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Introduction

Images are increasingly being used in quantitative ways for various National Oceanic 
and Atmospheric Administration (NOAA), National Marine Fisheries Service (NMFS) 
activities, from fisheries surveys to ecosystem and behavioral studies. The increased 
number of camera-based projects recently developed within NOAA reflects evolv-
ing trends toward technology-driven methodology that has the potential to rede-
fine established approaches to marine fisheries surveys and ecosystem studies. 
Image-based sampling generally provides higher spatial and temporal resolution 
and non-lethal sampling of organisms compared with more traditional extractive 
methods such as trawls. However, practical implementation of camera systems as 
routine scientific tools will require further development on several fronts. The 
primary challenge with these approaches is developing the process for extracting 
relevant data from the images. Manual processing of images can be a tedious and 
time-intensive process which is in many cases untenable due to limitations in 
human resources. Automation of image processing is therefore needed for these 
methodologies to become practical tools that can be implemented into NOAA’s 
scientific mission.

In most industrial computer vision applications, automated image processing is 
a vital component of any system. Software and algorithm developments originat-
ing in other fields such as the security industry hold promise for reducing the 
amount of manual analysis required in marine applications. Automating the tasks 
of marine organism counting, classification, sizing, and movement tracking is a 
complex undertaking, largely due to the uncontrolled conditions of image capture 
and challenges of underwater photography. Despite these challenges, consider-
able progress has already been made in recent years, and new methodology is 
continually being developed though collaborations between marine scientists and 
computer vision experts. 

This report is a summary of presentations and discussions from a workshop on 
automated image processing conducted in Seattle, Washington, from 4-7 September, 
2010.  The objective of the workshop was to examine current and future applica-
tions of automated image processing for fisheries and marine ecology research. 
The workshop provided a platform for representatives from all six NMFS fisheries 
science centers to present image–based sampling systems that are being used and 
developed for a wide range of purposes, including essential fish habitat research, 
target identification for acoustic biomass surveys, and fish behavior studies. 

Experts in the field of image processing presented their past and current projects 
that incorporate automated processing in various stages, showing what can be 
achieved though automation and where the challenges lie. The majority of the 
projects presented by computer vision experts dealt with marine ecology or fisher-
ies applications, even though the analytical methodology is general to the field of 
computer vision. Their examples illustrate the possibilities for future collaborations 
as automated processing solutions for image-based sampling programs continue 
to expand. We hope this publication will serve as a networking tool for biologists 
and computer vision experts and provide concrete examples of automated image 
processing work, as well as guidance for developing future projects.
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Part 1. 
Description of Current and Future Image-Based 
Sampling Programs at NMFS Fisheries Science 
Centers that Could Gain from Automation of 
Image Processing Tasks
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An Overview of Image-Based 
Sampling and Research  
Programs at the Alaska Fisheries 
Science Center

Chris N. Rooper, K. Williams, R. Towler, and  
M. Cameron

Alaska Fisheries Science Center, NMFS, NOAA
Seattle, Washington
chris.rooper@noaa.gov

Image-based sampling at the Alaska Fisheries 
Science Center (AFSC) crosses all programs and 
divisions from stock assessment to behavioral 
ecology research. There are common themes in 
most of the research using imagery that drives 
the need for common types of data products. 

If automated image processing can be success-
fully implemented for some of these tasks, huge 
benefits may result in terms of taking individual 
projects from “one-off” projects into “production” 
mode, where they can provide routine benefit to 
fisheries and ecosystem management in Alaska.

Many of the studies that use imagery at the 
AFSC fall into the category of using video and 
still images for direct assessment of marine 
mammals, fishes and invertebrates. For example, 
both beluga whales in Cook Inlet, Alaska, and 
ice associated seals in the Alaska polar regions 
are assessed using aerial photo and videography 
(Rugh et al. 2005, Boveng et al. 2008, Cameron 
et al. 2009). These and other similar projects 
using underwater video to examine the distribu-
tion of benthic invertebrates (Rooper, unpublished 
data), directly enumerate individuals to calculate 
abundance estimates. Another line of assess-
ment research is currently developing methods 
to provide count, size and species identification 
from underwater video that can be used with 

Figure 1. Imagery from research 
projects at the AFSC: a) still image 
from analog black-and-white video 
from a bottom trawl mounted camera 
showing footrope contact with the 
seafloor, b) still image from analog 
color video from study examining 
habitat use by rockfish, c) still image 
from digital video collected on study 
examining distribution of coral and 
sponge, d) still image from digital 
video collected on acoustic-optic 
survey of rockfish, e) digital stil l 
image collected on acoustic-optic 
survey of rockfish, and f) digital still 
of Pacific hake from trawl-mounted 
camera shot at 5 m from the fish.

a

c

e

b

d

f
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The quality and quantity of images collected for 
AFSC projects have varied substantially, even 
over recent years (Fig. 1). Both digital and analog 
imaging systems have been used for collecting 
video, although most of the analog systems have 
been retired at this point and still images now are 
almost always in a digital format. The absence of 
standardized formats, and requirements for meta-
data and image storage should be addressed imme-
diately within the AFSC to make the transition to 
automated image processing easier. Since most of 
the image collecting projects have been initiated 
and conducted by individual researchers, there 
are many different image types and databases of 
varying complexity associated with  these images.

The need for automation is great. In a recent study 
in the Gulf of Alaska using video and still images 
from a remotely operated vehicle and a stereo 
drop camera, we found that even for an expert 
at video analysis the minimum amount of time 
spent searching through video to identify and 
count rockfish was at least 2 hours per hour of 
video collected. Additionally, to measure rockfish 
using stereo analysis took an extra 3.2 minutes 
per fish (including time to find and extract still 
images from the video source, locate a randomly 
selected measureable image, perform the mea-
surement and save the data). For comparison, 
up to 150 rockfish caught in a bottom trawl can 
be manually measured for length in 15 minutes. 
Measuring 150 lengths using current stereo video 
analysis methods would take an estimated 7.5 
hours. 

Figure 2. Aerial image showing 
ice seals hauled out on ice floes, 
with inset showing infrared image 
used to detect seal presence. 

more traditional fisheries assessment methods 
such as acoustic surveys (i.e., Williams et al. 2010). 

There are substantial amounts of imagery that 
have been collected during habitat research proj-
ects. Typically the foci of these projects have 
been documenting fish and invertebrate asso-
ciations with substrate types (i.e., Rooper et al. 
2007, Stoner et al. 2007), documenting species 
distributions (i.e. Woodby et al. 2009), or projects 
verifying substrate types for benthic mapping 
appl icat ions (i .e. Rooper and Zimmerman 
2007, Lomnicky and McConnaughey 2008). 

Other sources of imagery at the AFSC are from 
studies examining both research trawls and 
commercial fishing gear. These have included 
measuring the effects of commercial fishing on 
vulnerable habitats and recovery of these habitats 
(Freese 2001, Heifetz et al. 2009), estimating catch-
ability of bottom trawl survey gear (Weinberg and 
Kotwicki 2008) and using imagery to visualize fish 
behavior in order to reduce bycatch of unwanted 
species (Rose et al. 2010).

The data products generally needed for all these 
studies are common. They include species iden-
tifications, counts of individual organisms, and 
size estimates of individual organisms. For some 
specific applications, orientation of individuals, 
behavioral observations, and tracking of individ-
ual movements are necessary. Finally, for studies 
examining benthic habitat use, estimates of sub-
strates and percent coverage of important inverte-
brate and vegetative structures may be important.
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To date, very little progress has been made in auto-
mating image processing at the AFSC. One of the 
most important issues to overcome is the volume of 
images that can be collected in a limited amount of 
time. In some cases, most of the images may contain 
little or no relevant information. For example, many 
of the photographs of ice in harbor seal surveys 
show no seals present. AFSC researchers are devel-
oping an image collecting system where an infra-
red camera is linked to the digital camera for still 
image collection. When the infrared camera senses 
heat above a certain threshold (indicating an ​ice-
associated seal is present), a digital photo is taken 
(Fig. 2). Afterwards, manual analysis of the digital 
photo for species identification is undertaken. This 
is an innovative method to reduce the amount of 
time spent reviewing imagery with no seal data. 
Similar attempts to reduce the amount of dupli-
cated information that has to be viewed have been 
the impetus for seafloor video mosaicing research 
at the AFSC (Lomnicky and McConnaughey 2008). 
Pattern recognition software is also being developed 

for ice-associated seals, to try to automate the 
process of identifying species from still images (Fig. 
3). To date, these attempts encompass the entirety 
of automating image processing at the AFSC. They 
are limited to a small number of programs and 
projects with very specific applications.

In order to proceed with automated image analysis 
on a larger and more comprehensive scale, we need 
to improve our ability to automate image process-
ing by setting some standards for image collection 
and storage, including having adequate metadata 
and data. We also recommend that emphasis be 
put on development of technologies that address 
the challenges that are universal to many research 
projects in fisheries. The tasks that need to be 
automated are generally common across all studies 
and include:

◊	 Target identification

◊	 Target measurement

◊	 Target tracking

Figure 3. Pattern recognition software interface for identifying species of ice-associated seals from still images.
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If we can successfully automate image process-
ing and reduce the amount of time dedicated to 
extracting useful data from images, we can make  
photo and video data collection as useful a sam-
pling tool for fisheries and ecosystem managers as 
traditional methods such as bottom trawling and 
acoustics. The ability to enhance the collection of 
data remotely with minimal impact not only ben-
efits those who study theses marine ecosystems, 
but these unique habitats as well.
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Image-Based Research  
at the Northwest Fisheries 
Science Center

John Harms

Northwest Fisheries Science Center, NMFS, NOAA
Seattle, Washington
john.harms@noaa.gov

The Northwest Fisheries Science Center (NWFSC) 
has conducted a variety of image-based research 
projects in support of monitoring, assessing, and 
managing the U.S. West Coast’s marine resources 
and habitats. Video and still imagery analyses 
have been used to examine the performance of the 
gear used in NWFSC fishery-independent research 
surveys; develop fishing gear that reduces bycatch 
of non-target species in commercial fisheries; clas-
sify seafloor habitats along the West Coast; identify 
marine mammals for population monitoring; and 
differentiate among salmonid species in hatch-
eries, lakes, and mixed-stock fisheries. NWFSC 
researchers have collaborated with a diverse group 
of partners including the Alaska Fisheries Science 
Center (AFSC), Pacific Islands Fisheries Science 
Center (PIFSC), Pacific States Marine Fisheries 
Commission (PSMFC), Woods Hole Oceanographic 
Institution (WHOI), Oregon State University (OSU), 
and commercial and sportfishing industries along 
the West Coast. These partnerships have played 
an important role in strengthening the quality of 
the research, leveraging the existing resources of 
various organizations to control costs, and assur-
ing the credibility of results. 

Program Overview
Much of the NWFSC’s image-based research has 
supported the monitoring and assessment of the 
90+ species managed under the Pacific Coast 
Groundfish Fishery Management Plan as required 
by the Magnuson-Stevens Fishery Conservation 
and Management Act. A significant portion of 
this work is conducted using a custom-built video 
recording system developed in partnership with 
the AFSC. This system consists of a small sled that 
can be outfitted with different cameras and light 
arrays connected to a titanium pressure housing 
which contains the system’s batteries, electron-
ics, and video recorder to capture the footage in 
situ to mini-DV tapes (Fig. 1). Several separate 
systems based on this portable and adaptable 
design have been used during the course of many 
of the NWFSC’s image-based research projects. 

