

LEAF – A NEW LAYERED ELASTIC COMPUTATIONAL PROGRAM
FOR FAA PAVEMENT DESIGN AND EVALUATION PROCEDURES

By:
Gordon F. Hayhoe

FAA William J. Hughes Technical Center
Airport Technology Research and Development Branch, AAR-410

Atlantic City International Airport, NJ 08405, U.S.A.
Phone: (609) 485- 8555; FAX: (609) 485-4845

gordon.hayhoe@tc.faa.gov

PRESENTED FOR THE 2002 FEDERAL AVIATION ADMINISTRATION AIRPORT
TECHNOLOGY TRANSFER CONFERENCE

05/02

 Hayhoe 1

ABSTRACT

A new computer program implementation of the layered elastic response equations has been
written for use in Federal Aviation Administration (FAA) airport pavement design and
evaluation computer programs. The program is written in Visual Basic (VB) 6.0 for Microsoft
Windows 95, or higher, as a Dynamic Link Library with a defined interface. It can therefore be
executed from programs written in other languages compiled for execution under Windows.
Major objectives in writing the new program were to improve the efficiency of the computation
of linear elastic pavement responses in the LEDFAA thickness design program and to provide a
well-documented methodology and implementation suitable for further development when
necessary. Wheel loads are modeled as circular loads with constant vertical pressure. Efficiency
has been improved by structuring the program loops so that redundant computations are
eliminated for multiple aircraft on a multiple-layered structure. This makes the computation time
only very weakly dependent on the number of layers and the number of aircraft when all of the
structure and aircraft information is passed to the program before execution. A code fragment is
presented to illustrate the structure of the program loops. The use of Gauss-Laguerre integration,
with offset of the layer origins, and part inversion in the solution of the matrix equations also
improve efficiency. The development environment for LEAF was a computer program for
backcalculating the layer modulus values of pavement structures represented by linear elastic
layers of infinite horizontal extent. The requirements for calling the DLL from an application are
illustrated by code excerpts from the backcalculation program.

INTRODUCTION

LEAF is a layered elastic analysis computer program developed for use as a component in
Federal Aviation Administration (FAA) airport pavement design and analysis application
computer programs. Intended originally to replace JULEA as used in LEDFAA 1.2, LEAF has
the same general structure as JULEA, with Gauss-Laguerre integration, but introduces a more
generalized transformation of the origin in the integral equations and organizes the inner loops
for more efficient computation of pavement responses for multiple aircraft mixes.

The fundamental computational element of any layered elastic program is based on the
idealized multiple-layered half-space with circular load applied at the surface, as shown in
figure 1. The bottom layer in LEAF is of infinite depth and the load on the surface has uniform
pressure distribution. The axis system is axisymmetric with radius r, depth z, and angle in the
horizontal plane θ defining any point in an infinite disk or an infinite half-space.

The basic set of structural responses which are calculated from the layered elastic equations
are vertical stress, σz, radial stress, σr, tangential stress, σt, vertical-radial shear stress, τzr,
vertical deflection, w, and radial deflection, u.

As illustration of the type of computation required, equation 1 shows the layered elastic
equation for vertical stress in a given layer (the evaluation layer). See, for example, references 1
and 2.

{ }
{ }∫

∞

− 





+−+−
−−−

−=
0 10

e)21)(()(

e)21)(()(
)()(α

αυαα
αυαα

αασ
α

α

d
zDB

zCA
aJrJqa

z

z

z (1)

 Hayhoe 2

Figure 1. Nomenclature and coordinates.

a = tire contact radius
r = evaluation point radius
z = depth from the top of the evaluation layer
q = tire contact pressure
α = integration variable (Hankel domain variable)

J0, J1 = Bessel functions

The coefficients A(α), B(α), C(α), and D(α) are determined according to boundary
conditions at the top and bottom surfaces of each of the layers. They are functions of α. In the
following, the α and the parentheses are dropped, but it should be remembered that the boundary
condition coefficients are functions of α and must be recomputed whenever α changes. Values of
the boundary condition coefficients A, B, C, and D must be computed for each of the layers, but
the complete integral equation only needs to be solved for the evaluation point in the evaluation
layer. Also, because the coefficients are functions of α, the terms in braces in equation 1 can be
multiplied by any function of α (taking a common factor in α outside the braces), provided only
that the multiplier is consistently applied to all integrands used to set up the boundary conditions.

