

Market Transformation & American Recovery and Reinvestment Act

Pete Devlin

2012 Annual Merit Review and Peer Evaluation Meeting
May 14, 2012

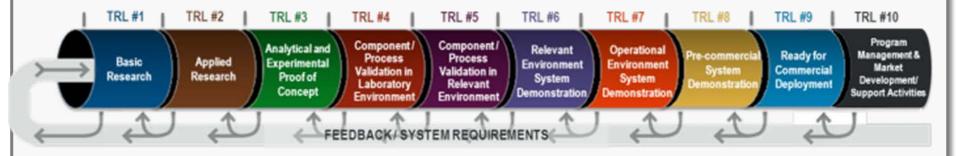
Goals and Objectives

GOALS

- Ensure continued technology utilization growth for domestically produced hydrogen and fuel cell systems
- Lower life cycle costs of fuel cell power by identifying and reducing non-technical barriers

OBJECTIVES

- Catalyze key implementation projects and partnerships with state and local governments and other stakeholders
- Increase domestic market penetration by standardizing and stimulating institutional and financial market practices
- Increase data analysis associated with siting and deployment (e.g., insurance, permitting, and installation)


Data stems from research conducted by the California Fuel Cell Partnership and Pike Research

Challenges

• To test emerging applications at the Technology Readiness Level (TRLs) 7-9 level to expand user and servicing expertise

• To test new technology applications in user operating conditions to establish baseline energy efficiency and reliability performance and determine commercial viability

Examples:

A 1-kW fuel cell system providing power for this FAA radio tower near Chicago

(Photo courtesy of ReliOn)

Material Handling Equipment at work in U.S. airports

(Photo courtesy of Hydrogenics)

Challenges

 To develop strategies to mitigate commercial risks and develop new approaches to ensure high hydrogen and system utilization and reliability under mass market penetration scenarios

 To obtain data from operating experience and develop replicable business cases

ARRA Fuel Cell Funding & Status

DOE announced more than \$41 million from the 2009 American Recovery and Reinvestment Act to fund 12 projects. Over 1,000 fuel cells have been deployed—helping to achieve near-term impact and create jobs in fuel cell manufacturing, installation, maintenance & support services sectors.

FROM the LABORATORY to DEPLOYMENT: DOE funding has supported R&D by all of the fuel cell developers involved in these projects. **Approximately Lift Trucks** \$54 million in Backup \$9.7M cost-share Power funding from \$18.5M **Portable** industry **Power** participants for \$7.6M a total of about \$96 million **Auxiliary Power** Residential & \$2.4M Small Commercial CHP: \$3.4M Backup Power Stationary APU

Material Handling Equipment

Company	Award	Application
Plug Power (6A)	\$2.7 M	Backup Power
ReliOn, Inc. ¹	\$8.5 M	Backup Power
Sprint Nextel	\$7.3 M	Backup Power
FedEx Freight East ²	\$1.3 M	Lift Truck
GENCO ²	\$6.1 M	Lift Truck
Nuvera Fuel Cells ¹	\$1.1 M	Lift Truck
Sysco Houston ²	\$1.2 M	Lift Truck
Jadoo Power	\$2.2 M	Portable
MTI Micro Fuel Cells ¹	\$3.0 M	Portable
Univ. of North Florida ¹	\$2.4 M	Portable
Plug Power (7A)	\$3.4 M	СНР
Delphi Automotive	\$2.4 M	Auxiliary Power

¹ Project completed

² Fully deployed

Fuel Cell Deployment Status – April 2012				
Application	Currently Operational	Operational as of April 2011		
APU	1	0		
Backup Power	668	267		
Material Handling	504	369		
Total	1,173	637		

ARRA Accomplishments

NREL estimates over 1 million operating hours and 150,000 H₂ fills for material handling equipment was reached in the first quarter of 2012.

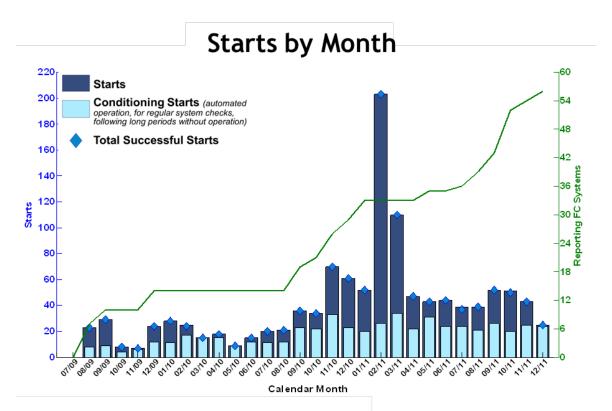
NREL ARRA Data Collection Snapshot

ARRA Material Handling Equipment Data	As of 12/31/2011	As of 12/31/2010
Hydrogen Dispensed	99,650 kg	18,597 kg
Hydrogen Fills	>148,250	38,863
Hours Accumulated	>959,880 hrs	307,433 hrs