The system has been mounted on the net and 
rigging used in the NWFSC’s annual trawl survey 
to evaluate gear performance and identify pat-
terns of fish behavior in response to the net during 
fishing operations. In one project, the camera 
system was suspended in front of the net opening 
with the camera facing aft to collect images of 
the trawl’s footrope and assess the potential for 
flatfish escapement under or around the footrope 
(Fig. 2). The system has also been mounted along 
the net’s bridles and door sweeps to capture video 
to evaluate whether the interaction of the net’s 

Figure 1. Two-part video camera and recording system 

Figure 2. Screen capture of video during a study of the performance of the 
footrope of the net used in the NWFSC’s West Coast groundfish bottom 
trawl survey.
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mud gear with the seafloor effectively “herds” flat-
fish between the trawl doors and the net opening 
(Fig. 3). Both projects generated useful informa-
tion about net performance and will help reduce 
uncertainty about the assumptions used in stock 
assessments that include trawl survey data (Bryan 
et al., In prep.)

Variations of this camera system were also used 
for conservation engineering within other NWFSC 
surveys and within the commercial groundfish 
industry. The Center’s acoustic survey for hake 
conducts midwater trawls to provide biological 
information and a physical groundtruth of the 
acoustic backscatter data. By mounting a video 
system inside the survey net (Fig. 4) and leaving 
the codend open, the camera collects video for a 
visual, rather than physical groundtruth of fish in 
the net that can also be used for length frequency 
analyses. Because the codend is open and no fish 
are actually captured, survey mortality using this 
technique is near zero, and larger portions of 

Figure 3. Screen capture of video from a study of 
potential flatfish “herding” by the trawl survey net’s 
door sweeps and mud gear.

Figure 4. Sled and housing system mounted within a midwater trawl net to visu-
ally verify acoustic backscatter collected during the acoustic survey for hake.

Figure 5. Screen captures of video and a still image of a 
bycatch reduction device (BRD) developed for use in the 
west coast commercial hake fishery. The upper left image 
depicts a Chinook salmon (Oncorhynchus tshawytscha) 
exiting out the starboard side of the forward escape 
window. The upper right image depicts a Chinook salmon 
exiting out the starboard side of the aft escape window. 
The bottom image provides a port side view of the two 
escape windows.

targeted schools can be sampled 
than would be feasible with a 
closed net. Another application 
of this system included develop-
ing less-lethal methods of visually 
sampling other midwater species 
such as widow rockfish (Sebastes 
entomelas; Bonacci et al. In prep.) 

This system was used for con-
servation engineering within the commercial 
hake fishery to reduce bycatch of salmon and 
rockfish. NWFSC researchers collaborating with 
the PSMFC and the commercial fishing industry 
analyzed video from cameras mounted inside 
commercial nets to help design special panels to 
serve as bycatch reduction devices (BRDs). BRDs 
reduce incidental catch of salmon and rockfish 
in the commercial hake fishery (Fig. 5; Lomeli 
and Wakefield In press) NWFSC, PSMFC, Oregon 
Department of Fish and Wildlife, and the com-
mercial shrimp industry have also collaborated in 
deploying this system to collect video to evaluate 
footrope performance within commercial shrimp 
trawls (Mark Lomeli, NWFSC, August, 2010, per-
sonal communication).

Another version of this basic system was mounted 
on a towed aluminum sled and configured to send 
real-time video to the vessel where it is viewed and 
recorded onto mini-DV tapes (Fig. 6). This arrange-
ment provides an efficient means of collecting 
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visual observations of the seafloor that can be 
used to identify and classify specific habitat types 
at locations of interest. This towed sled system 
has also been used in partnership with the AFSC 
and OSU to provide location-explicit groundtruth-
ing for habitat maps developed with multi-beam 
acoustic data and in partnership with the commer-
cial fishing industry to collect video of schooling 
midwater rockfish to supplement acoustic surveys 
(Ressler et al. 2009). 

Non-groundfish image-based research projects 
at the NWFSC include identification of individual 
killer whales for population monitoring within 
Puget Sound. Photographs of Puget Sound’s south-
ern resident killer whales (SRKWs) are manu-
ally reviewed, interpreted, and linked to known 
individuals within the SRKWs’ three pods (Brad 
Hanson, NWFSC, August 2010, personal communi-
cation). Other research includes computer-assisted 
analysis of photographs of salmonids overlaid by 
a truss connecting key morphometric landmarks. 
This approach has been applied to differentiate 
among juvenile salmonid species at hatcheries 
and evaluate whether genotypic differences within 
species may be identified phenotypically (e.g., 
Winans et al. 2003). 

Automated Analysis of  
Existing Video Collections
The potential for automated image analysis of 
video generated with the NWFSC’s primary under-
water camera system may be limited due to the 
design of the projects, their implementation, and 
the resolution and overall clarity of the video. Most 

of these projects were designed to be reviewed 
and interpreted by human analysts for qualitative 
observations, and therefore may not be appropriate 
for analysis via machine vision or other automated 
means. For example, the lighting or background 
may not provide sufficient contrast of the items 
of interest for image segmentation and recogni-
tion. In other cases, mud clouds from gear interac-
tions with the seafloor, excessive light reflectance 
from marine snow, or poor visibility in general 
may present problems for automated processing. 
Certainly the potential improvements in efficiency 
and volume that can be attained through automa-
tion warrant some exploration with our existing 
video, however, it is likely that the best opportu-
nities for successful image processing may reside 
with some of the NWFSC’s newer projects.

AUV
Recent projects have benefited from hardware, 
software, and research designs that are more 
explicitly aimed to generate imagery suitable for 
automated analyses. For example, the NWFSC has 
partnered with the PIFSC and WHOI to operate an 
autonomous underwater vehicle (AUV) to conduct 
various resource and habitat monitoring projects 
throughout the Pacific Ocean. The AUV is an adapt-
able, modular platform that can be configured with 
multiple digital still and video cameras, various 
light arrays including strobes, and sensors such 
as a multibeam sonar (Fig. 7). Current applications 
include providing visual observations to survey 
mesophotic coral reefs and collecting imagery 
to help calculate density estimates of fish and 

Figure 6. Towed video camera sled used to identify habitats in 
real-time at sites sampled during NWFSC groundfish surveys.

Figure 7. Image of the autonomous underwater vehicle operated jointly 
by the NWFSC and PIFSC showing some of the various components 
and sensors that can be mounted on the vehicle. 
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invertebrates associated with rocky, “untraw-
lable” habitats. Images may be examined singly or 
“stitched” together in a mosaic to examine larger 
areas of the seafloor. The high-resolution digital 
still cameras, strobe lighting, and the vehicle’s 
ability to maintain constant altitude (e.g., 3 m) off 
the seafloor enable the collection of high quality 
images suitable for automated processing. 

QUOTAS
Another project with potential for automated 
image analysis is the quantitative optic trawl 
analysis system (QUOTAS). Currently in develop-
ment, this system employs six separate camera, 
laser-pair, and LED arrays that are oriented in a 
hexagonal “ring” and mounted inside a research 
trawl net. Fish captured in the net are illuminated 
and photographed from the six camera and LED 
arrays as they pass through the ring (Fig. 8). Each 
of the six assemblies of camera, laser-pair, and 
LED arrays is programmed to coordinate with 
the opposing assemblies to prevent a flash from 
one array from “washing out” another camera’s 
photograph. The ring’s frame consists of panels 
that provide a dark background to improve con-
trast with most fish species of interest and reduce 
excessive light reflectance back into the camera. 
The QUOTAS system captures images of the same 
fish from different angles to aid in species iden-
tification and length estimates thereby realizing 
the efficiency of research trawling to sample large 
areas while reducing mortality to near zero. This 
system is devised to generate images readily 
analyzed via automated protocols. Photographs 
are taken of each fish from multiple angles to 
increase the likelihood of capturing a fish in an 
orientation amenable to effective image segmenta-
tion and color analysis thus aiding in automated 
species identification and measurement (Fig. 
9). Photographs can also be stitched together to 
form continuous images of the entire tow from 
six different angles that will be used to generate 
density estimates for the area swept by the net. 
The QUOTAS system can also be combined with 
other means of image collection in the same trawl 
net such as downward and horizontal-looking 
cameras, stereo cameras, and multi-beam sonars 
providing a large assortment of intriguing poten-
tial for automated analysis.

The Future
The primary mission of the six NMFS fisheries 
science centers of monitoring and assessing the 
Nation’s marine fisheries resources, and habi-
tats has remained generally constant over time. 
However, technology has improved the tools 

available to researchers. Direct visual observations 
of fish, their habitats, and other marine resources 
is an important component in effective monitoring 
programs, but often comes with the drawbacks of 
extensive and sometimes tedious manual review 
of the collected imagery. As the ability to generate 
higher resolution images increases and the cost 
of generating those images decreases, opportu-
nities for automating their review and analysis 
are expanding within the field of marine science. 
Further, the technology underlying image process-
ing has exploded in the past decade—driven in part 
by advances in the security and law enforcement 
sectors—and the benefits from these advances are 
spilling over into other fields. 

Automated image processing holds considerable 
potential to reduce the amount of time researchers 
spend reviewing imagery without the problems 
inherent with manual review such as individual 
bias and fatigue. Researchers are then free to 
spend more time on analysis and interpretation. 
Clearly, there are significant barriers that con-
strain an organization’s ability to implement auto-
mated image processing schemes on a large scale: 
high initial investment in gear, equipment, and 
software; potentially steep learning curves asso-
ciated with the hardware and software; trial and 
error in collecting imagery of sufficient quality for 
automated analysis; and developing appropriate 
QA/QC protocols among many others. However, 
because visual observations are an adaptable, 

Figure 8. Diagram of the QUOTAS system showing the 
hexagonal orientation of the six camera/LED array/
laser assemblies.
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widely-used, and a non-lethal means of data collec-
tion and likely to remain an essential component 
of marine science, researchers stand to benefit by 
tailoring their image-based projects to generate 
output appropriate for automation. These invest-
ments of time and resources into forward-looking 
technologies can yield improvements not only in 
terms of volume and efficiency, but also in accu-
racy of results. 

Part of the process of making tools such as auto-
mated image processing more affordable and 
accessible is building partnerships between the 
scientists who can benefit from these new tech-
nologies and the universities, businesses, and 
organizations that develop them. Whether through 
structured workshops such as this one, or informal 
relationships built on mutual interests, it is essen-
tial to maintain ongoing communication about 
research needs, funding opportunities, and scien-
tific challenges to help ensure that the best avail-
able tools continue to be utilized in our research.
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Overview of Visual Survey Research and 
Technology at the SWFSC
The Fisheries Resources Division (FRD) at the 
Southwest Fisheries Science Center (SWFSC) in 
La Jolla, California has been conducting visual 
surveys of benthic fishes and invertebrates since 
2001. Initially, a remotely operated vehicle (ROV) 
program was developed by the Benthic Resources 

Group to monitor populations of a newly-listed 
endangered species, white abalone (Haliotis 
sorenseni). However, the research focus of this 
program soon expanded to include surveys of 
market squid (Doryteuthis opalescens) spawn-
ing habitat (Zeidberg et al. 2011), distribution 
and abundance of groundfishes (primarily rock-
fishes in the genus Sebastes), and benthic habitats 
throughout southern California (CA). These ROV 
surveys have generated a vast collection of images, 
including nearly 900 hours of video and 37,000 
high resolution photographs. 