SOLUTION OF THE LAYERED ELASTIC EQUATIONS

The basic procedure used to compute the structure responses is as follows:
1. Set up two equilibrium and two compatibility equations for each interface between layers.

These are the boundary condition equations.
2. Assemble a matrix equation containing the boundary condition equations for all of the

interfaces (including the surface and the interface at infinity).
3. Solve the matrix equation for the boundary condition coefficients.
4. Integrate the response equations (represented here by equation 1).

z hi
r

a

Evaluation Point

Load

Evaluation Layer

 Hayhoe 3

To illustrate the general structure of the boundary condition matrix equation, the assembled
equation for a three-layer system is as follows.







































=













































































−−
−−

−
−−

−−−−
−−−−−

−−−
−−−−

−
−−−−−

−−

−−

−−

−−

−−

−−

−−

−−

0
0
0
0
0
0
0
0
0
1

eeee
)42(eeee

21eeee
)21(1eeee

eeee
)42()42(eeee

2211eeee
)21()21(11eeee

2211
)21()21(11

3

3

2

2

2

2

1

1

1

1

2210,810,7

2229,89,7

38,88,7

37,87,7

11116,46,3

1212115,45,3

224,44,3

223,43,3

11

11

2222

2222

2222

2222

1111

1111

1111

1111

D
B
D
C
B
A
D
C
B
A

RRaa
RRaa

aa
aa

RRRRaa
RRRRaa

aa
aa

hhhh

hhhh

hhhh

hhhh

hhhh

hhhh

hhhh

hhhh

αααα

αααα

αααα

αααα

αααα

αααα

αααα

αααα

υ
υ
υ

υυ
υυ
υυ

υυ
υυ

The first two rows are the boundary condition equations for vertical and shear stress at the

surface. The two other boundary condition equations at the surface, those for vertical and radial
deflection, are eliminated because there is no deflection constraint applied in this application.
The next four rows are the boundary condition equations for the first interface below the surface
(equating vertical and shear stresses and vertical and radial deflections across the interface). The
last four rows are the equations for the interface at the top of the subgrade (coefficients A3 and C3
are set to zero to satisfy the conditions for the infinite depth of the subgrade).

The presence of the exponentials in the matrix equation can lead to underflow and overflow
during solution of the equations. Making a change in the origin of the z coordinate in each layer
changes the values of the exponents and allows control over the values of the exponentials. The
procedure used in LEAF is to multiply the first and third columns of each equilibrium equation
by 1,e Oihα− and multiply the second and fourth columns of each equation by 2,e Oihα− . The fifth and
seventh and the sixth and eighth columns are multiplied by 1,1e +− Oihα and 2,1e +− Oihα , respectively.

The change in variable must also be duplicated in the integrals as shown in equation 2. The
primes in equation 2 indicate that the numerical values of the coefficients are changed after
application of the change of variable.