Examples of Leveraged & Future Deployments:

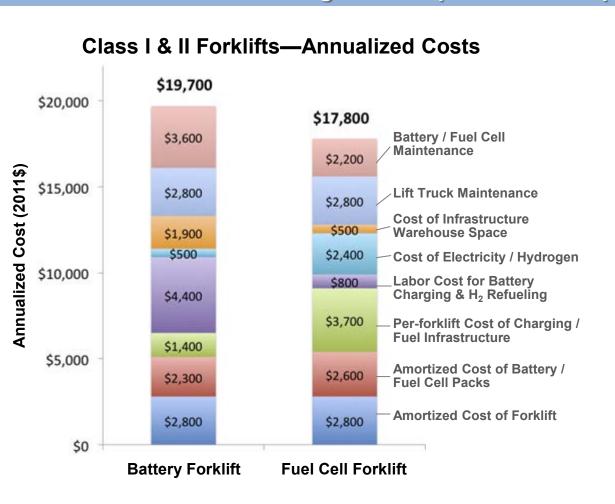
- Sysco (Corporation) plans to convert an additional 900+ battery powered lift trucks to fuel cell power over the next 24 months at seven sites nationwide
- By June 2012, Sysco will complete fuel cell fleet conversions at four of the seven sites
- FedEx Freight East purchased an additional 5 fuel cell powered lift trucks to bring their fleet to a total of 40 lift trucks
- Other examples being compiled

Summary of Backup Power System Operation



Deployed Systems	625*
Total Successful Starts	1187 (99.7%)*
Total Run Time	611 hours*
Total Hydrogen	70.7 kg*

* through December 2011


Systems are operating reliably in 15 states with 99.7% successful starts. (Reasons for unsuccessful starts include an e-stop signal and system failures.)

> Source: Jennifer Kurtz, Project ID H2RA-013, presented at 1:45 on Wednesday in Crystal City Marriott, Salon F

Analysis of Forklift Costs

Annualized total cost of ownership per unit indicates that key cost advantages are dependent on deployment size.

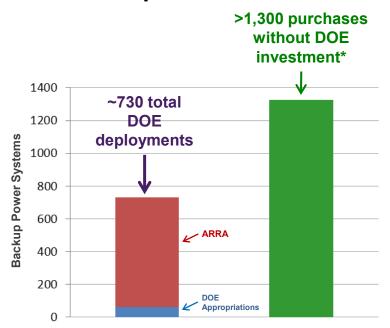
Results assume replacements as needed and do not reflect technology generation improvements or other productivity improvements such as constant power, emissions, and cold environment. FC costs include current tax credit of \$3,000/kW or 30% of purchase price. Data source: ARRA & DLA project partner questionnaire & fuel cell performance data

- Analysis inputs are averages per category
- Key inputs include:
 - 333 days per year, 2.5 shifts per day (2,100 hours per year)
 - 3 min per hydrogen fill & 10 min per battery change out

Class III Forklift Annualized Cost

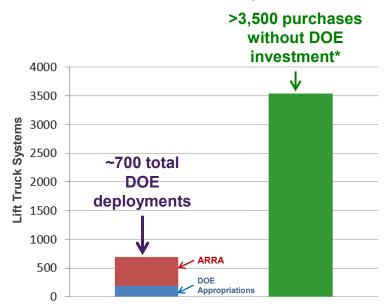
- \$11,700 FC
- \$12,400 Battery

Other results include


- Sensitivity analysis of costs (CDP #59)
- Cost analysis based on intensive deployment scenario—100 lift trucks and and 3,000 pedal hours per year (CDP #60)