The Advanced Survey Technologies (AST) Group 
at SWFSC has developed camera systems, and 
is collaborating to develop algorithms for auto-
mated detection, measurement, and identifica-
tion of fish in underwater video, still, or stereo 
images (Matai et al., this volume; Rzhanov and 
Cutter, this volume). The AST group has devel-
oped single- and stereo-camera systems that 
are deployed by divers or from vessels as teth-
ered systems, attached to an ROV, or placed on 
moorings or landers (Fig.  1). The AST group has 
also developed a towed, undulating, optical and 
environmental sampling system (FasTowCam) 

Figure 1. Examples of visual survey technologies developed by the Advanced Survey Technology Group. Clockwise 
from top left: NMFS autonomous underwater vehicle (AUV); the towed, undulating, optical and environmental sampling 
system (FasTowCam) with integrated stereo camera, strobes and CTD; the self-contained micro-echosounder system 
with adaptive-sampling camera (Acoustic-Optical Sampler; AOS); and images of ocean whitefish (Caulolatilus princeps) 
from the self-contained stereo camera deployed on the SWFSC ROV at 43-Fathom Bank. 
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with integrated stereo camera, strobes and con-
nectivity, temperature and depth sensor (CTD) 
to augment acoustic surveys of coastal pelagic 
species (CPS; e.g., sardines, anchovies, and jack 
mackerel). Additionally, AST develops and operates 
the NMFS autonomous underwater vehicle (AUV, 
http://swfsc.noaa.gov/AUV/) that includes a stereo 
camera system adjacent to a scientific echosounder 
to collect images of acoustic targets for identifica-
tion and measurement. Similarly, AST has devel-
oped a self-contained micro-echosounder system 
with adaptive-sampling camera (Acoustic-Optical 
Sampler; AOS) which was designed for deployment 
on large marine animals (e.g., elephant seals), and 
is opportunistically deployed on multiple buoys.

The need to streamline processing of stereo 
images collected during all of these surveys has 

led to the development of the semi-automated 
stereo-image measuring software StereoMeasure; 
algorithms for automated detection and recogni-
tion of fish; and the StereoFeatures application 
that combines the recognition algorithms and 
three-dimensional reconstruction for measure-
ment and identification (Matai et al., this volume; 
Rzhanov and Cutter, this volume). Each of these 
systems will be detailed below.

SWFSC Remotely Operated Vehicle  
(ROV) System
Since 2001, the Benthic Resources Group at the 
SWFSC has been using a modified Deep Ocean 
Engineering Phantom ROV to conduct visual 
surveys of benthic fishes and invertebrates (Fig. 2). 
In its present configuration, the Phantom ROV 
is equipped with a forward-looking color-video 
camera (Sony FCB-IX47C with 468x720 lines of 
resolution and an 18x optical zoom) and a high-
resolution-still camera with 4x zoom (Insite Pacific, 
Inc. Scorpio with Nikon Coolpix 995). The ROV is 
tracked in real-time using a combination of a 
differential GPS mounted on the ship, an ultra-
short baseline (USBL) acoustic tracking system 
(ORE Offshore TrackPoint II-Plus), and a Doppler 
velocity log (Workhorse Navigator, Teledyne RDI). 
Additional sensors include a CTD (Citadel 2" Micro-
CTD, Teledyne RDI), oxygen optode (Model 3975, 
Aanderaa Instruments), scanning sonar (MS1000, 
Kongsberg Mesotech), and laser caliper system 
for measure objects and calculating field of view. 
All navigation and oceanographic data are syn-
chronized and logged using integrated navigation 
software (WinFrog, Fugro Pelagos, Inc.).

The Benthic Resources Group recently completed 
the development of a custom ROV to replace the 
Phantom system (Fig. 2; http://swfsc.noaa.gov/
HDHV-ROV/). Improvements include the replace-
ment of the standard definition color video camera 
with an Insite Pacific high-definition Mini Zeus 
video camera, quieter and more powerful brush-
less DC-powered thrusters (Technadyne), and a 
tether with three optical fibers that significantly 
improves the bandwidth for transmission of video 
and data collected from onboard instrumentation. 
This system should greatly improve our ability to 
detect and identify cryptic organisms and mini-
mize the impact of the ROV on fish behavior.

The Use of ROV Surveys to Quantify 
Fishes and Invertebrates
The primary focus of the ROV program has been 
to monitor populations of the endangered white 
abalone in southern California since being listed 

Figure 2. The SWFSC Phantom remotely operated vehicle (ROV, top) with the 
Videre stereo camera system attached above the camera tilt tray, and the 
new, Mini Zeus high-voltage, high definition (HDHV) equiped ROV (bottom).
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Stierhoff et al. In prep.), more accurate estimates of 
search area and species density can be calculated.

Areas for Improvement on Traditional 
Visual Survey Techniques
Two of the greatest challenges to this research 
have been the time required to post-process video 
observations and to provide sufficient length 
measurements to construct size distributions 
for fishes of interest. For a comprehensive com-
munity study, where all encountered species are 
identified and enumerated, it can take as long as 
5 hours to annotate 1 hour of video when fish 

in 2001. Surveys were conducted at several loca-
tions where white abalone were once abundant 
or present. A combination of multibeam sonar 
mapping and ROV strip transects were used to 
comprehensively map white abalone habitat and 
estimate the densities, abundances, size distribu-
tions, and group sizes for their sub populations 
(Butler et al. 2006). In 2008 and 2010, additional 
ROV surveys at one site indicated that the white 
abalone population has continued to decline 
sharply (Butler et al. In prep.). In both studies, 
white abalone were identified in situ and counted 
from the video, with the aid of higher-resolution 
photographs. Due to the cryptic appearance of 
these abalone, which closely resemble the algae-
encrusted rocks and macroalgae on which they 
reside, automated detection and classification of 
abalone in images is exceptionally challenging.

Other work has included ROV surveys to quan-
tify the populations of cowcod (Sebastes levis) and 
several species of severely depleted rockfishes and 
other groundfishes that inhabit deep, rocky, off-
shore banks (Fig. 3). A substantial subset of those 
surveys involved a collaborative, optically assisted 
acoustic survey technique (COAST), wherein active 
acoustic surveys were used to provide estimates 
of fish biomass and seabed type over large areas 
(Demer et al. 2009), and subsequent ROV surveys 
provided species composition, size distribution, 
habitat associations, and seabed classification. The 
data from the ROV surveys are used to apportion 
acoustic backscatter to various species groups and 
size classes. In some cases, substantially more 
post-processing time and effort is required to iden-
tify and quantify the abundance, species composi-
tion, and size distribution of observed fishes com-
pared to the abalone surveys. Consequently, this 
is an area of research that would greatly benefit 
from the ability to automatically detect, measure, 
and classify fish targets by species.

One area where automated image processing tech-
niques has greatly improved our existing visual 
survey techniques has been the development of a 
3Beam© quantitative measurement system that is 
used to more accurately quantify the area searched 
during strip transects with the ROV (Fig. 4, Pinkard 
et al. 2005). In brief, the 3Beam software detects 
the location of parallel lasers in compressed 
video frames, and uses the pitch, roll, altitude, 
and camera viewing angle to compute the width 
of the field of view at a user-defined time or dis-
tance interval. The software also allows the analyst 
to review and correct erroneous laser detections 
from the automated algorithm. In combination 
with high-resolution and highly accurate distance 
measurements from the DVL (±1% over 1,500m, 

Figure 3. An example of still images collected using the SWFSC remotely 
operated vehicle (ROV). Clockwise from top left: white abalone (Haliotis 
sorenseni); white abalone; cowcod (Sebastes levis); a school of squarespot 
rockfish (S. hopkinsi ); a California sheephead (Semicossyphus pulcher); 
splitnose rockfish (S. diploproa), greenspotted rockfish (S. chlorostictus); 
and a bocaccio rockfish (S. paucispinis).
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aggregations are dense, diverse, or both; when 
species are cryptic; or when habitats are highly 
complex. This analysis time can be significantly 
reduced, however, when the analysis is restricted 
to only a few key species of interest, by the use of 
on-the-fly annotation hardware such as program-
mable keyboards, or both. Perhaps more problem-
atic is the difficulty in measuring fishes using the 
laser-caliper system when fish are smaller than the 
laser spacing, when the lasers cannot be placed on 
the fish target, or when fish are not perpendicular 
to the camera and laser system. These constraints 
on the visual-survey methods has motivated the 
development of automated methods for detecting 
and classifying fishes and also the development 
of stereo-camera systems and image analysis soft-
ware for detecting features and measuring targets 
of interest in stereo-images. Given the present and 
growing number of visual-survey platforms utiliz-
ing single- and stereo-camera systems, the devel-
opment and improvement of automated image-
processing methods could provide considerable 
savings in time and resources.

Toward Automation of Detection, 
Measurement and Classification of Fish
The limitation of single-camera laser-caliper 
systems for measurement of fishes has led the 

AST group to acquire and develop stereo-camera 
systems. Images from calibrated stereo or multi-
view camera systems enable estimation of three-
dimensional coordinates of any point imaged by 
multiple cameras. This feature allows measure-
ment of distances in three dimensions using two 
or more images, for targets of any orientation 
within the field of view. Resulting measurements 
of fish sizes are critical to scattering models for 
interpretation of acoustic data and accurate esti-
mation of fish biomass, and for characterization 
of populations from visual-survey data.

More generally, the AST group has procured and 
developed imaging systems designed to enable 
the identification and measurement of organ-
isms during various types of surveys covering 
a variety of habitats from rocky banks to open-
ocean pelagic systems. The large numbers of 
images produced by these systems and the ROV 
need to be efficiently and consistently analyzed 
to detect, identify, and measure organisms. The 
highly effective algorithms for detection and rec-
ognition of faces, for example, or other targets in 
air, motivate development of similar methods for 
automatically detecting and recognizing fish and 
other organisms from these underwater systems. 
However, the seawater medium poses challenges 
not encountered in air, and complicates direct 

Figure 4. A screen grab from the 3Beam quantitative measurement software, enhanced to illustrate the location 
of the lasers on the bottom (red and green circles).
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implementation of existing algorithms, leading 
to adaptations of common algorithms. Medium 
properties can be affected by various conditions 
that affect the scattering, absorption, and color 
of light; for example the presence of plankton, 
suspended particles, or both, and also the types 
and sizes of such particles. 

Toward these goals the AST group is developing 
methods to automatically process images from 
single or multiple camera systems to 1) assist 
image analysts with more automated measure-
ments of fishes (e.g., StereoMeasure; Rzhanov and 
Cutter, this volume); 2) automatically detect, and 
identify organisms by adapting algorithms (e.g., 
Viola-Jones, and principal components analysis) 
developed for face recognition (Matai et al., this 
volume); and 3) identification and reconstruction 
of the entire three-dimensional (3-D) scene includ-
ing fish targets using algorithms adapted from 
SIFT or SURF (Rzhanov and Cutter, this volume) for 
measurement and classification of fish using the 
combination of shape and pattern by adaptation 
of recognition algorithms (from stage 2) to stereo 
images. Such methods will reduce the burden on 
analysts, increase the rate of analysis, and enable 
adaptive behaviors of autonomous vehicles.
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The NOAA Pacific Islands Fisheries Science Center 
(PIFSC) Coral Reef Ecosystem Division (CRED) has 
been historically engaged with a number of dif-
ferent research activities involving the collection 
and processing of still and videographic imagery 
(Fig. 1). These activities include but are not limited 
to towed-diver surveys, towed-optical-assessment-
device (TOAD) surveys, autonomous-underwa-
ter-vehicle (AUV) surveys, and Rapid Ecological 
Assessment (REA) benthic and fish surveys during 
CRED Pacific Reef Assessment and Monitoring 
Program (Pacific RAMP) cruises around the Pacific 
Basin (Fig. 2).

Each respective methodology is described below:

◊	 Towed-diver surveys provide assessments 
of relatively large areas of reef habitat  
(~ 2–3 km/survey), which incorporate benthic 
(Kenyon et al. 2006) and fish components 
(Richards et al. 2011). 