{ }
{ }∫

∫
∞ +−

∞ −−

+−′+′+

−−′−′−=

0

)(
10

0

)(
10

2,

1,

e)21()()(

e)21()()(

ααυαα

ααυαασ

α

α

dzDBaJrJqa

dzCAaJrJqa

zh
iii

zh
iiiz

Oi

Oi

 (2)

Numerical integration by the Gauss-Laguerre method requires a further change of variable:

1

1

11,1)(

z
d

d

zzhOi

αα

ααα

=

=−=
, and

2

2

22,2)(

z
d

d

zzhOi

αα

ααα

=

=+=
 (3)

 Hayhoe 4

giving

∫

∫
∞ −

∞ −













 +−′+′









+













 −−′−′









−=

0
2

2

2

2

2

2
1

2

2
0

0
1

1

1

1

1

1
1

1

1
0

2

1

e21

e21

z
d

z
z

DB
z

a
J

z
r

Jqa

z
d

z
z

CA
z

a
J

z
r

Jqa

iii

iiiz

ααυαα

ααυαασ

α

α

 (4)

Finally, the infinite continuous integral is transformed to a finite sum (see, for example,

reference 3).

∑

∑

=

=















 +−′+′









+















 −−′−′









−=

N

j

jj
iii

jj

N

j

jj
iii

jj
z

z

w

z

z
DB

z

a
J

z

r
Jqa

z

w

z

z
CA

z

a
J

z

r
Jqa

1 22

2

2

2
1

2

2
0

1 11

1

1

1
1

1

1
0

21

21

α
υ

αα

α
υ

αα
σ

 (5)

Where α1j and α2j are the abscissa values for the summation of N points and wj are weights

corresponding to the α1j and α2j values.

Computing the sum requires that the Bessel functions 




 α

z
r

J 0 and 




 α

z
a

J1 be computed at

each step. The independent variable is α, and increasing r or a increases the frequency of the
corresponding function. The number of integration points required to maintain accuracy (and
avoid aliasing) therefore increases as the radius to the evaluation point increases or the radius of
the load increases. But with the change of variable introduced to enable Gauss-Laguerre
integration, increasing the value of z by an additional shift in the origin of the z coordinate
decreases the frequency of the oscillation. This avoids, within reason, changing the number of
integration points and recomputing the values of the abscissa and weight at each summation
point.

The procedure for selection of the hOi,1 and hOi,2 values in the origin shift for each layer is as
follows.

1. Set the offsets for the first layer to twice the thickness of the first layer, 12,1, 2hhh OiOi == .
2. Set the offsets for all of the other layers according to the relationship

)(12,12,1, −− +== iOiOiOi hhhh , for i from 2 to the number of layers.
3. Compute new offsets for the evaluation layer as (Rmax / 4 + z), where Rmax is the maximum of

the load radius and the radius to the evaluation point, and z is the distance to the evaluation
point from the top of the evaluation layer.

4. If the new values for the evaluation layer are greater than the first values, then reset the offset
values of all of the layers according to the relationship in step 2 but increased to match the
values computed in step 3. Otherwise, leave the offsets unchanged.

 Hayhoe 5

The effects of this procedure are to minimize the possibility of overflow or underflow in the
solution of the boundary condition equations (step 2) and to eliminate the effects of aliasing in
the solution of the response integrals (step 3). It was originally thought that best convergence
would probably be achieved by assigning different values to the two offsets, but further work
indicated that keeping both at the same value minimizes the tendency to overflow and underflow.
The conditions for convergence are, however, not very well understood and separate offset
variables were retained in the derivation and in the computer program in case better conditions
are found in the future. Further details on the derivation of the equations and the numerical
methods used in their solution are given in reference 4. The offset (origin shift) for positive
exponents is illustrated in figure 2.

VARIABLE INTERFACE BONDING

In order to allow relative horizontal movement between two layers at an interface, a
uniformly distributed shear spring is assumed to connect the layers. This is the same model as
used in other layered elastic computer programs having the same feature, including JULEA. The
spring acts in the radial direction and has the following law:

 111

1

 since)(
or ,)(

+++

+

=−=
−=

iiiiii

iiii

uuk
uuk

τττ
τ

(6)

 A

z

layer i
thickness = hi

hOi,1

 A´

y1

original
origin

new
origin

z1

 y1 = Aeαz

Figure 2. Origin shift for positive exponents, 1
1

zz eAAey αα −′== .

 Hayhoe 6

where
τi = radial shear stress at the interface between layers i and i+1.