Early Market Deployment Summary

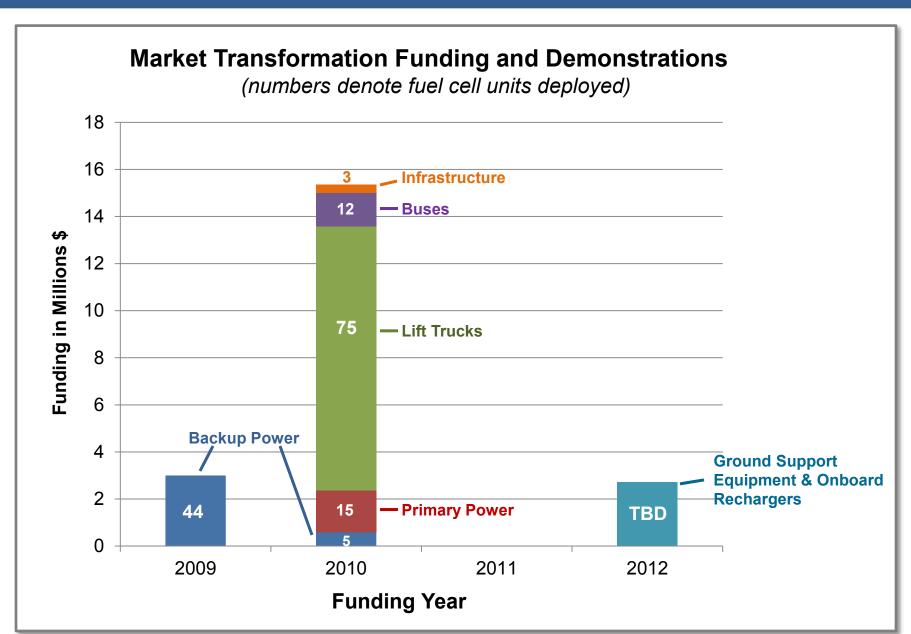
Early market deployments of approximately 1,400 fuel cells have led to more than 5,000 additional purchases by industry—with no further DOE funding.


Backup Power Units

Leveraging DOE funds:

DOE deployments led to almost 2X additional purchases by industry.

Lift Truck Deployments



Leveraging DOE funds:

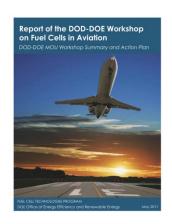
DOE deployments led to >5X additional purchases by industry.

Market Transformation Activities and Demonstrations

- Deployed and collected data on 75 DMFCpowered lift truck operations in 4 locations (see Lift Truck fact sheet)
- With US Army CERL, installed 102 kW (out of 217 kW total) back up power systems at DOD, NASA and NPS sites (see Backup Power fact sheet)
- Installed and collected data on 15 Micro-CHP systems for light commercial facilities (PNNL)
- Determined technical and cost feasibility of using Landfill Gas (LFG) as feed stock for HFC lift trucks

Oorja Protonics Lift Truck

ClearEdge MicroCHP



BMW manufacturing plant in S. Carolina

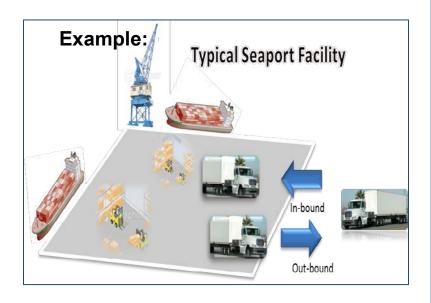
2011 Progress

Conducted with DOD workshops and detailed analyses on using fuel cells as auxiliary power for aviation or ship operations and converting bio-waste to hydrogen

Aviation Workshop Proposed Next Steps:

- ✓ Multisite mobile fuel cell plasma lighting demonstration
- ✓ Fuel cell battery range extender demonstration
- ✓ Collaborative ground support equipment deployment

Bio-waste Workshop Proposed Next Steps


- ✓ Develop project planning tool
- ✓ Develop Federal guide including external financing methods
- ✓ Identify appropriate candidate sites for WTE projects

Electric Transportation Technologies FOA (1–2 awards*)

- Closed May 4, 2012—selected applicants will be notified by mid-August 2012
- Collaborative effort with VTP to review and select highest-quality applications for deployment into the cargo transport sector
- Vehicle Technologies Program FY2012 Appropriations Text:

"...up to \$10,000,000 is made available to fund section 131 of the 2007 Energy Independence and Security Act to promote zero emission cargo transport in areas of severe nonattainment and severe traffic congestion. Eligible recipients must provide 1-to-1 matching funds."

Fuel Cell Hybrid Ground Support Equipment FOA (1–3 awards*)

- Closes June 11, 2012—selections announced by mid-Sept. 2012
- Deploy fuel cell powered GSE into commercial airport operations.
- Fuel Cell Technologies Program FY2012 Appropriations Text: "Within the available funds, the Committee recommends funding is provided for

Technology Validation focused on passenger vehicle and hydrogen infrastructure applications, hydrogen fuels R&D, and for Market Transformation in early markets."