◊	 The TOAD is used in surveys to provide 
optical validation data to be correlated 
against bathymetry and acoustic backscatter 
imagery (Bare et al. 2010). More information 

can be found at http://www.soest.hawaii.edu/
pibhmc/.

◊	 The SeaBED AUV was designed by Hanumant 
Singh at the Woods Hole Oceanographic 
Institution (WHOI) and is jointly owned and 
operated by the Fishery Resource Analysis 
and Monitoring Division (FRAM) of the 
Northwest Fisheries Science Center (NWFSC) 
and CRED. Its primary mission is to collect 
fisheries-independent optical, bathymetric, 
and oceanographic data below typical diver 
depths (between 50 m to 2,000 m) to docu-
ment fish–benthos relationships. More infor-
mation can be found at http://www.soest.
hawaii.edu/pibhmc/pibhmc_auv.htm.

◊	 Photographic imagery data are collected 
in conjunction with stationary-point-count 
surveys at REA fish sites selected using a 
stratified random sampling design and with 
transect surveys at REA benthic sites (his-
torically as part of photoquadrat surveys 
and more recently with line-point-intercept 
surveys). The REA surveys are used to obtain 
high benthic taxonomic resolution (compared 
with the broadscale towed-diver surveys, 
which target functional groups).

Figure 1. Area of coral reef ecosystem research conducted 
by CRED. Figure by Tomoko Acoba, Joint Institute for Marine 
and Atmosperic Research, University of Hawaii, Honolulu.

Figure 2. Benthic imagery data are or have been collected through a number of survey methods, including a) towed diver 
(Figure by Amanda Toperoff, Joint Institute for Marine and Atmospheric Research, University of Hawaii, Honolulu.), b) TOAD 
c) AUV, or d) REA photoquadrat.

a b c d
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CRED’s approach to categorizing, analyzing and 
processing, and storing photographic and vid-
eographic data has continued to evolve after the 
advanced sampling technology working group 
(ASTWG) workshop in Seattle in 2010, with a 
subsequent Image Analysis Workshop on 30 
November–3 December, 2010, involving members 
of CRED and Scripps Institution of Oceanography 
(SIO) of the University of California San Diego 
(UCSD). The main driver of this second work-
shop was to build consensus among the variety 
of groups within CRED about how best to analyze 
CRED’s large and diverse imagery archive.

Following the workshop, CRED developed several 
internal goals regarding the direction of benthic 
image analysis. This mission plan included but 
was not limited to the following goals:

◊	 Establish a repeatable, consistent, and sta-
tistically robust image analysis protocol to 
monitor benthic change at the functional 
group level, with expansion capability to 
include improved taxonomic resolution

◊	 Determine the level of temporal change (inter-
annual and decadal cycles) of benthic func-
tional groups (e.g., hard coral and macroalgae 
cover) at island or atoll scales

◊	 Conduct detailed comparisons of photo-
graphic vs. direct-diver-observation data, 
where applicable

Highlights of CRED image analysis work since the 
ASTWG meeting and subsequent image analysis 
workshop include the following activities:

◊	 Design and implementation of an updated 
benthic classification hierarchy and stan-
dard operating procedures (Fig. 3). The 
common classification tiers, categories, and 
definitions were originally developed during 
the December 2010 CRED Image Analysis 
Workshop and then refined during subse-
quent months. (https://www.st.nmfs.noaa.
gov/confluence/display/CRED/Classificatio
n+Tiers%2C+Categories%2C+and+Definitions).

◊	 Development of an in-depth analyst train-
ing protocol and region-specific pretests for 
multiple image analysts covering multiple 
geographic regions.

◊	 Standardization of data vocabularies.

◊	 Broadscale analysis effort, involving a large 
pool of image analysts, to process American 
Samoa towed-diver photoarchival data for 
the 2002–2010 period. A separate effort to 
process line-point-intercept photo data from 
2010 is also underway.

The possibility of automating image analysis of 
coral reef benthic habitats remains a future chal-
lenge with a staggering number of obstacles. A 
combination of factors would be required to make 
it successful, including improvements in edge-
detection software and increasing the ability of 
analysts to identify and discriminate between 
benthic functional groups using spectral signa-
tures. In addition, these advances must account 
for highly variable factors such as sea and visibil-
ity states and habitats (e.g., spur and groove vs. 
basaltic reef). Until those challenges are addressed, 
CRED will continue to use a long-standing pool 
of scientists and analysts to manually classify 
benthic imagery. 

Figure 3. Example of the updated benthic classification 
tiers used by CRED.
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Toward automation of the analyses of imagery col-
lected around coral reef habitats, several success-
ful steps have been taken, including the following 
achievements:

◊	 WHOI engineers have developed software 
algorithms to automate photomosaicing of 
SeaBED AUV imagery. While manual adjust-
ments are still often required, this capability 
may generate additional automation possibili-
ties for AUV imagery processing, mapping, 
and analysis.

◊	 Continuation of collaborative efforts with 
Oscar Beijbom of UCSD to develop auto-
mated reef analyses using computer vision. 
A combination of texture analyses, color 
analyses, and testing of a computer-driven 
identification and classification engine 
on a suite of Caribbean coral reef images 
resulted in ~ 70% correct classifications on 
a functional group level, with a run time of  
~ 1,000 images analyzed/24 hours (O. Beijbom, 
PIFSC, unpublished data). More information 
can be found at http://vision.ucsd.edu/project/
computer-vision-methods-coral-reef-assess-
ment and http://cvce.ucsd.edu/index.php.

 

Finally, in a separate, stand-alone effort, CRED in 
2011 initiated the incorporation of SeaGIS stereo-
scopic camera systems (Fig. 4) (http://www.seagis.
com.au/hardware.html) as an experimental effort 
to obtain accurate size-class data for fish species 
encountered during towed-diver surveys. Data 
collected during the Mariana Archipelago Reef 
Assessment and Monitoring Program (MARAMP) 
cruise in the spring of 2011 will be analyzed using 
PhotoMeasure software and methods similar to 
those used to analyze video from baited remote 
underwater video stations (BRUVS) and stereo-
scopic diver-swim transects (Harvey et al. 2003).

Citations
Bare, A.Y., K.L. Grimshaw, J.J. Rooney, M.G. Sabater, 

D. Fenver, and B. Carroll. 2010. Mesophotic 
communities of the insular shelf at 
Tutuila, American Samoa. Coral Reefs 
29(2):369-377.

Harvey, E., M. Cappo, M.R. Shortic, J. Robson, J. 
Buchanan, and P. Speare. 2003. The accu-
racy and precision of underwater measure-
ments of length and maximum body depth 
of southern bluefin tuna (Thunnus mac-
coyii) with a stereo-video camera system. 
Fish. Res. 63(3):315-326.

Kenyon, J., R. Brainard, R. Hoeke, F. Parrish, C. 
Wilkinson. 2006. Towed-diver surveys, a 
method for mesoscale spatial assessment 
of benthic reef habitat: a case study at 
Midway Atoll in the Hawaiian Archipelago. 
Coast. Manage. 34(3):339-349.

Richards, B.L., I.D. Williams, M.O. Nadon, and B.J. 
Zqliczynski. 2011. A towed-diver survey 
method for mesoscale fishery-independent 
assessment of large-bodied reef fishes. 
Bull. Mari. Sci. 87(1):55-74.

Figure 4. A modified towed-diver platform 
designed to capture stereoscopic images 
of coral reef fishes.
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Sampling methodologies and their applicability 
represent a major bottleneck in our understanding 
of the biology of species inhabiting the deep-sea. 
Trawling is still one of the most effective and eco-
nomically feasible methods of sampling. Trawling 
studies are broadly conducted over large seabed 
areas to analyze the distribution and demogra-
phy of populations (i.e., stock assessment), as well 
as for overall biodiversity evaluation. One of the 
primary limitations in improving the reliability of 
data proceeding from trawl surveys is their overall 
variability. Sampling at random times produces 
unpredictable differences in the species composi-
tion of catches related to the rhythmic behavior 
of individuals forming local targeted populations. 

Broad diel (i.e., 24-hour based) variation in 
demersal community composition occurs as the 
rhythmic presence and absence of populations 
from haul samples. Some categories of rhythmic 
displacement can be categorized as follows: ben-
thopelagic species are those generally located on 
or just above the seabed; nektobenthic species 
migrate within the benthic boundary layer, 
encompassing continental shelves and slopes; 
and finally, endobenthic burrowing and burying 
species hide in the substrate during periods of 
behavioral passivity (Fig. 1).

Technological limitations in direct observation 
capabilities are at the root of the scarce modelling 
available on temporal biases in stock and biodiver-
sity assessment. Improvement in this field requires 
a new remote, continuous, and especially long-
lasting observational technology to monitor com-
munity changes in relation to contextual habitat 
metadata. Cabled multiparametric observatories 

represent a substantial innovation in this respect. 
One of the difficulties marine biology faces is 
the lack of sensors directly measuring biological 
activity. In contrast, geological and oceanographic 
sensors are more abundant and able to directly 
measure the properties and processes of inter-
est. Cabled multiparametric observatories often 
house video cameras and these could be used as 
an efficient sensor at population and species level, 
provided that video-image analysis is sufficiently 
developed to automatically classify tracked indi-
viduals within different species as categories (clas-
sification) and to count individuals over time, as 
a proxy of behavioral rhythms. 

Implementing analyses for tracking and classifica-
tion of animals is crucial in order to extract rel-
evant biological data using automated video-image 
analysis. Tracking is the process of identifying the 
same animal within a set of temporally consecu-
tive frames. Classification is the grouping of each 
animal within a pre-established category, usually 
a species. While tracking is of critical value for 
the characterization of behavioral rhythms (i.e., 
the counting of individuals over time), classifica-
tion enables the characterization of communities 
at local scale. 

Re-counting of the same individuals is a problem 
in all studies that aim to estimate local popula-
tion sizes by video imaging. One way of avoiding 
this is by tracking individuals and subsequently 
eliminating all initially counted individuals within 
the same frame set. Computing of trajectories can 
be implemented by using Kalman filters. 

The shape of a given animal recorded by a static 
camera can be automatically classified and 
assigned to a species by Fourier methods. These 
methods allow the recognition of an organism 

Figure 1. Schematic representation of activity rhythms in relation 
to the seabed, the water column, and the benthic boundary layer 
(BBL). Movements within corridors (the dashed cylinders) are 
indicated by thick black (night) and white (day) arrows.
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profile through the fitting of harmonic functions. 
In the elliptic Fourier analysis (EFA), the animal’s 
shape can be studied by the automatic position-
ing of angular or equidistant points along the 
profile; the transformation of the contour into an 
incremental harmonic function (x,y coordinates 
are computed for each point); and finally, the 
fitting of that function with an increasing number 
of ellipses in order to approximate its variation 
with the highest precision (Fig. 2). At the end of 
this fitting process, each biological sample is rep-
resented by a set of ellipses, each of them with 
their four coefficients. As a result, a matrix of 
all individuals and their respective ellipses’ coef-
ficients can be obtained. This matrix is the input 
required for two types of multivariate statistical 
analysis: non-supervised, (e.g., principal compo-
nent analysis-PCA) when we screen the sample for 
any potential clustering of shapes without prior 
ecological hypotheses, and supervised when the 
clustering is attempted according to ecological 
hypotheses (through the addition to the matrix of 
indexed complex ecological variables). 

Fourier descriptors (FD) are also employed for the 
automated recognition of tracked animals. They 
can be utilized to describe the shape outline in 
terms of its frequency, by the fitting of a set of 
circular harmonic functions each with its own 
coefficients (the FDs) onto the outline. In combina-
tion with shape analysis, the RGB content (i.e., the 
average color content coordinates) of organisms 
can be added to increase recognition efficiency. 