(ui – ui+1) = relative radial displacement across the interface.
ki = interface spring stiffness, with units of lb/inch relative radial

displacement/inch along the radius/inch along the circumference at radius r
(lb/in3). That is, a radial spring connects elemental areas either side of the
interface. The spring resists relative radial displacement across the interface.

To reduce numerical complications, the computer implementation can use the relationship

)()1(

giving ,
1

1+−=−
−

=

iiiii

i

i
i

uull
l

l
k

τ

(7)

This change of variable is used in JULEA, with a further logarithmic transformation in the

input data parameter. LEAF uses the same variable, l, both within the computational routines and
as the input data parameter.

For fully bonded layers, 1ii and ,1 , +==∞= ii uulk .
For fully unbonded layers, 0 and ,0 ,0 iii === τlk .

For reference, the transformation in JULEA is as follows:

 =im input parameter for interface i.
 2 =E modulus of layer 2 (directly below the surface layer).

2100000,100 E
m

iii

i

llm
−

==≥ ElseThenIf

Note that l is a parameter. It does not have units and it has no physical significance other than
the manner in which it varies the spring stiffness. It has a value from 0 to 1 (fully unbonded to
fully bonded).

COMPUTER PROGRAM IMPLEMENTATION OF THE INTEGRATIONS

Computer program implementation of Gauss-Laguerre integration is basically the same for
stresses, strains, and displacements. The only difference is that the equations evaluated in the
program loops are different. A primary objective was to reduce the run-time for the pavement
thickness design procedures implemented in the computer program LEDFAA. These
implementations require the computation of one, or at most, two responses for a single pavement
structure of rigid or flexible type with or without an overlay and with many landing gear
configurations in the design aircraft mix. The strategy adopted was based on the following.

 Hayhoe 7

1. Allow for independent computation of those responses required for a particular type of
pavement design. For example, new flexible design requires computation of only vertical
strain at the top of the subgrade in order to iterate to the design thickness.

2. Arrange the program loops so that individual elements of the integrand are computed the
minimum number of times.

3. Assume that wheel loads and tire pressures are the same for each wheel in an individual
landing gear wheel group.

Subroutines are provided for independently computing vertical deflection, horizontal

deflection, vertical strain, and horizontal stress. Visual Basic program code from the subroutine
for computing vertical strain is given below to illustrate the implementation of the integration
subroutines. The integral equation for vertical strain is derived from the basic integral equations

for vertical, radial, and transverse stress through the relation))((1
trzz E

σσυσε +−= . The

Gauss-Laguerre summation of the resulting layered elastic integral is:



































 +−′+′









+















 −−′−′









−

+=

∑

∑

=

=

N

j

jj
iii

jj

N

j

jj
iii

jj

i

i
z

z
w

z
z

DB
z

a
J

z
r

J

z
w

z
z

CA
z

a
J

z
r

J

E
qa

1 22

2

2

2
1

2

2
0

1 11

1

1

1
1

1

1
0

41

41
)1(

α
υ

αα

α
υ

αα

υε (8)

Data is passed to the subroutine for a single structure and a complete traffic mix. The traffic

mix has NAC number of aircraft. An “aircraft” is a group of NTires wheels, usually
representing a landing gear, but not necessarily. For example, all 16 main landing gear wheels on
a B-747 could be defined as a wheel group. Each wheel in an aircraft wheel group has the same
wheel load and tire pressure. Each aircraft wheel group has NevalPoints evaluation points at
a single depth measured from the top of the pavement structure. Vertical strain is to be calculated
at each evaluation point for each aircraft.

The expression to be summed can be split into four levels. The levels are, in decreasing order
in the hierarchy, as follows.

1. Under the assumption that all wheels on a landing gear have the same load and the same tire

pressure, the term
i

i

E
qa)1(υ+

 only needs to be computed once for each aircraft.

