface has uniform 
pressure distribution. The axis system is axisymmetric with radius r, depth z, and angle in the 
horizontal plane θ defining any point in an infinite disk or an infinite half-space. 

The basic set of structural responses which are calculated from the layered elastic equations 
are vertical stress, σz, radial stress, σr, tangential stress, σt, vertical-radial shear stress, τzr, 
vertical deflection, w, and radial deflection, u. 

As illustration of the type of computation required, equation 1 shows the layered elastic 
equation for vertical stress in a given layer (the evaluation layer). See, for example, references 1 
and 2. 
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Figure 1.  Nomenclature and coordinates. 
 

a = tire contact radius 
r = evaluation point radius 
z = depth from the top of the evaluation layer 
q = tire contact pressure 
α = integration variable (Hankel domain variable) 

J0, J1 = Bessel functions 
 

The coefficients A(α), B(α), C(α), and D(α) are determined according to boundary 
conditions at the top and bottom surfaces of each of the layers. They are functions of α. In the 
following, the α and the parentheses are dropped, but it should be remembered that the boundary 
condition coefficients are functions of α and must be recomputed whenever α changes. Values of 
the boundary condition coefficients A, B, C, and D must be computed for each of the layers, but 
the complete integral equation only needs to be solved for the evaluation point in the evaluation 
layer. Also, because the coefficients are functions of α, the terms in braces in equation 1 can be 
multiplied by any function of α (taking a common factor in α outside the braces), provided only 
that the multiplier is consistently applied to all integrands used to set up the boundary conditions. 
 
SOLUTION OF THE LAYERED ELASTIC EQUATIONS 
 

The basic procedure used to compute the structure responses is as follows: 
1. Set up two equilibrium and two compatibility equations for each interface between layers. 

These are the boundary condition equations. 
2. Assemble a matrix equation containing the boundary condition equations for all of the 

interfaces (including the surface and the interface at infinity). 
3. Solve the matrix equation for the boundary condition coefficients. 
4. Integrate the response equations (represented here by equation 1). 
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To illustrate the general structure of the boundary condition matrix equation, the assembled 
equation for a three-layer system is as follows. 
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The first two rows are the boundary condition equations for vertical and shear stress at the 

surface. The two other boundary condition equations at the surface, those for vertical and radial 
deflection, are eliminated because there is no deflection constraint applied in this application. 
The next four rows are the boundary condition equations for the first interface below the surface 
(equating vertical and shear stresses and vertical and radial deflections across the interface). The 
last four rows are the equations for the interface at the top of the subgrade (coefficients A3 and C3 
are set to zero to satisfy the conditions for the infinite depth of the subgrade). 

The presence of the exponentials in the matrix equation can lead to underflow and overflow 
during solution of the equations. Making a change in the origin of the z coordinate in each layer 
changes the values of the exponents and allows control over the values of the exponentials. The 
procedure used in LEAF is to multiply the first and third columns of each equilibrium equation 
by 1,e Oihα− and multiply the second and fourth columns of each equation by 2,e Oihα− . The fifth and 
seventh and the sixth and eighth columns are multiplied by 1,1e +− Oihα  and 2,1e +− Oihα , respectively.  

The change in variable must also be duplicated in the integrals as shown in equation 2. The 
primes in equation 2 indicate that the numerical values of the coefficients are changed after 
application of the change of variable. 
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Numerical integration by the Gauss-Laguerre method requires a further change of variable: 
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giving 
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Finally, the infinite continuous integral is transformed to a finite sum (see, for example, 

reference 3). 
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Where α1j and α2j are the abscissa values for the summation of N points and wj are weights 

corresponding to the α1j and α2j values. 

Computing the sum requires that the Bessel functions 




 α

z
r

J 0  and 




 α

z
a

J1  be computed at 

each step. The independent variable is α, and increasing r or a increases the frequency of the 
corresponding function. The number of integration points required to maintain accuracy (and 
avoid aliasing) therefore increases as the radius to the evaluation point increases or the radius of 
the load increases. But with the change of variable introduced to enable Gauss-Laguerre 
integration, increasing the value of z by an additional shift in the origin of the z coordinate 
decreases the frequency of the oscillation. This avoids, within reason, changing the number of 
integration points and recomputing the values of the abscissa and weight at each summation 
point. 