Morphological recognition is carried out in a semi-
automated fashion (Fig. 3). A library of manually 
supervised and classified images is required for 
each target species. Animal images from different 
angles can be saved in a binary format. The clas-
sification of every newly tracked animal is carried 
out on the basis of shape and color content descrip-
tors by resemblance to an average model extracted 
from the training set of images. Recognition can 
be efficiently carried out with partial least squares 
discriminant analysis PLSDA or Supervised 
Standard K-Nearest Neighbor (KNN) analyses. 

Figure 2. Eliptic Fourier analysis (EFA) carried out for the automatic classification of clams’ shells within two species, 
Tapes decussatus and T. philippinarum. Digital images (A) are acquired in color and subsequently transformed in 
grey-scale (B) prior image binarization (C). Points are equidistantly placed (D) and joined as an outline (E). Supervised 
or non-supervised multivariate analyses can be carried out in order to screen the sample for any clustering of shapes. 
A mean shape outline (F) can be then obtained for each clustering.
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Figure 3. The automated tracking and classification of moving animals (an eelpout, a red crab and a snail are highlighted 
by the circles) in digital videos of Sagami deep-sea station (1,100 m depth, central Sea of Japan). The identification 
occurs at frame subtraction (A-B) and after image binarization and area filtering (C).
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Introduction
Ocean observatories and underwater video surveys 
have the potential to unlock important discoveries, 
yet the burden of video management and analy-
sis often requires reducing the amount of video 
recorded and later analyzed. To help address this 
problem, the Automated Visual Event Detection 
and Classification (AVEDac) software has been 
under development at the Monterey Bay Aquarium 
Research Institute (MBARI) since 2002 to help 
analyze video and still images. 

About MBARI
Monterey Bay Aquarium Research Institute is a 
private, non-profit research company funded by 
the David and Lucile Packard Foundation. Our staff 
includes approximately 220 scientists, engineers, 
and operations and administrative personnel. Our 
mission is to achieve and maintain a position as 
a world center for advanced research and educa-
tion in ocean science and technology, and to do so 
through the development of better instruments, 
systems, and methods for scientific research in 
the deep waters of the ocean. 

Project Motivation
The motivation for this work extends across 
several diverse applications including: autono-
mous underwater video surveys in marine pro-
tected areas (MPAs); deep-water observatories 
such as the MBARI Monterey Accelerated Research 
System (MARS) observatory test bed where we 
can record video 24-hours a day on shore; time-
lapse cameras placed on the seafloor to record 
high-quality still images from the Abyssal Time-
Series Images of Station (Cline et al. 2009). More 
recently, work is underway to help University of 
California Davis (UCD) and the U.S. Army Corps of 
Engineers monitor the passage of lamprey eel and 
salmon through low-head dams. The studies in 
each of these applications are primarily for abun-
dance estimation and distribution or behavioral 
studies. AVEDac currently does not estimate sizes 
of targets, although it is a desired feature for MPA 
studies.

Figure 1. Example views of 
AVEDac user interface
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Software Overview 
The AVEDac software analyzes each image in 
search of interesting events using a neuromor-
phic software model based on the human vision 
system (Itti et al. 1998). Potentially interesting 
visual events spanning multiple images or frames 
based on low-level properties of salient objects are 
tracked (Walther 2003, 2004). Interesting events 
are then passed to a Bayesian classifier utilizing 
a Gaussian mixture model to determine the lowest 
possible taxonomic category and then analyzed 
for abundance and distribution. To generate these 
training classes representing each taxonomic cat-
egory required for the AVEDac classifier, a collec-
tion of video and still-images populated with the 
items of interest is processed through the AVEDac 
software. The user then sorts all potentially inter-
esting events into representative classes through 
the aid of a graphical interface (Fig. 1).

Processing imagery with AVEDac is both data and 
computationally intensive and involves a series of 
processing steps. These steps can be described as 
a workflow, where each step in the workflow has 
data input, output and/or control dependencies, 
and each step in this workflow may not necessar-
ily be executed on the same computer (Fig. 2). To 
execute and manage applications with particularly 
large data sets or complex workflows, a special-
ized workload management system for computer 
and data intensive jobs called Condor, developed 
by the University of Wisconsin–Madison, is used. 

Results and Future Work
The system has shown promising results when 
applied to imagery from video surveys conducted 
by remotely operated vehicles (Walther 2003, 2004). 
We continue to make improvements to the clas-
sification algorithms, as this has proven to be the 
most difficult task. 

Work is underway to explore alternative classifi-
cation algorithms to help UCD and the U.S. Army 
Corps of Engineers identify and distinguish 
lamprey eels from salmon during passage through 
low-head dams (weirs). Work is also ongoing to add 
new features to the graphical interface in prepara-
tion for use with MPA studies. We are also currently 
using AVEDac to analyze video collected from the 
Eye-in-the-Sea™ camera located in Monterey Bay 
(Widder et al. 2005). 

Figure 2. Saliency map from the iLab toolkit warped 
onto a 3-D map. Peaks in the map show points of 
high visual attention where the Rathbunaster and 
Leukothele are in the center image.
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hours a day in 2008-2009. 
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Humans cannot efficiently process the volume 
of images generated during large-scale plankton 
surveys for proper identification of field samples 
and also cannot operate with in situ image collec-
tion. There is a need to automate. The one-dimen-
sional case illustrated in Figure 1 shows how char-
acteristics are extracted from an image (in this 
case, by multi-channel laser absorption spectra) 
and used to create discriminating features of cells. 
These features can then be harnessed to analyze 
water samples (Fig. 2). Extending this to two 
dimensions through the use of digital cameras, 
flatbed scanners can be employed to evaluate digi-
tized images. There are several commercial prod-
ucts (e.g., FlowCAM, ZooSCAN, software toolsets 
for microscopy) and several free software tool-
sets (e.g., Zoo/PhytoImage, ZooProcess, Weka and 
Tanagra for statistical analysis) available to assist 
in these analyses.

The least expensive option is to use a flatbed 
scanner (Fig. 3) which can examine objects as small 
as 0.5 mm in length. These images can then be 
analyzed with appropriate software (in this case, 
Zoo/PhytoImage) to extract vignettes (i.e., regions 
of interest or ROIs), obtain measurements, and 
then train a classifier on the selected training 
set specimens. Figure 4 provides an example of 
a flatbed scan of a water sample (cf. Fig. 3). The 
sample has been stained with Bengal rose to high-
light specimens and reduce the contribution of 
detritus to the analysis. A subsample of this scan 
is shown magnified in Figures 5 and 6 show a 
commercial variant of the flatbed scanner, the 
Zooscan. Zooscan has been designed for faster 
sample processing and reduced calibration effort 

Figure 1. Cytosense image in f low examples of two 
phytoplankton and their accompanying laser fluorescence 
traces (source: Dubelaar et al. 2004).

Figure 2. Distributions of 20 groups of particles in a Cytosense-analyzed water sample (a), with group labels 
assigned to sample groups (b). Vertical scale is individuals per milliliter. (Dubelaar et al. 2004) 
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Figure 3. Using a flatbed scanner to image 
Bengal rose-stained zooplankton (source: 
Culverhouse, P.F.C. ,  Austra l  Summer 
Institute, USC, Chile 2007).

Figure 4. CEH.01-07-02.p7+B2. Flatbed scan of mixed zooplankton (Di Mauro et al. 2009) 

Figure 5. CEH.01-07-02.p7+B2. Magnified scan of a subsample of the mixed zooplankton 
shown in Figure 5. A showing a small sample of copepods drawn from Figure 5 

Figure 6. The Zooscan instrument with associated metadata form (Gorsky et al. 2010).
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as compared to a normal flatbed scanner. In con-
junction with these analyses, metadata containing 
accurate and relevant cruise-specific information 
is essential for subsequent ecological study and 
application of the image analysis results.

We can try and extract discriminating measure-
ments from each specimen’s image, such as the 
fit to an ellipse (major axis, minor axis) and the 
specimen’s pixel area. Figure 7 shows the tabula-
tions for the specimens in Figure 4. After manual 
inspection of the data, we can suggest there are 
three or four clusters, based upon these three mea-
surements. This is the basis of machine categorisa-
tion - but instead of three parameters, often 60 or 
more parameters are extracted from each image 
vignette, resulting in a 60-dimensional clustering 
problem. Training a classifier algorithm such as a 
random forest with such data is straightforward. 
The limiting step is the need to first label by hand 
each specimen in the training set. The value of 
this type of analysis is that net-caught plankton 
samples can be processed quickly, allowing for the 
analysis of over 10 net samples per day for up to 
30 functional groups. 

Let us now look at how expert analysts perform at 
this type of inspection. Review Figure 8 yourself 

and decide how many of the organisms in the key 
on the right hand side of the figure appear in the 
image. This type of manual review is not only diffi-
cult, it can be monotonous and boring with fatigue 
setting in quickly, perhaps within 15 minutes of 
starting the review. Human performance in identi-
fying and sorting organisms is affected by several 
psychological factors including: 

◊	 Human short-term memory limit of five to 
nine items

◊	 Fatigue and boredom: severe loss of categori-
sation performance (> 50% error)

◊	 Recency effects where a new classification 
is biased toward those in the set of most 
recently labels 

◊	 Positivity bias, where specimen identification 
is biased by one’s expectations of the species 
likely to be present in the sample 

Context and other prior cues as to category speed 
up recognition significantly. These human factors 
give rise to biases in tally counting, as can be 
seen from the consistency within individuals and 
between experts (Table 1).

Table 1. A summary of study results (source: Culverhouse et al. 2007).

Categorization task Self consistency within 
panel individuals 

Panel  consistency 
across individuals 
performance

Machine Specimen Data size

Ceratium  longipes  
and C. arcticum 

expert: 94-99%  
‘book’ expert  67-83%  
-8 experts

95% to 43% 99% 60 epidiascope tracings

5 spp. Tintinnidae N/A 91 % - 6 experts 87% 100 printed photomicrographs

3 spp. Fish larvae N/A N/A 70% 1562 computer analysed photomicrographs

5-9 spp. Dinoflagellates N/A 91-95% - 6 experts 67% 30 computer displayed photomicrographs

23 spp. Dinoflagellates N/A 83-86% - 6 experts 83% 310 computer displayed photomicrographs

10 taxa Zooplankton 46 to 86% - 6 experts N/A  80% >400 specimens in suspended in IMS  
with detritus

Figure 7. Morphological data extracted automatically 
from CEH.01-07-02.p7+B2.A (from Fig. 4). 
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Conclusions
People are not perfect identification machines, 
although experts can be highly self-consistent. 
In contrast, novices often lack even self-consis-
tency, and forming a consensus of opinion between 
people can be difficult (e.g., two people sorting the 
same sample will very often come up with differ-
ent tally counts for the selected categories).

Automated identification of plankton is feasible 
when applied in constrained circumstances (i.e., 
it is not a detailed taxonomic analysis of specimen 
images). It can be effective for generic discrimi-
nations with results comparing favourably with 
human performance, given that human error rate 
increases with sample size and machines offer 
consistent results regardless of sample size.

Future challenges in the field of automated image 
analysis include: 

◊	 Scaling up to > 100 and > 1,000 categories

◊	 Handling three-dimensional specimens for 
in situ work

◊	 Validating training data using scarce human 
expert resources

◊	 Funding research in this area.

◊	 Cross-disciplinary interactions with ecosys-
tems modellers

◊	 Difficult for referees to review, so there is a 
need to promote wider awareness of problems 
and solutions

◊	 Greater support from the wider community.
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Figure 8. A composite image 
of microzooplankton and 
phytoplankton taken with HAB 
Buoy (Culverhouse et al. 2007).

So how about sorting manually? 