2. Terms like
11

141
z
w

z
z

CA jj
iii













 −−−

α
υ only need to be computed once for each integration

point. That is, they are common to all evaluation points on all wheels on all aircraft. These
terms are also the most expensive to compute because the coefficients A, B, C, and D, must
be computed from the boundary condition equations each time. Special cases can also apply
to these terms. For example, in the computation of vertical strain at the top of the subgrade,
only the term containing B and D needs to be computed because A and C are zero in the
subgrade layer.

 Hayhoe 8

3. Terms like 





1

1
1 z

a
J jα

, containing aα, where a is the tire radius, only need to be computed

once for each wheel at each integration point. That is, they are common to all evaluation
points relative to each wheel taken separately. However, if both load and pressure are the
same for all of the wheels on an aircraft, then these terms only need to be computed once for
each aircraft at each integration point.

4. Terms like 





1

1
0 z

r
J jα

 and 





1

1
1 z

r
J jα

must be calculated for all evaluation points on all wheels

on every aircraft at each integration point.

Computation loops in the program are therefore ordered as shown in the Visual Basic code
fragment below.

‘ Depth from top of evaluation layer to evaluation point.
 ZLayer = ZEval - ZInterface(I - 1)
‘ RMax = maximum of evaluation point radius or load radius.
 Call SetOShifts(OShift(), I, ZLayer, RMax)

 Z1 = OShift(I, 1) - ZLayer
 Z2 = OShift(I, 2) + ZLayer

 ZLayer1 = ZLayer / Z1
 ZLayer2 = ZLayer / Z2
 Poisx2 = Poissons(EvalLayer) * 2

 IConstants = (EvalLayer - 1) * 4

‘ GLAlpha() = Gauss-Laguerre abscissa values.
‘ GLWeight() = Gauss-Laguerre weight values.
 For IG = 1 To GLNGauss ‘ Gauss-Laguerre integration points.
 StrainWIGforConverge = 0 ‘ Initialize convergence criterion.
 If EvalLayer < NLayers Then ‘ A and C are zero for subgrade.
‘ Put constants for all layers in B().
 Call FindConstants(GLAlpha(IG) / Z1, B(), OShift())
 AK = B(IConstants + 1) ‘ A for evaluation layer.
 AlphaZ = GLAlpha(IG) * ZLayer1
 CK = B(IConstants + 3) * (1 - Poisx2 * 2 - AlphaZ)
 StrainWIG1 = -(AK - CK) * GLWeight(IG) / Z1

 =
11

141
z
w

z
z

CA jj
iii













 −−−−

α
υ

 StrainWIGforConverge = (Abs(AK) + Abs(CK)) * GLWeight(IG) / Z1
 End If
‘ Do the same for constants B and D.
 Call FindConstants(GLAlpha(IG) / Z2, B(), OShift())
 BK = B(IConstants + 2)
 AlphaZ = GLAlpha(IG) * ZLayer2
 DK = B(IConstants + 4) * (1 - Poisx2 * 2 + AlphaZ)
 StrainWIG2 = (BK + DK) * GLWeight(IG) / Z2

 Hayhoe 9

 =
22

241
z
w

z
z

DB jj
iii













 +−+

α
υ

 StrainWIGforConverge = StrainWIGforConverge _
 + (Abs(BK) + Abs(DK)) * GLWeight(IG) / Z2
‘ Loop over all aircraft.
 For IAC = 1 To NAC
 If Not ACConverged(IAC) Then
‘ Skip if all evaluation points for aircraft IAC have
‘ converged.
 A2 = TireRadius(IAC, 1) ' Move down 1 loop for varying
‘ pressures.
 A1 = A2 / Z1
 A2 = A2 / Z2
 If EvalLayer < NLayers Then
‘ The first line below is the load function for uniform
‘ pressure. The second line is for selectable load
‘ functions. Parabolic is currently available as an
‘ alternative to uniform pressure.
‘ J1AlphaA1 = bessj1(GLAlpha(IG) * A1) * StrainWIG1
 J1AlphaA1 = LoadFunction(GLAlpha(IG) * A1) * StrainWIG1