The procedure for selection of the hOi,1 and hOi,2 values in the origin shift for each layer is as 
follows. 
 
1. Set the offsets for the first layer to twice the thickness of the first layer, 12,1, 2hhh OiOi == . 
2. Set the offsets for all of the other layers according to the relationship 

)( 12,12,1, −− +== iOiOiOi hhhh , for i from 2 to the number of layers. 
3. Compute new offsets for the evaluation layer as (Rmax / 4 + z), where Rmax is the maximum of 

the load radius and the radius to the evaluation point, and z is the distance to the evaluation 
point from the top of the evaluation layer. 

4. If the new values for the evaluation layer are greater than the first values, then reset the offset 
values of all of the layers according to the relationship in step 2 but increased to match the 
values computed in step 3. Otherwise, leave the offsets unchanged. 
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The effects of this procedure are to minimize the possibility of overflow or underflow in the 
solution of the boundary condition equations (step 2) and to eliminate the effects of aliasing in 
the solution of the response integrals (step 3). It was originally thought that best convergence 
would probably be achieved by assigning different values to the two offsets, but further work 
indicated that keeping both at the same value minimizes the tendency to overflow and underflow. 
The conditions for convergence are, however, not very well understood and separate offset 
variables were retained in the derivation and in the computer program in case better conditions 
are found in the future. Further details on the derivation of the equations and the numerical 
methods used in their solution are given in reference 4. The offset (origin shift) for positive 
exponents is illustrated in figure 2. 
 

 
VARIABLE INTERFACE BONDING 
 

In order to allow relative horizontal movement between two layers at an interface, a 
uniformly distributed shear spring is assumed to connect the layers. This is the same model as 
used in other layered elastic computer programs having the same feature, including JULEA. The 
spring acts in the radial direction and has the following law: 
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where 
τi = radial shear stress at the interface between layers i and i+1. 

(ui – ui+1) = relative radial displacement across the interface. 
ki = interface spring stiffness, with units of lb/inch relative radial 

displacement/inch along the radius/inch along the circumference at radius r 
(lb/in3). That is, a radial spring connects elemental areas either side of the 
interface. The spring resists relative radial displacement across the interface. 

 
To reduce numerical complications, the computer implementation can use the relationship 
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This change of variable is used in JULEA, with a further logarithmic transformation in the 

input data parameter. LEAF uses the same variable, l, both within the computational routines and 
as the input data parameter. 
 

For fully bonded layers, 1ii  and ,1  , +==∞= ii uulk . 
For fully unbonded layers, 0 and ,0  ,0 iii === τlk . 

 
For reference, the transformation in JULEA is as follows: 

 
  =im input parameter for interface i. 
  2 =E modulus of layer 2 (directly below the surface layer). 
 

2100000,100 E
m

iii
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llm
−

==≥ ElseThenIf  
 

Note that l is a parameter. It does not have units and it has no physical significance other than 
the manner in which it varies the spring stiffness. It has a value from 0 to 1 (fully unbonded to 
fully bonded). 
 
COMPUTER PROGRAM IMPLEMENTATION OF THE INTEGRATIONS 
 

Computer program implementation of Gauss-Laguerre integration is basically the same for 
stresses, strains, and displacements. The only difference is that the equations evaluated in the 
program loops are different. A primary objective was to reduce the run-time for the pavement 
thickness design procedures implemented in the computer program LEDFAA. These 
implementations require the computation of one, or at most, two responses for a single pavement 
structure of rigid or flexible type with or without an overlay and with many landing gear 
configurations in the design aircraft mix. The strategy adopted was based on the following. 
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1. Allow for independent computation of those responses required for a particular type of 
pavement design. For example, new flexible design requires computation of only vertical 
strain at the top of the subgrade in order to iterate to the design thickness. 