It’s hard
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The quantification of abundance, distribution, 
and movement of fish is critical to viable fishery 
management and ecological and environmen-
tal studies of fish communities. This includes 
assessing the use of fish bypass facilities, esti-
mating entrainment at canals and dams, study-
ing behavioral responses of fish to environmental 
and weather changes, and collecting counts and 
sizes of fish at multiple points along migration 
routes. Hydroelectric facilities, diversion dams, 
and reservoirs on most western rivers block fish 
migration routes. Passageways are often installed 
to allow fish movement through these structures. 
Monitoring fish movement at these passageways 
can provide important ecological and management 
information about fish migration patterns. Other 
biological research projects not performed at these 
passageways often require capturing and releas-
ing of fish.

On many western rivers, there can be multiple 
diversion dams built along each migration route. 
Monitoring fish migration at these diversion 
dams or at narrow passages along the rivers can 
provide extensive information about the numbers, 
seasonal timing, periodicity of movement, and 
passage survival of fish. From these, projections 
of the strength of runs can be made, long-term 
trends in populations can be compared, and even 
the relative success of various mitigation mea-
sures can be appraised. Condition factors can be 
used to determine the influence of abiotic factors 
on fish growth. The timing of migrations can be 
related to regional sea surface temperatures, and 
changes in relative species composition can be 
investigated relative to upstream habitat changes. 
Even mortality rates can be estimated as fish move 
progressively upstream. Without monitoring, this 
type of management is not possible. However, 
monitoring requires labor, either on-site observ-
ers to identify and count species passing through 
the station, or some mechanism for automated 
recording of the fish. 

The Columbia R iver basin covers 259,000 
square miles and includes the Snake, Deschutes, 
Okanagan, Wenatchee, Spokane, and Yakima 
rivers. It is also home to more than 400 dams used 
for hydroelectric power, irrigation, transportation, 
flood control, and recreation. At present, fish are 
counted and monitored at 50 percent or more of 
the U.S. Bureau of Reclamation (USBR) and U.S. 
Army Corps of Engineers facilities. Almost all 
monitoring is done by human observers, require-
ing significant time and financial costs. It is also 
subject to human error and labor constraints. To 
reduce the cost of manual fish tracking, videotap-
ing has been implemented. However, the resulting 
large volume of video recordings must be reviewed 
manually in order to collect this critical informa-
tion. Typically, the image quality obtained from 
video recordings is poor, making it difficult for 
biologists to identify species further complicat-
ing the data acquisition process. Maintenance of 
video recordings has also been a challenging task 
as analog video recording technology becomes 
obsolete. According to biologists at the USBR, state 
governments, universities, and Native American 
tribes, an automated fish recognition and moni-
toring system is urgently needed. The USBR and 
U.S. Department of Agriculture (USDA) supported 
this research effort.

Figure 1. Prosser Dam on the Yakima River 
in Prosser, Washington (top), and its fish 
ladder (bottom).
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Figure 2 illustrates the overall design of one such 
automated project: the FishID system. It outlines 
the need for each of the five processing steps. The 
first and most important step is image acquisition. 
Object detection algorithms detect the presence of 
an object. Object contour extraction and identifica-
tion help to identify whether the object is indeed a 
fish and perform species recognition. Shape-based 
recognition can be performed to obtain size and 
species information. Tracking of fish movement 
determines the location of the fish and identifies 
the best image frame for recognition. In addition 
to fish species, timestamp and fish image (if neces-
sary) can be stored for further analysis by the user. 

Pictures in Figure 3 show the fish viewing window  
at the test site on the right and the functional 
graphical user interface on the left. The viewing 
window is built in a vault approximately 30 feet 
below the top surface of the dam. The software 
was developed with a friendly graphical user inter-
face for testing. Calibration and parameter adjust-
ments were done with simple mouse clicks. The 
viewing window was 4×4 and the distance allowed 
for mounting the camera was also 4 feet. 

We convert the chosen image into a binary image 
using the data calculated in the object detection 
stage. From this we determine the fish outline, 
or contour of the fish. This raw data are simply 
a list of points with the left-most fish pixel being 
the starting point and the contour traced in a 
clockwise direction. We reduce these points 
to a useful number (between 30 and 50 points 
appeared to give the best results with our data) 
by taking points equally spaced along the contour 
of the fish. Using equally spaced points implicitly 
makes our shape representation scale-invariant. 
The reduced-point contour of the fish forms a 
closed polygon. We calculate the turn angles of this 
polygon, again starting from the left-most point 
and working clockwise. This list of turn angles 
contains no information concerning the position 
of the fish and thus makes our shape description 
translation-invariant. Also, as long as the left-most 
point on the fish is the mouth of the fish (which it 
generally is in this case) then the turn angles are 
rotation-invariant as well. Figure 4 illustrates the 
whole process of generating a fish model.

Figure 3. Image of fish ladder window and screen grab of 
FishID system interface.

Figure 2. FishID system diagram.

Figure 4. Turn Angle Distribution Analysis (TADA). 
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New Developments
One of the most important computer vision 
research areas is the detection and recognition 
of specific objects. The difficulty of detecting 
and labeling objects in images is due in part to 
issues such as lighting conditions, object ori-
entation, distortions, and naturally varying 
parameters of the objects. Overcoming these 
obstacles to achieve robust object recognition 
would be beneficial for many scientific fields 
and applications such as automatic target iden-
tification for the mil itary, survei l lance for 
security applications, medical imaging, and 
abundance estimation or invasive species detec-
tion for biological and environmental studies.

At Prosser Dam and most other facilities there 
are only a small number of species the biologists 
are concerned about monitoring. Furthermore, 
species that confuse the recognition algorithm 
may not present at the same facility, as most of 
the species monitored are larger than most of 
the other species in the river. The accuracy of 
our TADA recognition algorithm tested on a few 
selected species is shown in Table 1. The accu-
racy decreased when more species were added 
for testing. Testing using only two species lead 
to accuracies as high as 97%. It maintained 97.5% 
accuracy when four species were used. Accuracy 
was negatively affected by the addition of speckled 
dace (Rhinichthys osculus) and brown trout (Salmo 
trutta), both similar in shape to salmon. Our clas-
sification algorithm — coupled with a size filter to 
ignore the smaller species — would perform very 
well in this case. Adding color features could also 
further improve the accuracy for certain species.

Table 1. Fish species recognition results using TADA.

Species
2 

Species
3 

Species
4 

Species
5 

Species
6 

Species

Speckled dace 97% 93% 93% 77% 77%

Whitefish 97% 97% 97% 93% 93%

Cottid - 100% 100% 97% 97%

Utah sucker - - 100% 80% 77%

Salmon - - - 90% 83%

Brown trout - - - - 13%

Average % 97% 96.7% 97.5% 87.4% 73.3%

Object recognition is a well-studied but extremely 
challenging field. Most current approaches rely 
on human experts to construct features for object 
recognition. We have developed a novel approach 
in the Robotic Vision Lab at BYU that addresses 
a few common drawbacks of current practices. 
Our approach aims to perform automatic feature 
construction for object detection called Evolution-
COnstructed Features (ECO features). ECO features 
are automatically constructed by uniquely employ-
ing a standard genetic algorithm to identify series 
of transforms that are highly discriminative. Using 
ECO features provides several advantages over 
other object detection algorithms including: 

1.	 Effective features can be discovered without 
the use of a human expert.

2.	 Non-intuitive features can be constructed 
that are not normally considered by human 
experts.

3.	 ECO features are not limited to certain image 
sources including data originating from 
complementary metal-oxide semiconductor 
(CMOS) sensors, synthetic aperture radar (SAR), 
infrared (IR), and potentially others such as 
magnetic resonance imaging (MRI), computed 
tomography (CT), X-ray, etc.

4.	 ECO features can be learned offline for any 
object type. In other systems the human 
expert creates features that are good for one 
class of objects but may do poorly on other 
objects types.

5.	 ECO features can be global or local feature types.

Potential Applications 
As mentioned previously, many applications are 
in need of a robust object detection and recogni-
tion method. Our ECO features approach is able 
to address many critical issues in those areas. 
Potential applications of this novel object recog-
nition includes invasive fish species detection and 
coral reef fish abundance evaluation for biological 
and environmental studies. There are also other 
potential applications in the military, homeland 
security, and medical applications.
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Introduction
Automated recognition and classification of fish 
and other organisms is beneficial to efforts of 
counting fish for population assessments, for 
describing associations between fish and habi-
tats, or monitoring ecosystems. In this work, we 
summarize current efforts to automate the process 
of fish detection and recognition from a video or 
still camera source using computer vision algo-
rithms. In order to recognize a fish from video 
source, there are two steps involved. First is the 
fish detection process, in which the fish is detected 
and separated from background. The detected 
fish image from previous stage is then passed to 
a recognition algorithm to identify the species of 
the fish. The latter is known as the recognition or 
identification stage.

Fish Detection Methodologies
The detection process consists of identifying fish 
locations in an image frame (i.e., its x,y pixel coor-
dinates), fish extent (width, height), followed by 
a clear segmentation of fish from background. 
The outcome is an image that only contains fish 
targets, with the background masked out, and 
individual non-overlapping fish targets separately 
labeled. The Viola and Jones (VJ) object detection 
algorithm based on haar-like features(Viola and 
Jones 2004) was evaluated for identifying fish. 
First, a training image set was assembled con-
sisting of positive (with fish) and negative images 
(without fish). Then this training set was used to 
identify test sets of images to determine the effec-
tiveness of the method. The detection of two fish 
species, the Scythe butterfly fish (Prognathodes fal-
cifer) and flag rockfish (Sebastes rubrivinctus) from 
images was tested using this approach. Images of 
butterfly fish in an aquarium collected by Benson  
et al. (2009) and rockfish images collected in situ 
by an ROV were provided by J. Butler, NOAA SWFSC 
Benthic Resources Group (Fig. 1).

Fish Identification Methodologies
The recognition of fish is the process of identify-
ing fish targets to species based on similarity to 
images of representative specimens (testing sets 
of images of know species). Following is a brief 
description of PCA (principal component analysis) 
and SIFT (shift invariant feature transform) algo-
rithms used for the recognition process. 

◊	 PCA (Pr inc ipa l  Component  Ana lys is )  
Turk and Pentland (1991) introduced an algo-
rithm for face recognition based on PCA. It is 
the simplest and most widely used face recog-
nition algorithm, and is quite effective. The 
PCA recognition algorithm has two stages. As 
in the fish identification stage the first step 
consisted of assembling the test sets, and in 
the second stage this test set was compared 
to unknown fish targets. 

◊	 SIFT (Scale Invariant Feature Transform 
Introduced by Lowe (2004), the scale invari-
ant feature transform (SIFT) can be used for 
matching images or for object recognition. 
The main objective of SIFT is to find impor-
tant key points in two images and match those 
points against other images. The main focus 
of SIFT is to find these points by dimension-
ality reduction. The SIFT approach is robust 
to variations in scale, rotation, and illumina-
tion in test set images. We used the VLFeat 
software tool for training the SIFT process 
and for validation of the results. For further 
information see http://www.vlfeat.org/.

Fish Detection Results
An example of the application of the VJ algorithm 
to identify fish targets is presented below. Table 1 
summarizes results for six different test cases in 
detecting butterfly fish. The first three test cases 
use 1,000 positive images and 3,000 negative 
images as the training set and the second three 
test cases use 2,689 positive images and 3,000 
negative images.  

Table 1. VJ fish detection algorithm results. P/N indicates positive and negative 
image ratio in the training set. TS indicates test set size. Hits indicate the 
number of and percentage of correctly detected fishes. Missed indicates 
the number missed fishes. The “False” column indicates false positives.  