 =
11

1

1

1
1 41

z
w

z
z

CA
z

a
J jj

iii
j













 −−−



−

α
υ

α

 End If
 J1AlphaA2 = LoadFunction(GLAlpha(IG) * A2) * StrainWIG2

 =
22

2

2

2
1 41

z
w

z
z

DB
z

a
J jj

iii
j













 +−+



 α

υ
α

‘ Loop over all tires on each gear (aircraft).
 For ITire = 1 To NTires(IAC)
‘ Loop over all evaluation points on each gear (aircraft).
 For IEval = 1 To NEvalPoints(IAC)
‘ R2 is the horizontal distance between the evaluation
‘ point and center of the tire. Previously computed.
 R2 = Radius(IAC, ITire, IEval)
 R1 = R2 / Z1
 R2 = R2 / Z2
 If EvalLayer < NLayers Then
 J0AlphaR1 = bessj0(GLAlpha(IG) * R1)

 = 





1

1
0 z

r
J jα

 End If
 J0AlphaR2 = bessj0(GLAlpha(IG) * R2)

 = 





2

2
0 z

r
J jα

‘ StrainWI = elemental strain for the current integration
‘ point.
 StrainWI = J0AlphaR1 * J1AlphaA1 + J0AlphaR2 * J1AlphaA2
‘ Accumulate sum at each evaluation point for each gear.
 StrainW(IAC, IEval) = StrainW(IAC, IEval) + StrainWI
‘ Convergence criterion always positive and conservative.

 Hayhoe 10

 If Abs(StrainWIGforConverge / StrainW(IAC, IEval)) _
 < ConvergenceLimit Then ‘ Default = 0.00001.
 If Not Converged(IAC, ITire, IEval) Then
‘ Keep track of the number of evaluation points
‘ which have converged.
 NEvalsConverged(IAC, ITire) _
 = NEvalsConverged(IAC, ITire) + 1
 If NEvalsConverged(IAC, ITire) = NEvalPoints(IAC) _
 Then
‘ All evaluation points for tire Itire on aircraft
‘ IAC have converged.
 NtiresConverged(IAC) = NtiresConverged(IAC) + 1
 IterationstoConverge = IG
 End If
 Converged(IAC, Itire, IEval) = True
 If NtiresConverged(IAC) = Ntires(IAC) Then
 ACConverged(IAC) = True
 NACConverged = NACConverged + 1
 End If
 End If
 End If
 Next IEval
 Next ITire
 End If
 Next IAC
 If NACConverged = NAC Then
‘ All evaluation points on all aircraft have converged.
 NConverge = IG
 Exit For ‘ Quit integration.
 End If
 Next IG

 For IAC = 1 To NAC ‘ Apply the common load/materials factor.
 Factor = TirePress(IAC, 1) * TireRadius(IAC, 1)
 Factor = Factor * (1 + Poissons(EvalLayer)) / Youngs(EvalLayer)

 =
i

i

E
qa)1(υ+

 For IEval = 1 To NEvalPoints(IAC)
‘ Apply final factor to compute strains at all eval. points.
 StrainW(IAC, IEval) = StrainW(IAC, IEval) * Factor
 If StrainW(IAC, IEval) > StrainWmax(IAC) Then
‘ Maximum strain for each gear (aircraft).
 StrainWmax(IAC) = StrainW(IAC, IEval)
 End If
 Next Ieval
 Next IAC

The second IAC loop is more complicated when computing horizontal responses because the
responses at a single evaluation point from each tire must be transformed into rectangular
coordinates before they are summed. Vertical responses can be summed directly in the first loop
as shown above.

