19.4 Derivatives and Differential Equations19.6 Special Cases

§19.5 Maclaurin and Related Expansions

For Jacobi’s nome q:

19.5.5q=\mathop{\exp\/}\nolimits\!\left(-\pi\mathop{{K^{{\prime}}}\/}\nolimits\!\left(k\right)/\mathop{K\/}\nolimits\!\left(k\right)\right)=r+8r^{2}+84r^{3}+992r^{4}+\cdots,r=\frac{1}{16}k^{2}, 0\leq k\leq 1.

Also,

19.5.6q=\lambda+2\lambda^{5}+15\lambda^{9}+150\lambda^{{13}}+1707\lambda^{{17}}+\cdots,0\leq k\leq 1,

where

19.5.7\lambda=(1-\sqrt{k^{{\prime}}})/(2(1+\sqrt{k^{{\prime}}})).

Coefficients of terms up to \lambda^{{49}} are given in Lee (1990), along with tables of fractional errors in \mathop{K\/}\nolimits\!\left(k\right) and \mathop{E\/}\nolimits\!\left(k\right), 0.1\leq k^{2}\leq 0.9999, obtained by using 12 different truncations of (19.5.6) in (19.5.8) and (19.5.9).

19.5.8\mathop{K\/}\nolimits\!\left(k\right)=\frac{\pi}{2}\left(1+2\sum _{{n=1}}^{{\infty}}q^{{n^{2}}}\right)^{2},|q|<1,
19.5.9\mathop{E\/}\nolimits\!\left(k\right)=\mathop{K\/}\nolimits\!\left(k\right)+\frac{2\pi^{2}}{\mathop{K\/}\nolimits\!\left(k\right)}\,\frac{\sum _{{n=1}}^{{\infty}}(-1)^{n}n^{2}q^{{n^{2}}}}{1+2\sum _{{n=1}}^{{\infty}}(-1)^{n}q^{{n^{2}}}},|q|<1.

An infinite series for \mathop{\ln\/}\nolimits\mathop{K\/}\nolimits\!\left(k\right) is equivalent to the infinite product

19.5.10\mathop{K\/}\nolimits\!\left(k\right)=\frac{\pi}{2}\prod _{{m=1}}^{{\infty}}(1+k_{m}),

where k_{0}=k and

19.5.11k_{{m+1}}=\frac{1-\sqrt{1-k_{m}^{2}}}{1+\sqrt{1-k_{m}^{2}}},m=0,1,\dots.

Series expansions of \mathop{F\/}\nolimits\!\left(\phi,k\right) and \mathop{E\/}\nolimits\!\left(\phi,k\right) are surveyed and improved in Van de Vel (1969), and the case of \mathop{F\/}\nolimits\!\left(\phi,k\right) is summarized in Gautschi (1975, §1.3.2). For series expansions of \mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},k\right) when |\alpha^{2}|<1 see Erdélyi et al. (1953b, §13.6(9)). See also Karp et al. (2007).