#Test P/N TS Hits Missed False

1 1000/3000 112 R 94 (83%) 18 23

2 112 L 68 (60%) 44 48

3 224 LR 162 (72%) 62 71

4 2689/3000 112 R 101 (90%) 11 16

5 112 L 91 (81%) 21 19

6 224 LR 192 (85%) 32 35
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Using test image set of known fish targets for vali-
dation consisting of 112 right side, 112 left side, 
224 left and right side fish images, we got 83%, 
68%, 72% hit rates for first three test cases and 
90%, 81%, 85% hit rates for the second three test 
cases. The results show that larger training image 
sets result in higher hit rates. 

This analysis was repeated on images of flag rock-
fish. The first test consisted of a training set of 
3,100 positive images and 3,000 negative images 
(Table 2.). Flag rockfishes were less successfully 
detected with a 19% hit rate for a test set which 
contains 1,272 left and right side images. In the 
second test the positive images were increased to 
3800, improving the hit rate to 49%. 

Fish Recognition Using PCA
PCA approach was used with four species of rock-
fish (genus Sebastes) and one species of butter-
fly fish. The images used in this experiment are 
shown in Figure 1. Seven images of each species 
were used as a training set. In order to produce 
high quality training data, training images were 
normalized for position and had similar illumi-
nation. The result of applying the PCA resulted 
in 100% successful clustering for every case. This 
result may be unrealistic, as it was limited by 
the number of high quality training images, and 
should be further evaluated with larger image sets, 
and with fish in different positions and varying 
illumination. However, as a preliminary assess-
ment, the PCA shows promising results. 

There are also modular PCA (MPCA) and weighted 
modular PCA (WMPCA) which are reported to be 
more robust than normal PCA (Gottumukkal and 
Asari 2004) and could further improve perfor-
mance over the PCA approach. 

SIFT Results
The SIFT approach was applied using the VLFEAT 
tool for four different test cases (Table 3). Using 
five positive images of butterfly fish and flag rock-
fish resulted in a 50% recognition rate. With an 
increase in the number of positive images to 10, a 
100% hit rate (#Test = 2) was achieved. Performance 
seem to have decreased when more potential 
classes were added to the analysis. As with the 
PCA, these results are limited by the number of 
training images. As a result, the SIFT approach 
will be further evaluated with more images in the 
future. Current studies showed that SIFT works 
well when images vary in scale, illumination and 
pose. Therefore, we think SIFT may be more suit-
able than PCA for underwater fish recognition. 

Conclusions and Future Direction
We tested different detection and recognition algo-
rithms in this project. Our main conclusion is that 
with a larger training set, we obtain better results. 
In order to evaluate existing classical object detec-
tion and recognition algorithms, we need more 
robust training data set. In the future, first we 
will move towards preparing a standardized train-
ing and testing database, which will allows us to 
1) make a direct comparison between different 
algorithms for fish detection and identification, 
2) identify the most promising fish classification/
detection algorithms, 3) assess the state of the 
art algorithms for fish detection/recognition, 4) 
to identify future directions of research for fish 
detection/identification, and 5) advance the state 
of the art in fish detection and identification. In 
addition, we plan to test emerging object detec-
tion and recognition algorithms with standard-
ized data set. For example, we will test combining 
computer vision with human effort for fish recog-
nition following a method introduced by Branson 
et al. (2010). 

	 S. constellatus	 S. levis	 S. miniatus	 S. rubrivinctus	 Scythe
				    (flag rockfish)	 butterflyfish	
 Figure 1. Training set for principal components analysis (PCA). 

Table 2. Flag rockfish detection with Viola and Jones (2004) algorithm.

#Test P/N TS Hits Missed False #Stages #Weak 
Classifiers

1 3100/3000 1272 LR 245 (19%) 916 138 3 3

2 3800/3000 1272 LR 615 (49%) 546 196 6 11
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Table 3. Scale invariant feature transform (SIFT) results.

#Test Used Images P / Test Set Hits

1 P. falcifer (butterfly fish) and S. rubrivinctus (flag 
rockfish)

5/5 50%

2 10/10 100%

3 S. miniatus, S. constellatus, and S. levis 4/4 33%

4 P. falcifer and S. rubrivinctus

S. miniatus, S. constellatus, and S. levis

10/10

4/4

40%
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Abstract
Photogrammetric techniques can and should be 
used for reconstruction of underwater scenes, in 
particular for estimation of fish sizes and species’ 
recognition. However, specifics of the medium 
render most of the algorithms developed for in-air 
conditions inapplicable without major alterations. 
The authors describe results of their experimenta-
tion with collected imagery and work in progress.

Introduction
Remote sensing and non-lethal approaches for 
assessments of underwater habitat and biological 
resources increasingly has relied on underwater 
images. NMFS routinely deploys cameras on ROVs, 
AUVs, and other platforms for underwater surveys 
of fish and habitats. Some of these images are visu-
ally inspected and annotated. Relatively few are 
being processed and used for semi-quantitative 
analysis of fish abundance, estimation of cover-
age by certain species, size measurements, etc., 
particularly when stereo imaging is considered 
(e.g., Rooper, et al. 2010). The sheer amount of col-
lected data makes obvious the necessity of develop-
ment of automated processing techniques allow-
ing for substantial reduction of involvement of 
human operators. In this paper the authors report 
the ongoing work on automatic reconstruction 
of 3-dimensional scenes including fish targets 
(“3D reconstruction”) from underwater stereo 
imagery, which is an initial step for fish detection 
in complex environments and subsequent species 
recognition.

Methods
Multi-view imaging proved to be a reliable tool 
for reconstruction of 3-dimensional scenes: 

geo-registered urban scenes, reverse CAD engi-
neering, etc. (Frahm et al. 2010). Since the foun-
dational work on multiple view geometry in the 
1970s, the associated mathematics have been well 
understood and formulated. 

Almost all of the significant results in this area 
have been achieved working with the imagery 
acquired in the air under ambient lighting. It 
appears that direct application of the same tech-
niques to underwater imagery does not meet 
performance expectations. The reasons for this 
include 1) distance- and wavelength-dependent 
absorption of light by the medium; 2) particles 
suspended even in a very clear water increase noise 
in acquired imagery; and 3) the effects of artificial 
illumination that is required underwater beyond 
several meters deep.

These reasons also complicate construction of 
mosaics from underwater images, compared to 
those from images taken in-air. Many 3-D recon-
struction techniques utilize a brightness constancy 
constraint. This assumption rarely holds even for 
in-air imagery – it expects only Lambertian light 
scattering and careful photometric calibration of 
all cameras (Pons et al. 2007). Although these con-
ditions are not encountered in the real world, this 
assumption is still being used due to its advan-
tages – it allows working with a single-pixel reso-
lution and to use computationally efficient global 
optimization algorithms (e.g., Kolmogorov and 
Zabih 2002). All other algorithms require rectifica-
tion of image pairs prior to searching for conjugate 
points (points in different images corresponding to 
the same feature in the scene). Due to the noisiness 
common in underwater images, the algorithm of 
choice must be noise-tolerant (Leclercq and Morris 
2003). It also must be local, that is, window-based, 
as line-based algorithms (Birchfield and Tomasi 
1996) are known to suffer from streaky artifacts. 
The most robust algorithm is one that utilizes nor-
malized cross-correlation (NCC) as a measure of 
matching quality, and it was chosen for our imple-
mentation of “StereoMeasure” software.

Careful calibration of each camera and the stereo 
rig as a whole allowed for correction of lens dis-
tortions and rectification of each stereo pair of 
images. Rectification performs such transforma-
tions on the images that any point feature (visible 
in both frames) appears in these images on the 
same row. In other words, epipolar lines become 
horizontal, and vertical disparity becomes zero. 
(The experiments have shown later that features 
located near the frame edges still often have non-
zero vertical disparity, which indicates lack of 
accuracy in the calibration procedure, or inability 
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of the used calibration model to capture the com-
plexity of the optical system.) Measurement of dis-
tances between points in 3-dimensional space was 
performed by the user choosing (clicking in the 
GUI) these points in one image from a stereo pair. 
Points were assumed to belong to some opaque 
surface (e.g., fish skin, rock in the background, 
etc.). “StereoMeasure” software automatically 
converts integer pixel locations to a correspond-
ing location in a rectified image (represented by 
floating point coordinates), searches for a conju-
gate point in the complimentary rectified image 
(utilizing epipolar constraint and NCC score), and 
converts its location back to the space of the origi-
nal complimentary frame. All points – manually 
chosen (MC) and automatically found (AF) – are 
displayed in the GUI for visual verification (Fig. 1). 
Occasionally, automatic procedure finds conjugate 
points incorrectly. The primary reasons for this 
include: 1) choice of initial point in a textureless 
area; and 2) choice of the point in the area with the 
repeatable pattern (like fish scales). In these rare 
cases (less than 2% during our experimentation), 
the user can open a dialog box with an upsam-
pled version in the vicinity of either an MC or AF 
point and shift it in any direction. Upon closing 
the dialog box, all the calculations are refreshed. 
Changing the location of a MC point would find 
another AF point (which is then reviewed for accu-
racy); changing an AF point overrides the automati-
cally found result and accepts manually corrected 
result as final. Once MC and AF pairs are final-
ized, “StereoMeasure” performs triangulation in 
3D space and calculates distances between sequen-
tial triangulated points. The results can be saved 

in an ASCII file along with metadata provided by 
the user (e.g., operator’s name, number and date 
of the mission, etc.) More than two points can be 
identified by the user to enable measurement of 
length along a curved surface such as the side of 
a bent fish.

Discussion
“StereoMeasure” proved to be useful and reli-
able tool for underwater distance measurements, 
and the extension of the work is underway as the 
“StereoFeatures” project. The current task is to 
build a dense disparity map for the image pair 
which allows 3D reconstruction of a scene—esti-
mation of the spatial locations of all targets and 
seabed or background elements. The scene reso-
lution is limited only by the resolution of input 
images. Rectified images then undergo extraction 
and pair-wise matching of salient point features. 
We have experimented with SIFT (Lowe 2004) and 
SURF (Bay 2008) keypoints and descriptors, and 
the results proved to be very similar. 

On smooth surfaces, disparity also changes 
smoothly, so starting with the extracted “seed” 
points (which are all assumed to be correctly 
matched), matching is continued in all directions. 
The search for a conjugate point is conducted 
within a square window of predetermined size, 
and the NCC score is aggregated over a square 
window of a different size. Obviously, the proce-
dure stops working near occlusions (NCC score 
decreases), textureless areas (spatial variability 
of NCC score decreases), and around pixels which, 
despite being conjugate, demonstrate highly 

Figure 1. StereoMeasure user interface showing three measurement points and their conjugate points used to measure 
a fish in images from the left and right camera.
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different brightnesses (due to specular reflection, 
or other reasons). These considerations allow for 
the formulation of stopping criteria: propaga-
tion in a certain direction stops if its NCC score 
or “textural richness” drops below some thresh-
old. The latter has been defined as the variance 
of deviations of brightness values from planar 
surface optimally fit to the current window.

During the first stage, the NCC score is calculated 
using only integer pixel values. All matches with a 
score exceeding the threshold are ranked accord-
ing to this score, and the n top-scoring matches 
are saved as potential candidates (n usually ranges 
from 5-10). Once the entire image is processed, all 
potential matches are considered in an attempt 
to minimize the disparity difference for neigh-
boring pixels. The selection process works on 
“belief propagation” principles. Chosen matches 
are improved by calculation of subpixel locations 
of conjugate points. Finally, successful matches 
are triangulated, creating a cloud of points in the 
system of coordinates where the left camera is at 
the origin (Fig. 2). Points calculated from the neigh-
boring matches are immediately linked together 
creating triangular facets. Those with gaps remain 
unlinked.