 Hayhoe 11

IMPLEMENTATION AS A DYNAMIC LINK LIBRARY

LEAF is written entirely in Visual Basic 6.0 and is compiled as an ActiveX dynamic link
library (DLL). The DLL exports LEAF as LEAFD.clsLEAF. The interface consists of one callable
subroutine, five data structures (one array, three user-defined types (UDT), and one enumeration
type), three properties, and one event. The data structures are defined in LEAF. Two of the
UDTs must be dimensioned in the calling program.

The subroutine declaration statement is:

Public Sub ComputeResponse(ResponseType As LEAFoptions, NACarg As Long,

LEAAircraft() As LEAFACParms, LEAStructure As LEAFStrParms, Response() As
Double, AllResps() As LEAFAllResponses)

ResponseType is an enumeration type which defines the response variable for which values
will be computed (vertical strain, horizontal stress, etc.). The value of ResponseType is passed as
one of the constant names defined by LEAFoptions (see below).

NACarg is a variable defining the number of aircraft for which data is being passed to the
subroutine.

LEAAircraft() is a UDT defining the parameters for each aircraft. A new instance of the
UDT is declared and dimensioned in the calling program. All variable values are set in the
calling program.

LEAStructure is a UDT defining the parameters for the pavement structure, including the
evaluation depth and the index for the evaluation layer. A new instance of the UDT is declared
and dimensioned in the calling program. All variable values are set in the calling program.

Response() is a two-dimensional double-precision array returning the values of the
computed responses for all evaluation points for all aircraft. It is declared and dimensioned in
LEAF. The dimension indexes are (aircraft number, evaluation point number) as passed in
LEAAircraft().

ALLResps() is a UDT returning all responses when ResponseType has the value
AllReponses (see the definition of LEAFOptions below). AllResps() has a lengthy definition
not given here (see reference 4). The responses returned are all in rectangular coordinates and
include deflections, strains and stresses, principal strains and stresses, and maximum and
octahedral shear stresses.

The event is LEAFStopped(). It is defined and raised in LEAF.
The definitions of the UDTs for LEAAircraft and LEAStructure are, respectively:

Public Type LEAFACParms ' 1 To NAircraft
' Type for passing aircraft data to LEA routine.
' Dimensioned and set in the client program.
' Must be dimensioned as an array for compatibility
' with Sub ComputeResponse calling list.
 ACname As String
 GearLoad As Double
 NTires As Long
 TirePress() As Double ' 1 To NTires
 TireX() As Double ' 1 To NTires
 TireY() As Double ' 1 To NTires
 NEvalPoints As Long
 EvalX() As Double ' 1 To NEvalPoints
 EvalY() As Double ' 1 To NEvalPoints

 Hayhoe 12

End Type

Public Type LEAFStrParms
' Type for passing pavement structure data to LEAF.
' Dimensioned and set in the client program.
' Only one structure is allowed so the type is not an array.
 NLayers As Long
 Thick() As Double ' 1 To NLayers
 Modulus() As Double ' 1 To NLayers
 Poisson() As Double ' 1 To NLayers
 InterfaceParm() As Double ' 1 To NLayers
 EvalDepth As Double
 EvalLayer As Double
End Type

The definition of the enumeration type is:

Public Enum LEAFoptions
 LEAFVerticalStrain = 1 ' Select the response to be computed and
 LEAFVerticalDeflection = 2 ' returned. Selecting a single response
 LEAFHorizontalStress = 3 ' reduces run time considerably compared
 LEAFAllResponses = 4 ' with requesting all responses.
End Enum

ConvergenceLimit is a property which returns or sets the limit for convergence of the
integrals to a desired relative accuracy. The default value is 0.00001.

GLNumberofPoints is a property which returns or sets the number of points used in the
Gauss-Laguerre numerical integration. The default value is 500. Decreasing the value reduces
the run time and reduces the accuracy. Increasing the value has the opposite effect. The
relationship between GLNumberofPoints and run time or accuracy is not linear.