Ground support equipment at Hawaii Center for Advanced Transportation Technologies

Enabling distributed generation power and heat purchases by the kWhr

- Federal Power Purchase Agreements (PPAs) exist for Solar PV, Wind, Biomass, and Geothermal
- Third-party financing of fuel cell power eliminates upfront CAPEX outlays and enables investors to take advantage of the Investment Tax Credit.
- Cost economies of scale can be realized by bundling power needs on a Federal-government-wide basis

Approach: Develop and implement a Fuel Cell Power Federal wide Indefinite Quantity, Indefinite Delivery (IDIQ)

- Partners: Army Corps, DOE FEMP, DOE Golden
- PPAs for bundles of government sites
- Potential Pilot Project: Ord Military and Presidio base Monterey (CA)

Next Steps:

- Finalize and review draft document via the Fuel Cell and Hydrogen Interagency Working Group
- Develop work scope for first phase of Pilot Project
- Review draft IDIQ with potential hosting contracting offices
- Select contracting offices and post IDIQ solicitation

Fuel Purchasing Agreements (FPAs) are currently used in Federal Agencies for petroleum and alternative fuels.

Hydrogen refueling systems are expensive

- Starting a Hydrogen FPA solicitation process would eliminate most up-front CAPEX outlays and enable more hydrogen to be available in the Federal government
- Leveraging buying power of Federal government to compete for best per kilogram price will enable more use of fuel cells

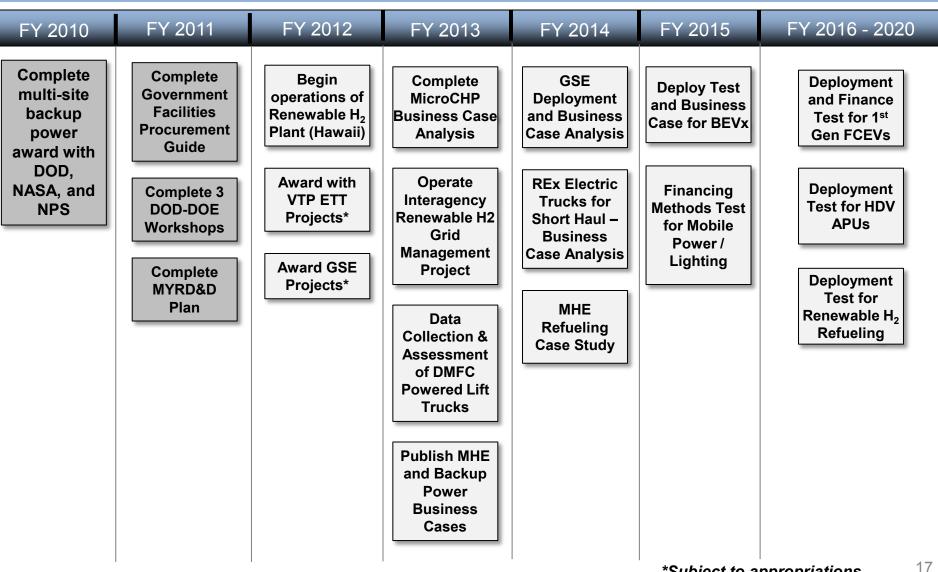
Partners: Army Corps and Defense Logistics Agency (DLA) Energy Office; the Hydrogen and Fuel Cells Interagency Working Group (IWG) will help generate requirements

Next Steps:

- IWG Review and Revise Draft FPA
- Announce via DLA Energy FPA solicitation

Plans for Remainder of FY 2012

- Complete DMFC MHE data collection and analysis
- Complete installations and collect data on 15 micro CHPs
- Begin operations of Renewable H₂ Plant (Puna, Hawaii)
- Award (VTO) Electric Transportation Technology Projects
- Initiate 2 ad hoc IWG committees (Advanced Vehicles and Waste-to-Energy)
- Award Ground Support Equipment Projects
- Complete Landfill Gas SCRA project startup and twomonth deployment
- Launch Federal government-wide IDIQ PPA FPA procurement process and identify 4 MW of projects
- Develop revolving loan program for mobile lighting
- Complete model and simulation of BEV range extenders



Summary

Key milestones & future plans

For More Information

Market Transformation Team

DOE

Pete Devlin

Market Transformation and

Intergovernmental Coordination Manager
202-586-4905

peter.devlin@ee.doe.gov

Nancy Garland 202-586-5673 nancy.garland@ee.doe.gov

Jim Alkire 720-356303-275-1426 James.alkire@go.doe.gov

National Renewable Energy Laboratory Support:

John Christensen 703-391-2075 jchriste1@comcast.net

Technical Support:

Greg Moreland
240-499-4434
greg moreland@sra.com

Kristen Nawoj
202-287-6319
kristen.nawoj@ee.doe.gov

Market Transformation presentations in salon F – Crystal City Marriott Hotel Wednesday, May 16th at 8:15 AM – 11:00 AM

Save the Date!

2013 Annual Merit Review and Peer Evaluation Meeting

of the DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program

May 13–17, 2013