2. Arrange the program loops so that individual elements of the integrand are computed the 
minimum number of times. 

3. Assume that wheel loads and tire pressures are the same for each wheel in an individual 
landing gear wheel group. 

 
Subroutines are provided for independently computing vertical deflection, horizontal 

deflection, vertical strain, and horizontal stress. Visual Basic program code from the subroutine 
for computing vertical strain is given below to illustrate the implementation of the integration 
subroutines. The integral equation for vertical strain is derived from the basic integral equations 

for vertical, radial, and transverse stress through the relation ))((1
trzz E

σσυσε +−= . The 

Gauss-Laguerre summation of the resulting layered elastic integral is: 
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Data is passed to the subroutine for a single structure and a complete traffic mix. The traffic 

mix has NAC number of aircraft. An “aircraft” is a group of NTires wheels, usually 
representing a landing gear, but not necessarily. For example, all 16 main landing gear wheels on 
a B-747 could be defined as a wheel group. Each wheel in an aircraft wheel group has the same 
wheel load and tire pressure. Each aircraft wheel group has NevalPoints evaluation points at 
a single depth measured from the top of the pavement structure. Vertical strain is to be calculated 
at each evaluation point for each aircraft. 

The expression to be summed can be split into four levels. The levels are, in decreasing order 
in the hierarchy, as follows. 
 
1. Under the assumption that all wheels on a landing gear have the same load and the same tire 

pressure, the term 
i

i

E
qa )1( υ+

 only needs to be computed once for each aircraft. 

2. Terms like 
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υ  only need to be computed once for each integration 

point. That is, they are common to all evaluation points on all wheels on all aircraft. These 
terms are also the most expensive to compute because the coefficients A, B, C, and D, must 
be computed from the boundary condition equations each time. Special cases can also apply 
to these terms. For example, in the computation of vertical strain at the top of the subgrade, 
only the term containing B and D needs to be computed because A and C are zero in the 
subgrade layer. 
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3. Terms like 

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, containing aα, where a is the tire radius, only need to be computed 

once for each wheel at each integration point. That is, they are common to all evaluation 
points relative to each wheel taken separately. However, if both load and pressure are the 
same for all of the wheels on an aircraft, then these terms only need to be computed once for 
each aircraft at each integration point. 

4. Terms like 
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must be calculated for all evaluation points on all wheels 

on every aircraft at each integration point. 
 

Computation loops in the program are therefore ordered as shown in the Visual Basic code 
fragment below. 
 
‘ Depth from top of evaluation layer to evaluation point. 
  ZLayer = ZEval - ZInterface(I - 1) 
‘ RMax = maximum of evaluation point radius or load radius. 
  Call SetOShifts(OShift(), I, ZLayer, RMax) 
   
  Z1 = OShift(I, 1) - ZLayer 
  Z2 = OShift(I, 2) + ZLayer 
 
  ZLayer1 = ZLayer / Z1 
  ZLayer2 = ZLayer / Z2 
  Poisx2 = Poissons(EvalLayer) * 2 
   