LEAFError is a read only property which returns an error message if LEAF detects an input
or computational error. An empty string denotes that no errors have been detected by LEAF. At
present, very little input parameter checking is done and the user is expected to ensure that the
input parameters are within reasonable bounds and that there is correct dimensioning of the data
types. Additional error checking will be added as time permits.

DEVELOPMENT APPLICATION

The development environment for LEAF consists of a Visual Basic application which runs a
routine for backcalculating layer modulus values from falling weight deflectometer (FWD) test
data and a routine for computing pavement responses for a user-defined landing gear wheel
group. The backcalculation routine demonstrates calling LEAF for computation of a single
pavement response (vertical deflection). The response routine demonstrates the computation and
printout of all pavement responses for multiple aircraft. Declaring an instance of clsLEAF,
setting paramenter values, and calling ComputeResponse is straightforward if the event
LEAFStopped is not required. However, if LEAFStopped is required then an indirect reference
has to be made to an instance of clsLEAF created from a declaration made “with events” in the
declarations section of a class module. For the LEAF development application, the declaration is
made in the main form:

Dim WithEvents RunLEAFEvent As clsLEAF.
Another declaration is made in the LEAF setup module:

 Hayhoe 13

Public RunLEAF As clsLEAF.
The instance and the indirect reference are set in the form load routine:

Set RunLEAFEvent = New clsLEAF ‘ A new instance.
Set RunLEAF = RunLEAFEvent ‘ A Public reference to RunLEAFEvent.

All of the variables, properties, and methods are then available. For example, the response
subroutine is run with:
Call RunLEAF.ComputeResponse(LEAFAllResponses, NAC, CallAC(), _
 LEAStructure, Response(), AllResp()),
where the argument names are as used in the application. A subroutine structure called
RunLEAFEvent_LEAFStopped() is also automatically created in the main form. Code responding
to the LEAFStopped event being raised by LEAF is placed in this subroutine by the user.

Using the development application, LEAF has been tested against Boussinesq solutions for a
half-space and against other layered elastic computer programs for multiple-layered structures.
Accuracy is good compared to the other solution methods. Details are given in reference 4.

The application is available on the FAA Airport Technology R&D Branch web site
www.airporttech.tc.faa.gov as source code (including LEAF) and as an installable Windows
application.

SUMMARY

A new computer program has been written for solving the layered elastic equations
representing simplified pavement structures. The program implementation is arranged for
efficient solution of the design procedures in the LEDFAA computer program for airport
pavement thickness design. The program is written in Visual Basic 6.0 and is compiled as a
dynamic link library. A sample application incorporating the dynamic link library is available as
source code and as an installable executable on the FAA Airport Technology web site
www.airporttech.tc.faa.gov. Documentation is also available on the web site.

ACKNOWLEDGEMENTS/DISCLAIMER

The work described in this paper was supported by the FAA Airport Technology Research
and Development Branch, Dr. Satish K. Agrawal, Manager. The contents of the paper reflect the
views of the author, who is responsible for the facts and accuracy of the data presented within.
The contents do not necessarily reflect the official views and policies of the FAA. The paper
does not constitute a standard, specification, or regulation.

REFERENCES

1. Burmister, D.M., “The Theory of Stresses and Displacements in Layered Systems and

Application to the Design of Airport Runways,” Proceedings, Highway Research Board, Vol.
23, 1943.

2. Huang, Yang H., “Pavement Analysis and Design,” Prentice-Hall, New Jersey, 1993.
3. Press, William H., Teukolsky, Saul A., Vetterling, William T., and Flannery, Brian P.,

“Numerical Recipes in FORTRAN,” 2nd ed., Cambridge University Press, 1992.

 Hayhoe 14

4. Hayhoe, Gordon F., McQueen, Roy D., Guo, Edward H., and Brill, David R., “LEDFAA,
The FAA’s New Software for Airport Pavement Design,” U.S. Department of Transportation
Report, Office of Aviation Research, Washington, D.C., in preparatiuon.