Further processing steps 
will include detection of 3D 
objects that potentially rep-
resent bodies of fish, separa-
tion of these forms from their 
background, and automated 
estimation of size and shape. 
Measurement of water prop-
erties (specifically, the depen-
dence of absorption coef-
ficient on light wavelength) 

allows for the reconstruction of true color of its 
surface (due to known distance from the camera 
to the surface). Characteristic measurements of 
detected objects (sizes in all directions, various 
size ratios, and typical color patterns) may serve 
as important cues in species recognition and 
identification.
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Figure 2. Matched SIFT keypoints for fish and 
part of the background in left and right stereo 
camera images acquired from a tank, and (bottom) 
a rendition of the reconstructed 3-D scene, where 
colors (yellow to red = near to far) represent 
distances from the origin, referenced to one of 
the cameras.
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The collection of biological data on fish species 
composition and individual length has always 
been an important requirement for fisheries 
research, stock assessment and management or 
policy-making. The actual quantity and quality 
of data acquired in many areas may not be suf-
ficient to meet this requirement. Recent advances 
in technology have facilitated the development 
of certain methods for data acquisition in fisher-
ies, such as video and satellite vessel monitoring 
systems (VMS) and machine vision systems. One 
such machine vision system is the CatchMeter 
(White et al. 2006), a conveyor-based machine 
vision system for automatic species recognition 
and length measurement. In this contribution we 
present an underwater machine vision system, 
named DeepVision, capable of automatic species 
recognition, length measurement and sorting 
of fish in the trawl. The DeepVision system is 
attached in the codend of a trawl (Fig. 1) and is 
essentially a frame within which there is a con-
trolled illumination setup. Fish are guided into 
a transparent channel and as they pass a camera 
takes side-on, high quality color images (Fig. 2), 
which are analysed in real-time to give species 
and length data (Fig. 3). This information is then 
passed to a sorting mechanism located after the 
transparent channel, which can either guide fish 
into a sack or release them again into the sea. The 
DeepVision can run for 8 hours on batteries and 
can run automatically or manually via an Ethernet 

connection over standard netsounder cable to the 
bridge. So far the system has been trained to rec-
ognise four species of fish with a species classi-
fication accuracy of 97% for well positioned fish. 
More fish species will be trained as data becomes 
available. Initial results show that the length 
measurements correlate well with manual mea-
surements. With the DeepVision in operation the 
user has the exact time and depth that individual 
fish enter the cod end, offering the possibility to 
acquire species and size data over both time and 
depth. Furthermore, the user can decide whether 
to simply release all fish that enter the system or 
take a subsample for closer examination onboard. 
The new system will be of interest for use with 
both research and commercial vessels. The pro-
totype system has been successfully tested on the 
Norwegian research vessels G.O. Sars and Johan 
Hjort. The pilot version of the commercial system 
is due to be ready autumn 2011.
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Figure 1. DeepVision system concept. 

Figure 2. DeepVision subsea unit. Figure 3. DeepVision image of cod.
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Introduction 
The long-term goal of this project is to develop 
an underwater sensor network to automatically 
census coral reef fish populations and thereby 
provide timely warning about possible environ-
mental impacts on the reef. Each sensor may 
include multiple video cameras and illumination 
sources. It will identify and count various fish 
species found near the reef and convey that infor-
mation to a central data collection node. The data 
and associated imagery will be remotely accessible 
for further analysis and for educational activities. 
The initial phase of this project involves develop-
ment and field testing of a proof-of-concept pro-
totype of the multi-camera sensor module. Initial 
tests were conducted at the Glover’s Reef exhibit 
at the New York Aquarium. 

Development of the Prototype
System Hardware: The initial concept for the pro-
totype was an open frame that holds two cameras, 
various lights, and two ‘background’ panels that 
block out the complicated scenes of more distant 
regions (Fig. 1a). The idea was to study smaller 
species (less than 20 inches in length) that live 
close to coral reefs to seek refuge from larger 
predators. Wide-angle lenses were chosen so 
that the cameras could be close to the frame for 
structural rigidity, realizing that there would 
be a large change in magnification throughout 
the volume, some portions of the volume not 
covered, and some minor image distortion. High-
resolution GIG-E cameras (supporting up to 100 m 
cable lengths between cameras and an on-shore 
PC) were chosen. These cameras (Allied Vision 
Technologies Inc, formerly Prosilica) support mul-
tiple programmable functions, for example, frame 
rate, integration time, gain, and region of inter-
est, to best interact with a difficult and constantly 

varying environment. Underwater housings and 
lights (Ocean Presence Technologies) were matched 
to the depth requirements at our target reef loca-
tions. The completed prototype was tested in a 
tank at the Rutgers Institute of Marine and Coastal 
Sciences (Fig. 1b), and installed at the New York 
Aquarium coral reef exhibit (Fig. 1c), along with its 
environmentally secured instrumentation (Fig. 1d). 

Image Capture: High-resolution (1360 x 1024 pixel) 
image sequences consisting of 300 precisely syn-
chronized image pairs are captured at 10 frames/
sec. and stored at a rate of 5 seq./hour (Fig. 2).

Image Pre-Processing: Background modeling and 
subtraction is carried out in two steps applied 
to the entire image: Kernel Density Estimation, 
and a Graph Cut algorithm (an energy minimi-
zation method), followed by a local ‘clean-up’ 
re-segmentation using the Graph Cut algorithm 
applied only to the areas within any bounding 
boxes extracted in the previous stage (Figs. 3A, 
B). A particle filter-based tracking algorithm is 
used to track fish across frames and also to detect 
overlaps between multiple fish (Fig. 3C). Pose cor-
rection and scaling is carried out using informa-
tion from both cameras (via epipolar analysis), 
providing depth information, pose correction and 
disambiguation of overlapping fish.

Feature Extraction and Recognition: We are cur-
rently using two sources of features for recog-
nition, shape and color. Fish shape, normalized 
by translation, rotation, scaling and re-sampling 
of perimeter points, yields a reduced number of 
features via principal component analysis (PCA). 
Color features are extracted from RGB histograms 
and compared with training histograms using a χ2 
divergence measure. Note that controlled lighting 
and close-in viewing minimize color variations 
due to imaging through water. Shape and color 
distance metrics are fused using weighted linear 
combinations. Classification is via nearest neigh-
bor detection.
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Figure 1. (a) Frame concept design. (b) Initial test of submersible system. (c) System operating at 
New York Aquarium coral reef exhibit. (d) System instrumentation enclosure.

Figure 2. Image processing and pattern recognition flowchart.
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Preliminary Experimental Results
One hundred seventy-five video sequences con-
taining coral reef fish were recorded at the New 
York Aquarium, each sequence containing 300 
image pairs. In addition to pose and lighting 
variations, recognition challenges include color 
variations between members of the same species 
and small details that distinguish between dif-
ferent species from the same family with similar 
shapes and colors (Fig. 4). Preliminary recognition 

Figure 3. Segmentation of fish from their background (A) and tracking (B).

Fig. 4. Recognition challenges: within species (spotfin 
hogfish) and between species (blue tang and doctorfish).

results (from 120 fully processed sequences) for 
eight species are shown in a confusion matrix 
(Fig. 5). For each species, a test feature vector was 
selected and compared to a set of vectors obtained 
by drawing 35 vectors at random from each of the 
other species. This was repeated 100 times. For 
each species, this process was repeated over differ-
ent values of the proportional weighting given to 
shape and color features to find a species-specific 
optimal weighting w.

1 2 3 4 5 6 7 8 w

1 100 0 0 0 0 0 0 0 0.6

2 0 95 0 0 0 0 1 4 0.6

3 0 0 91 0 8 0 0 1 0.5

4 0 0 0 94 0 0 4 2 0.3

5 0 0 0 0 100 0 0 0 0.2

6 0 0 0 0 0 99 0 1 0.1

7 0 0 0 1 8 0 86 5 0.2

8 0 0 0 0 0 0 1 99 0.7

Fig. 5. Diagonal elements represent correct identifications 
after analysis of eight species. Overall success rate was 
95.8%. w is the weighting between shape and color 
features used for each species (higher values indicate 
stronger weighting towards shape features).

Continuing work includes the analysis of more of 
our recorded sequences, addition of more species 
for classification, system integration for fully auto-
matic system operation, data storage and remote 
access, and design and construction of a more 
physically rugged system for reliable operation 
on coral reefs.
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Conclusions and Recommendations
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Conclusions and Recommendations

This workshop’s presentations and subsequent discussions provided many insights 
into general trends in automated image processing as well as exposing a diversity 
of problems in marine image-based sampling and approaches to solving them. The 
following topics illustrate major themes that can guide future research activities 
and advance the state of automation in marine image-based sampling systems.

1. 	 Create an international forum or working group for automated analysis of images 
from marine image-based sampling systems

As individual research teams move forward on solving automation challenges, 
the scientific community within NOAA and beyond working on similar prob-
lems could benefit from shared knowledge and experiences, and in a shorter 
time span than the usual publication cycle. In many cases, operational methods 
and software developments are not published. With the increasing number 
of programs seeking new ways of solving common problems, this type of 
organization could provide a continual and dynamic exchange of knowledge 
for this fairly specific field. 

2. 	 Inter-disciplinary collaboration

Skill sets of biologists and technicians responsible for collecting underwater 
imagery are generally different from those required for developing automated 
analysis software. Likewise, computer vision scientists and experts can benefit 
from involvement in marine projects with clearly defined objectives driven 
directly by data needs. Rather than supporting graduate students, post-docs, 
and other research assistantships from marine research fields such as fisheries 
and oceanography, it may be more beneficial for image-based research pro-
grams to reach out to students in computer science and electrical engineering 
to build interest in applying their knowledge to biological sciences and natural 
resources, thus fostering future collaborations and partnerships. 

3. 	 Development of a database to facilitate in feature recognition for marine organisms

Research on classifying organisms from images generally requires libraries 
of manually classified training images. Depending on the objectives, a series 
of individual targets imaged from different aspects and with different back-
grounds may be beneficial for creating robust classification algorithms. For 
this purpose, a shared fish image bank has been proposed, allowing computer 
vision experts access to validated images otherwise available only within the 
groups collecting the data. In addition, standardizing image collection and 
storage would assist in future steps toward automation by providing a common 
data framework to which algorithms could be applied.
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5. 	 More often than not analysis solutions will have to be customized

Image-based systems within NOAA operate in different environments and 
with different objectives. While there are many common problems that every 
program faces, often the solutions have to be specific to the situation. For 
example, some systems may require automated stereo-correspondence analy-
sis coupled with a threshold based segmentation, while others would require 
pattern-based segmentation of targets followed by target tracking. The best 
practice may be a modular approach that allows customized analysis structures 
to built using algorithms, or modules, for sub-processes that may themselves 
be general. To this end, a medium for exchange of algorithms developed by 
individual groups but potentially usable by many should be established, pro-
viding the building blocks for customized automated analysis systems. 

4.	 Optimal allocation of automation in analysis 

There are “easy” and “hard” problems in automation. It may require many 
years of development before fish targets can be reliably extracted from moving, 
heavily patterned backgrounds that often accompany benthic camera work. 
Partially obscured, occluded, or cryptic objects present difficulties for com-
puter algorithms, while human observers can often easily recognize targets 
of interest. For some of these situations, a combined approach may be taken 
that still requires human intervention but could automate certain tasks to 
make more efficient use of manual processing. As continuing progress is 
made toward full automation, software for assisting analyses would still find 
immediate uses in current programs, where image analysis is required in a 
timely manner for management of living marine resources. In other cases, 
image collection systems should be designed with automation in mind, pro-
viding uniform backgrounds and illumination control to make segmentation 
more precise and effective. 
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