  IConstants = (EvalLayer - 1) * 4 
 
‘ GLAlpha()  = Gauss-Laguerre abscissa values. 
‘ GLWeight() = Gauss-Laguerre weight values. 
  For IG = 1 To GLNGauss  ‘ Gauss-Laguerre integration points. 
    StrainWIGforConverge = 0  ‘ Initialize convergence criterion. 
    If EvalLayer < NLayers Then   ‘ A and C are zero for subgrade. 
‘     Put constants for all layers in B(). 
      Call FindConstants(GLAlpha(IG) / Z1, B(), OShift()) 
      AK = B(IConstants + 1)      ‘ A for evaluation layer. 
      AlphaZ = GLAlpha(IG) * ZLayer1 
      CK = B(IConstants + 3) * (1 - Poisx2 * 2 - AlphaZ) 
      StrainWIG1 = -(AK - CK) * GLWeight(IG) / Z1 
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      StrainWIGforConverge = (Abs(AK) + Abs(CK)) * GLWeight(IG) / Z1 
    End If 
‘   Do the same for constants B and D. 
    Call FindConstants(GLAlpha(IG) / Z2, B(), OShift()) 
    BK = B(IConstants + 2) 
    AlphaZ = GLAlpha(IG) * ZLayer2 
    DK = B(IConstants + 4) * (1 - Poisx2 * 2 + AlphaZ) 
    StrainWIG2 = (BK + DK) * GLWeight(IG) / Z2 
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    StrainWIGforConverge = StrainWIGforConverge _ 
                         + (Abs(BK) + Abs(DK)) * GLWeight(IG) / Z2 
‘   Loop over all aircraft. 
    For IAC = 1 To NAC 
      If Not ACConverged(IAC) Then 
‘       Skip if all evaluation points for aircraft IAC have 
‘       converged. 
        A2 = TireRadius(IAC, 1) ' Move down 1 loop for varying 
‘                                 pressures. 
        A1 = A2 / Z1 
        A2 = A2 / Z2 
        If EvalLayer < NLayers Then 
‘         The first line below is the load function for uniform 
‘         pressure. The second line is for selectable load 
‘         functions. Parabolic is currently available as an 
‘         alternative to uniform pressure. 
‘          J1AlphaA1 = bessj1(GLAlpha(IG) * A1) * StrainWIG1 
          J1AlphaA1 = LoadFunction(GLAlpha(IG) * A1) * StrainWIG1 
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        End If 
        J1AlphaA2 = LoadFunction(GLAlpha(IG) * A2) * StrainWIG2 
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‘       Loop over all tires on each gear (aircraft). 
        For ITire = 1 To NTires(IAC) 
‘         Loop over all evaluation points on each gear (aircraft). 
          For IEval = 1 To NEvalPoints(IAC) 
‘           R2 is the horizontal distance between the evaluation 
‘           point and center of the tire. Previously computed. 
            R2 = Radius(IAC, ITire, IEval) 
            R1 = R2 / Z1 
            R2 = R2 / Z2 
            If EvalLayer < NLayers Then 
              J0AlphaR1 = bessj0(GLAlpha(IG) * R1) 

                        = 
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            End If 
            J0AlphaR2 = bessj0(GLAlpha(IG) * R2) 

                      = 
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‘           StrainWI = elemental strain for the current integration 
‘                      point. 
            StrainWI = J0AlphaR1 * J1AlphaA1 + J0AlphaR2 * J1AlphaA2 
‘           Accumulate sum at each evaluation point for each gear. 
            StrainW(IAC, IEval) = StrainW(IAC, IEval) + StrainWI 
‘           Convergence criterion always positive and conservative. 
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            If Abs(StrainWIGforConverge / StrainW(IAC, IEval)) _ 
                 < ConvergenceLimit Then  ‘ Default = 0.00001. 
              If Not Converged(IAC, ITire, IEval) Then 
‘               Keep track of the number of evaluation points 
‘               which have converged. 
                NEvalsConverged(IAC, ITire) _ 
                = NEvalsConverged(IAC, ITire) + 1 
                If NEvalsConverged(IAC, ITire) = NEvalPoints(IAC) _ 
                  Then 
‘                 All evaluation points for tire Itire on aircraft 
‘                 IAC have converged. 
                  NtiresConverged(IAC) = NtiresConverged(IAC) + 1 
                  IterationstoConverge = IG 
                End If 
                Converged(IAC, Itire, IEval) = True 
                If NtiresConverged(IAC) = Ntires(IAC) Then 
                  ACConverged(IAC) = True 
                  NACConverged = NACConverged + 1 
                End If 
              End If 
            End If 
          Next IEval 
        Next ITire 
      End If 
    Next IAC 
    If NACConverged = NAC Then 
‘     All evaluation points on all aircraft have converged. 
      NConverge = IG 
      Exit For  ‘ Quit integration. 
    End If 
  Next IG 
 
  For IAC = 1 To NAC  ‘ Apply the common load/materials factor. 
    Factor = TirePress(IAC, 1) * TireRadius(IAC, 1) 
    Factor = Factor * (1 + Poissons(EvalLayer)) / Youngs(EvalLayer) 

           =
i

i

E
qa )1( υ+

 

    For IEval = 1 To NEvalPoints(IAC) 
‘     Apply final factor to compute strains at all eval. points. 
      StrainW(IAC, IEval) = StrainW(IAC, IEval) * Factor 
      If StrainW(IAC, IEval) > StrainWmax(IAC) Then 
‘       Maximum strain for each gear (aircraft). 
        StrainWmax(IAC) = StrainW(IAC, IEval) 
      End If 
    Next Ieval 
  Next IAC 
 

The second IAC loop is more complicated when computing horizontal responses because the 
responses at a single evaluation point from each tire must be transformed into rectangular 
coordinates before they are summed. Vertical responses can be summed directly in the first loop 
as shown above. 
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IMPLEMENTATION AS A DYNAMIC LINK LIBRARY 
 

LEAF is written entirely in Visual Basic 6.0 and is compiled as an ActiveX dynamic link 
library (DLL). The DLL exports LEAF as LEAFD.clsLEAF. The interface consists of one callable 
subroutine, five data structures (one array, three user-defined types (UDT), and one enumeration 
type), three properties, and one event. The data structures are defined in LEAF. Two of the 
UDTs must be dimensioned in the calling program. 

The subroutine declaration statement is: 
 
Public Sub ComputeResponse(ResponseType As LEAFoptions, NACarg As Long, 

LEAAircraft() As LEAFACParms, LEAStructure As LEAFStrParms, Response() As 
Double, AllResps() As LEAFAllResponses) 

ResponseType is an enumeration type which defines the response variable for which values 
will be computed (vertical strain, horizontal stress, etc.). The value of ResponseType is passed as 
one of the constant names defined by LEAFoptions (see below). 

NACarg is a variable defining the number of aircraft for which data is being passed to the 
subroutine. 

LEAAircraft() is a UDT defining the parameters for each aircraft. A new instance of the 
UDT is declared and dimensioned in the calling program. All variable values are set in the 
calling program. 

LEAStructure is a UDT defining the parameters for the pavement structure, including the 
evaluation depth and the index for the evaluation layer. A new instance of the UDT is declared 
and dimensioned in the calling program. All variable values are set in the calling program. 

Response() is a two-dimensional double-precision array returning the values of the 
computed responses for all evaluation points for all aircraft. It is declared and dimensioned in 
LEAF. The dimension indexes are (aircraft number, evaluation point number) as passed in 
LEAAircraft(). 

ALLResps() is a UDT returning all responses when ResponseType has the value 
AllReponses (see the definition of LEAFOptions below). AllResps() has a lengthy definition 
not given here (see reference 4). The responses returned are all in rectangular coordinates and 
include deflections, strains and stresses, principal strains and stresses, and maximum and 
octahedral shear stresses. 

The event is LEAFStopped(). It is defined and raised in LEAF.  
The definitions of the UDTs for LEAAircraft and LEAStructure are, respectively: 
 

Public Type LEAFACParms  ' 1 To NAircraft 
' Type for passing aircraft data to LEA routine. 
' Dimensioned and set in the client program. 
' Must be dimensioned as an array for compatibility 
' with Sub ComputeResponse calling list. 
  ACname As String 
  GearLoad As Double 
  NTires As Long 
  TirePress() As Double  ' 1 To NTires 
  TireX() As Double      ' 1 To NTires 
  TireY() As Double      ' 1 To NTires 
  NEvalPoints As Long 
  EvalX() As Double      ' 1 To NEvalPoints 
  EvalY() As Double      ' 1 To NEvalPoints 
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End Type 
 
Public Type LEAFStrParms 
' Type for passing pavement structure data to LEAF. 
' Dimensioned and set in the client program. 
' Only one structure is allowed so the type is not an array. 
  NLayers As Long 
  Thick() As Double           ' 1 To NLayers 
  Modulus() As Double         ' 1 To NLayers 
  Poisson() As Double         ' 1 To NLayers 
  InterfaceParm() As Double   ' 1 To NLayers 
  EvalDepth As Double 
  EvalLayer As Double 
End Type 
 
The definition of the enumeration type is: 
 
Public Enum LEAFoptions 
  LEAFVerticalStrain = 1    ' Select the response to be computed and 
  LEAFVerticalDeflection = 2 ' returned. Selecting a single response 
  LEAFHorizontalStress = 3  ' reduces run time considerably compared 
  LEAFAllResponses = 4      ' with requesting all responses. 
End Enum 
 

ConvergenceLimit is a property which returns or sets the limit for convergence of the 
integrals to a desired relative accuracy. The default value is 0.00001. 

GLNumberofPoints is a property which returns or sets the number of points used in the 
Gauss-Laguerre numerical integration. The default value is 500. Decreasing the value reduces 
the run time and reduces the accuracy. Increasing the value has the opposite effect. The 
relationship between GLNumberofPoints and run time or accuracy is not linear. 

LEAFError is a read only property which returns an error message if LEAF detects an input 
or computational error. An empty string denotes that no errors have been detected by LEAF. At 
present, very little input parameter checking is done and the user is expected to ensure that the 
input parameters are within reasonable bounds and that there is correct dimensioning of the data 
types. Additional error checking will be added as time permits. 
 
DEVELOPMENT APPLICATION 
 

The development environment for LEAF consists of a Visual Basic application which runs a 
routine for backcalculating layer modulus values from falling weight deflectometer (FWD) test 
data and a routine for computing pavement responses for a user-defined landing gear wheel 
group. The backcalculation routine demonstrates calling LEAF for computation of a single 
pavement response (vertical deflection). The response routine demonstrates the computation and 
printout of all pavement responses for multiple aircraft. Declaring an instance of clsLEAF, 
setting paramenter values, and calling ComputeResponse is straightforward if the event 
LEAFStopped is not required. However, if LEAFStopped is required then an indirect reference 
has to be made to an instance of clsLEAF created from a declaration made “with events” in the 
declarations section of a class module. For the LEAF development application, the declaration is 
made in the main form: 

Dim WithEvents RunLEAFEvent As clsLEAF. 
Another declaration is made in the LEAF setup module: 
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Public RunLEAF As clsLEAF. 
The instance and the indirect reference are set in the form load routine: 

Set RunLEAFEvent = New clsLEAF  ‘ A new instance. 
Set RunLEAF = RunLEAFEvent  ‘ A Public reference to RunLEAFEvent. 

All of the variables, properties, and methods are then available. For example, the response 
subroutine is run with: 
Call RunLEAF.ComputeResponse(LEAFAllResponses, NAC, CallAC(), _ 
                             LEAStructure, Response(), AllResp()), 
where the argument names are as used in the application. A subroutine structure called 
RunLEAFEvent_LEAFStopped() is also automatically created in the main form. Code responding 
to the LEAFStopped event being raised by LEAF is placed in this subroutine by the user. 

Using the development application, LEAF has been tested against Boussinesq solutions for a 
half-space and against other layered elastic computer programs for multiple-layered structures. 
Accuracy is good compared to the other solution methods. Details are given in reference 4. 

The application is available on the FAA Airport Technology R&D Branch web site 
www.airporttech.tc.faa.gov as source code (including LEAF) and as an installable Windows 
application. 
 
SUMMARY 
 

A new computer program has been written for solving the layered elastic equations 
representing simplified pavement structures. The program implementation is arranged for 
efficient solution of the design procedures in the LEDFAA computer program for airport 
pavement thickness design. The program is written in Visual Basic 6.0 and is compiled as a 
dynamic link library. A sample application incorporating the dynamic link library is available as 
source code and as an installable executable on the FAA Airport Technology web site 
www.airporttech.tc.faa.gov. Documentation is also available on the web site. 
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